-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathlocal_infer_gpt2.py
65 lines (40 loc) · 1.51 KB
/
local_infer_gpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#!/usr/bin/env python
# coding: utf-8
import torch
from time import time
from transformers import AutoTokenizer, GPT2LMHeadModel
from deepspeed.profiling.flops_profiler import FlopsProfiler
def main():
batch_size = 128
prompt_length = 512
generate_length = 32
tokenizer = AutoTokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2').half().eval()
tokenizer.pad_token = tokenizer.eos_token
model.pad_token_id = tokenizer.pad_token_id
model = model.cuda()
inputs = tokenizer(['hello world']*batch_size, padding='max_length', max_length=prompt_length, return_tensors='pt')
inputs = {
k:v.cuda() for k,v in inputs.items()
}
model.generate(inputs['input_ids'], max_length=prompt_length+generate_length)
tic = time()
for _ in range(10):
model.generate(inputs['input_ids'], max_length=prompt_length+generate_length)
toc = time()
avg_t = (toc - tic)/10
prof = FlopsProfiler(model)
prof.start_profile()
inputs = tokenizer(['hello world']*batch_size, padding='max_length', max_length=prompt_length, return_tensors='pt')
inputs = {
k:v.cuda() for k,v in inputs.items()
}
model.generate(inputs['input_ids'], max_length=prompt_length+generate_length)
prof.stop_profile()
flops = prof.get_total_flops()
params = prof.get_total_params()
prof.print_model_profile()
prof.end_profile()
print(flops / 1e12 / avg_t, 'TFLOP/s')
if __name__ == '__main__':
main()