-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
201 lines (177 loc) · 8.02 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import time
import argparse
import numpy as np
from tqdm import tqdm
import pickle as pkl
from functools import partial
import torch
from torch import optim
from torch.utils.data import DataLoader
from src.utils.dataset import graph_dataset
from src.utils.utils import aligning, L1_error
from src.model.model import NodeGNN, NEDMP
torch.manual_seed(42)
def train(model, optimizer, loader):
# Train
model.train()
train_loss = 0
train_predict = []
train_label = []
for i, inputs in tqdm(enumerate(loader)):
optimizer.zero_grad()
"""
inputs = *, simu_marginal, dmp_marginal, adj
"""
data4model, label = inputs[:-2], inputs[-2]
pred, _ = model(data4model)
pred = aligning(label, pred)
loss = model.loss_function(pred, label)
loss.backward()
optimizer.step()
train_loss += loss.item()
pred = np.exp(pred.detach().cpu().numpy())
train_predict.append(pred)
train_label.append(label.detach().cpu().numpy())
train_loss /= len(loader)
train_pred_l1, _ = L1_error(train_predict, train_label)
return train_loss, train_pred_l1
def eval(model, loader, testing=False, saving=False):
# Eval
model.eval()
device = model.device
if not testing:
val_predict = []
val_label = []
for i, inputs in enumerate(loader):
"""
inputs = *, simu_marginal, dmp_marginal, adj
"""
data4model, label = inputs[:-2], inputs[-2]
# 1. forward
pred, _ = model(data4model)
# 2. loss: label and pred both have size [T, N, K]
#print("Train Shape: ", label.shape[0], pred.shape[0])
pred = aligning(label, pred)
# 3. record training L1 error
pred = np.exp(pred.detach().cpu().numpy())
val_predict.append(pred)
val_label.append(label.detach().cpu().numpy())
val_pred_l1, _ = L1_error(val_predict, val_label)
return val_pred_l1
else:
test_predict = []
test_label = []
dmp_predict = []
for i, inputs in enumerate(loader):
"""
inputs = *, simu_marginal, dmp_marginal, adj
"""
data4model, label, dmp = inputs[:-2], inputs[-2], inputs[-1]
dmp = aligning(label, dmp).cpu().numpy()
# 1. forward
pred, _ = model(data4model)
# 2. loss: label and pred both have size [T, N, K]
pred = aligning(label, pred)
pred = np.exp(pred.detach().cpu().numpy())
# 3. record training L1 error
test_predict.append(pred)
test_label.append(label.detach().cpu().numpy())
dmp_predict.append(dmp)
model_l1 = L1_error(test_predict, test_label)
dmp_l1 = L1_error(dmp_predict, test_label)
if saving:
return test_predict, test_label, dmp_predict, model_l1, dmp_l1
else:
return model_l1, dmp_l1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--node_feat_dim", type=int, default=32)
parser.add_argument("--edge_feat_dim", type=int, default=32)
parser.add_argument("--message_dim", type=int, default=32)
parser.add_argument("--cuda_id", type=int, default=0, help="-1 for cpu")
parser.add_argument("--number_layers", type=int, default=30)
parser.add_argument("--lr", type=float, default=1e-2)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--factor", type=float, default=0.5, help="LR reduce factor")
parser.add_argument("--patience", type=int, default=5, help="patience of LR reduce schema")
parser.add_argument("--data_path", type=str, default=None)
parser.add_argument("--train_ratio", type=float, default=0.6)
parser.add_argument("--val_ratio", type=float, default=0.2)
parser.add_argument("--model", type=str, default="gnn")
parser.add_argument("--num_status", type=int, default=3)
parser.add_argument("--early_stop", type=int, default=10)
parser.add_argument("--testing", action="store_true")
parser.add_argument("--diff", type=str, default="SIR")
parser.add_argument("--tmp", type=str, default="")
args = parser.parse_args()
# print args
print("=== Setting Args ===")
for arg, value in vars(args).items():
print("{:>20} : {:<20}".format(arg, value))
if args.cuda_id >=0 :
device = torch.device("cuda:{}".format(args.cuda_id))
else:
device = torch.device("cpu")
if args.model == "gnn":
model = NodeGNN(node_feat_dim=args.node_feat_dim,
edge_feat_dim=args.edge_feat_dim,
message_dim=args.message_dim,
number_layers=args.number_layers,
num_status=args.num_status,
device=device)
elif args.model == "nedmp":
model = NEDMP(hid_dim=args.message_dim,
number_layers=args.number_layers,
device=device)
# optimizer
optimizer = optim.Adamax(model.parameters(), lr=args.lr)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, "min", factor=args.factor, patience=args.patience, verbose=True)
# dataset
loaded_data = graph_dataset(root=args.data_path, device=device, nedmp = args.model == "nedmp")
train_size = int(args.train_ratio*len(loaded_data))
val_size = int(args.val_ratio*len(loaded_data))
test_size = len(loaded_data) - train_size - val_size
train_data, val_data, test_data = torch.utils.data.random_split(loaded_data,
[train_size, val_size, test_size],
generator=torch.Generator().manual_seed(42))
print("DataSize: Train={} Val={} Test={}".format(len(train_data), len(val_data), len(test_data)))
model_save_path = args.data_path+"_{}_{}{}.pt".format(args.model, args.diff, args.tmp)
test_save_path = args.data_path+"_{}_{}{}_testResults.pkl".format(args.model, args.diff, args.tmp)
# Training
if not args.testing:
train_time = time.time()
best_eval_l1 = 1E+10
early_stop = 0
# Traing and Eval
for epoch in range(100):
# Train
train_loss, train_pred_l1 = train(model, optimizer, train_data)
# Eval
eval_pred_l1 = eval(model, val_data)
print(" Epoch={:<3}, Loss={:<.3f} || Train L1 : model={:.3f} || Eval L1 : model={:.3f} || Time = {:.1f}s".format(epoch, train_loss, train_pred_l1, eval_pred_l1, time.time()-train_time))
if eval_pred_l1<best_eval_l1:
early_stop = 0
best_eval_l1 = eval_pred_l1
torch.save(model.state_dict(), model_save_path)
# Test
test_pred_l1, dmp_l1 = eval(model, test_data, testing=True)
print("-"*72)
print("Test: L1 = {:.3f} Base = {:.3f}".format(test_pred_l1[0], dmp_l1[0]))
print("-"*72)
else:
early_stop += 1
if early_stop > args.early_stop:
break
scheduler.step(eval_pred_l1)
# Test
model.load_state_dict(torch.load(model_save_path))
test_pred_l1, dmp_l1 = eval(model, test_data, testing=True)
print("Final Test: L1 = {:.3f} Base = {:.3f}".format(test_pred_l1[0], dmp_l1[0]))
else:
# Test
device = "cpu" if args.cuda_id==-1 else "cuda:{}".format(args.cuda_id)
model.load_state_dict(torch.load(model_save_path, map_location=device))
test_predict, test_label, dmp_predict, test_pred_l1, dmp_l1 = eval(model, test_data, testing=True, saving=True)
print("Final Test: L1 = {:.3f} $\\pm$ {:.3f} Base = {:.3f} \\pm {:.3f} ".format(test_pred_l1[0], test_pred_l1[1], dmp_l1[0], dmp_l1[1]))
with open(test_save_path, "wb") as f:
pkl.dump({"test_predict": test_predict, "test_label": test_label, "dmp_predict": dmp_predict}, f)