-
Notifications
You must be signed in to change notification settings - Fork 1
/
README.html
563 lines (502 loc) · 29.3 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>A Collection of Literature on Probabilistic Graphical Models</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dong" />
<style type="text/css">
<!--/*--><![CDATA[/*><!--*/
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #ccc;
box-shadow: 3px 3px 3px #eee;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: visible;
padding-top: 1.2em;
}
pre.src:before {
display: none;
position: absolute;
background-color: white;
top: -10px;
right: 10px;
padding: 3px;
border: 1px solid black;
}
pre.src:hover:before { display: inline;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
/*]]>*/-->
</style>
<script type="text/javascript">
/*
@licstart The following is the entire license notice for the
JavaScript code in this tag.
Copyright (C) 2012-2019 Free Software Foundation, Inc.
The JavaScript code in this tag is free software: you can
redistribute it and/or modify it under the terms of the GNU
General Public License (GNU GPL) as published by the Free Software
Foundation, either version 3 of the License, or (at your option)
any later version. The code is distributed WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
As additional permission under GNU GPL version 3 section 7, you
may distribute non-source (e.g., minimized or compacted) forms of
that code without the copy of the GNU GPL normally required by
section 4, provided you include this license notice and a URL
through which recipients can access the Corresponding Source.
@licend The above is the entire license notice
for the JavaScript code in this tag.
*/
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
</script>
</head>
<body>
<div id="content">
<h1 class="title">A Collection of Literature on Probabilistic Graphical Models</h1>
<p>
<b>The collection of literature work on Probabilistic Graphical Models (PGMs). Source file can be found at git repository <a href="https://github.com/FirstHandScientist/pgm_map">pgm-map</a>.</b>
</p>
<div id="outline-container-orgff93f4a" class="outline-2">
<h2 id="orgff93f4a"><span class="section-number-2">1</span> Book and Monograph on PGMs</h2>
<div class="outline-text-2" id="text-1">
</div>
<div id="outline-container-org7770da0" class="outline-3">
<h3 id="org7770da0"><span class="section-number-3">1.1</span> Books / Monograph:</h3>
<div class="outline-text-3" id="text-1-1">
<ul class="org-ul">
<li>Kingma and Welling, 2019, <a href="https://arxiv.org/abs/1906.02691">An Introduction to Variational Autoencoders</a></li>
<li>Sutton, 2010, <a href="https://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf">An Introduction to Conditional Random Fields</a></li>
<li>Wainwright, 2008, <a href="file:///home/dong/Documents/my_eBooks/mLearning/graphical_models_wainwright.pdf">Graphical Models, Exponential Families, and Variational Inference</a></li>
<li>Koller, 2009, <a href="file:///home/dong/Documents/my_eBooks/mLearning/probabilistic_graphical_models_principles_techniques.pdf">Probabilistic graphical models: principles and techniques</a></li>
<li>Mark Rowland, 2018, <a href="https://www.repository.cam.ac.uk/handle/1810/287479">Structure in Machine Learning: Graphical Models and Monte Carlo Methods</a></li>
<li>Yingzhen Li, 2018, <a href="https://www.repository.cam.ac.uk/handle/1810/277549">Approximate Inference: New Visions</a></li>
<li>Adrian Weller, 2014, <a href="http://mlg.eng.cam.ac.uk/adrian/phd_FINAL.pdf">Methods for Inference in Graphical Models</a></li>
</ul>
<ul class="org-ul">
<li>Angelino, et al 2016, <a href="https://www.nowpublishers.com/article/Details/MAL-052">Patterns of Scalable Bayesian Inference</a></li>
<li>Komodakis etc, 2016, <a href="https://www.nowpublishers.com/article/Details/CGV-066">(Hyper)-Graphs Inference through Convex Relaxations and Move Making Algorithms: Contributions and Applications in Artificial Vision</a></li>
<li>Bogdan Savchynskyy, 2019, <a href="file:///home/dong/Documents/my_eBooks/mLearning/discrete_graphical_models_an_optimization_perspective.pdf">Discrete Graphical Models – An Optimization Perspective</a></li>
<li>Angelino, 2016, <a href="https://www.nowpublishers.com/article/Details/MAL-052">Patterns of Scalable Bayesian Inference</a></li>
<li><p>
Nowozin, 2011, <a href="http://www.nowozin.net/sebastian/papers/nowozin2011structured-tutorial.pdf">Structured Learning and Prediction in Computer Vision</a>
</p>
<p>
Ihler, Alexander:
</p></li>
<li>Lou, Qi, 2018, <a href="https://escholarship.org/uc/item/7sc0m97f">Anytime Approximate Inference in Graphical Models</a></li>
<li>Ping, Wei, 2016, <a href="https://escholarship.org/uc/item/7q90z4b5">Learning and Inference in Latent Variable Graphical Models</a></li>
<li>Forouzan, Sholeh, 2015, <a href="https://escholarship.org/uc/item/5n4733cz">Approximate Inference in Graphical Models</a></li>
<li><p>
Qiang, Liu, 2014, <a href="https://escholarship.org/uc/item/92p8w3xb">Reasoning and Decisions in Probabilistic Graphical Models - A Unified Framework</a>
</p>
<p>
Minka:
</p></li>
<li>Yuan Qi, 2005, <a href="https://affect.media.mit.edu/pdfs/05.qi-phd.pdf">Extending Expectation Propagation for Graphical Models</a></li>
<li>Thomas P Minka, 2001, <a href="https://tminka.github.io/papers/ep/minka-thesis.pdf">A family of algorithms for approximate Bayesian inference</a></li>
</ul>
</div>
</div>
</div>
<div id="outline-container-org78094cc" class="outline-2">
<h2 id="org78094cc"><span class="section-number-2">2</span> Inference and Learning of PGMs Papers</h2>
<div class="outline-text-2" id="text-2">
</div>
<div id="outline-container-org35b3f91" class="outline-3">
<h3 id="org35b3f91"><span class="section-number-3">2.1</span> Inference methods and techniques</h3>
<div class="outline-text-3" id="text-2-1">
</div>
<div id="outline-container-org4ab6a9b" class="outline-4">
<h4 id="org4ab6a9b"><span class="section-number-4">2.1.1</span> Classical Inference Methods</h4>
<div class="outline-text-4" id="text-2-1-1">
<ul class="org-ul">
<li>Lee et al, 2019, EMP, <a href="https://arxiv.org/abs/1907.01127">Convergence rates of smooth message passing with rounding in entropy-regularized MAP inference</a></li>
<li>Fletcher, 2017, <a href="https://arxiv.org/abs/1602.07795">Expectation Consistent Approximate Inference: Generalizations and Convergence</a></li>
<li>Convergence Analysis, Roosta, 2008, <a href="https://ieeexplore.ieee.org/document/4599175">Convergence Analysis of Reweighted Sum-Product Algorithms</a></li>
<li>Generalized BP for marginal distributions, Yedidis, et al, 2005, <a href="https://www.cs.princeton.edu/courses/archive/spring06/cos598C/papers/YedidaFreemanWeiss2004.pdf">Constructing free energy approximations and Generalized belief propagation algorithms</a></li>
<li>Tree-structured EP, Minka and Qi, <a href="https://tminka.github.io/papers/eptree/minka-eptree.pdf">Tree-structured approximations by expectation propagation</a></li>
<li>Winn & Bishop, 2005, <a href="http://www.jmlr.org/papers/volume6/winn05a/winn05a.pdf">Variational message passing</a></li>
<li>Opper, Winther, 2005, <a href="http://www.jmlr.org/papers/volume6/opper05a/opper05a.pdf">Expectation Consistent Approximate Inference</a></li>
<li>Wainwright et al, 2003, <a href="http://ssg.mit.edu/group/willsky/publ_pdfs/166_pub_AISTATS.pdf">tree-reweighted belief propagation algorithms and approximated ML esimation by pseudo-moment matching</a></li>
<li>Wainwright and Willsky, 2003, <a href="https://papers.nips.cc/paper/2206-exact-map-estimates-by-hypertree-agreement.pdf">Exact MAP estimates by hypertree agreement</a></li>
<li>Tourani et al, 2018, <a href="https://hci.iwr.uni-heidelberg.de/vislearn/HTML/people/bogdan/publications/papers/tourani-mplp-plus-plus-eccv2018.pdf">MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical Models</a></li>
<li>Haller et al, 2018, <a href="https://arxiv.org/abs/2004.06370">Exact MAP-Inference by Confining Combinatorial Search with LP Relaxation</a></li>
<li>Globerson, Jaakkola, 2008, <a href="https://papers.nips.cc/paper/3200-fixing-max-product-convergent-message-passing-algorithms-for-map-lp-relaxations.pdf">Fixing Max-Product: Convergent Message PassingAlgorithms for MAP LP-Relaxations</a></li>
</ul>
</div>
</div>
<div id="outline-container-org78264d9" class="outline-4">
<h4 id="org78264d9"><span class="section-number-4">2.1.2</span> Improvements</h4>
<div class="outline-text-4" id="text-2-1-2">
<ul class="org-ul">
<li>Conditioning, Clamping, Divide
<ul class="org-ul">
<li>Zhou et al, 2020, <a href="https://arxiv.org/abs/1910.13324">Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support</a></li>
<li>Eaton and Ghahramani, 2009, <a href="http://mlg.eng.cam.ac.uk/pub/pdf/EatGha09.pdf">Choosing a Variable to Clamp</a></li>
<li>Geier et al, 2015, <a href="http://auai.org/uai2015/proceedings/papers/158.pdf">Locally Conditioned Belief Propagation</a></li>
<li>Weller and Jebara, 2014, <a href="https://papers.nips.cc/paper/5529-clamping-variables-and-approximate-inference.pdf">Clamping Variables and Approximate Inference</a></li>
</ul></li>
</ul>
<ul class="org-ul">
<li>Linear Response. Welling and Teh, <a href="https://www.ics.uci.edu/~welling/publications/papers/LR2.pdf">Linear Response Algorithms for Approximate Inference in Graphical Models</a></li>
<li>Combining with Particle/Stochastic Methods
<ul class="org-ul">
<li>Liu et al, 2015, <a href="https://papers.nips.cc/paper/5695-probabilistic-variational-bounds-for-graphical-models">Probabilistic Variational Bounds for Graphical Models</a></li>
<li>Noorshams and Wainwright, 2013, <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6373728">stochastic belief propagation: a low-complexity alternative to the sum-product algorithm</a></li>
<li>Lienart, et al, Expectation Particle Belief Propagation</li>
<li>Ihler, McAllester, 2009, <a href="http://proceedings.mlr.press/v5/ihler09a/ihler09a.pdf">Particle Belief Propagation</a></li>
</ul></li>
<li>Mixture/multi-modal
<ul class="org-ul">
<li>Baque et al, 2017, <a href="http://openaccess.thecvf.com/content_cvpr_2017/papers/Baque_Multi-Modal_Mean-Fields_via_CVPR_2017_paper.pdf">Multi-Modal Mean-Fields via Cardinality-Based Clamping</a></li>
<li>Hao Xiong et al, 2019, <a href="http://auai.org/uai2019/proceedings/papers/19.pdf">One-Shot Marginal MAP Inference in Markov Random Fields</a></li>
</ul></li>
<li>Layered messages
<ul class="org-ul">
<li>Jampani et al, 2015, <a href="http://proceedings.mlr.press/v38/jampani15.pdf">Consensus Message Passing for Layered Graphical Models</a></li>
</ul></li>
</ul>
</div>
</div>
<div id="outline-container-org9788b2f" class="outline-4">
<h4 id="org9788b2f"><span class="section-number-4">2.1.3</span> Application</h4>
<div class="outline-text-4" id="text-2-1-3">
<ul class="org-ul">
<li><a href="https://papers.nips.cc/paper/9532-combining-generative-and-discriminative-models-for-hybrid-inference.pdf">Satorras, 2019, Combining Generative and Discriminative Models for Hybrid Inference</a></li>
<li><a href="https://arxiv.org/pdf/1502.03240.pdf">Zheng, 2019, Conditional Random Fields as Recurrent Neural Networks</a></li>
<li><a href="https://arxiv.org/abs/1210.5644">Krahenbuhl, 2011, Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials</a></li>
</ul>
</div>
</div>
<div id="outline-container-org49d001e" class="outline-4">
<h4 id="org49d001e"><span class="section-number-4">2.1.4</span> Variational methods</h4>
<div class="outline-text-4" id="text-2-1-4">
<ul class="org-ul">
<li>NIPS tutorial 2016, <a href="https://media.nips.cc/Conferences/2016/Slides/6199-Slides.pdf">Variational Inference</a></li>
<li>Kingma and Welling, 2014, Autoencoder: <a href="https://arxiv.org/abs/1312.6114">Auto-Encoding Variational Bayes</a></li>
<li>Kuleshov and Ermon, 2017, NVIL: <a href="https://arxiv.org/abs/1711.02679">Neural Variational Inference and Learning in Undirected Graphical Models</a></li>
<li>Li, etc, 2020, AdVIL: <a href="https://arxiv.org/abs/1901.08400">To Relieve Your Headache of Training an MRF, Take AdVIL</a></li>
<li>Lazaro-Gredilla, 2019 (Vicarious AI), <a href="https://arxiv.org/abs/1912.02893">Learning undirected models via query training</a></li>
<li>Sobolev and Vetrov, 2019, (Section 3 gives interesting discussion on literature works) <a href="http://papers.nips.cc/paper/8350-importance-weighted-hierarchical-variational-inference">Importance Weighted Hierarchical Variational Inference</a></li>
<li>Kingma, et al, 2016, <a href="https://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow">Improved Variational Inference with Inverse Autoregressive Flow</a></li>
<li>Rezende, Mohamed, 2015, <a href="https://arxiv.org/abs/1505.05770">Variational Inference with Normalizing Flows</a></li>
<li>Domke, 2019, <a href="https://arxiv.org/abs/1901.08431">Provable Smoothness Guarantees for Black-Box Variational Inference</a></li>
<li>Blei, 2017, <a href="https://amstat.tandfonline.com/doi/pdf/10.1080/01621459.2017.1285773?needAccess=true">Variational Inference: A Review for Statisticians</a></li>
<li>Regier et al, 2017, <a href="https://papers.nips.cc/paper/6834-fast-black-box-variational-inference-through-stochastic-trust-region-optimization.pdf">Fast Black-box Variational Inferencethrough Stochastic Trust-Region Optimization</a></li>
<li>Kucukelbir et al, 2016, <a href="https://arxiv.org/pdf/1603.00788.pdf">Automatic differentiation variational inference</a></li>
<li>Black-box alpha, 2016, <a href="http://proceedings.mlr.press/v48/hernandez-lobatob16.pdf">Black-box alpha-divergence minimization</a></li>
<li>Ranganath et al, 2014, <a href="http://proceedings.mlr.press/v33/ranganath14.pdf">Black box variational inference</a></li>
</ul>
</div>
</div>
</div>
<div id="outline-container-org8c583b9" class="outline-3">
<h3 id="org8c583b9"><span class="section-number-3">2.2</span> Neural network based methods</h3>
<div class="outline-text-3" id="text-2-2">
</div>
<div id="outline-container-org731b817" class="outline-4">
<h4 id="org731b817"><span class="section-number-4">2.2.1</span> Deep learning based methods</h4>
<div class="outline-text-4" id="text-2-2-1">
<ul class="org-ul">
<li>Stoller et al, 2020, <a href="https://arxiv.org/pdf/1905.12660.pdf">Training Generative Adversarial Networks from Incomplete Observations using Factorised Discriminators</a></li>
<li>Karaletsos, 2016, <a href="https://arxiv.org/abs/1612.05048">Adversarial Message Passing For Graphical Models</a></li>
</ul>
<p>
Learning messages
</p>
<ul class="org-ul">
<li>Heess et al, <a href="https://papers.nips.cc/paper/5070-learning-to-pass-expectation-propagation-messages.pdf">Learning to Pass Expectation Propagation Messages</a>, half-automated message passing, message-level automation</li>
<li>Yoon et al, 2018, <a href="https://arxiv.org/abs/1803.07710">Inference in Probabilistic Graphical Models by Graph Neural Networks</a></li>
<li>Lin, 2015, <a href="http://papers.nips.cc/paper/5791-deeply-learning-the-messages-in-message-passing-inference.pdf">Deeply Learning the Messages in Message Passing Inference</a></li>
</ul>
<p>
Graphical Neural Networks
</p>
<ul class="org-ul">
<li><a href="https://arxiv.org/abs/1905.06214">GMNN: Graph Markov Neural Networks</a>, semi-supervised learning, EM is used for training.</li>
<li>More generalized computation power: <a href="https://github.com/deepmind/graph_nets">Graph Net Library</a>, A graph network takes a graph as input and returns a graph as output.</li>
<li>Related, <a href="https://github.com/dmlc/dgl">Deep Graph Library</a>, for deep learning on graphs</li>
<li>Scarselli et al, 2009, <a href="https://persagen.com/files/misc/scarselli2009graph.pdf">The graph neural network model</a></li>
<li>Satorras and Welling, 2020, <a href="https://arxiv.org/abs/2003.01998">Neural Enhanced Belief Propagation on Factor Graphs</a></li>
</ul>
</div>
</div>
<div id="outline-container-org611dcb0" class="outline-4">
<h4 id="org611dcb0"><span class="section-number-4">2.2.2</span> Neural density function estimation</h4>
<div class="outline-text-4" id="text-2-2-2">
<ul class="org-ul">
<li>Chen et al, 2018, ODE: <a href="https://papers.nips.cc/paper/7892-neural-ordinary-differential-equations">Neural Ordinary Differential Equations</a></li>
<li>Kingma, Dhariwal, 2018, <a href="https://arxiv.org/abs/1807.03039">Glow: Generative Flow with Invertible 1x1 Convolutions</a></li>
<li>Dinh, Sohl-Dickstein, Bengio, 2017, <a href="https://arxiv.org/pdf/1605.08803.pdf">Density Estimation using Real NVP</a></li>
<li>Dinh, Krueger, Bengio, 2014, <a href="https://arxiv.org/abs/1410.8516">NICE: Non-linear independent component estimation</a></li>
<li>Inverse autoregreeeive flow as in previous subsection.</li>
</ul>
</div>
</div>
</div>
<div id="outline-container-org89c463a" class="outline-3">
<h3 id="org89c463a"><span class="section-number-3">2.3</span> Learning of Graphical Models</h3>
<div class="outline-text-3" id="text-2-3">
</div>
<div id="outline-container-orgdc97ae4" class="outline-4">
<h4 id="orgdc97ae4"><span class="section-number-4">2.3.1</span> Parameter Learning</h4>
<div class="outline-text-4" id="text-2-3-1">
<p>
Learning graphical model parameters by approximate inference
</p>
<ul class="org-ul">
<li>Domke, 2013, <a href="https://ieeexplore.ieee.org/abstract/document/6420841">Learning Graphical Model Parameters with Approximate Marginal Inference</a></li>
<li>Tang, 2015, <a href="https://arxiv.org/abs/1503.01228">Bethe Learning of Conditional Random Fields via MAP Decoding</a></li>
<li>You Lu, 2019, <a href="https://www.aaai.org/ojs/index.php/AAAI/article/view/4357">Block Belief Propagation for Parameter Learning in Markov Random Fields</a></li>
<li>Hazan, 2016, <a href="http://www.jmlr.org/papers/v17/13-260.html">Blending Learning and Inference in Conditional Random Fields</a></li>
</ul>
<p>
Learning of MRF with neural networks
</p>
<ul class="org-ul">
<li>Wiseman and Kim, 2019, <a href="https://papers.nips.cc/paper/9687-amortized-bethe-free-energy-minimization-for-learning-mrfs.pdf">Amortized Bethe Free Energy Minimization for Learning MRFs</a></li>
<li>Kuleshov and Ermon, 2017, <a href="https://arxiv.org/abs/1711.02679">Neural Variational Inference and Learning in Undirected Graphical Models</a></li>
</ul>
<p>
Learning of Directed Graphs
</p>
<ul class="org-ul">
<li>Chongxuan Li, 2020, <a href="https://arxiv.org/abs/1901.08400">To Relieve Your Headache of Training an MRF, Take AdVIL</a></li>
<li>Mnih and Gregor, 2014, <a href="https://arxiv.org/abs/1402.0030">Neural Variational Inference and Learning in Belief Networks</a></li>
<li>NIPS tutorial 2016, <a href="https://media.nips.cc/Conferences/2016/Slides/6199-Slides.pdf">Variational Inference</a></li>
</ul>
</div>
</div>
</div>
</div>
<div id="outline-container-org416d131" class="outline-2">
<h2 id="org416d131"><span class="section-number-2">3</span> PGM and Decision-making in Dynamic Systems</h2>
<div class="outline-text-2" id="text-3">
<ul class="org-ul">
<li>Sutton, Barto, 2018, <a href="https://github.com/FirstHandScientist/Reinforcement-Learning-2nd-Edition-by-Sutton-Exercise-Solutions">Reinforcement learning (2ed edition)</a></li>
<li>Martin L. Puterman, 2014, Markov Decision Processes: Discrete Stochastic Dynamic Programming</li>
<li>Francois-Lavet, et al 2018, <a href="https://arxiv.org/abs/1811.12560">An Introduction to Deep Reinforcement Learning</a></li>
<li>Bubeck, Cesa-Bianchi, 2012, <a href="https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/SurveyBCB12.pdf">Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems</a></li>
<li>Ziebart, 2010, <a href="https://www.cs.cmu.edu/~bziebart/publications/thesis-bziebart.pdf">Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy</a></li>
<li>Levin, 2018, <a href="https://arxiv.org/abs/1805.00909">Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review</a></li>
<li>Haarnoja, et al 2017, <a href="https://arxiv.org/pdf/1702.08165.pdf">Reinforcement Learning with Deep Energy-Based Policies</a></li>
<li>Szepesvari, 2009, <a href="https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs-lecture.pdf">Algorithms for Reinforcement Learning</a></li>
</ul>
</div>
<div id="outline-container-org10b28b1" class="outline-3">
<h3 id="org10b28b1"><span class="section-number-3">3.1</span> Courses</h3>
<div class="outline-text-3" id="text-3-1">
<ul class="org-ul">
<li><a href="https://www.davidsilver.uk/teaching/">Reinforcement Learning (UCL)</a></li>
<li><a href="http://rail.eecs.berkeley.edu/deeprlcourse/">Deep Reinforcement Learning (CS285)</a></li>
<li><a href="https://www.youtube.com/playlist?list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs">Advanced Deep Learning & Reinforcement Learning</a></li>
</ul>
</div>
</div>
</div>
<div id="outline-container-orgb819f1c" class="outline-2">
<h2 id="orgb819f1c"><span class="section-number-2">4</span> In Connecting with Others</h2>
<div class="outline-text-2" id="text-4">
</div>
<div id="outline-container-orge21da4a" class="outline-3">
<h3 id="orge21da4a"><span class="section-number-3">4.1</span> Repos on Variational Inference</h3>
<div class="outline-text-3" id="text-4-1">
<ul class="org-ul">
<li>Repos: <a href="https://github.com/otokonoko8/implicit-variational-inference">Advanced-variational-inference-paper</a></li>
<li>Repos: <a href="https://github.com/otokonoko8/deep-Bayesian-nonparametrics-papers">Deep-Bayesian-nonparametrics-papers</a></li>
</ul>
</div>
</div>
<div id="outline-container-org39042f4" class="outline-3">
<h3 id="org39042f4"><span class="section-number-3">4.2</span> GANs</h3>
<div class="outline-text-3" id="text-4-2">
<ul class="org-ul">
<li>Literature collection: <a href="https://github.com/hindupuravinash/the-gan-zoo">GAN-zoo</a></li>
<li>Repos: <a href="https://github.com/znxlwm/pytorch-generative-model-collections">Generative adversarial networks</a></li>
</ul>
</div>
</div>
<div id="outline-container-orgf7a348c" class="outline-3">
<h3 id="orgf7a348c"><span class="section-number-3">4.3</span> Optimal Transport (likelihood-free learning)</h3>
<div class="outline-text-3" id="text-4-3">
<ul class="org-ul">
<li>Matthed Thorpe, 2018, <a href="http://www.math.cmu.edu/~mthorpe/OTNotes">Introduction to Optimal Transport</a></li>
<li>Peyre, Cuturi, 2018, Computational Optimal Transport, <a href="https://optimaltransport.github.io/resources/">Codes and slides for OT</a></li>
</ul>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dong</p>
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
</div>
</body>
</html>