-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconstants.py
77 lines (63 loc) · 2.24 KB
/
constants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from enum import Enum
COMMON_SEED = 42
EXPERIMENT_RUN_SEEDS = [100 * i for i in range(1, 11)]
NUM_FOLDS_FOR_TUNING = 3
EXP_COLLECTION_NAME = 'exp_nulls_data_cleaning'
MODEL_HYPER_PARAMS_COLLECTION_NAME = 'tuned_model_hyper_params'
IMPUTATION_PERFORMANCE_METRICS_COLLECTION_NAME = 'imputation_performance_metrics'
# For visualisations
IMPUTERS_ORDER = ['deletion', 'median-mode', 'median-dummy', 'miss_forest', 'k_means_clustering', 'datawig',
'automl', 'nomi', 'tdm', 'edit_gain', 'gain', 'hivae', 'notmiwae', 'mnar_pvae']
# ====================================================================
# Datasets
# ====================================================================
GERMAN_CREDIT_DATASET = "german"
BANK_MARKETING_DATASET = "bank"
CARDIOVASCULAR_DISEASE_DATASET = "heart"
DIABETES_DATASET = "diabetes"
LAW_SCHOOL_DATASET = "law_school"
ACS_INCOME_DATASET = "folk"
ACS_EMPLOYMENT_DATASET = "folk_emp"
# ====================================================================
# Error Injection Strategies
# ====================================================================
class ErrorInjectionStrategy(Enum):
mcar = 'MCAR'
mar = 'MAR'
mnar = 'MNAR'
def __str__(self):
return self.value
# ====================================================================
# Error Repair Methods
# ====================================================================
class ErrorRepairMethod(Enum):
deletion = 'deletion'
median_mode = 'median-mode'
median_dummy = 'median-dummy'
miss_forest = 'miss_forest'
k_means_clustering = 'k_means_clustering'
datawig = 'datawig'
automl = 'automl'
gain = 'gain'
tdm = 'tdm'
nomi = 'nomi'
notmiwae = 'notmiwae'
mnar_pvae = 'mnar_pvae'
edit_gain = 'edit_gain'
hivae = 'hivae'
boost_clean = 'boost_clean'
cp_clean = 'cp_clean'
def __str__(self):
return self.value
# ====================================================================
# ML Models
# ====================================================================
class MLModels(Enum):
dt_clf = 'dt_clf'
lr_clf = 'lr_clf'
lgbm_clf = 'lgbm_clf'
rf_clf = 'rf_clf'
mlp_clf = 'mlp_clf'
gandalf_clf = 'gandalf_clf'
def __str__(self):
return self.value