forked from chromium/chromium
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathunexportable_key_win.cc
499 lines (428 loc) · 17.1 KB
/
unexportable_key_win.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
// Copyright (c) 2021 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <windows.h>
#include <ncrypt.h>
#include <string>
#include <vector>
#include "base/logging.h"
#include "base/numerics/checked_math.h"
#include "base/scoped_generic.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_piece.h"
#include "base/strings/string_util.h"
#include "base/strings/sys_string_conversions.h"
#include "base/strings/utf_string_conversions.h"
#include "base/threading/scoped_blocking_call.h"
#include "crypto/random.h"
#include "crypto/sha2.h"
#include "crypto/unexportable_key.h"
#include "third_party/boringssl/src/include/openssl/bn.h"
#include "third_party/boringssl/src/include/openssl/bytestring.h"
#include "third_party/boringssl/src/include/openssl/ec.h"
#include "third_party/boringssl/src/include/openssl/ec_key.h"
#include "third_party/boringssl/src/include/openssl/ecdsa.h"
#include "third_party/boringssl/src/include/openssl/evp.h"
#include "third_party/boringssl/src/include/openssl/nid.h"
#include "third_party/boringssl/src/include/openssl/rsa.h"
namespace crypto {
namespace {
// NCrypt has a style of returning handles by writing opaque pointers to
// caller-provided locations. These pointers must be passed to
// |NCryptFreeObject| when no longer needed.
template <typename T>
struct NCryptObjectTraits {
// In practice a value of zero makes |NCryptFreeObject| a no-op, but this
// isn't specified by the documentation so the code below avoids depending on
// this by releasing() values that were never initialised.
static T InvalidValue() { return 0; }
static void Free(T handle) { NCryptFreeObject(handle); }
};
using ScopedProvider =
base::ScopedGeneric<NCRYPT_PROV_HANDLE,
NCryptObjectTraits<NCRYPT_PROV_HANDLE>>;
using ScopedKey = base::ScopedGeneric<NCRYPT_KEY_HANDLE,
NCryptObjectTraits<NCRYPT_KEY_HANDLE>>;
std::vector<uint8_t> CBBToVector(const CBB* cbb) {
return std::vector<uint8_t>(CBB_data(cbb), CBB_data(cbb) + CBB_len(cbb));
}
// BCryptAlgorithmFor returns the BCrypt algorithm ID for the given Chromium
// signing algorithm.
absl::optional<LPCWSTR> BCryptAlgorithmFor(
SignatureVerifier::SignatureAlgorithm algo) {
switch (algo) {
case SignatureVerifier::SignatureAlgorithm::RSA_PKCS1_SHA256:
return BCRYPT_RSA_ALGORITHM;
case SignatureVerifier::SignatureAlgorithm::ECDSA_SHA256:
return BCRYPT_ECDSA_P256_ALGORITHM;
default:
return absl::nullopt;
}
}
// GetBestSupported returns the first element of |acceptable_algorithms| that
// |provider| supports, or |nullopt| if there isn't any.
absl::optional<SignatureVerifier::SignatureAlgorithm> GetBestSupported(
NCRYPT_PROV_HANDLE provider,
base::span<const SignatureVerifier::SignatureAlgorithm>
acceptable_algorithms) {
for (auto algo : acceptable_algorithms) {
absl::optional<LPCWSTR> bcrypto_algo_name = BCryptAlgorithmFor(algo);
if (!bcrypto_algo_name) {
continue;
}
if (!FAILED(NCryptIsAlgSupported(provider, *bcrypto_algo_name,
/*flags=*/0))) {
return algo;
}
}
return absl::nullopt;
}
// GetKeyProperty returns the given NCrypt key property of |key|.
absl::optional<std::vector<uint8_t>> GetKeyProperty(NCRYPT_KEY_HANDLE key,
LPCWSTR property) {
DWORD size;
if (FAILED(NCryptGetProperty(key, property, nullptr, 0, &size, 0))) {
return absl::nullopt;
}
std::vector<uint8_t> ret(size);
if (FAILED(
NCryptGetProperty(key, property, ret.data(), ret.size(), &size, 0))) {
return absl::nullopt;
}
CHECK_EQ(ret.size(), size);
return ret;
}
// ExportKey returns |key| exported in the given format or nullopt on error.
absl::optional<std::vector<uint8_t>> ExportKey(NCRYPT_KEY_HANDLE key,
LPCWSTR format) {
DWORD output_size;
if (FAILED(NCryptExportKey(key, 0, format, nullptr, nullptr, 0, &output_size,
0))) {
return absl::nullopt;
}
std::vector<uint8_t> output(output_size);
if (FAILED(NCryptExportKey(key, 0, format, nullptr, output.data(),
output.size(), &output_size, 0))) {
return absl::nullopt;
}
CHECK_EQ(output.size(), output_size);
return output;
}
absl::optional<std::vector<uint8_t>> GetP256ECDSASPKI(NCRYPT_KEY_HANDLE key) {
const absl::optional<std::vector<uint8_t>> pub_key =
ExportKey(key, BCRYPT_ECCPUBLIC_BLOB);
if (!pub_key) {
return absl::nullopt;
}
// The exported key is a |BCRYPT_ECCKEY_BLOB| followed by the bytes of the
// public key itself.
// https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/ns-bcrypt-bcrypt_ecckey_blob
BCRYPT_ECCKEY_BLOB header;
if (pub_key->size() < sizeof(header)) {
return absl::nullopt;
}
memcpy(&header, pub_key->data(), sizeof(header));
// |cbKey| is documented[1] as "the length, in bytes, of the key". It is
// not. For ECDSA public keys it is the length of a field element.
if (header.dwMagic != BCRYPT_ECDSA_PUBLIC_P256_MAGIC ||
header.cbKey != 256 / 8 ||
pub_key->size() - sizeof(BCRYPT_ECCKEY_BLOB) != 64) {
return absl::nullopt;
}
uint8_t x962[1 + 32 + 32];
x962[0] = POINT_CONVERSION_UNCOMPRESSED;
memcpy(&x962[1], pub_key->data() + sizeof(BCRYPT_ECCKEY_BLOB), 64);
bssl::UniquePtr<EC_GROUP> p256(
EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1));
bssl::UniquePtr<EC_POINT> point(EC_POINT_new(p256.get()));
if (!EC_POINT_oct2point(p256.get(), point.get(), x962, sizeof(x962),
/*ctx=*/nullptr)) {
return absl::nullopt;
}
bssl::UniquePtr<EC_KEY> ec_key(
EC_KEY_new_by_curve_name(NID_X9_62_prime256v1));
CHECK(EC_KEY_set_public_key(ec_key.get(), point.get()));
bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
CHECK(EVP_PKEY_set1_EC_KEY(pkey.get(), ec_key.get()));
bssl::ScopedCBB cbb;
CHECK(CBB_init(cbb.get(), /*initial_capacity=*/128) &&
EVP_marshal_public_key(cbb.get(), pkey.get()));
return CBBToVector(cbb.get());
}
absl::optional<std::vector<uint8_t>> GetRSASPKI(NCRYPT_KEY_HANDLE key) {
const absl::optional<std::vector<uint8_t>> pub_key =
ExportKey(key, BCRYPT_RSAPUBLIC_BLOB);
if (!pub_key) {
return absl::nullopt;
}
// The exported key is a |BCRYPT_RSAKEY_BLOB| followed by the bytes of the
// key itself.
// https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/ns-bcrypt-bcrypt_rsakey_blob
BCRYPT_RSAKEY_BLOB header;
if (pub_key->size() < sizeof(header)) {
return absl::nullopt;
}
memcpy(&header, pub_key->data(), sizeof(header));
if (header.Magic != static_cast<ULONG>(BCRYPT_RSAPUBLIC_MAGIC)) {
return absl::nullopt;
}
size_t bytes_needed;
if (!base::CheckAdd(sizeof(BCRYPT_RSAKEY_BLOB),
base::CheckAdd(header.cbPublicExp, header.cbModulus))
.AssignIfValid(&bytes_needed) ||
pub_key->size() < bytes_needed) {
return absl::nullopt;
}
bssl::UniquePtr<BIGNUM> e(
BN_bin2bn(&pub_key->data()[sizeof(BCRYPT_RSAKEY_BLOB)],
header.cbPublicExp, nullptr));
bssl::UniquePtr<BIGNUM> n(BN_bin2bn(
&pub_key->data()[sizeof(BCRYPT_RSAKEY_BLOB) + header.cbPublicExp],
header.cbModulus, nullptr));
bssl::UniquePtr<RSA> rsa(RSA_new());
CHECK(RSA_set0_key(rsa.get(), n.release(), e.release(), nullptr));
bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
CHECK(EVP_PKEY_set1_RSA(pkey.get(), rsa.get()));
bssl::ScopedCBB cbb;
CHECK(CBB_init(cbb.get(), /*initial_capacity=*/384) &&
EVP_marshal_public_key(cbb.get(), pkey.get()));
return CBBToVector(cbb.get());
}
// ECDSAKey wraps a TPM-stored P-256 ECDSA key.
class ECDSAKey : public UnexportableSigningKey {
public:
ECDSAKey(ScopedProvider provider,
ScopedKey key,
std::vector<uint8_t> wrapped,
std::vector<uint8_t> spki)
: provider_(std::move(provider)),
key_(std::move(key)),
wrapped_(std::move(wrapped)),
spki_(std::move(spki)) {}
SignatureVerifier::SignatureAlgorithm Algorithm() const override {
return SignatureVerifier::SignatureAlgorithm::ECDSA_SHA256;
}
std::vector<uint8_t> GetSubjectPublicKeyInfo() const override {
return spki_;
}
std::vector<uint8_t> GetWrappedKey() const override { return wrapped_; }
absl::optional<std::vector<uint8_t>> SignSlowly(
base::span<const uint8_t> data) override {
base::ScopedBlockingCall scoped_blocking_call(
FROM_HERE, base::BlockingType::WILL_BLOCK);
std::array<uint8_t, kSHA256Length> digest = SHA256Hash(data);
// The signature is written as a pair of big-endian field elements for P-256
// ECDSA.
std::vector<uint8_t> sig(64);
DWORD sig_size;
if (FAILED(NCryptSignHash(key_.get(), nullptr, digest.data(), digest.size(),
sig.data(), sig.size(), &sig_size,
NCRYPT_SILENT_FLAG))) {
return absl::nullopt;
}
CHECK_EQ(sig.size(), sig_size);
bssl::UniquePtr<BIGNUM> r(BN_bin2bn(sig.data(), 32, nullptr));
bssl::UniquePtr<BIGNUM> s(BN_bin2bn(sig.data() + 32, 32, nullptr));
ECDSA_SIG sig_st;
sig_st.r = r.get();
sig_st.s = s.get();
bssl::ScopedCBB cbb;
CHECK(CBB_init(cbb.get(), /*initial_capacity=*/72) &&
ECDSA_SIG_marshal(cbb.get(), &sig_st));
return CBBToVector(cbb.get());
}
private:
ScopedProvider provider_;
ScopedKey key_;
const std::vector<uint8_t> wrapped_;
const std::vector<uint8_t> spki_;
};
// RSAKey wraps a TPM-stored RSA key.
class RSAKey : public UnexportableSigningKey {
public:
RSAKey(ScopedProvider provider,
ScopedKey key,
std::vector<uint8_t> wrapped,
std::vector<uint8_t> spki)
: provider_(std::move(provider)),
key_(std::move(key)),
wrapped_(std::move(wrapped)),
spki_(std::move(spki)) {}
SignatureVerifier::SignatureAlgorithm Algorithm() const override {
return SignatureVerifier::SignatureAlgorithm::RSA_PKCS1_SHA256;
}
std::vector<uint8_t> GetSubjectPublicKeyInfo() const override {
return spki_;
}
std::vector<uint8_t> GetWrappedKey() const override { return wrapped_; }
absl::optional<std::vector<uint8_t>> SignSlowly(
base::span<const uint8_t> data) override {
base::ScopedBlockingCall scoped_blocking_call(
FROM_HERE, base::BlockingType::WILL_BLOCK);
std::array<uint8_t, kSHA256Length> digest = SHA256Hash(data);
BCRYPT_PKCS1_PADDING_INFO padding_info = {0};
padding_info.pszAlgId = NCRYPT_SHA256_ALGORITHM;
DWORD sig_size;
if (FAILED(NCryptSignHash(key_.get(), &padding_info, digest.data(),
digest.size(), nullptr, 0, &sig_size,
NCRYPT_SILENT_FLAG | BCRYPT_PAD_PKCS1))) {
return absl::nullopt;
}
std::vector<uint8_t> sig(sig_size);
if (FAILED(NCryptSignHash(key_.get(), &padding_info, digest.data(),
digest.size(), sig.data(), sig.size(), &sig_size,
NCRYPT_SILENT_FLAG | BCRYPT_PAD_PKCS1))) {
return absl::nullopt;
}
CHECK_EQ(sig.size(), sig_size);
return sig;
}
private:
ScopedProvider provider_;
ScopedKey key_;
const std::vector<uint8_t> wrapped_;
const std::vector<uint8_t> spki_;
};
// UnexportableKeyProviderWin uses NCrypt and the Platform Crypto
// Provider to expose TPM-backed keys on Windows.
class UnexportableKeyProviderWin : public UnexportableKeyProvider {
public:
~UnexportableKeyProviderWin() override = default;
absl::optional<SignatureVerifier::SignatureAlgorithm> SelectAlgorithm(
base::span<const SignatureVerifier::SignatureAlgorithm>
acceptable_algorithms) override {
ScopedProvider provider;
if (FAILED(NCryptOpenStorageProvider(
ScopedProvider::Receiver(provider).get(),
MS_PLATFORM_CRYPTO_PROVIDER, /*flags=*/0))) {
// If the operation failed then |provider| doesn't have a valid handle in
// it and we shouldn't try to free it.
(void)provider.release();
return absl::nullopt;
}
return GetBestSupported(provider.get(), acceptable_algorithms);
}
std::unique_ptr<UnexportableSigningKey> GenerateSigningKeySlowly(
base::span<const SignatureVerifier::SignatureAlgorithm>
acceptable_algorithms) override {
base::ScopedBlockingCall scoped_blocking_call(
FROM_HERE, base::BlockingType::WILL_BLOCK);
ScopedProvider provider;
if (FAILED(NCryptOpenStorageProvider(
ScopedProvider::Receiver(provider).get(),
MS_PLATFORM_CRYPTO_PROVIDER, /*flags=*/0))) {
// If the operation failed when |provider| doesn't have a valid handle in
// it and we shouldn't try to free it.
(void)provider.release();
return nullptr;
}
absl::optional<SignatureVerifier::SignatureAlgorithm> algo =
GetBestSupported(provider.get(), acceptable_algorithms);
if (!algo) {
return nullptr;
}
ScopedKey key;
// An empty key name stops the key being persisted to disk.
if (FAILED(NCryptCreatePersistedKey(
provider.get(), ScopedKey::Receiver(key).get(),
BCryptAlgorithmFor(*algo).value(), /*pszKeyName=*/nullptr,
/*dwLegacyKeySpec=*/0, /*dwFlags=*/0))) {
// If the operation failed then |key| doesn't have a valid handle in it
// and we shouldn't try and free it.
(void)key.release();
return nullptr;
}
if (FAILED(NCryptFinalizeKey(key.get(), NCRYPT_SILENT_FLAG))) {
return nullptr;
}
const absl::optional<std::vector<uint8_t>> wrapped_key =
ExportKey(key.get(), BCRYPT_OPAQUE_KEY_BLOB);
if (!wrapped_key) {
return nullptr;
}
absl::optional<std::vector<uint8_t>> spki;
switch (*algo) {
case SignatureVerifier::SignatureAlgorithm::ECDSA_SHA256:
spki = GetP256ECDSASPKI(key.get());
if (!spki) {
return nullptr;
}
return std::make_unique<ECDSAKey>(std::move(provider), std::move(key),
std::move(*wrapped_key),
std::move(spki.value()));
case SignatureVerifier::SignatureAlgorithm::RSA_PKCS1_SHA256:
spki = GetRSASPKI(key.get());
if (!spki) {
return nullptr;
}
return std::make_unique<RSAKey>(std::move(provider), std::move(key),
std::move(*wrapped_key),
std::move(spki.value()));
default:
return nullptr;
}
}
std::unique_ptr<UnexportableSigningKey> FromWrappedSigningKeySlowly(
base::span<const uint8_t> wrapped) override {
base::ScopedBlockingCall scoped_blocking_call(
FROM_HERE, base::BlockingType::WILL_BLOCK);
ScopedProvider provider;
if (FAILED(NCryptOpenStorageProvider(
ScopedProvider::Receiver(provider).get(),
MS_PLATFORM_CRYPTO_PROVIDER, /*flags=*/0))) {
// If the operation failed when |provider| doesn't have a valid handle in
// it and we shouldn't try to free it.
(void)provider.release();
return nullptr;
}
ScopedKey key;
if (FAILED(NCryptImportKey(
provider.get(), /*hImportKey=*/NULL, BCRYPT_OPAQUE_KEY_BLOB,
/*pParameterList=*/nullptr, ScopedKey::Receiver(key).get(),
const_cast<PBYTE>(wrapped.data()), wrapped.size(),
/*dwFlags=*/NCRYPT_SILENT_FLAG))) {
// If the operation failed then |key| doesn't have a valid handle in it
// and we shouldn't try and free it.
(void)key.release();
return nullptr;
}
const absl::optional<std::vector<uint8_t>> algo_bytes =
GetKeyProperty(key.get(), NCRYPT_ALGORITHM_PROPERTY);
if (!algo_bytes) {
return nullptr;
}
// The documentation suggests that |NCRYPT_ALGORITHM_PROPERTY| should return
// the original algorithm, i.e. |BCRYPT_ECDSA_P256_ALGORITHM| for ECDSA. But
// it actually returns just "ECDSA" for that case.
static const wchar_t kECDSA[] = L"ECDSA";
static const wchar_t kRSA[] = BCRYPT_RSA_ALGORITHM;
absl::optional<std::vector<uint8_t>> spki;
if (algo_bytes->size() == sizeof(kECDSA) &&
memcmp(algo_bytes->data(), kECDSA, sizeof(kECDSA)) == 0) {
spki = GetP256ECDSASPKI(key.get());
if (!spki) {
return nullptr;
}
return std::make_unique<ECDSAKey>(
std::move(provider), std::move(key),
std::vector<uint8_t>(wrapped.begin(), wrapped.end()),
std::move(spki.value()));
} else if (algo_bytes->size() == sizeof(kRSA) &&
memcmp(algo_bytes->data(), kRSA, sizeof(kRSA)) == 0) {
spki = GetRSASPKI(key.get());
if (!spki) {
return nullptr;
}
return std::make_unique<RSAKey>(
std::move(provider), std::move(key),
std::vector<uint8_t>(wrapped.begin(), wrapped.end()),
std::move(spki.value()));
}
return nullptr;
}
};
} // namespace
std::unique_ptr<UnexportableKeyProvider> GetUnexportableKeyProviderWin() {
return std::make_unique<UnexportableKeyProviderWin>();
}
} // namespace crypto