forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_nn.py
1669 lines (1461 loc) · 58.6 KB
/
test_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import math
import torch
import random
import unittest
import contextlib
from copy import deepcopy
from itertools import repeat
from functools import wraps
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel as dp
from torch.autograd import Variable
from torch.nn import Parameter
from common_nn import NNTestCase, ModuleTest, CriterionTest, TestBase, \
module_tests, criterion_tests, TEST_CUDA, TEST_MULTIGPU, TEST_CUDNN, \
TEST_CUDNN_VERSION, PRECISION
from common import freeze_rng_state, run_tests
def default_tensor_type(type):
type_str = torch.typename(type)
def decorator(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
old_type = torch.typename(torch.Tensor())
torch.set_default_tensor_type(type_str)
try:
return fn(*args, **kwargs)
finally:
torch.set_default_tensor_type(old_type)
return wrapper
return decorator
class InputVariableMixin(object):
def _get_input(self):
input = TestBase._get_input(self)
def map_variables(i):
if isinstance(i, Variable):
return i
elif torch.is_tensor(i):
return Variable(i, requires_grad=True)
else:
return type(i)(map_variables(elem) for elem in i)
return map_variables(input)
class NewModuleTest(InputVariableMixin, ModuleTest):
def __init__(self, *args, **kwargs):
super(NewModuleTest, self).__init__(*args, **kwargs)
self.cudnn = kwargs.get('cudnn', False)
self.check_inplace = kwargs.get('check_inplace', False)
def _do_test(self, test_case, module, input):
test_case.check_jacobian(module, input, self.jacobian_input)
# check if module can be printed
module.__repr__()
if self.check_inplace:
module_ip = self.constructor(*self.constructor_args, inplace=True)
input_version = input._version
output = module(input)
test_case.assertEqual(input._version, input_version)
input_ip = deepcopy(input)
input_ip_clone = input_ip.clone()
output_ip = module_ip(input_ip_clone)
test_case.assertNotEqual(input_ip_clone._version, input_version)
test_case.assertEqual(output, output_ip)
grad = output.data.clone().normal_()
output.backward(grad)
output_ip.backward(grad)
test_case.assertEqual(output.grad, output_ip.grad)
if type(input.data) == torch.LongTensor and TEST_CUDA:
input = input.cuda()
module.float().cuda()
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.cuda.FloatTensor)
test_case.assertEqual(p.get_device(), 0)
if torch.cuda.device_count() > 1:
input = input.cuda(1)
module.cuda(1)
with torch.cuda.device(1):
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.cuda.FloatTensor)
test_case.assertEqual(p.get_device(), 1)
else:
# to float
if type(input.data) != torch.LongTensor:
input = input.float()
module.float()
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.FloatTensor)
# and back to double
if type(input.data) != torch.LongTensor:
input = input.double()
module.double()
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.DoubleTensor)
# TODO: Hardshrink is lacking a CUDA implementation
if TEST_CUDA and type(module) != nn.Hardshrink:
# to GPU0
input = input.float().cuda()
module.float().cuda()
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.cuda.FloatTensor)
test_case.assertEqual(p.get_device(), 0)
# to CPU
input = input.cpu()
module.cpu()
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.FloatTensor)
# back to GPU0
input = input.cuda()
module.cuda()
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.cuda.FloatTensor)
test_case.assertEqual(p.get_device(), 0)
if self.cudnn:
torch.backends.cudnn.enabled = False
try:
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.cuda.FloatTensor)
test_case.assertEqual(p.get_device(), 0)
finally:
torch.backends.cudnn.enabled = True
if torch.cuda.device_count() >= 2:
# to GPU1
input = input.cuda(1)
module.cuda(1)
with torch.cuda.device(1):
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.cuda.FloatTensor)
test_case.assertEqual(p.get_device(), 1)
class NewCriterionTest(InputVariableMixin, CriterionTest):
# TODO: check that criterions don't ignore grad_output
def _get_target(self, target):
return Variable(target, requires_grad=False)
class TestNN(NNTestCase):
# # protip: uncomment this line to figure out which test is segfaulting
# def setUp(self):
# print("In method", self._testMethodName)
# super(TestNN, self).setUp()
def _forward(self, module, input):
with freeze_rng_state():
return module(input)
def _backward(self, module, input, output, grad_output):
output.backward(grad_output, retain_variables=True)
if input.grad is None:
return None
return input.grad.data
def _forward_criterion(self, criterion, input, target):
if isinstance(input, tuple):
args = input + (target,)
output = criterion(*args)
else:
output = criterion(input, target)
return output.data[0]
def _backward_criterion(self, criterion, input, target):
input_tuple = input if isinstance(input, tuple) else (input,)
for i in input_tuple:
i.grad.data.zero_()
args = input_tuple + (target,)
criterion(*args).backward()
if isinstance(input, tuple):
return tuple(map(lambda i: i.grad.data, input))
else:
return input.grad.data
def _zero_grad_parameters(self, module):
if hasattr(module, 'weight') and module.weight is not None:
module.weight.grad.data.zero_()
if hasattr(module, 'bias') and module.bias is not None:
module.bias.grad.data.zero_()
def _get_parameters(self, module):
params = []
d_params = []
if hasattr(module, 'weight') and module.weight is not None:
params += [module.weight.data]
d_params += [module.weight.grad.data]
if hasattr(module, 'bias') and module.bias is not None:
params += [module.bias.data]
d_params += [module.bias.grad.data]
return params, d_params
def test_hooks(self):
module = nn.Sigmoid()
input = Variable(torch.ones(5, 5), requires_grad=True)
counter = {
'forwards': 0,
'backwards': 0
}
def fw_hook(inc, h_module, input, output):
self.assertIsInstance(input, tuple)
self.assertIsInstance(output, Variable)
self.assertTrue(h_module is module)
self.assertEqual(input[0].data, torch.ones(5, 5))
self.assertEqual(output.data, torch.Tensor(5, 5).fill_(1 / (1 + 1 / math.e)))
counter['forwards'] += inc
def bw_hook(inc, h_module, grad_input, grad_output):
self.assertIsInstance(grad_input, tuple)
self.assertIsInstance(grad_output, tuple)
self.assertTrue(h_module is module)
self.assertEqual(grad_output[0].data, torch.ones(5, 5) * 2)
counter['backwards'] += inc
test_fwd = module.register_forward_hook(lambda *args: fw_hook(1, *args))
module(input)
module(input)
self.assertEqual(counter['forwards'], 2)
self.assertEqual(counter['backwards'], 0)
test_bwd = module.register_backward_hook(lambda *args: bw_hook(1, *args))
output = module(input)
self.assertEqual(counter['forwards'], 3)
self.assertEqual(counter['backwards'], 0)
output.backward(torch.ones(5, 5) * 2, retain_variables=True)
self.assertEqual(counter['forwards'], 3)
self.assertEqual(counter['backwards'], 1)
output.backward(torch.ones(5, 5) * 2, retain_variables=True)
self.assertEqual(counter['forwards'], 3)
self.assertEqual(counter['backwards'], 2)
test2_fwd = module.register_forward_hook(lambda *args: fw_hook(2, *args))
output = module(input)
self.assertEqual(counter['forwards'], 6)
self.assertEqual(counter['backwards'], 2)
test2_bwd = module.register_backward_hook(lambda *args: bw_hook(2, *args))
module(input).backward(torch.ones(5, 5) * 2)
self.assertEqual(counter['forwards'], 9)
self.assertEqual(counter['backwards'], 5)
test2_bwd.remove()
module(input).backward(torch.ones(5, 5) * 2)
self.assertEqual(counter['forwards'], 12)
self.assertEqual(counter['backwards'], 6)
test2_fwd.remove()
module(input).backward(torch.ones(5, 5) * 2)
self.assertEqual(counter['forwards'], 13)
self.assertEqual(counter['backwards'], 7)
test_fwd.remove()
test_bwd.remove()
def test_hook_fail(self):
module = nn.Sigmoid()
input = Variable(torch.randn(5, 5), requires_grad=True)
def fw_fail1(self, input, output):
return output
def fw_fail2(self, input, output):
return input
def bw_fail1(self, grad_input, grad_output):
return grad_input[:-1]
def bw_fail2(self, grad_input, grad_output):
return grad_input + (torch.randn(2, 2),)
with module.register_forward_hook(fw_fail1):
with self.assertRaises(RuntimeError) as err:
module(input)
self.assertIn("fw_fail", err.exception.args[0])
self.assertIn("didn't return None", err.exception.args[0])
with module.register_forward_hook(fw_fail2):
with self.assertRaises(RuntimeError) as err:
module(input)
self.assertIn("fw_fail2", err.exception.args[0])
self.assertIn("didn't return None", err.exception.args[0])
with module.register_backward_hook(bw_fail1):
with self.assertRaises(RuntimeError) as err:
module(input).sum().backward()
self.assertIn("bw_fail", err.exception.args[0])
self.assertIn("got 0, but expected 1", err.exception.args[0])
with module.register_backward_hook(bw_fail2):
with self.assertRaises(RuntimeError) as err:
module(input).sum().backward()
self.assertIn("bw_fail2", err.exception.args[0])
self.assertIn("got 2, but expected 1", err.exception.args[0])
def test_hook_writeable(self):
module = nn.Linear(5, 5)
input = Variable(torch.randn(5, 5), requires_grad=True)
def bw_hook(module, grad_input, grad_output):
for grad in grad_input:
self.assertIsInstance(grad, Variable)
for grad in grad_output:
self.assertIsInstance(grad, Variable)
return tuple(gi * 2 for gi in grad_input)
module.register_backward_hook(bw_hook)
module(input).backward(torch.ones(5, 5))
expected_grad = torch.ones(5, 5).mm(module.weight.data) * 2
self.assertEqual(input.grad.data, expected_grad)
def test_volatile(self):
module = nn.Conv2d(2, 5, kernel_size=3, padding=1)
input = torch.randn(1, 2, 10, 10)
x = Variable(input)
y = Variable(input.clone(), volatile=True)
output = module(x)
self.assertFalse(output.volatile)
self.assertTrue(output.requires_grad)
output.backward(torch.ones(1, 5, 10, 10))
vol_output = module(y)
self.assertTrue(vol_output.volatile)
self.assertFalse(vol_output.requires_grad)
self.assertRaises(RuntimeError, lambda: vol_output.backward(torch.ones(1, 5, 10, 10)))
def _test_dropout(self, cls, input):
p = 0.2
input.fill_(1 - p)
module = cls(p)
input_var = Variable(input, requires_grad=True)
output = module(input_var)
self.assertLess(abs(output.data.mean() - (1 - p)), 0.05)
output.backward(input)
self.assertLess(abs(input_var.grad.data.mean() - (1 - p)), 0.05)
module = cls(p, True)
input_var = Variable(input.clone(), requires_grad=True)
output = module(input_var + 0)
self.assertLess(abs(output.data.mean() - (1 - p)), 0.05)
output.backward(input)
self.assertLess(abs(input_var.grad.data.mean() - (1 - p)), 0.05)
# Check that these don't raise errors
module.__repr__()
str(module)
def test_parameters(self):
def num_params(module):
return len(list(module.parameters()))
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = l
self.l2 = l
self.param = Parameter(torch.Tensor(3, 5))
l = nn.Linear(10, 20)
n = Net()
s = nn.Sequential(n, n, n, n)
self.assertEqual(num_params(l), 2)
self.assertEqual(num_params(n), 3)
self.assertEqual(num_params(s), 3)
def test_modules(self):
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = l
self.l2 = l
self.param = Variable(torch.Tensor(3, 5))
l = nn.Linear(10, 20)
n = Net()
s = nn.Sequential(n, n, n, n)
self.assertEqual(list(s.modules()), [s, n, l])
def test_Sequential_getitem(self):
l1 = nn.Linear(10, 20)
l2 = nn.Linear(20, 30)
l3 = nn.Linear(30, 40)
l4 = nn.Linear(40, 50)
n = nn.Sequential(l1, l2, l3, l4)
self.assertEqual(n[0], l1)
self.assertEqual(n[1], l2)
self.assertEqual(n[2], l3)
self.assertEqual(n[3], l4)
def test_add_module(self):
l = nn.Linear(10, 20)
net = nn.Module()
net.l = l
net.l2 = l
net.add_module('empty', None)
self.assertEqual(net.l, l)
self.assertEqual(net.l2, l)
self.assertEqual(net.empty, None)
net.add_module('l3', l)
self.assertEqual(net.l3, l)
self.assertRaises(KeyError, lambda: net.add_module('l', l))
self.assertRaises(TypeError, lambda: net.add_module('x', 'non-module'))
def test_type(self):
l = nn.Linear(10, 20)
net = nn.Module()
net.l = l
net.l2 = l
net.add_module('empty', None)
net.float()
self.assertIsInstance(l.weight.data, torch.FloatTensor)
self.assertIsInstance(l.bias.data, torch.FloatTensor)
net.double()
self.assertIsInstance(l.weight.data, torch.DoubleTensor)
self.assertIsInstance(l.bias.data, torch.DoubleTensor)
net.type(torch.FloatTensor)
self.assertIsInstance(l.weight.data, torch.FloatTensor)
self.assertIsInstance(l.bias.data, torch.FloatTensor)
net.type(torch.DoubleTensor)
self.assertIsInstance(l.weight.data, torch.DoubleTensor)
self.assertIsInstance(l.bias.data, torch.DoubleTensor)
if TEST_CUDA:
net.type(torch.cuda.FloatTensor)
self.assertIsInstance(l.weight.data, torch.cuda.FloatTensor)
self.assertIsInstance(l.bias.data, torch.cuda.FloatTensor)
def test_non_leaf_parameters(self):
l1 = nn.Linear(10, 10)
l2 = nn.Linear(10, 10)
def assign_weight():
l2.weight = l1.weight + 2
self.assertRaises(TypeError, assign_weight)
# This should work though
l2.weight = Parameter(torch.randn(10, 10))
def test_embedding_padding_idx(self):
embedding = nn.Embedding(10, 20, padding_idx=0)
input = Variable(torch.LongTensor([[0, 2, 4, 5], [4, 3, 0, 9]]))
output = embedding(input)
self.assertEqual(output[0][0].sum().data[0], 0)
self.assertEqual(output[1][2].sum().data[0], 0)
def test_Dropout(self):
input = torch.Tensor(1000)
self._test_dropout(nn.Dropout, input)
def test_Dropout2d(self):
b = random.randint(1, 5)
w = random.randint(1, 5)
h = random.randint(1, 5)
num_features = 1000
input = torch.Tensor(num_features, b, w, h)
self._test_dropout(nn.Dropout2d, input)
def test_Dropout3d(self):
b = random.randint(1, 5)
w = random.randint(1, 5)
h = random.randint(1, 5)
d = random.randint(1, 2)
num_features = 1000
input = torch.Tensor(num_features, b, d, w, h)
self._test_dropout(nn.Dropout3d, input)
def _test_maxpool_indices(self, num_dim, type=torch.FloatTensor):
def expected_indices(dim):
if dim == 1:
return torch.DoubleTensor([1, 3])
lower_dim = expected_indices(dim - 1)
lower_dim = lower_dim.view(1, *lower_dim.size())
return torch.cat((lower_dim + 4, lower_dim + 12), 0)
def expected_grad(dim):
if dim == 1:
return torch.DoubleTensor([0, 1, 0, 1])
lower_dim_grad = expected_grad(dim - 1)
grad = lower_dim_grad.view(1, *lower_dim_grad.size())
zero = torch.zeros(grad.size())
return torch.cat((zero, grad, zero, grad), 0)
module_cls = getattr(nn, 'MaxPool{}d'.format(num_dim))
module = module_cls(2, return_indices=True).type(type)
numel = 4 ** num_dim
input = torch.range(1, numel).view(1, 1, *repeat(4, num_dim)).type(type)
input_var = Variable(input, requires_grad=True)
# Check forward
output, indices = module(input_var)
if num_dim != 3:
expected_indices = expected_indices(num_dim)
expected_output = expected_indices + 1
self.assertEqual(indices.dim(), input.dim())
self.assertEqual(indices.data.squeeze(), expected_indices)
self.assertEqual(output.data.squeeze(), expected_output)
self.assertTrue(output.requires_grad)
self.assertFalse(indices.requires_grad)
# Make sure backward works
grad_output = torch.ones(output.size()).type(type)
output.backward(grad_output, retain_variables=True)
expected_grad = expected_grad(num_dim)
self.assertEqual(input_var.grad.data, expected_grad.view_as(input))
# Make sure backward after changing indices will result in an error
indices.add_(1)
self.assertRaises(RuntimeError, lambda: output.backward(grad_output))
def test_MaxPool1d_indices(self):
self._test_maxpool_indices(1)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_MaxPool1d_indices_cuda(self):
self._test_maxpool_indices(1, torch.cuda.FloatTensor)
def test_MaxPool2d_indices(self):
self._test_maxpool_indices(2)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_MaxPool2d_indices_cuda(self):
self._test_maxpool_indices(2, torch.cuda.FloatTensor)
def test_MaxPool3d_indices(self):
self._test_maxpool_indices(3)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_MaxPool3d_indices_cuda(self):
self._test_maxpool_indices(3, torch.cuda.FloatTensor)
def _test_scatter(self, tensor):
x = Variable(tensor, requires_grad=True)
result = dp.scatter(x, (0, 1))
self.assertEqual(len(result), 2)
self.assertEqual(result[0], x[:2])
self.assertEqual(result[0].get_device(), 0)
self.assertEqual(result[1], x[2:])
self.assertEqual(result[1].get_device(), 1)
grad = result[0].data.clone().fill_(2)
result[0].backward(grad)
self.assertEqual(x.grad.data[:2], grad)
self.assertEqual(x.grad.data[2:], grad.clone().zero_())
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_scatter_cpu(self):
self._test_scatter(torch.randn(4, 4))
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_scatter_gpu(self):
self._test_scatter(torch.randn(4, 4).cuda())
def _test_gather(self, output_device):
inputs = (
Variable(torch.randn(2, 4).cuda(0), requires_grad=True),
Variable(torch.randn(2, 4).cuda(1), requires_grad=True)
)
result = dp.gather(inputs, output_device)
self.assertEqual(result.size(), torch.Size([4, 4]))
self.assertEqual(result[:2], inputs[0])
self.assertEqual(result[2:], inputs[1])
if output_device != -1:
self.assertEqual(result.get_device(), output_device)
else:
self.assertFalse(result.is_cuda)
grad = torch.randn(4, 4)
if output_device != -1:
grad = grad.cuda(output_device)
result.backward(grad)
self.assertEqual(inputs[0].grad.data, grad[:2])
self.assertEqual(inputs[1].grad.data, grad[2:])
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_gather_cpu(self):
self._test_gather(-1)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_gather_gpu(self):
self._test_gather(0)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_replicate(self):
module = nn.Linear(10, 5).float().cuda()
input = Variable(torch.randn(2, 10).float().cuda())
expected_output = module(input).data
replicas = dp.replicate(module, (0, 1))
for i, replica in enumerate(replicas):
for p in replica.parameters():
self.assertEqual(p.get_device(), i)
replica_input = input.cuda(i)
self.assertEqual(replica(replica_input).data, expected_output)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_replicate_buffers(self):
net = nn.Module()
net.bn = nn.BatchNorm2d(10)
net.cuda()
replicas = dp.replicate(net, (0, 1))
for i, replica in enumerate(replicas):
self.assertEqual(replica.bn.running_mean.get_device(), i, 'buffer on wrong device')
self.assertEqual(replica.bn.running_var.get_device(), i, 'buffer on wrong device')
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_parallel_apply(self):
l1 = nn.Linear(10, 5).float().cuda(0)
l2 = nn.Linear(10, 5).float().cuda(1)
i1 = Variable(torch.randn(2, 10).float().cuda(0))
i2 = Variable(torch.randn(2, 10).float().cuda(1))
expected1 = l1(i1).data
expected2 = l2(i2).data
inputs = (i1, i2)
modules = (l1, l2)
expected_outputs = (expected1, expected2)
outputs = dp.parallel_apply(modules, inputs)
for out, expected in zip(outputs, expected_outputs):
self.assertEqual(out.data, expected)
inputs = (i1, Variable(i2.data.new()))
expected_outputs = (expected1, expected2.new())
def test_data_parallel_noop(self):
l = nn.Linear(10, 5).float()
i = Variable(torch.randn(20, 10).float())
out = dp.data_parallel(l, i, [])
self.assertEqual(out, l(i))
self.assertFalse(out.is_cuda)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_data_parallel_small_back(self):
l = nn.Linear(10, 5).float().cuda()
i = Variable(torch.randn(20, 10).float().cuda())
out = dp.data_parallel(l, i, (0, 1))
self.assertEqual(out, l(i))
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_data_parallel(self):
l = nn.Linear(10, 5).float().cuda()
i = Variable(torch.randn(20, 10).float().cuda(1))
l.cuda(1)
expected_out = l(i).data
l.cuda(0)
out = dp.data_parallel(l, i, (0, 1))
self.assertEqual(out.get_device(), 0)
self.assertEqual(out.data, expected_out)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_data_parallel_nested_output(self):
def fn(input):
return [input, (input.sin(), input.cos(), [input.add(1)]), input]
class Net(nn.Module):
def forward(self, input):
return fn(input)
i = Variable(torch.randn(2, 2).float().cuda(1))
gpus = range(torch.cuda.device_count())
output = dp.data_parallel(Net(), i, gpus)
self.assertEqual(output, fn(i))
self.assertIsInstance(output[0], Variable)
self.assertIsInstance(output[1], tuple)
self.assertIsInstance(output[1][0], Variable)
self.assertIsInstance(output[1][1], Variable)
self.assertIsInstance(output[1][2], list)
self.assertIsInstance(output[1][2][0], Variable)
self.assertIsInstance(output[2], Variable)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_data_parallel_nested_input(self):
def fn(input):
return input[1][0]
class Net(nn.Module):
def forward(self, input):
return fn(input)
i = Variable(torch.randn(20, 3).float().cuda(1))
input = (i.cos(), (i.sin(), i), i.sin())
gpus = range(torch.cuda.device_count())
output = dp.data_parallel(Net(), input, gpus)
self.assertEqual(output, fn(input))
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_data_parallel_module(self):
l = nn.Linear(10, 5).float().cuda()
i = Variable(torch.randn(20, 10).float().cuda())
expected_out = l(i).data
net = nn.DataParallel(l)
out = net(i)
self.assertEqual(out.get_device(), 0)
self.assertEqual(out.data, expected_out)
def test_state_dict(self):
l = nn.Linear(5, 5)
block = nn.Module()
block.conv = nn.Conv2d(3, 3, 3, bias=False)
net = nn.Module()
net.linear1 = l
net.linear2 = l
net.bn = nn.BatchNorm2d(2)
net.block = block
net.add_module('empty', None)
state_dict = net.state_dict()
self.assertEqual(len(state_dict), 9)
self.assertIn('linear1.weight', state_dict)
self.assertIn('linear1.bias', state_dict)
self.assertIn('linear2.weight', state_dict)
self.assertIn('linear2.bias', state_dict)
self.assertIn('block.conv.weight', state_dict)
self.assertIn('block.conv.weight', state_dict)
self.assertNotIn('block.conv.bias', state_dict)
self.assertIn('bn.weight', state_dict)
self.assertIn('bn.bias', state_dict)
self.assertIn('bn.running_var', state_dict)
self.assertIn('bn.running_mean', state_dict)
self.assertFalse(any(map(lambda k: k.startswith('empty'), state_dict.keys())))
for k, v in state_dict.items():
param = net
for component in k.split('.'):
param = getattr(param, component)
if isinstance(param, Parameter):
param = param.data
self.assertIs(v, param)
l = nn.Linear(5, 5)
state_dict = l.state_dict()
self.assertEqual(len(state_dict), 2)
self.assertIs(state_dict['weight'], l.weight.data)
self.assertIs(state_dict['bias'], l.bias.data)
def test_load_state_dict(self):
l = nn.Linear(5, 5)
block = nn.Module()
block.conv1 = nn.Conv2d(3, 3, 3, bias=True)
block.conv2 = nn.Conv2d(3, 3, 3, bias=False)
net = nn.Module()
net.linear1 = l
net.linear2 = l
net.bn = nn.BatchNorm2d(2)
net.block = block
net.add_module('empty', None)
state_dict = net.state_dict()
state_dict.update({
'linear1.weight': torch.ones(5, 5),
'block.conv1.bias': torch.range(1, 3),
'bn.running_mean': torch.randn(2),
})
net.load_state_dict(state_dict)
self.assertEqual(net.linear1.weight.data, state_dict['linear1.weight'])
self.assertEqual(net.block.conv1.bias.data, state_dict['block.conv1.bias'])
self.assertEqual(net.bn.running_mean, state_dict['bn.running_mean'])
state_dict = net.state_dict()
state_dict.update({'extra': torch.ones(5)})
self.assertRaises(KeyError, lambda: net.load_state_dict(state_dict))
state_dict = net.state_dict()
del state_dict['linear1.weight']
self.assertRaises(KeyError, lambda: net.load_state_dict(state_dict))
def test_parameter_assignment(self):
l = nn.Linear(5, 5)
def num_params():
return len(list(l.parameters()))
self.assertEqual(num_params(), 2)
new_param = Parameter(torch.randn(5, 5))
l.param_name = new_param
self.assertEqual(num_params(), 3)
self.assertObjectIn(new_param, l.parameters())
var = Variable(torch.randn(5, 5))
l.var_name = var
self.assertEqual(num_params(), 3)
self.assertNotIn(id(var), map(id, l.parameters()))
# Make sure Variables are not saved as parameters
l.variable_attr = Variable(torch.Tensor(5, 5))
self.assertEqual(num_params(), 3)
l.param_attr = Parameter(torch.Tensor(5, 5))
self.assertEqual(num_params(), 4)
# It shouldn't be possible to replace a parameter with a Variable
def assign_var():
l.param_attr = Variable(torch.Tensor(5, 5))
self.assertRaises(TypeError, assign_var)
# But replacing it with None should be fine
l.param_attr = None
self.assertEqual(num_params(), 3)
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
def test_Conv2d_large_workspace(self):
# These sizes require huge cuDNN workspaces. Make sure we choose a
# reasonable algorithm that does not run out of memory
sizes = [
(1, 256, 109, 175),
(1, 256, 80, 128),
(1, 256, 120, 192),
]
dtype = torch.cuda.FloatTensor
def run_test(benchmark):
torch.backends.cudnn.benchmark = benchmark
conv = torch.nn.Conv2d(256, 256, kernel_size=3, padding=1).type(dtype)
for size in sizes:
x = torch.randn(size).type(dtype)
out = conv(Variable(x, requires_grad=True))
out.backward(torch.ones(out.size()).type(dtype))
b = torch.backends.cudnn.benchmark
try:
run_test(benchmark=False)
run_test(benchmark=True)
finally:
torch.backends.cudnn.benchmark = b
def test_ConvTranspose2d_output_size(self):
m = nn.ConvTranspose2d(3, 4, 3, 3, 0, 2)
i = Variable(torch.randn(2, 3, 6, 6))
for h in range(15, 22):
for w in range(15, 22):
if 18 <= h <= 20 and 18 <= w <= 20:
output = m(i, output_size=(h, w))
self.assertEqual(output.size()[2:], (h, w))
else:
self.assertRaises(ValueError, lambda: m(i, (h, w)))
def test_Conv2d_naive_groups(self):
# Check that grouped convolutions matches two half convolutions
m = nn.Conv2d(4, 4, kernel_size=3, groups=2)
i = Variable(torch.randn(2, 4, 6, 6), requires_grad=True)
output = m(i)
grad_output = torch.randn(2, 4, 4, 4)
output.backward(grad_output)
m1 = nn.Conv2d(2, 2, kernel_size=3)
m1.weight.data.copy_(m.weight.data[:2])
m1.bias.data.copy_(m.bias.data[:2])
i1 = Variable(i.data[:, :2].contiguous(), requires_grad=True)
output1 = m1(i1)
output1.backward(grad_output[:, :2].contiguous())
m2 = nn.Conv2d(2, 2, kernel_size=3)
m2.weight.data.copy_(m.weight.data[2:])
m2.bias.data.copy_(m.bias.data[2:])
i2 = Variable(i.data[:, 2:].contiguous(), requires_grad=True)
output2 = m2(i2)
output2.backward(grad_output[:, 2:].contiguous())
self.assertEqual(output, torch.cat([output1, output2], 1))
self.assertEqual(i.grad.data,
torch.cat([i1.grad.data, i2.grad.data], 1))
self.assertEqual(m.bias.grad.data,
torch.cat([m1.bias.grad.data, m2.bias.grad.data], 0))
self.assertEqual(m.weight.grad.data,
torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0))
def test_MaxUnpool2d_output_size(self):
m = nn.MaxPool2d(3, stride=2, return_indices=True)
mu = nn.MaxUnpool2d(3, stride=2)
big_t = torch.rand(1, 1, 6, 6)
big_t[0][0][4][4] = 100
output_big, indices_big = m(Variable(big_t))
self.assertRaises(RuntimeError, lambda: mu(output_big, indices_big))
small_t = torch.rand(1, 1, 5, 5)
for i in range(0, 4, 2):
for j in range(0, 4, 2):
small_t[:, :, i, j] = 100
output_small, indices_small = m(Variable(small_t))
for h in range(3, 10):
for w in range(3, 10):
if 4 <= h <= 6 and 4 <= w <= 6:
size = (h, w)
if h == 5:
size = torch.LongStorage(size)
elif h == 6:
size = torch.LongStorage((1, 1) + size)
mu(output_small, indices_small, output_size=size)
else:
self.assertRaises(ValueError, lambda:
mu(output_small, indices_small, (h, w)))
def test_container_copy(self):
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear = nn.Linear(4, 5)
def forward(self, input):
return self.linear(input)
input = Variable(torch.randn(2, 4))
model = Model()
model_cp = deepcopy(model)
self.assertEqual(model(input).data, model_cp(input).data)
model_cp.linear.weight[:] = 2
self.assertNotEqual(model(input).data, model_cp(input).data)
def test_RNN_cell(self):
# this is just a smoke test; these modules are implemented through
# autograd so no Jacobian test is needed
for module in (nn.RNNCell, nn.GRUCell):
for bias in (True, False):
input = Variable(torch.randn(3, 10))
hx = Variable(torch.randn(3, 20))
cell = module(10, 20, bias=bias)
for i in range(6):
hx = cell(input, hx)
hx.sum().backward()
def test_invalid_dropout_p(self):
v = Variable(torch.ones(1))
self.assertRaises(ValueError, lambda: nn.Dropout(-0.1))
self.assertRaises(ValueError, lambda: nn.Dropout(1.1))
self.assertRaises(ValueError, lambda: nn.Dropout2d(-0.1))
self.assertRaises(ValueError, lambda: nn.Dropout2d(1.1))
self.assertRaises(ValueError, lambda: nn.Dropout3d(-0.1))
self.assertRaises(ValueError, lambda: nn.Dropout3d(1.1))
self.assertRaises(ValueError, lambda: F.dropout(v, -0.1))
self.assertRaises(ValueError, lambda: F.dropout(v, 1.1))
def test_LSTM_cell(self):
# this is just a smoke test; these modules are implemented through
# autograd so no Jacobian test is needed
for bias in (True, False):
input = Variable(torch.randn(3, 10))
hx = Variable(torch.randn(3, 20))
cx = Variable(torch.randn(3, 20))
lstm = nn.LSTMCell(10, 20, bias=bias)
for i in range(6):
hx, cx = lstm(input, (hx, cx))
(hx + cx).sum().backward()
def test_rnn_initial_hidden_state(self):
rnn_modes = ['RNN', 'GRU', 'LSTM']
for mode in rnn_modes:
rnn = getattr(nn, mode)(30, 20, 2)
input = Variable(torch.randn(10, 32, 30))
hidden = Variable(torch.Tensor(2, 32, 20).zero_())
if mode is 'LSTM':
hidden = (hidden, hidden)
output1, hidden1 = rnn(input, hidden)
output2, hidden2 = rnn(input)
self.assertEqual(output1, output2)
self.assertEqual(hidden1, hidden2)
def _test_RNN_cpu_vs_cudnn(self, dropout):
def forward_backward(cuda, rnn, input_val, hx_val, weights_val):
is_lstm = type(rnn) == nn.LSTM
for x_layer, y_layer in zip(rnn.all_weights, weights_val):
for x, y in zip(x_layer, y_layer):
x.data.copy_(y.data)
input = Variable(input_val.clone(), requires_grad=True)
if is_lstm: