-
Notifications
You must be signed in to change notification settings - Fork 288
/
Copy pathtypes.cpp
655 lines (575 loc) · 19.6 KB
/
types.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
// SPDX-License-Identifier: GPL-2.0-or-later
// included header files
#include "types.hpp"
#include "enforce.hpp"
#include "futils.hpp"
#include "i18n.h" // for _exvGettext
#include "safe_op.hpp"
#include "utils.hpp"
// + standard includes
#include <array>
#include <cctype>
#include <climits>
#include <cmath>
#include <cstring>
#include <iomanip>
#include <numeric>
#include <sstream>
#include <utility>
// *****************************************************************************
namespace {
//! Information pertaining to the defined %Exiv2 value type identifiers.
constexpr struct TypeInfoTable {
Exiv2::TypeId typeId_; //!< Type id
const char* name_; //!< Name of the type
size_t size_; //!< Bytes per data entry
//! Comparison operator for \em typeId
bool operator==(Exiv2::TypeId typeId) const {
return typeId_ == typeId;
}
//! Comparison operator for \em name
bool operator==(const std::string& name) const {
return name == name_;
}
} typeInfoTable[] = {
//! Lookup list with information of Exiv2 types
{Exiv2::invalidTypeId, "Invalid", 0},
{Exiv2::unsignedByte, "Byte", 1},
{Exiv2::asciiString, "Ascii", 1},
{Exiv2::unsignedShort, "Short", 2},
{Exiv2::unsignedLong, "Long", 4},
{Exiv2::unsignedRational, "Rational", 8},
{Exiv2::signedByte, "SByte", 1},
{Exiv2::undefined, "Undefined", 1},
{Exiv2::signedShort, "SShort", 2},
{Exiv2::signedLong, "SLong", 4},
{Exiv2::signedRational, "SRational", 8},
{Exiv2::tiffFloat, "Float", 4},
{Exiv2::tiffDouble, "Double", 8},
{Exiv2::tiffIfd, "Ifd", 4},
{Exiv2::string, "String", 1},
{Exiv2::date, "Date", 8},
{Exiv2::time, "Time", 11},
{Exiv2::comment, "Comment", 1},
{Exiv2::directory, "Directory", 1},
{Exiv2::xmpText, "XmpText", 1},
{Exiv2::xmpAlt, "XmpAlt", 1},
{Exiv2::xmpBag, "XmpBag", 1},
{Exiv2::xmpSeq, "XmpSeq", 1},
{Exiv2::langAlt, "LangAlt", 1},
};
} // namespace
// *****************************************************************************
// class member definitions
namespace Exiv2 {
const char* TypeInfo::typeName(TypeId typeId) {
if (auto tit = Exiv2::find(typeInfoTable, typeId))
return tit->name_;
return nullptr;
}
TypeId TypeInfo::typeId(const std::string& typeName) {
if (auto tit = Exiv2::find(typeInfoTable, typeName))
return tit->typeId_;
return invalidTypeId;
}
size_t TypeInfo::typeSize(TypeId typeId) {
if (auto tit = Exiv2::find(typeInfoTable, typeId))
return tit->size_;
return 0;
}
DataBuf::DataBuf(size_t size) : pData_(size) {
}
DataBuf::DataBuf(const byte* pData, size_t size) : pData_(size) {
std::copy_n(pData, size, pData_.begin());
}
void DataBuf::alloc(size_t size) {
pData_.resize(size);
}
void DataBuf::resize(size_t size) {
pData_.resize(size);
}
void DataBuf::reset() {
pData_.clear();
}
uint8_t Exiv2::DataBuf::read_uint8(size_t offset) const {
if (offset >= pData_.size()) {
throw std::out_of_range("Overflow in Exiv2::DataBuf::read_uint8");
}
return pData_[offset];
}
void Exiv2::DataBuf::write_uint8(size_t offset, uint8_t x) {
if (offset >= pData_.size()) {
throw std::out_of_range("Overflow in Exiv2::DataBuf::write_uint8");
}
pData_[offset] = x;
}
uint16_t Exiv2::DataBuf::read_uint16(size_t offset, ByteOrder byteOrder) const {
if (pData_.size() < 2 || offset > (pData_.size() - 2)) {
throw std::out_of_range("Overflow in Exiv2::DataBuf::read_uint16");
}
return getUShort(&pData_[offset], byteOrder);
}
void Exiv2::DataBuf::write_uint16(size_t offset, uint16_t x, ByteOrder byteOrder) {
if (pData_.size() < 2 || offset > (pData_.size() - 2)) {
throw std::out_of_range("Overflow in Exiv2::DataBuf::write_uint16");
}
us2Data(&pData_[offset], x, byteOrder);
}
uint32_t Exiv2::DataBuf::read_uint32(size_t offset, ByteOrder byteOrder) const {
if (pData_.size() < 4 || offset > (pData_.size() - 4)) {
throw std::out_of_range("Overflow in Exiv2::DataBuf::read_uint32");
}
return getULong(&pData_[offset], byteOrder);
}
void Exiv2::DataBuf::write_uint32(size_t offset, uint32_t x, ByteOrder byteOrder) {
if (pData_.size() < 4 || offset > (pData_.size() - 4)) {
throw std::out_of_range("Overflow in Exiv2::DataBuf::write_uint32");
}
ul2Data(&pData_[offset], x, byteOrder);
}
uint64_t Exiv2::DataBuf::read_uint64(size_t offset, ByteOrder byteOrder) const {
if (pData_.size() < 8 || offset > (pData_.size() - 8)) {
throw std::out_of_range("Overflow in Exiv2::DataBuf::read_uint64");
}
return getULongLong(&pData_[offset], byteOrder);
}
void Exiv2::DataBuf::write_uint64(size_t offset, uint64_t x, ByteOrder byteOrder) {
if (pData_.size() < 8 || offset > (pData_.size() - 8)) {
throw std::out_of_range("Overflow in Exiv2::DataBuf::write_uint64");
}
ull2Data(&pData_[offset], x, byteOrder);
}
int Exiv2::DataBuf::cmpBytes(size_t offset, const void* buf, size_t bufsize) const {
if (pData_.size() < bufsize || offset > pData_.size() - bufsize) {
throw std::out_of_range("Overflow in Exiv2::DataBuf::cmpBytes");
}
return memcmp(&pData_[offset], buf, bufsize);
}
byte* Exiv2::DataBuf::data(size_t offset) {
return const_cast<byte*>(c_data(offset));
}
const byte* Exiv2::DataBuf::c_data(size_t offset) const {
if (pData_.empty() || offset == pData_.size()) {
return nullptr;
}
if (offset > pData_.size()) {
throw std::out_of_range("Overflow in Exiv2::DataBuf::c_data");
}
return &pData_[offset];
}
const char* Exiv2::DataBuf::c_str(size_t offset) const {
return reinterpret_cast<const char*>(c_data(offset));
}
// *************************************************************************
// free functions
static void checkDataBufBounds(const DataBuf& buf, size_t end) {
Internal::enforce<std::invalid_argument>(end <= static_cast<size_t>(std::numeric_limits<long>::max()),
"end of slice too large to be compared with DataBuf bounds.");
Internal::enforce<std::out_of_range>(end <= buf.size(), "Invalid slice bounds specified");
}
Slice<byte*> makeSlice(DataBuf& buf, size_t begin, size_t end) {
checkDataBufBounds(buf, end);
return {buf.data(), begin, end};
}
Slice<const byte*> makeSlice(const DataBuf& buf, size_t begin, size_t end) {
checkDataBufBounds(buf, end);
return {buf.c_data(), begin, end};
}
std::ostream& operator<<(std::ostream& os, const Rational& r) {
return os << r.first << "/" << r.second;
}
template <typename T>
std::istream& fromStreamToRational(std::istream& is, T& r) {
// http://dev.exiv2.org/boards/3/topics/1912?r=1915
if (std::tolower(is.peek()) == 'f') {
char F = 0;
float f = 0.F;
is >> F >> f;
f = 2.0F * std::log(f) / std::log(2.0F);
r = Exiv2::floatToRationalCast(f);
} else {
int32_t nominator = 0;
int32_t denominator = 0;
char c('\0');
is >> nominator >> c >> denominator;
if (c != '/')
is.setstate(std::ios::failbit);
if (is)
r = {nominator, denominator};
}
return is;
}
std::istream& operator>>(std::istream& is, Rational& r) {
return fromStreamToRational(is, r);
}
std::ostream& operator<<(std::ostream& os, const URational& r) {
return os << r.first << "/" << r.second;
}
std::istream& operator>>(std::istream& is, URational& r) {
return fromStreamToRational(is, r);
}
uint16_t getUShort(const byte* buf, ByteOrder byteOrder) {
return getUShort(makeSliceUntil(buf, 2), byteOrder);
}
uint32_t getULong(const byte* buf, ByteOrder byteOrder) {
if (byteOrder == littleEndian) {
return buf[3] << 24 | buf[2] << 16 | buf[1] << 8 | buf[0];
}
return buf[0] << 24 | buf[1] << 16 | buf[2] << 8 | buf[3];
}
uint64_t getULongLong(const byte* buf, ByteOrder byteOrder) {
if (byteOrder == littleEndian) {
return static_cast<uint64_t>(buf[7]) << 56 | static_cast<uint64_t>(buf[6]) << 48 |
static_cast<uint64_t>(buf[5]) << 40 | static_cast<uint64_t>(buf[4]) << 32 |
static_cast<uint64_t>(buf[3]) << 24 | static_cast<uint64_t>(buf[2]) << 16 |
static_cast<uint64_t>(buf[1]) << 8 | static_cast<uint64_t>(buf[0]);
}
return static_cast<uint64_t>(buf[0]) << 56 | static_cast<uint64_t>(buf[1]) << 48 |
static_cast<uint64_t>(buf[2]) << 40 | static_cast<uint64_t>(buf[3]) << 32 |
static_cast<uint64_t>(buf[4]) << 24 | static_cast<uint64_t>(buf[5]) << 16 |
static_cast<uint64_t>(buf[6]) << 8 | static_cast<uint64_t>(buf[7]);
}
URational getURational(const byte* buf, ByteOrder byteOrder) {
uint32_t nominator = getULong(buf, byteOrder);
uint32_t denominator = getULong(buf + 4, byteOrder);
return {nominator, denominator};
}
int16_t getShort(const byte* buf, ByteOrder byteOrder) {
if (byteOrder == littleEndian) {
return buf[1] << 8 | buf[0];
}
return buf[0] << 8 | buf[1];
}
int32_t getLong(const byte* buf, ByteOrder byteOrder) {
if (byteOrder == littleEndian) {
return buf[3] << 24 | buf[2] << 16 | buf[1] << 8 | buf[0];
}
return buf[0] << 24 | buf[1] << 16 | buf[2] << 8 | buf[3];
}
Rational getRational(const byte* buf, ByteOrder byteOrder) {
int32_t nominator = getLong(buf, byteOrder);
int32_t denominator = getLong(buf + 4, byteOrder);
return {nominator, denominator};
}
float getFloat(const byte* buf, ByteOrder byteOrder) {
// This algorithm assumes that the internal representation of the float
// type is the 4-byte IEEE 754 binary32 format, which is common but not
// required by the C++ standard.
union {
uint32_t ul_;
float f_;
} u;
u.ul_ = getULong(buf, byteOrder);
return u.f_;
}
double getDouble(const byte* buf, ByteOrder byteOrder) {
// This algorithm assumes that the internal representation of the double
// type is the 8-byte IEEE 754 binary64 format, which is common but not
// required by the C++ standard.
union {
uint64_t ull_;
double d_;
} u;
u.ull_ = 0;
if (byteOrder == littleEndian) {
u.ull_ = static_cast<uint64_t>(buf[7]) << 56 | static_cast<uint64_t>(buf[6]) << 48 |
static_cast<uint64_t>(buf[5]) << 40 | static_cast<uint64_t>(buf[4]) << 32 |
static_cast<uint64_t>(buf[3]) << 24 | static_cast<uint64_t>(buf[2]) << 16 |
static_cast<uint64_t>(buf[1]) << 8 | static_cast<uint64_t>(buf[0]);
} else {
u.ull_ = static_cast<uint64_t>(buf[0]) << 56 | static_cast<uint64_t>(buf[1]) << 48 |
static_cast<uint64_t>(buf[2]) << 40 | static_cast<uint64_t>(buf[3]) << 32 |
static_cast<uint64_t>(buf[4]) << 24 | static_cast<uint64_t>(buf[5]) << 16 |
static_cast<uint64_t>(buf[6]) << 8 | static_cast<uint64_t>(buf[7]);
}
return u.d_;
}
size_t us2Data(byte* buf, uint16_t s, ByteOrder byteOrder) {
if (byteOrder == littleEndian) {
buf[0] = static_cast<byte>(s & 0x00ffU);
buf[1] = static_cast<byte>((s & 0xff00U) >> 8);
} else {
buf[0] = static_cast<byte>((s & 0xff00U) >> 8);
buf[1] = static_cast<byte>(s & 0x00ffU);
}
return 2;
}
size_t ul2Data(byte* buf, uint32_t l, ByteOrder byteOrder) {
if (byteOrder == littleEndian) {
buf[0] = static_cast<byte>(l & 0x000000ffU);
buf[1] = static_cast<byte>((l & 0x0000ff00U) >> 8);
buf[2] = static_cast<byte>((l & 0x00ff0000U) >> 16);
buf[3] = static_cast<byte>((l & 0xff000000U) >> 24);
} else {
buf[0] = static_cast<byte>((l & 0xff000000U) >> 24);
buf[1] = static_cast<byte>((l & 0x00ff0000U) >> 16);
buf[2] = static_cast<byte>((l & 0x0000ff00U) >> 8);
buf[3] = static_cast<byte>(l & 0x000000ffU);
}
return 4;
}
size_t ull2Data(byte* buf, uint64_t l, ByteOrder byteOrder) {
if (byteOrder == littleEndian) {
for (size_t i = 0; i < 8; i++) {
buf[i] = static_cast<byte>(l & 0xff);
l >>= 8;
}
} else {
for (size_t i = 0; i < 8; i++) {
buf[8 - i - 1] = static_cast<byte>(l & 0xff);
l >>= 8;
}
}
return 8;
}
size_t ur2Data(byte* buf, URational l, ByteOrder byteOrder) {
size_t o = ul2Data(buf, l.first, byteOrder);
o += ul2Data(buf + o, l.second, byteOrder);
return o;
}
size_t s2Data(byte* buf, int16_t s, ByteOrder byteOrder) {
if (byteOrder == littleEndian) {
buf[0] = static_cast<byte>(s & 0x00ffU);
buf[1] = static_cast<byte>((s & 0xff00U) >> 8);
} else {
buf[0] = static_cast<byte>((s & 0xff00U) >> 8);
buf[1] = static_cast<byte>(s & 0x00ffU);
}
return 2;
}
size_t l2Data(byte* buf, int32_t l, ByteOrder byteOrder) {
if (byteOrder == littleEndian) {
buf[0] = static_cast<byte>(l & 0x000000ffU);
buf[1] = static_cast<byte>((l & 0x0000ff00U) >> 8);
buf[2] = static_cast<byte>((l & 0x00ff0000U) >> 16);
buf[3] = static_cast<byte>((l & 0xff000000U) >> 24);
} else {
buf[0] = static_cast<byte>((l & 0xff000000U) >> 24);
buf[1] = static_cast<byte>((l & 0x00ff0000U) >> 16);
buf[2] = static_cast<byte>((l & 0x0000ff00U) >> 8);
buf[3] = static_cast<byte>(l & 0x000000ffU);
}
return 4;
}
size_t r2Data(byte* buf, Rational l, ByteOrder byteOrder) {
size_t o = l2Data(buf, l.first, byteOrder);
o += l2Data(buf + o, l.second, byteOrder);
return o;
}
size_t f2Data(byte* buf, float f, ByteOrder byteOrder) {
// This algorithm assumes that the internal representation of the float
// type is the 4-byte IEEE 754 binary32 format, which is common but not
// required by the C++ standard.
union {
uint32_t ul_;
float f_;
} u;
u.f_ = f;
return ul2Data(buf, u.ul_, byteOrder);
}
size_t d2Data(byte* buf, double d, ByteOrder byteOrder) {
// This algorithm assumes that the internal representation of the double
// type is the 8-byte IEEE 754 binary64 format, which is common but not
// required by the C++ standard.
union {
uint64_t ull_;
double d_;
} u;
u.d_ = d;
uint64_t m = 0xff;
if (byteOrder == littleEndian) {
buf[0] = static_cast<byte>(u.ull_ & m);
buf[1] = static_cast<byte>((u.ull_ & (m << 8)) >> 8);
buf[2] = static_cast<byte>((u.ull_ & (m << 16)) >> 16);
buf[3] = static_cast<byte>((u.ull_ & (m << 24)) >> 24);
buf[4] = static_cast<byte>((u.ull_ & (m << 32)) >> 32);
buf[5] = static_cast<byte>((u.ull_ & (m << 40)) >> 40);
buf[6] = static_cast<byte>((u.ull_ & (m << 48)) >> 48);
buf[7] = static_cast<byte>((u.ull_ & (m << 56)) >> 56);
} else {
buf[0] = static_cast<byte>((u.ull_ & (m << 56)) >> 56);
buf[1] = static_cast<byte>((u.ull_ & (m << 48)) >> 48);
buf[2] = static_cast<byte>((u.ull_ & (m << 40)) >> 40);
buf[3] = static_cast<byte>((u.ull_ & (m << 32)) >> 32);
buf[4] = static_cast<byte>((u.ull_ & (m << 24)) >> 24);
buf[5] = static_cast<byte>((u.ull_ & (m << 16)) >> 16);
buf[6] = static_cast<byte>((u.ull_ & (m << 8)) >> 8);
buf[7] = static_cast<byte>(u.ull_ & m);
}
return 8;
}
void hexdump(std::ostream& os, const byte* buf, size_t len, size_t offset) {
const std::string::size_type pos = 8 + 16 * 3 + 2;
const std::string align(pos, ' ');
std::ios::fmtflags f(os.flags());
size_t i = 0;
while (i < len) {
os << " " << std::setw(4) << std::setfill('0') << std::hex << i + offset << " ";
std::ostringstream ss;
do {
byte c = buf[i];
os << std::setw(2) << std::setfill('0') << std::right << std::hex << static_cast<int>(c) << " ";
ss << (static_cast<int>(c) >= 31 && static_cast<int>(c) < 127 ? static_cast<char>(buf[i]) : '.');
} while (++i < len && i % 16 != 0);
std::string::size_type width = 9 + ((i - 1) % 16 + 1) * 3;
os << (width > pos ? "" : align.substr(width)) << ss.str() << "\n";
}
os << std::dec << std::setfill(' ');
os.flags(f);
}
bool isHex(const std::string& str, size_t size, const std::string& prefix) {
if (str.size() <= prefix.size() || str.substr(0, prefix.size()) != prefix)
return false;
if (size > 0 && str.size() != size + prefix.size())
return false;
return std::all_of(str.begin() + prefix.size(), str.end(), ::isxdigit);
} // isHex
int exifTime(const char* buf, tm* tm) {
int rc = 1;
int year = 0;
int mon = 0;
int mday = 0;
int hour = 0;
int min = 0;
int sec = 0;
if (std::sscanf(buf, "%4d:%2d:%2d %2d:%2d:%2d", &year, &mon, &mday, &hour, &min, &sec) == 6) {
tm->tm_year = year - 1900;
tm->tm_mon = mon - 1;
tm->tm_mday = mday;
tm->tm_hour = hour;
tm->tm_min = min;
tm->tm_sec = sec;
rc = 0;
}
return rc;
} // exifTime
const char* exvGettext(const char* str) {
#ifdef EXV_ENABLE_NLS
return _exvGettext(str);
#else
return str;
#endif
}
template <>
bool stringTo<bool>(const std::string& s, bool& ok) {
if (s.empty())
return false;
auto lcs = Internal::lower(s); /* lowercase string */
/* handle the same values as xmp sdk */
if (lcs == "false" || lcs == "f" || lcs == "0") {
ok = true;
return false;
}
if (lcs == "true" || lcs == "t" || lcs == "1") {
ok = true;
return true;
}
ok = false;
return false;
}
int64_t parseInt64(const std::string& s, bool& ok) {
auto ret = stringTo<int64_t>(s, ok);
if (ok)
return ret;
auto f = stringTo<float>(s, ok);
if (ok)
return static_cast<int64_t>(f);
auto [r, st] = stringTo<Rational>(s, ok);
if (ok) {
if (st <= 0) {
ok = false;
return 0;
}
return static_cast<int64_t>(static_cast<float>(r) / st);
}
bool b = stringTo<bool>(s, ok);
if (ok)
return b ? 1 : 0;
// everything failed, return from stringTo<int64_t> is probably the best fit
return ret;
}
uint32_t parseUint32(const std::string& s, bool& ok) {
if (auto x = parseInt64(s, ok); ok && 0 <= x && x <= std::numeric_limits<uint32_t>::max()) {
return static_cast<uint32_t>(x);
}
ok = false;
return 0;
}
float parseFloat(const std::string& s, bool& ok) {
auto ret = stringTo<float>(s, ok);
if (ok)
return ret;
auto [r, st] = stringTo<Rational>(s, ok);
if (ok) {
if (st == 0) {
ok = false;
return 0.0;
}
return static_cast<float>(r) / st;
}
bool b = stringTo<bool>(s, ok);
if (ok)
return b ? 1.0F : 0.0F;
// everything failed, return from stringTo<float> is probably the best fit
return ret;
}
Rational parseRational(const std::string& s, bool& ok) {
auto ret = stringTo<Rational>(s, ok);
if (ok)
return ret;
auto l = stringTo<long>(s, ok);
if (ok)
return {l, 1};
auto f = stringTo<float>(s, ok);
if (ok)
return floatToRationalCast(f);
bool b = stringTo<bool>(s, ok);
if (ok)
return {b ? 1 : 0, 1};
// everything failed, return from stringTo<Rational> is probably the best fit
return ret;
}
Rational floatToRationalCast(float f) {
// Convert f to double because it simplifies the range checks
// below. (All int values can be losslessly converted to double, but
// sometimes get rounded when converted to float.)
const double d = f;
// Beware: primitive conversion algorithm
int32_t den;
if (std::fabs(d) <= std::numeric_limits<int32_t>::max() / 1000000) {
den = 1000000;
} else if (std::fabs(d) <= std::numeric_limits<int32_t>::max() / 10000) {
den = 10000;
} else if (std::fabs(d) <= std::numeric_limits<int32_t>::max() / 100) {
den = 100;
} else if (std::fabs(d) <= std::numeric_limits<int32_t>::max()) {
den = 1;
} else {
return {d > 0 ? 1 : -1, 0};
}
const auto nom = static_cast<int32_t>(std::lround(d * den));
const int32_t g = std::gcd(nom, den);
return {nom / g, den / g};
}
} // namespace Exiv2
#ifdef EXV_ENABLE_NLS
// Declaration is in i18n.h
const char* _exvGettext(const char* str) {
static bool exvGettextInitialized = false;
if (!exvGettextInitialized) {
// bindtextdomain(EXV_PACKAGE_NAME, EXV_LOCALEDIR);
auto localeDir = []() -> std::string {
if constexpr (EXV_LOCALEDIR[0] == '/')
return EXV_LOCALEDIR;
else
return Exiv2::getProcessPath() + EXV_SEPARATOR_STR + EXV_LOCALEDIR;
}();
bindtextdomain(EXV_PACKAGE_NAME, localeDir.c_str());
#ifdef EXV_HAVE_BIND_TEXTDOMAIN_CODESET
bind_textdomain_codeset(EXV_PACKAGE_NAME, "UTF-8");
#endif
exvGettextInitialized = true;
}
return dgettext(EXV_PACKAGE_NAME, str);
}
#endif // EXV_ENABLE_NLS