-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgain_imputer.py
563 lines (432 loc) · 22.5 KB
/
gain_imputer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
"""
The original paper for the code below:
- GitHub: https://github.com/se-jaeger/data-imputation-paper
- Citation:
@ARTICLE{imputation_benchmark_jaeger_2021,
AUTHOR={Jäger, Sebastian and Allhorn, Arndt and Bießmann, Felix},
TITLE={A Benchmark for Data Imputation Methods},
JOURNAL={Frontiers in Big Data},
VOLUME={4},
PAGES={48},
YEAR={2021},
URL={https://www.frontiersin.org/article/10.3389/fdata.2021.693674},
DOI={10.3389/fdata.2021.693674},
ISSN={2624-909X},
ABSTRACT={With the increasing importance and complexity of data pipelines, data quality became one of the key challenges in modern software applications. The importance of data quality has been recognized beyond the field of data engineering and database management systems (DBMSs). Also, for machine learning (ML) applications, high data quality standards are crucial to ensure robust predictive performance and responsible usage of automated decision making. One of the most frequent data quality problems is missing values. Incomplete datasets can break data pipelines and can have a devastating impact on downstream ML applications when not detected. While statisticians and, more recently, ML researchers have introduced a variety of approaches to impute missing values, comprehensive benchmarks comparing classical and modern imputation approaches under fair and realistic conditions are underrepresented. Here, we aim to fill this gap. We conduct a comprehensive suite of experiments on a large number of datasets with heterogeneous data and realistic missingness conditions, comparing both novel deep learning approaches and classical ML imputation methods when either only test or train and test data are affected by missing data. Each imputation method is evaluated regarding the imputation quality and the impact imputation has on a downstream ML task. Our results provide valuable insights into the performance of a variety of imputation methods under realistic conditions. We hope that our results help researchers and engineers to guide their data preprocessing method selection for automated data quality improvement.}
}
"""
import logging
import shutil
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import optuna
import pandas as pd
import tensorflow as tf
from sklearn.model_selection import KFold
from sklearn.preprocessing import MinMaxScaler
from .automl_imputer import BaseImputer
# Check if the required dependencies are available
if hasattr(tf, 'keras') and hasattr(tf.keras, 'Model'):
from tensorflow import keras
from tensorflow.compat.v1 import logging as tf_logging
from tensorflow.keras import Model, Sequential
from tensorflow.keras.activations import relu, sigmoid
from tensorflow.keras.initializers import GlorotNormal
from tensorflow.keras.layers import Dense, Input, Layer, concatenate
from tensorflow.keras.optimizers import Adam
tf.get_logger().setLevel('WARN')
tf_logging.set_verbosity(tf_logging.ERROR)
logger = logging.getLogger()
optuna.logging.set_verbosity(optuna.logging.WARNING)
def _merge_given_HPs_with_defaults(
hyperparameter_grid: Dict[str, Dict[str, List[Union[int, float, bool]]]],
default_hyperparameter_grid: Dict[str, Dict[str, List[Union[int, float, bool]]]]
) -> Dict[str, Dict[str, List[Union[int, float, bool]]]]:
"""
If hyperparameter is given use it, else return default value. All others are ignored.
"""
hyperparameters: Dict[str, Dict[str, List[Union[int, float, bool]]]] = dict()
for hp_type in default_hyperparameter_grid.keys():
hp_type = hp_type.lower()
hyperparameters[hp_type] = {}
for hp in default_hyperparameter_grid[hp_type].keys():
hp = hp.lower()
hyperparameters[hp_type][hp] = hyperparameter_grid.get(
hp_type,
default_hyperparameter_grid[hp_type]
).get(
hp,
default_hyperparameter_grid[hp_type][hp]
)
return hyperparameters
def _get_GAIN_search_space_for_grid_search(
hyperparameter_grid: Dict[str, Dict[str, List[Union[int, float, bool]]]]
) -> Dict[str, List[Union[int, float, bool]]]:
gain_default_hyperparameter_grid: Dict[str, Dict[str, List[Union[int, float, bool]]]] = {
"gain": {
"alpha": [100],
"hint_rate": [0.9],
"noise": [0.01]
},
"training": {
"batch_size": [64],
"max_epochs": [50],
"early_stop": [3]
},
"generator": {
"learning_rate": [0.0005],
"beta_1": [0.9],
"beta_2": [0.999],
"epsilon": [1e-7],
"amsgrad": [False]
},
"discriminator": {
"learning_rate": [0.00005],
"beta_1": [0.9],
"beta_2": [0.999],
"epsilon": [1e-7],
"amsgrad": [False]
}
}
hyperparameters = _merge_given_HPs_with_defaults(hyperparameter_grid, gain_default_hyperparameter_grid)
search_space = dict(
**hyperparameters["gain"],
**hyperparameters["training"],
**{f"generator_{key}": value for key, value in hyperparameters["generator"].items()},
**{f"discriminator_{key}": value for key, value in hyperparameters["discriminator"].items()}
)
return search_space
class CategoricalEncoder(object):
"""
Encoder only works on categorical columns. \
It encodes the categorical values into `int` values fro `0` `n - 1`, where `n` is the number of categories.
"""
def fit(self, data_frame: pd.DataFrame):
"""
Creates attributes that map categorical values to integers and vice versa, separately for each column.
Args:
data_frame (pd.DataFrame): Data to fit mappings.
Returns:
CategoricalEncoder: Instance of itself.
"""
self._numerical2category = dict()
self._category2numerical = dict()
for column in data_frame.columns:
self._numerical2category[column] = {index: category for index, category in enumerate(data_frame[column].cat.categories)}
self._category2numerical[column] = {category: index for index, category in enumerate(data_frame[column].cat.categories)}
return self
def transform(self, data_frame: pd.DataFrame) -> np.array:
"""
Maps each column to their int representations.
Args:
data_frame (pd.DataFrame): To-be-encoded data
Returns:
np.array: Encoded data as matrix
"""
data_frame = data_frame.copy()
for column in data_frame.columns:
data_frame.loc[:, column] = [self._category2numerical[column][value] if not pd.isna(value) else np.nan for value in data_frame[column]]
return data_frame
def inverse_transform(self, data_frame: pd.DataFrame) -> np.array:
"""
Maps each int value to its categorical representations.
Args:
data_frame (pd.DataFrame): To-be-decoded data
Returns:
np.array: Decoded data as matrix
"""
data_frame = data_frame.copy()
for column in data_frame.columns:
data_frame.loc[:, column] = [self._numerical2category[column][value] if not pd.isna(value) else np.nan for value in data_frame[column]]
return data_frame
def fit_transform(self, data_frame: pd.DataFrame) -> np.array:
"""
Combines fitting of representations and returns (a copy) of their encoded values.
Args:
data_frame (pd.DataFrame): To-be-fitted and transformed data
Returns:
np.array: Encoded data as matrix
"""
return self.fit(data_frame).transform(data_frame)
class GenerativeImputer(BaseImputer):
def __init__(
self,
hyperparameter_grid: Dict[str, Dict[str, List[Union[int, float, bool]]]] = {},
seed: Optional[int] = None
):
super().__init__(seed=seed)
self._hyperparameter_grid = hyperparameter_grid
self._best_hyperparameters = None
def _encode_data(self, data: pd.DataFrame) -> np.array:
"""
Encode the input `DataFrame` into an `Array`. Categorical non numerical columns are first encoded, \
then the whole matrix is scaled to be in range from `0` to `1`.
Args:
data (pd.DataFrame): To-be-imputed data
Returns:
np.array: To-be-imputed encoded data
"""
if not self._fitted:
if self._categorical_columns:
self._data_encoder = CategoricalEncoder()
data[self._categorical_columns] = self._data_encoder.fit_transform(data[self._categorical_columns])
self._data_scaler = MinMaxScaler()
data = self._data_scaler.fit_transform(data)
else:
if self._categorical_columns:
data[self._categorical_columns] = self._data_encoder.transform(data[self._categorical_columns])
data = self._data_scaler.transform(data)
return data
def _decode_encoded_data(self, encoded_data: np.array, columns: pd.Index, indices: pd.Index) -> pd.DataFrame:
"""
Decodes the imputed data. Takes care of the proper column names and indices of the data.
Args:
encoded_data (np.array): Imputed data
columns (pd.Index): column names of data
indices (pd.Index): indices of data
Returns:
pd.DataFrame: Imputed data as `DataFrame`
"""
data = self._data_scaler.inverse_transform(encoded_data)
data = pd.DataFrame(data, columns=columns, index=indices)
if self._categorical_columns:
# round the encoded categories to next int. This is valid because we encode with OrdinalEncoder.
# clip in range 0..(n-1), where n is the number of categories.
for column in self._categorical_columns:
data[column] = data[column].round(0)
data[column] = data[column].clip(lower=0, upper=len(self._data_encoder._numerical2category[column].keys()) - 1)
data[self._categorical_columns] = self._data_encoder.inverse_transform(data[self._categorical_columns])
return data
def _save_best_imputer(self, study: optuna.study.Study, trial: optuna.trial.FrozenTrial) -> None:
if (trial.value and trial.number == study.best_trial.number) or self._best_hyperparameters is None:
self.imputer.save(self._model_path, include_optimizer=False)
self._best_hyperparameters = self.hyperparameters
def get_best_hyperparameters(self) -> dict:
super().get_best_hyperparameters()
return self._best_hyperparameters
class EarlyStoppingExceeded(Exception):
pass
class EarlyStopping:
def __init__(self, early_stop: int):
self.best_loss = None
self.early_stop_count = 0
self.early_stop = early_stop
def update(self, new_loss: float):
if self.best_loss is None:
self.best_loss = new_loss
elif self.best_loss > new_loss:
self.best_loss = new_loss
self.early_stop_count = 0
else:
self.early_stop_count += 1
if self.early_stop_count >= self.early_stop:
raise EarlyStoppingExceeded()
class GAINImputer(GenerativeImputer):
def __init__(
self,
hyperparameter_grid: Dict[str, Dict[str, List[Union[int, float, bool]]]] = {},
seed: Optional[int] = None,
model_path: Optional[Path] = None
):
"""
Implementation of Generative Adversarial Imputation Nets (GAIN): https://arxiv.org/abs/1806.02920
Args:
num_data_columns (int): Number of columns in the to-be-imputed data. Necessary to build the GAIN model properly.
hyperparameter_grid (Dict[str, Union[int, float, Dict[str, Union[int, float]]]], optional): \
Provides the hyperparameter grid used for HPO. The dictionary structure is as follows:
hyperparameter_grid = {
"GAIN": {
"alpha": [...],
"hint_rate": [...],
"noise": [...]
},
"training": {
"batch_size": [...],
"max_epochs": [...],
"early_stop": [...],
},
"generator": {
"learning_rate": [...],
"beta_1": [...],
"beta_2": [...],
"epsilon": [...],
"amsgrad": [...]
},
"discriminator": {
"learning_rate": [...],
"beta_1": [...],
"beta_2": [...],
"epsilon": [...],
"amsgrad": [...]
}
}
Defaults to {}.
seed (Optional[int], optional): To make process as deterministic as possible. Defaults to None.
model_path (Optional[Path], optional): Path to save the model. Defaults to None.
"""
super().__init__(
hyperparameter_grid=hyperparameter_grid,
seed=seed
)
self._model_path = model_path
def _create_GAIN_model(self) -> None:
"""
Helper method: creates the GAIN model based on the current hyperparameters.
"""
# GAIN inputs
X = Input((self._num_data_columns,))
M = Input((self._num_data_columns,))
H = Input((self._num_data_columns,))
# GAIN structure
self.generator = Sequential(
[
Dense(self._num_data_columns*2, activation=relu, kernel_initializer=GlorotNormal()),
Dense(self._num_data_columns, activation=relu, kernel_initializer=GlorotNormal()),
Dense(self._num_data_columns, activation=sigmoid, kernel_initializer=GlorotNormal())
]
)
self.discriminator = Sequential(
[
Dense(self._num_data_columns*2, activation=relu, kernel_initializer=GlorotNormal()),
Dense(self._num_data_columns, activation=relu, kernel_initializer=GlorotNormal()),
Dense(self._num_data_columns, activation=sigmoid, kernel_initializer=GlorotNormal())
]
)
gain_input = concatenate([X, M], axis=1)
generater_output = self.generator(gain_input)
intermediate = X * M + generater_output * (1 - M)
intermediate_inputs = concatenate([intermediate, H], axis=1)
discriminator_output = self.discriminator(intermediate_inputs)
# GAIN loss
discriminator_loss = -tf.reduce_mean(M * tf.math.log(discriminator_output + 1e-8) + (1 - M) * tf.math.log(1. - discriminator_output + 1e-8))
generater_loss_temp = -tf.reduce_mean((1 - M) * tf.math.log(discriminator_output + 1e-8))
MSE_loss = tf.reduce_mean((M * X - M * generater_output)**2) / tf.reduce_mean(M)
generater_loss = generater_loss_temp + self.hyperparameters["alpha"] * MSE_loss
self.gain = Model(inputs=[X, M, H], outputs=[generater_loss, discriminator_loss])
# preserve original data and add generator output (i.e. imputed values)
imputer_output = M * X + (1 - M) * generater_output
self.imputer = Model(inputs=[X, M], outputs=[imputer_output])
def _train_method(self, trial: optuna.trial.Trial, data: np.array) -> float:
"""
Optuna's objective function. This is called multiple times by the Optuna framework. Goal is to minimize this method's return values
Args:
trial (optuna.trial.Trial): Optuna Trial, a process of evaluating an objective function
data (np.array): Train data
Returns:
float: Generator loss
"""
# Set hyperparameter once
self._set_hyperparameters_for_optimization(trial)
self._create_GAIN_model()
generator_optimizer = Adam(**self.hyperparameters["generator_Adam"], clipvalue=1)
discriminator_optimizer = Adam(**self.hyperparameters["discriminator_Adam"], clipvalue=1)
generator_var_list = self.generator.trainable_weights
discriminator_var_list = self.discriminator.trainable_weights
@tf.function
def train_step(X, M, H):
with tf.GradientTape(persistent=True) as tape:
generater_loss, discriminator_loss = self.gain([X, M, H])
generator_gradients = tape.gradient(generater_loss, generator_var_list)
generator_optimizer.apply_gradients(zip(generator_gradients, generator_var_list))
discriminator_gradients = tape.gradient(discriminator_loss, discriminator_var_list)
discriminator_optimizer.apply_gradients(zip(discriminator_gradients, discriminator_var_list))
return generater_loss, discriminator_loss
n_splits = 3
k_fold = KFold(n_splits=n_splits, shuffle=True, random_state=self._seed)
cv_generator_loss = 0
for train_index, test_index in k_fold.split(data):
train = tf.data.Dataset.from_tensor_slices(data[train_index])
train_data = train.batch(self.hyperparameters["batch_size"]).prefetch(tf.data.AUTOTUNE)
early_stopping = EarlyStopping(self.hyperparameters["early_stop"])
for _ in range(self.hyperparameters["max_epochs"]):
for train_batch in train_data:
X, M, H = self._prepare_GAIN_input_data(train_batch.numpy())
train_step(X, M, H)
X_train, M_train, H_train = self._prepare_GAIN_input_data(data[train_index])
epoch_loss, _ = self.gain([X_train, M_train, H_train])
try:
early_stopping.update(epoch_loss)
except EarlyStoppingExceeded:
break
X, M, H = self._prepare_GAIN_input_data(data[test_index])
generater_loss, _ = self.gain([X, M, H])
cv_generator_loss += generater_loss
# Optuna minimizes/maximizes this return value
return cv_generator_loss / n_splits
def _prepare_GAIN_input_data(self, data: np.array) -> Tuple[np.array, np.array, np.array]:
"""
Prepare data to use it as GAIN input.
Args:
data (np.array): Encoded and (0, 1) scaled data
Returns:
Tuple[np.array, np.array, np.array]: Three matrices all of the same shapes used as GAIN input: \
`X` (data matrix), `M` (mask matrix), `H` (hint matrix)
"""
X_temp = np.nan_to_num(data, nan=0)
Z_temp = np.random.uniform(0, self.hyperparameters["noise"], size=[data.shape[0], self._num_data_columns])
random_hints = np.random.uniform(0., 1., size=[data.shape[0], self._num_data_columns])
masked_random_hints = 1 * (random_hints < self.hyperparameters["hint_rate"])
M = 1 - np.isnan(data)
H = M * masked_random_hints
X = M * X_temp + (1 - M) * Z_temp
return X, M, H
def _set_hyperparameters_for_optimization(self, trial: optuna.trial.Trial) -> None:
"""
Helper method: samples hyperparameters for a HPO process
Args:
trial (optuna.trial.Trial): Optuna Trial, a process of evaluating an objective function
"""
self.hyperparameters = {
# GAIN
"alpha": trial.suggest_discrete_uniform("alpha", 0, 9999999999, 1),
"hint_rate": trial.suggest_discrete_uniform("hint_rate", 0, 1, 1),
"noise": trial.suggest_discrete_uniform("noise", 0, 1, 1),
# training
# "batch_size": trial.suggest_discrete_uniform("batch_size", 0, 1024, 1),
"batch_size": trial.suggest_discrete_uniform("batch_size", 0, 512, 1),
"max_epochs": trial.suggest_discrete_uniform("max_epochs", 0, 10000, 1),
"early_stop": trial.suggest_discrete_uniform("early_stop", 0, 1000, 1),
# optimizers
"generator_Adam": {
"learning_rate": trial.suggest_discrete_uniform("generator_learning_rate", 0, 1, 1),
"beta_1": trial.suggest_discrete_uniform("generator_beta_1", 0, 1, 1),
"beta_2": trial.suggest_discrete_uniform("generator_beta_2", 0, 1, 1),
"epsilon": trial.suggest_discrete_uniform("generator_epsilon", 0, 1, 1),
"amsgrad": trial.suggest_categorical("generator_amsgrad", [True, False])
},
"discriminator_Adam": {
"learning_rate": trial.suggest_discrete_uniform("discriminator_learning_rate", 0, 1, 1),
"beta_1": trial.suggest_discrete_uniform("discriminator_beta_1", 0, 1, 1),
"beta_2": trial.suggest_discrete_uniform("discriminator_beta_2", 0, 1, 1),
"epsilon": trial.suggest_discrete_uniform("discriminator_epsilon", 0, 1, 1),
"amsgrad": trial.suggest_categorical("discriminator_amsgrad", [True, False])
}
}
def fit(self, data: pd.DataFrame, target_columns: List[str]) -> BaseImputer:
super().fit(data=data, target_columns=target_columns)
self._num_data_columns = data.shape[1]
encoded_data = self._encode_data(data.copy())
search_space = _get_GAIN_search_space_for_grid_search(self._hyperparameter_grid)
study = optuna.create_study(sampler=optuna.samplers.GridSampler(search_space), direction="minimize")
study.optimize(
lambda trial: self._train_method(trial, encoded_data),
callbacks=[self._save_best_imputer]
) # NOTE: n_jobs=-1 causes troubles because TensorFlow shares the graph across processes
if self._model_path.exists():
self.imputer = tf.keras.models.load_model(self._model_path, compile=False)
shutil.rmtree(self._model_path, ignore_errors=True)
self._fitted = True
return self
def transform(self, data: pd.DataFrame) -> Tuple[pd.DataFrame, pd.DataFrame]:
super().transform(data=data)
imputed_mask = data[self._target_columns].isna()
encoded_data = self._encode_data(data.copy())
X, M, _ = self._prepare_GAIN_input_data(encoded_data)
imputed = self.imputer([X, M]).numpy()
# presever everything but the missing values in target columns.
result = data.copy()
imputed_data_frame = self._decode_encoded_data(imputed, data.columns, data.index)
for column in imputed_mask.columns:
result.loc[imputed_mask[column], column] = imputed_data_frame.loc[imputed_mask[column], column]
return result, imputed_mask