-
Notifications
You must be signed in to change notification settings - Fork 412
/
Copy pathSUPIR_v0_tiled.yaml
158 lines (149 loc) · 5.45 KB
/
SUPIR_v0_tiled.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
model:
target: SUPIR.models.SUPIR_model.SUPIRModel
params:
ae_dtype: bf16
diffusion_dtype: fp16
scale_factor: 0.13025
disable_first_stage_autocast: True
network_wrapper: sgm.modules.diffusionmodules.wrappers.ControlWrapper
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiserWithControl
params:
num_idx: 1000
weighting_config:
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
control_stage_config:
target: SUPIR.modules.SUPIR_v0.GLVControl
params:
adm_in_channels: 2816
num_classes: sequential
use_checkpoint: True
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [4, 2]
num_res_blocks: 2
channel_mult: [1, 2, 4]
num_head_channels: 64
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: [1, 2, 10] # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16
# transformer_depth: [1, 1, 4]
context_dim: 2048
spatial_transformer_attn_type: softmax-xformers
legacy: False
input_upscale: 1
network_config:
target: SUPIR.modules.SUPIR_v0.LightGLVUNet
params:
mode: XL-base
project_type: ZeroSFT
project_channel_scale: 2
adm_in_channels: 2816
num_classes: sequential
use_checkpoint: True
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [4, 2]
num_res_blocks: 2
channel_mult: [1, 2, 4]
num_head_channels: 64
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: [1, 2, 10] # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16
context_dim: 2048
spatial_transformer_attn_type: softmax-xformers
legacy: False
conditioner_config:
target: sgm.modules.GeneralConditionerWithControl
params:
emb_models:
# crossattn cond
- is_trainable: False
input_key: txt
target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
params:
layer: hidden
layer_idx: 11
# crossattn and vector cond
- is_trainable: False
input_key: txt
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder2
params:
arch: ViT-bigG-14
version: laion2b_s39b_b160k
freeze: True
layer: penultimate
always_return_pooled: True
legacy: False
# vector cond
- is_trainable: False
input_key: original_size_as_tuple
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_key: crop_coords_top_left
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_key: target_size_as_tuple
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
first_stage_config:
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
params:
ckpt_path: ~
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_type: vanilla-xformers
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1, 2, 4, 4 ]
num_res_blocks: 2
attn_resolutions: [ ]
dropout: 0.0
lossconfig:
target: torch.nn.Identity
sampler_config:
target: sgm.modules.diffusionmodules.sampling.TiledRestoreEDMSampler
params:
num_steps: 100
restore_cfg: 4.0
s_churn: 0
s_noise: 1.003
tile_size: 128
tile_stride: 64
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
guider_config:
target: sgm.modules.diffusionmodules.guiders.LinearCFG
params:
scale: 7.5
scale_min: 4.0
p_p:
'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera,
hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing,
skin pore detailing, hyper sharpness, perfect without deformations.'
n_p:
'painting, oil painting, illustration, drawing, art, sketch, oil painting, cartoon, CG Style, 3D render,
unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, signature,
jpeg artifacts, deformed, lowres, over-smooth'
SDXL_CKPT: /opt/data/private/AIGC_pretrain/SDXL_cache/sd_xl_base_1.0_0.9vae.safetensors
SUPIR_CKPT_F: /opt/data/private/AIGC_pretrain/SUPIR_cache/SUPIR-v0F.ckpt
SUPIR_CKPT_Q: /opt/data/private/AIGC_pretrain/SUPIR_cache/SUPIR-v0Q.ckpt
SUPIR_CKPT: ~