-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheotgm_main.py
222 lines (187 loc) · 9.15 KB
/
eotgm_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from __future__ import print_function
import argparse
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
import os
from models.metric import knn, mmd
import ot.gpu
import cudamat
import numpy
import models.dcgan as dcgan
import models.mlp as mlp
#from models.module1 import wsdLoss, entropy, sinkhorn, ccdist
from losses import WassersteinLoss
########## AUGMENTS FOR BEGIN #########
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', required=True, help='cifar10 | lsun | imagenet | folder | lfw ')
parser.add_argument('--dataroot', required=True, help='path to dataset')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=8)
parser.add_argument('--batchSize', type=int, default=64, help='input batch size')
parser.add_argument('--imageSize', type=int, default=64, help='the height / width of the input image to network')
parser.add_argument('--nc', type=int, default=3, help='input image channels')
parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector')
parser.add_argument('--ngf', type=int, default=64)
parser.add_argument('--ndf', type=int, default=64)
parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for')
parser.add_argument('--lrG', type=float, default=0.0001, help='learning rate for Generator, default=0.00005')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--cuda' , action='store_true', help='enables cuda')
parser.add_argument('--ngpu' , type=int, default=2, help='number of GPUs to use')
parser.add_argument('--netG', default='', help="path to netG (to continue training)")
parser.add_argument('--Diters', type=int, default=5, help='number of D iters per each G iter')
parser.add_argument('--noBN', action='store_true', help='use batchnorm or not (only for DCGAN)')
parser.add_argument('--mlp_G', action='store_true', help='use MLP for G')
parser.add_argument('--mlp_D', action='store_true', help='use MLP for D')
parser.add_argument('--n_extra_layers', type=int, default=0, help='Number of extra layers on gen and disc')
parser.add_argument('--experiment', default=None, help='Where to store samples and models')
parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is rmsprop)')
parser.add_argument('--sinkgpu', action='store_true', help='Whether to use gpu for sinkhorn calculation')
parser.add_argument('--noM', action='store_true', help='Whether to normalize the cost matrix')
parser.add_argument('--regL', type=float, default=10, help='The wasserstein regularization parameter')
opt = parser.parse_args()
print(opt)
#####################################################################################################################################################PREPARE THE DATA FOR TRAINING#################################################################################################################################################################
if opt.experiment is None:
opt.experiment = 'samples'
os.system('mkdir {0}'.format(opt.experiment))
opt.manualSeed = random.randint(1, 10000) # fix seed
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
cudnn.benchmark = True
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
if opt.dataset == 'cifar10':
dataset = dset.CIFAR10(root=opt.dataroot, download=True,
transform=transforms.Compose([
transforms.Scale(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
elif opt.dataset == 'mnist':
dataset = dset.MNIST(root=opt.dataroot, download=True,
transform=transforms.Compose([
transforms.Scale(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
assert dataset
dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize,
shuffle=True, num_workers=int(opt.workers))
#################### configure the constants ####################
ngpu = int(opt.ngpu)
nz = int(opt.nz)
ngf = int(opt.ngf)
ndf = int(opt.ndf)
nc = int(opt.nc)
n_extra_layers = int(opt.n_extra_layers)
################################################## define the distance calculation function
################################################################################
# custom weights initialization called on netG and netD
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.03)
m.bias.data.fill_(0)
if opt.noBN:
netG = dcgan.DCGAN_G_nobn(opt.imageSize, nz, nc, ngf, ngpu, n_extra_layers)
elif opt.mlp_G:
netG = mlp.MLP_G(opt.imageSize, nz, nc, ngf, ngpu)
else:
netG = dcgan.DCGAN_G(opt.imageSize, nz, nc, ngf, ngpu, n_extra_layers)
netG.apply(weights_init)
if opt.netG != '': # load checkpoint if needed
netG.load_state_dict(torch.load(opt.netG))
print(netG)
##################################INPUT- LATEN Z -- ##################################################################
input = torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize)
noise = torch.FloatTensor(opt.batchSize, nz, 1, 1)
fixed_noise = torch.FloatTensor(opt.batchSize, nz, 1, 1).normal_(0, 1)
one = torch.FloatTensor([1])
mone = one * -1
######################### if use the GPUs for computation, and set the optimizer ####################
#criterion = wsdLoss()
criterion = WassersteinLoss(torch.Tensor([opt.regL]).double(), False)
if opt.cuda:
netG.cuda()
#wsdLoss.cuda()
input = input.cuda()
one, mone = one.cuda(), mone.cuda()
noise, fixed_noise = noise.cuda(), fixed_noise.cuda()
# setup optimizer
if opt.adam:
optimizerG = optim.Adam(netG.parameters(), lr=opt.lrG, betas=(opt.beta1, 0.999))
else:
optimizerG = optim.RMSprop(netG.parameters(), lr = opt.lrG)
# initialization of cudamat
if opt.sinkgpu:
cudamat.cublas_init()
normalizeL = torch.Tensor([opt.regL]).double()
SCORE = []
gen_iterations = 0
for epoch in range(opt.niter):
data_iter = iter(dataloader)
i = 0
tmp_score = []
while i < len(dataloader):
############################
# (1) sample the empirical data first
###########################
data = data_iter.next()
i += 1
# fetch the real data
real_cpu, _ = data
batch_size = real_cpu.size(0)
if opt.cuda:
real_cpu = real_cpu.cuda()
input.resize_as_(real_cpu).copy_(real_cpu)
inputv = input
#inputvcpu = inputv.cpu().data
############################
# (2) Update G network
###########################
netG.zero_grad()
# in case our last batch was the tail batch of the dataloader,
# make sure we feed a full batch of noise
#with torch.no_grad():
noise.resize_(batch_size, nz, 1, 1).normal_(0, 1)
noisev = Variable(noise)
fake = netG(noisev)
inputv_fake = fake
loss = criterion(inputv_fake.view(batch_size, -1), inputv.view(batch_size,-1))
loss.backward()
optimizerG.step()
#assert False
gen_iterations += 1
with torch.no_grad():
knn_score = knn(inputv.view(batch_size, -1).data, inputv_fake.view(batch_size,-1).data, 1, sqrt=False)
mmd_score = numpy.array(mmd( inputv.view(batch_size, -1).data, inputv_fake.view(batch_size,-1).data))
tmp_score.append({'iternum': i,
'gLoss': numpy.array(loss.data.cpu()),
'knn_score': knn_score.acc.numpy(),
'mmd_score': numpy.array(mmd_score) })
print('[%d/%d][%d/%d][%d] wsdLoss: %f, 1nn_score: %f, mmd_score: %f'%(epoch, opt.niter, i, len(dataloader), gen_iterations, loss.data, knn_score.acc.numpy(), mmd_score))
if gen_iterations % 500 == 0:
real_cpu = real_cpu.mul(0.5).add(0.5)
vutils.save_image(real_cpu[:64], '{0}/real_samples_{1}.png'.format(opt.experiment, gen_iterations))
noise.resize_(int(batch_size), nz, 1, 1).normal_(0, 1)
noisev = Variable(noise)
fake = netG(noisev)
fake.data = fake.data.mul(0.5).add(0.5)
vutils.save_image(fake[:64].data, '{0}/fake_samples_{1}.png'.format(opt.experiment, gen_iterations))
SCORE.append(tmp_score)
if epoch %10 ==9:
# do checkpointing
torch.save(netG.state_dict(), '{0}/netG_epoch_{1}.pth'.format(opt.experiment, epoch))
numpy.save(opt.experiment + '/score_tr', SCORE)