4
4
import platform
5
5
import time
6
6
7
- import psutil
7
+ import numpy as np
8
8
import requests
9
9
import tritonclient .http as http_client
10
10
@@ -116,7 +116,7 @@ def should_exit_logs(cmd_type, cmd_process_id, model_name, inference_engine, inf
116
116
get_model_info (model_name , inference_engine , inference_port )
117
117
logging .info ("Log test for deploying model successfully, inference url: {}, "
118
118
"model metadata: {}, model config: {}" .format (
119
- inference_output_url , model_metadata , model_config ))
119
+ inference_output_url , model_metadata , model_config ))
120
120
if inference_output_url != "" :
121
121
return True
122
122
except Exception as e :
@@ -152,7 +152,7 @@ def log_deployment_result(cmd_container_name, cmd_type, cmd_process_id, inferenc
152
152
logging .info ("{}" .format (added_logs ))
153
153
last_err_logs = err_str
154
154
155
- time .sleep (5 )
155
+ time .sleep (3 )
156
156
157
157
if should_exit_logs (cmd_type , cmd_process_id , inference_model_name , inference_engine , inference_http_port ):
158
158
break
@@ -185,11 +185,11 @@ def get_model_info(model_name, inference_engine, inference_http_port, infer_host
185
185
infer_url_host = infer_host
186
186
else :
187
187
infer_url_host = local_ip
188
- inference_output_url = "{}:{}/{}/models/{}/versions/{}/infer" .format (infer_url_host ,
189
- inference_http_port ,
190
- ClientConstants .INFERENCE_INFERENCE_SERVER_VERSION ,
191
- inference_model_name ,
192
- model_version )
188
+ inference_output_url = "http:// {}:{}/{}/models/{}/versions/{}/infer" .format (infer_url_host ,
189
+ inference_http_port ,
190
+ ClientConstants .INFERENCE_INFERENCE_SERVER_VERSION ,
191
+ inference_model_name ,
192
+ model_version )
193
193
194
194
return inference_output_url , model_version , model_metadata , model_config
195
195
@@ -213,14 +213,18 @@ def run_http_inference_with_lib_http_api(model_name, inference_http_port, batch_
213
213
model_metadata = triton_client .get_model_metadata (model_name = inference_model_name , model_version = model_version )
214
214
model_config = triton_client .get_model_config (model_name = inference_model_name , model_version = model_version )
215
215
216
- inference_output_sample = {}
216
+ print ("model metadata {}" .format (model_metadata ))
217
+ inference_response_list = list ()
217
218
inference_input_list = model_metadata ["inputs" ]
218
219
infer_item_count = 0
219
220
inference_query_list = []
221
+
222
+ input_data_np = np .asarray (inference_input_data_list * batch_size , dtype = object )
223
+
220
224
for infer_input_item in inference_input_list :
221
225
query_item = http_client .InferInput (name = infer_input_item ["name" ],
222
- shape = (batch_size ,), datatype = infer_input_item ["data_type " ])
223
- query_item .set_data_from_numpy (inference_input_data_list [ infer_item_count ] )
226
+ shape = (batch_size ,), datatype = infer_input_item ["datatype " ])
227
+ query_item .set_data_from_numpy (input_data_np )
224
228
inference_query_list .append (query_item )
225
229
infer_item_count += 1
226
230
@@ -238,9 +242,13 @@ def run_http_inference_with_lib_http_api(model_name, inference_http_port, batch_
238
242
)
239
243
240
244
for infer_output_item in inference_output_list :
241
- inference_output_sample [infer_output_item ["name" ]] = response .as_numpy (infer_output_item ["name" ])
245
+ response_item = response .get_output (infer_output_item ["name" ])
246
+ inference_response_list .append (response_item )
247
+ print ("response item {}" .format (response_item ))
242
248
243
- return inference_output_sample
249
+ inference_response_dict = {"outputs" : inference_response_list }
250
+ print ("return {}" .format (inference_response_dict ))
251
+ return inference_response_dict
244
252
245
253
246
254
def run_http_inference_with_raw_http_request (self , inference_input_json , inference_input_data_list ):
0 commit comments