|
| 1 | +import os |
| 2 | +import sys |
| 3 | +root_path = os.path.abspath("../../../") |
| 4 | +if root_path not in sys.path: |
| 5 | + sys.path.append(root_path) |
| 6 | + |
| 7 | +import numpy as np |
| 8 | +import tensorflow as tf |
| 9 | + |
| 10 | +from _Dist.NeuralNetworks.Base import Generator4d |
| 11 | +from _Dist.NeuralNetworks.h_RNN.RNN import Basic3d |
| 12 | +from _Dist.NeuralNetworks.NNUtil import Activations |
| 13 | + |
| 14 | + |
| 15 | +class Basic4d(Basic3d): |
| 16 | + def _calculate(self, x, y=None, weights=None, tensor=None, n_elem=1e7, is_training=False): |
| 17 | + return super(Basic4d, self)._calculate(x, y, weights, tensor, n_elem / 10, is_training) |
| 18 | + |
| 19 | + |
| 20 | +class CNN(Basic4d): |
| 21 | + def __init__(self, *args, **kwargs): |
| 22 | + self.height, self.width = kwargs.pop("height", None), kwargs.pop("width", None) |
| 23 | + |
| 24 | + super(CNN, self).__init__(*args, **kwargs) |
| 25 | + self._name_appendix = "CNN" |
| 26 | + self._generator_base = Generator4d |
| 27 | + |
| 28 | + self.conv_activations = None |
| 29 | + self.n_filters = self.filter_sizes = self.poolings = None |
| 30 | + |
| 31 | + def init_model_param_settings(self): |
| 32 | + super(CNN, self).init_model_param_settings() |
| 33 | + self.conv_activations = self.model_param_settings.get("conv_activations", "relu") |
| 34 | + |
| 35 | + def init_model_structure_settings(self): |
| 36 | + super(CNN, self).init_model_structure_settings() |
| 37 | + self.n_filters = self.model_structure_settings.get("n_filters", [32, 32]) |
| 38 | + self.filter_sizes = self.model_structure_settings.get("filter_sizes", [(3, 3), (3, 3)]) |
| 39 | + self.poolings = self.model_structure_settings.get("poolings", [None, "max_pool"]) |
| 40 | + if not len(self.filter_sizes) == len(self.poolings) == len(self.n_filters): |
| 41 | + raise ValueError("Length of filter_sizes, n_filters & pooling should be the same") |
| 42 | + if isinstance(self.conv_activations, str): |
| 43 | + self.conv_activations = [self.conv_activations] * len(self.filter_sizes) |
| 44 | + |
| 45 | + def init_from_data(self, x, y, x_test, y_test, sample_weights, names): |
| 46 | + if self.height is None or self.width is None: |
| 47 | + assert len(x.shape) == 4, "height and width are not provided, hence len(x.shape) should be 4" |
| 48 | + self.height, self.width = x.shape[1:3] |
| 49 | + if len(x.shape) == 2: |
| 50 | + x = x.reshape(len(x), self.height, self.width, -1) |
| 51 | + else: |
| 52 | + assert self.height == x.shape[1], "height is set to be {}, but {} found".format(self.height, x.shape[1]) |
| 53 | + assert self.width == x.shape[2], "width is set to be {}, but {} found".format(self.height, x.shape[2]) |
| 54 | + if len(x_test.shape) == 2: |
| 55 | + x_test = x_test.reshape(len(x_test), self.height, self.width, -1) |
| 56 | + super(CNN, self).init_from_data(x, y, x_test, y_test, sample_weights, names) |
| 57 | + |
| 58 | + def _define_input_and_placeholder(self): |
| 59 | + self._is_training = tf.placeholder(tf.bool, name="is_training") |
| 60 | + self._tfx = tf.placeholder(tf.float32, [None, self.height, self.width, self.n_dim], name="X") |
| 61 | + self._tfy = tf.placeholder(tf.float32, [None, self.n_class], name="Y") |
| 62 | + |
| 63 | + def _build_model(self, net=None): |
| 64 | + self._model_built = True |
| 65 | + if net is None: |
| 66 | + net = self._tfx |
| 67 | + for i, (filter_size, n_filter, pooling) in enumerate(zip( |
| 68 | + self.filter_sizes, self.n_filters, self.poolings |
| 69 | + )): |
| 70 | + net = tf.layers.conv2d(net, n_filter, filter_size, padding="same") |
| 71 | + net = tf.layers.batch_normalization(net, training=self._is_training) |
| 72 | + activation = self.conv_activations[i] |
| 73 | + if activation is not None: |
| 74 | + net = getattr(Activations, activation)(net, activation) |
| 75 | + net = tf.layers.dropout(net, training=self._is_training) |
| 76 | + if pooling is not None: |
| 77 | + net = tf.layers.max_pooling2d(net, 2, 2, name="pool") |
| 78 | + |
| 79 | + fc_shape = np.prod([net.shape[i].value for i in range(1, 4)]) |
| 80 | + net = tf.reshape(net, [-1, fc_shape]) |
| 81 | + super(CNN, self)._build_model(net) |
0 commit comments