-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnotmiwae_imputer.py
613 lines (450 loc) · 22.2 KB
/
notmiwae_imputer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
"""
The original paper for the code below:
- GitHub: https://github.com/nbip/notMIWAE
- Citation:
@article{ipsen2020not,
title={not-MIWAE: Deep generative modelling with missing not at random data},
author={Ipsen, Niels Bruun and Mattei, Pierre-Alexandre and Frellsen, Jes},
journal={arXiv preprint arXiv:2006.12871},
year={2020}
}
"""
import time
import sys
import tensorflow.compat.v1 as tf
tf.disable_eager_execution()
import tensorflow_probability as tfp
tfb = tfp.bijectors
import keras
import numpy as np
import pandas as pd
import datetime
def train(model, batch_size, max_iter=10000, name=None):
if name is not None:
model.save(name)
start = time.time()
best = float("inf")
for i in range(max_iter):
loss = model.train_batch(batch_size=batch_size)
# Stop training if the loss is None
if loss is None or pd.isna(loss) or np.isnan(loss):
print(f"Training stopped at iteration {i} due to None loss.")
break
if i % 100 == 0:
took = time.time() - start
start = time.time()
val_loss = model.val_batch()
if val_loss < best and name is not None:
best = val_loss
model.save(name)
print("{0}/{1} updates, {2:.2f} s, {3:.2f} train_loss, {4:.2f} val_loss"
.format(i, max_iter, took, loss, val_loss))
sys.stdout.flush()
if name is not None:
print("Restoring the last best version of the model...")
model.load(name) # Restore the last best model
def reverse_normalization(normalized_data, original_mean, original_std):
"""
Reverses the normalization applied to data.
Parameters:
normalized_data (numpy.ndarray): The normalized data.
original_mean (numpy.ndarray): The mean of the original data (axis=0).
original_std (numpy.ndarray): The standard deviation of the original data (axis=0).
Returns:
numpy.ndarray: The denormalized data.
"""
# Reverse the normalization steps
denormalized_data = normalized_data * original_std
denormalized_data = denormalized_data + original_mean
return denormalized_data
def not_imputationRMSE(model, Xorg, Xz, X, S, L, cat_indices):
"""
Imputation error of missing data, using the not-MIWAE
"""
N = len(X)
def softmax(x):
e_x = np.exp(x - np.max(x, axis=1)[:, None])
return e_x / e_x.sum(axis=1)[:, None]
def imp(model, xz, s, L):
l_out, log_p_x_given_z, log_p_z, log_q_z_given_x, log_p_s_given_x = model.sess.run(
[model.l_out_mu, model.log_p_x_given_z, model.log_p_z, model.log_q_z_given_x, model.log_p_s_given_x],
{model.x_pl: xz, model.s_pl: s, model.n_pl: L})
wl = softmax(log_p_x_given_z + log_p_s_given_x + log_p_z - log_q_z_given_x)
xm = np.sum((l_out.T * wl.T).T, axis=1)
xmix = xz + xm * (1 - s)
return l_out, wl, xm, xmix
XM = np.zeros_like(Xorg)
for i in range(N):
xz = Xz[i, :][None, :]
s = S[i, :][None, :]
l_out, wl, xm, xmix = imp(model, xz, s, L)
XM[i, :] = xm
if i % 100 == 0:
print('{0} / {1}'.format(i, N))
# Replace NaN values in X_org with values from XM
X_imp = np.where(np.isnan(Xorg), XM, Xorg)
# Round categorical columns with nulls
for i in cat_indices:
X_imp[:, i] = np.round(X_imp[:, i])
return np.sqrt(np.sum((Xorg - X_imp) ** 2 * (1 - S)) / np.sum(1 - S)), X_imp
class notMIWAE:
def __init__(self, X, Xval,
n_latent=50, n_hidden=100, n_samples=1,
activation=tf.nn.tanh,
out_dist='gauss',
out_activation=None,
learnable_imputation=False,
permutation_invariance=False,
embedding_size=20,
code_size=20,
missing_process='selfmask',
testing=False,
name='/tmp/notMIWAE'):
# ---- data
self.Xorg = X.copy()
self.Xval_org = Xval.copy()
self.n, self.d = X.shape
# ---- missing
self.S = np.array(~np.isnan(X), dtype=np.float32)
self.Sval = np.array(~np.isnan(Xval), dtype=np.float32)
if np.sum(self.S) < self.d * self.n:
self.X = self.Xorg.copy()
self.X[np.isnan(self.X)] = 0
self.Xval = self.Xval_org.copy()
self.Xval[np.isnan(self.Xval)] = 0
else:
self.X = self.Xorg
self.Xval = self.Xval_org
# ---- settings
self.n_latent = n_latent
self.n_hidden = n_hidden
self.n_samples = n_samples
self.activation = activation
self.out_dist = out_dist
self.out_activation = out_activation
self.embedding_size = embedding_size
self.code_size = code_size
self.missing_process = missing_process
self.testing = testing
self.batch_pointer = 0
self.eps = np.finfo(float).eps
print("Creating graph...")
tf.reset_default_graph()
# ---- input
with tf.variable_scope('input'):
self.x_pl = tf.placeholder(tf.float32, [None, self.d], 'x_pl')
self.s_pl = tf.placeholder(tf.float32, [None, self.d], 's_pl')
self.n_pl = tf.placeholder(tf.int32, shape=(), name='n_pl')
if learnable_imputation and not testing:
self.imp = tf.get_variable('imp', shape=[1, self.d])
self.in_pl = self.x_pl + (1 - self.s_pl) * self.imp
elif permutation_invariance and not testing:
self.in_pl = self.permutation_invariant_embedding()
else:
self.in_pl = self.x_pl
# ---- parameters from encoder
with tf.variable_scope('encoder'):
self.q_mu, self.q_log_sig2 = self.encoder(self.in_pl)
# ---- variational distribution
q_z = tfp.distributions.Normal(loc=self.q_mu, scale=tf.sqrt(tf.exp(self.q_log_sig2)))
# ---- sample the latent value
self.l_z = q_z.sample(self.n_pl) # shape [n_samples, batch_size, d]
self.l_z = tf.transpose(self.l_z, perm=[1, 0, 2]) # shape [batch_size, n_samples, d]
# ---- parameters from decoder
if out_dist in ['gauss', 'normal', 'truncated_normal']:
with tf.variable_scope('data_process'):
mu, std = self.gauss_decoder(self.l_z)
# ---- p(x|z)
if out_dist == 'truncated_normal':
p_x_given_z = tfp.distributions.TruncatedNormal(loc=mu, scale=std, low=0.0, high=1.0)
else:
p_x_given_z = tfp.distributions.Normal(loc=mu, scale=std)
# ---- evaluate x in p(x|z)
self.log_p_x_given_z = tf.reduce_sum(
tf.expand_dims(self.s_pl, axis=1) * p_x_given_z.log_prob(tf.expand_dims(self.x_pl, axis=1)), axis=-1)
self.l_out_mu = mu
# ---- sample xm from p(x|z)
self.l_out_sample = p_x_given_z.sample()
elif out_dist == 'bern':
with tf.variable_scope('data_process'):
logits = self.bernoulli_decoder(self.l_z)
# ---- p(x|z)
p_x_given_z = tfp.distributions.Bernoulli(logits=logits)
self.log_p_x_given_z = tf.reduce_sum(
tf.expand_dims(self.s_pl, axis=1) * p_x_given_z.log_prob(tf.expand_dims(self.x_pl, axis=1)), axis=-1)
self.l_out_mu = tf.nn.sigmoid(logits)
# ---- sample xm from p(x|z)
self.l_out_sample = tf.cast(p_x_given_z.sample(), tf.float32)
elif out_dist in ['t', 't-distribution']:
with tf.variable_scope('decoder'):
mu, log_sig2, df = self.t_decoder(self.l_z)
# ---- p(x|z)
p_x_given_z = tfp.distributions.StudentT(loc=mu,
scale=tf.nn.softplus(log_sig2) + 0.0001,
df=3 + tf.nn.softplus(df))
self.log_p_x_given_z = tf.reduce_sum(
tf.expand_dims(self.s_pl, axis=1) * p_x_given_z.log_prob(tf.expand_dims(self.x_pl, axis=1)), axis=-1)
self.l_out_mu = mu
self.l_out_sample = p_x_given_z.sample()
else:
print("use 'gauss', 'normal', 'truncated_normal' or 'bern' as out_dist")
# ---- the missing process
with tf.variable_scope('missing'):
# ---- mix x_o with samples of x_m
self.l_out_mixed = self.l_out_sample * tf.expand_dims(1 - self.s_pl, axis=1) + tf.expand_dims(
self.x_pl * self.s_pl, axis=1)
self.logits_miss = self.bernoulli_decoder_miss(self.l_out_mixed)
# ---- p(s|x)
self.p_s_given_x = tfp.distributions.Bernoulli(logits=self.logits_miss) # (probs=self.s + self.eps)
# ---- evaluate s in p(s|x)
self.log_p_s_given_x = tf.reduce_sum(self.p_s_given_x.log_prob(tf.expand_dims(self.s_pl, axis=1)), axis=-1)
# --- evaluate the z-samples in q(z|x)
q_z2 = tfp.distributions.Normal(loc=tf.expand_dims(self.q_mu, axis=1),
scale=tf.sqrt(tf.exp(tf.expand_dims(self.q_log_sig2, axis=1))))
self.log_q_z_given_x = tf.reduce_sum(q_z2.log_prob(self.l_z), axis=-1)
# ---- evaluate the z-samples in the prior
prior = tfp.distributions.Normal(loc=0.0, scale=1.0)
self.log_p_z = tf.reduce_sum(prior.log_prob(self.l_z), axis=-1)
# ---- notMIWAE:
self.notMIWAE = self.get_notMIWAE(self.log_p_x_given_z,
self.log_p_s_given_x,
self.log_q_z_given_x,
self.log_p_z)
# ---- MIWAE for test-set LLH
self.MIWAE = self.get_MIWAE(self.log_p_x_given_z,
self.log_q_z_given_x,
self.log_p_z)
# ---- loss
if self.testing:
self.loss = - self.MIWAE
else:
self.loss = - self.notMIWAE
# ---- training stuff
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
self.sess = tf.Session(config=config)
self.global_step = tf.Variable(initial_value=0, trainable=False)
self.optimizer = tf.train.AdamOptimizer()
if self.testing:
tvars = tf.trainable_variables(scope='encoder')
else:
tvars = tf.trainable_variables()
self.train_op = self.optimizer.minimize(self.loss, global_step=self.global_step, var_list=tvars)
self.sess.run(tf.global_variables_initializer())
if permutation_invariance:
svars = tf.trainable_variables('data_process')
svars.append(self.global_step)
self.saver = tf.train.Saver(svars)
else:
self.saver = tf.train.Saver()
tf.summary.scalar('Evaluation/loss', self.loss)
tf.summary.scalar('Evaluation/pxz', tf.reduce_mean(self.log_p_x_given_z))
tf.summary.scalar('Evaluation/psx', tf.reduce_mean(self.log_p_s_given_x))
tf.summary.scalar('Evaluation/qzx', tf.reduce_mean(self.log_q_z_given_x))
tf.summary.scalar('Evaluation/pz', tf.reduce_mean(self.log_p_z))
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.train_writer = tf.summary.FileWriter(name + '/tensorboard/notmiwae_train/{}/'.format(timestamp),
self.sess.graph)
self.val_writer = tf.summary.FileWriter(name + '/tensorboard/notmiwae_val/{}/'.format(timestamp),
self.sess.graph)
self.summaries = tf.summary.merge_all()
def encoder(self, x):
x = keras.layers.Dense(units=self.n_hidden, activation=self.activation, name='l_enc1')(x)
x = keras.layers.Dense(units=self.n_hidden, activation=self.activation, name='l_enc2')(x)
mu = keras.layers.Dense(units=self.n_latent, activation=None, name='q_mu')(x)
log_sig2 = keras.layers.Dense(units=self.n_latent, activation=lambda x: tf.clip_by_value(x, -10, 10),
name='q_log_sigma')(x)
return mu, log_sig2
def gauss_decoder(self, z):
z = keras.layers.Dense(units=self.n_hidden, activation=self.activation, name='l_dec_gauss1')(z)
z = keras.layers.Dense(units=self.n_hidden, activation=self.activation, name='l_dec_gauss2')(z)
mu = keras.layers.Dense(units=self.d, activation=self.out_activation, name='mu')(z)
std = keras.layers.Dense(units=self.d, activation=tf.nn.softplus, name='std')(z)
return mu, std
def bernoulli_decoder(self, z):
z = keras.layers.Dense(units=self.n_hidden, activation=self.activation, name='l_dec_bern1')(z)
z = keras.layers.Dense(units=self.n_hidden, activation=self.activation, name='l_dec_bern2')(z)
logits = keras.layers.Dense(units=self.d, activation=None, name='logits')(z)
# ---- return logits since it goes better with tfp bernoulli
return logits
def t_decoder(self, z):
z = keras.layers.Dense(units=self.n_hidden, activation=self.activation, kernel_initializer='orthogonal', name='l_dec1')(z)
z = keras.layers.Dense(units=self.n_hidden, activation=self.activation, kernel_initializer='orthogonal', name='l_dec2')(z)
mu = keras.layers.Dense(units=self.d, activation=self.out_activation, kernel_initializer='orthogonal', name='mu')(z)
log_sigma = keras.layers.Dense(units=self.d, activation=lambda x: tf.clip_by_value(x, -10, 10),
kernel_initializer='orthogonal',
name='log_sigma')(z)
df = keras.layers.Dense(units=self.d, activation=None, kernel_initializer='orthogonal', name='df')(z)
return mu, log_sigma, df
def bernoulli_decoder_miss(self, z):
if self.missing_process == 'selfmasking':
self.W = tf.get_variable('W', shape=[1, 1, self.d])
self.b = tf.get_variable('b', shape=[1, 1, self.d])
logits = - self.W * (z - self.b)
elif self.missing_process == 'selfmasking_known':
self.W = tf.get_variable('W', shape=[1, 1, self.d])
self.W = tf.nn.softplus(self.W)
self.b = tf.get_variable('b', shape=[1, 1, self.d])
logits = - self.W * (z - self.b)
elif self.missing_process == 'linear':
logits = keras.layers.Dense(units=self.d, activation=None, name='y')(z)
elif self.missing_process == 'nonlinear':
z = keras.layers.Dense(units=self.n_hidden, activation=tf.nn.tanh, name='y')(z)
logits = keras.layers.Dense(units=self.d, activation=None, name='y')(z)
else:
print("use 'selfmasking', 'selfmasking_known', 'linear' or 'nonlinear' as 'missing_process'")
logits = None
# ---- return logits since it goes better with tfp bernoulli
return logits
def get_ELBO(self, q_z, lpxz):
self.KL = self.KL_loss(q_z.loc, tf.log(tf.square(q_z.scale)))
# ---- compare manual KL loss to tf.distributions
p_z = tf.distributions.Normal(loc=0.0, scale=1.0)
self.KL_check = tf.reduce_sum(tf.distributions.kl_divergence(q_z, p_z), axis=1)
# ---- sum over dimensions
self.KL = tf.reduce_sum(self.KL, axis=-1)
# ---- mean over the sample dimension
self.log_p_x_given_z_mean = tf.reduce_mean(lpxz, axis=-1)
return tf.reduce_mean(self.log_p_x_given_z_mean - self.KL)
def get_notMIWAE(self, lpxz, lpmz, lqzx, lpz):
"""" the not-MIWAE ELBO """
# ---- importance weights
l_w = lpxz + lpmz + lpz - lqzx
# ---- sum over samples
log_sum_w = tf.reduce_logsumexp(l_w, axis=1)
# ---- average over samples
log_avg_weight = log_sum_w - tf.log(tf.cast(self.n_pl, tf.float32))
# ---- average over minibatch to get the average llh
return tf.reduce_mean(log_avg_weight, axis=-1)
def get_MIWAE(self, lpxz, lqzx, lpz):
"""" the MIWAE ELBO """
# ---- importance weights
l_w = lpxz + lpz - lqzx
# ---- sum over samples
log_sum_w = tf.reduce_logsumexp(l_w, axis=1)
# ---- average over samples
log_avg_weight = log_sum_w - tf.log(tf.cast(self.n_pl, tf.float32))
# ---- average over minibatch to get the average llh
return tf.reduce_mean(log_avg_weight, axis=-1)
def permutation_invariant_embedding(self):
"""https://github.com/microsoft/EDDI"""
self.E = tf.get_variable('E', shape=[self.d, self.embedding_size])
# ---- mutliply E and s_pl to zero unobserved dimensions in E
self.Es = tf.expand_dims(self.s_pl, axis=2) * tf.expand_dims(self.E, axis=0)
print("Es", self.Es.shape)
# ---- concatenate with x_pl
self.Esx = tf.concat([self.Es, tf.expand_dims(self.x_pl, axis=2)], axis=2)
print("Esx", self.Esx.shape)
# ---- each 21 dimensional embedding for each of the 784 dimensions needs to go through the same network
self.Esxr = tf.reshape(self.Esx, [-1, self.embedding_size + 1])
print("Esxr", self.Esxr.shape)
# ---- nonlinear mapping h(s_d)
self.h = keras.layers.Dense(units=self.code_size, activation=tf.nn.relu, name='h1')(self.Esxr)
print("h", self.h.shape)
# ---- shape back to reality
self.hr = tf.reshape(self.h, [-1, self.d, self.code_size])
print("hr", self.hr.shape)
# ---- again zero the dimensions with no observations
# ---- (we might get output in these dimensions due to biases in the neural network)
self.hz = tf.expand_dims(self.s_pl, axis=2) * self.hr
print("hz", self.hz.shape)
# ---- permutation invariant aggregation (summation feature dimension)
self.g = tf.reduce_sum(self.hz, axis=1)
print("g", self.g.shape)
return self.g
def train_batch(self, batch_size):
x_batch = self.X[self.batch_pointer: self.batch_pointer + batch_size, :]
s_batch = self.S[self.batch_pointer: self.batch_pointer + batch_size, :]
_, _loss, _step = \
self.sess.run([self.train_op, self.loss, self.global_step],
{self.x_pl: x_batch, self.s_pl: s_batch, self.n_pl: self.n_samples})
self.tick_batch_pointer(batch_size)
return _loss
def val_batch(self):
batch_size = 100
val_loss = 0.0
pxz = 0.0
psx = 0.0
pz = 0.0
qzx = 0.0
n_val_batches = len(self.Xval) // batch_size
for i in range(n_val_batches):
x_batch = self.Xval[i * batch_size: (i + 1) * batch_size]
s_batch = self.Sval[i * batch_size: (i + 1) * batch_size]
_loss, _pxz, _psx, _qzx, _pz, _step = \
self.sess.run([self.loss, self.log_p_x_given_z, self.log_p_s_given_x, self.log_q_z_given_x, self.log_p_z, self.global_step],
{self.x_pl: x_batch, self.s_pl: s_batch, self.n_pl: self.n_samples})
val_loss += _loss
pxz += np.mean(_pxz)
psx += np.mean(_psx)
pz += np.mean(_pz)
qzx += np.mean(_qzx)
val_loss /= n_val_batches
pxz /= n_val_batches
psx /= n_val_batches
pz /= n_val_batches
qzx /= n_val_batches
summary = tf.Summary()
summary.value.add(tag="Evaluation/loss", simple_value=val_loss)
summary.value.add(tag="Evaluation/pxz", simple_value=pxz)
summary.value.add(tag="Evaluation/psx", simple_value=psx)
summary.value.add(tag="Evaluation/qzx", simple_value=qzx)
summary.value.add(tag="Evaluation/pz", simple_value=pz)
self.val_writer.add_summary(summary, _step)
self.val_writer.flush()
x_batch = self.X[self.batch_pointer: self.batch_pointer + batch_size, :]
s_batch = self.S[self.batch_pointer: self.batch_pointer + batch_size, :]
_step, _summaries= \
self.sess.run([self.global_step, self.summaries],
{self.x_pl: x_batch, self.s_pl: s_batch, self.n_pl: self.n_samples})
self.train_writer.add_summary(_summaries, _step)
self.train_writer.flush()
return val_loss
def get_llh_estimate(self, Xtest, n_samples=100):
x_batch = Xtest
s_batch = (~np.isnan(Xtest)).astype(np.float32)
_llh = self.sess.run(self.MIWAE,
{self.x_pl: x_batch, self.s_pl: s_batch, self.n_pl: n_samples})
return _llh
def tick_batch_pointer(self, batch_size):
self.batch_pointer += batch_size
if self.batch_pointer >= self.n - batch_size:
self.batch_pointer = 0
try:
p = np.random.permutation(self.n)
self.X = self.X[p, :]
self.S = self.S[p, :]
except MemoryError as error:
print("Memory error: no shuffling this time")
print(error)
except Exception as exception:
print("Unexpected exception")
print(exception)
def save(self, name):
print("Saving session...")
self.saver.save(self.sess, name)
def load(self, name):
print("Restoring session...")
self.saver.restore(self.sess, name)
print("Session restored from global step ", self.sess.run(self.global_step))
@staticmethod
def gauss_loss(x, s, mu, log_sig2):
""" Gauss as p(x | z) """
eps = np.finfo(float).eps
p_x_given_z = - 0.5 * np.log(2 * np.pi) - 0.5 * log_sig2 \
- 0.5 * tf.square(x - mu) / (tf.exp(log_sig2) + eps)
return tf.reduce_sum(p_x_given_z * s, axis=-1) # sum over d-dimension
@staticmethod
def bernoulli_loss(x, s, y):
eps = np.finfo(float).eps
p_x_given_z = x * tf.log(y + eps) + (1 - x) * tf.log(1 - y + eps)
return tf.reduce_sum(s * p_x_given_z, axis=-1) # sum over d-dimension
@staticmethod
def bernoulli_loss_miss(x, y):
eps = np.finfo(float).eps
p_x_given_z = x * tf.log(y + eps) + (1 - x) * tf.log(1 - y + eps)
return tf.reduce_sum(p_x_given_z, axis=-1) # sum over d-dimension
@staticmethod
def KL_loss(q_mu, q_log_sig2):
KL = 1 + q_log_sig2 - tf.square(q_mu) - tf.exp(q_log_sig2)
return - 0.5 * tf.reduce_sum(KL, axis=1)