-
Notifications
You must be signed in to change notification settings - Fork 140
/
Copy pathmain.py
260 lines (196 loc) · 13.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import torch
import argparse
from nerf_triplane.provider import NeRFDataset
from nerf_triplane.utils import *
from nerf_triplane.network import NeRFNetwork
# torch.autograd.set_detect_anomaly(True)
# Close tf32 features. Fix low numerical accuracy on rtx30xx gpu.
try:
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
except AttributeError as e:
print('Info. This pytorch version is not support with tf32.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str)
parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --exp_eye")
parser.add_argument('--test', action='store_true', help="test mode (load model and test dataset)")
parser.add_argument('--test_train', action='store_true', help="test mode (load model and train dataset)")
parser.add_argument('--data_range', type=int, nargs='*', default=[0, -1], help="data range to use")
parser.add_argument('--workspace', type=str, default='workspace')
parser.add_argument('--seed', type=int, default=0)
### training options
parser.add_argument('--iters', type=int, default=200000, help="training iters")
parser.add_argument('--lr', type=float, default=1e-2, help="initial learning rate")
parser.add_argument('--lr_net', type=float, default=1e-3, help="initial learning rate")
parser.add_argument('--ckpt', type=str, default='latest')
parser.add_argument('--num_rays', type=int, default=4096 * 16, help="num rays sampled per image for each training step")
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
parser.add_argument('--max_steps', type=int, default=16, help="max num steps sampled per ray (only valid when using --cuda_ray)")
parser.add_argument('--num_steps', type=int, default=16, help="num steps sampled per ray (only valid when NOT using --cuda_ray)")
parser.add_argument('--upsample_steps', type=int, default=0, help="num steps up-sampled per ray (only valid when NOT using --cuda_ray)")
parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)")
parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when NOT using --cuda_ray)")
### loss set
parser.add_argument('--warmup_step', type=int, default=10000, help="warm up steps")
parser.add_argument('--amb_aud_loss', type=int, default=1, help="use ambient aud loss")
parser.add_argument('--amb_eye_loss', type=int, default=1, help="use ambient eye loss")
parser.add_argument('--unc_loss', type=int, default=1, help="use uncertainty loss")
parser.add_argument('--lambda_amb', type=float, default=1e-4, help="lambda for ambient loss")
### network backbone options
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
parser.add_argument('--bg_img', type=str, default='', help="background image")
parser.add_argument('--fbg', action='store_true', help="frame-wise bg")
parser.add_argument('--exp_eye', action='store_true', help="explicitly control the eyes")
parser.add_argument('--fix_eye', type=float, default=-1, help="fixed eye area, negative to disable, set to 0-0.3 for a reasonable eye")
parser.add_argument('--smooth_eye', action='store_true', help="smooth the eye area sequence")
parser.add_argument('--torso_shrink', type=float, default=0.8, help="shrink bg coords to allow more flexibility in deform")
### dataset options
parser.add_argument('--color_space', type=str, default='srgb', help="Color space, supports (linear, srgb)")
parser.add_argument('--preload', type=int, default=0, help="0 means load data from disk on-the-fly, 1 means preload to CPU, 2 means GPU.")
# (the default value is for the fox dataset)
parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box[-bound, bound]^3, if > 1, will invoke adaptive ray marching.")
parser.add_argument('--scale', type=float, default=4, help="scale camera location into box[-bound, bound]^3")
parser.add_argument('--offset', type=float, nargs='*', default=[0, 0, 0], help="offset of camera location")
parser.add_argument('--dt_gamma', type=float, default=1/256, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
parser.add_argument('--min_near', type=float, default=0.05, help="minimum near distance for camera")
parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied (sigma)")
parser.add_argument('--density_thresh_torso', type=float, default=0.01, help="threshold for density grid to be occupied (alpha)")
parser.add_argument('--patch_size', type=int, default=1, help="[experimental] render patches in training, so as to apply LPIPS loss. 1 means disabled, use [64, 32, 16] to enable")
parser.add_argument('--init_lips', action='store_true', help="init lips region")
parser.add_argument('--finetune_lips', action='store_true', help="use LPIPS and landmarks to fine tune lips region")
parser.add_argument('--smooth_lips', action='store_true', help="smooth the enc_a in a exponential decay way...")
parser.add_argument('--torso', action='store_true', help="fix head and train torso")
parser.add_argument('--head_ckpt', type=str, default='', help="head model")
### GUI options
parser.add_argument('--gui', action='store_true', help="start a GUI")
parser.add_argument('--W', type=int, default=450, help="GUI width")
parser.add_argument('--H', type=int, default=450, help="GUI height")
parser.add_argument('--radius', type=float, default=3.35, help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=21.24, help="default GUI camera fovy")
parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel")
### else
parser.add_argument('--att', type=int, default=2, help="audio attention mode (0 = turn off, 1 = left-direction, 2 = bi-direction)")
parser.add_argument('--aud', type=str, default='', help="audio source (empty will load the default, else should be a path to a npy file)")
parser.add_argument('--emb', action='store_true', help="use audio class + embedding instead of logits")
parser.add_argument('--ind_dim', type=int, default=4, help="individual code dim, 0 to turn off")
parser.add_argument('--ind_num', type=int, default=10000, help="number of individual codes, should be larger than training dataset size")
parser.add_argument('--ind_dim_torso', type=int, default=8, help="individual code dim, 0 to turn off")
parser.add_argument('--amb_dim', type=int, default=2, help="ambient dimension")
parser.add_argument('--part', action='store_true', help="use partial training data (1/10)")
parser.add_argument('--part2', action='store_true', help="use partial training data (first 15s)")
parser.add_argument('--train_camera', action='store_true', help="optimize camera pose")
parser.add_argument('--smooth_path', action='store_true', help="brute-force smooth camera pose trajectory with a window size")
parser.add_argument('--smooth_path_window', type=int, default=7, help="smoothing window size")
# asr
parser.add_argument('--asr', action='store_true', help="load asr for real-time app")
parser.add_argument('--asr_wav', type=str, default='', help="load the wav and use as input")
parser.add_argument('--asr_play', action='store_true', help="play out the audio")
parser.add_argument('--asr_model', type=str, default='deepspeech')
# parser.add_argument('--asr_model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto')
# parser.add_argument('--asr_model', type=str, default='facebook/wav2vec2-large-960h-lv60-self')
parser.add_argument('--asr_save_feats', action='store_true')
# audio FPS
parser.add_argument('--fps', type=int, default=50)
# sliding window left-middle-right length (unit: 20ms)
parser.add_argument('-l', type=int, default=10)
parser.add_argument('-m', type=int, default=50)
parser.add_argument('-r', type=int, default=10)
opt = parser.parse_args()
if opt.O:
opt.fp16 = True
opt.exp_eye = True
if opt.test and False:
opt.smooth_path = True
opt.smooth_eye = True
opt.smooth_lips = True
opt.cuda_ray = True
# assert opt.cuda_ray, "Only support CUDA ray mode."
if opt.patch_size > 1:
# assert opt.patch_size > 16, "patch_size should > 16 to run LPIPS loss."
assert opt.num_rays % (opt.patch_size ** 2) == 0, "patch_size ** 2 should be dividable by num_rays."
# if opt.finetune_lips:
# # do not update density grid in finetune stage
# opt.update_extra_interval = 1e9
print(opt)
seed_everything(opt.seed)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = NeRFNetwork(opt)
# manually load state dict for head
if opt.torso and opt.head_ckpt != '':
model_dict = torch.load(opt.head_ckpt, map_location='cpu')['model']
missing_keys, unexpected_keys = model.load_state_dict(model_dict, strict=False)
if len(missing_keys) > 0:
print(f"[WARN] missing keys: {missing_keys}")
if len(unexpected_keys) > 0:
print(f"[WARN] unexpected keys: {unexpected_keys}")
# freeze these keys
for k, v in model.named_parameters():
if k in model_dict:
print(f'[INFO] freeze {k}, {v.shape}')
v.requires_grad = False
# print(model)
criterion = torch.nn.MSELoss(reduction='none')
if opt.test:
if opt.gui:
metrics = [] # use no metric in GUI for faster initialization...
else:
# metrics = [PSNRMeter(), LPIPSMeter(device=device)]
metrics = [PSNRMeter(), LPIPSMeter(device=device), LMDMeter(backend='fan')]
trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, criterion=criterion, fp16=opt.fp16, metrics=metrics, use_checkpoint=opt.ckpt)
if opt.test_train:
test_set = NeRFDataset(opt, device=device, type='train')
# a manual fix to test on the training dataset
test_set.training = False
test_set.num_rays = -1
test_loader = test_set.dataloader()
else:
test_loader = NeRFDataset(opt, device=device, type='test').dataloader()
# temp fix: for update_extra_states
model.aud_features = test_loader._data.auds
model.eye_areas = test_loader._data.eye_area
if opt.gui:
from nerf_triplane.gui import NeRFGUI
# we still need test_loader to provide audio features for testing.
with NeRFGUI(opt, trainer, test_loader) as gui:
gui.render()
else:
### test and save video (fast)
trainer.test(test_loader)
### evaluate metrics (slow)
if test_loader.has_gt:
trainer.evaluate(test_loader)
else:
optimizer = lambda model: torch.optim.AdamW(model.get_params(opt.lr, opt.lr_net), betas=(0, 0.99), eps=1e-8)
train_loader = NeRFDataset(opt, device=device, type='train').dataloader()
assert len(train_loader) < opt.ind_num, f"[ERROR] dataset too many frames: {len(train_loader)}, please increase --ind_num to this number!"
# temp fix: for update_extra_states
model.aud_features = train_loader._data.auds
model.eye_area = train_loader._data.eye_area
model.poses = train_loader._data.poses
# decay to 0.1 * init_lr at last iter step
if opt.finetune_lips:
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.05 ** (iter / opt.iters))
else:
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.5 ** (iter / opt.iters))
metrics = [PSNRMeter(), LPIPSMeter(device=device)]
eval_interval = max(1, int(5000 / len(train_loader)))
trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, optimizer=optimizer, criterion=criterion, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, scheduler_update_every_step=True, metrics=metrics, use_checkpoint=opt.ckpt, eval_interval=eval_interval)
with open(os.path.join(opt.workspace, 'opt.txt'), 'a') as f:
f.write(str(opt))
if opt.gui:
with NeRFGUI(opt, trainer, train_loader) as gui:
gui.render()
else:
valid_loader = NeRFDataset(opt, device=device, type='val', downscale=1).dataloader()
max_epochs = np.ceil(opt.iters / len(train_loader)).astype(np.int32)
print(f'[INFO] max_epoch = {max_epochs}')
trainer.train(train_loader, valid_loader, max_epochs)
# free some mem
del train_loader, valid_loader
torch.cuda.empty_cache()
# also test
test_loader = NeRFDataset(opt, device=device, type='test').dataloader()
if test_loader.has_gt:
trainer.evaluate(test_loader) # blender has gt, so evaluate it.
trainer.test(test_loader)