Skip to content

Latest commit

 

History

History
313 lines (271 loc) · 55.4 KB

File metadata and controls

313 lines (271 loc) · 55.4 KB

Genetic Algorithm (GA)

Evolution Strategies (ES)

Evolutionary Programming (EP)

Genetic Programming (GP) [ PySR | USC Ph.D. ]

  • http://gpbib.cs.ucl.ac.uk/ + https://geneticprogramming.com/
  • Langdon, W.B., 2020. Genetic programming and evolvable machines at 20. Genetic Programming and Evolvable Machines, 21(1), pp.205-217.
  • Langdon, W.B. and Poli, R., 2013. Foundations of genetic programming. Springer Science & Business Media.
  • Schmidt, M. and Lipson, H., 2009. Distilling free-form natural laws from experimental data. Science, 324(5923), pp.81-85.
  • Banzhaf, W., Nordin, P., Keller, R.E. and Francone, F.D., 1998. Genetic programming: An introduction on the automatic evolution of computer programs and its applications. Morgan Kaufmann Publishers Inc..
  • Koza, J.R., 1994. Genetic programming as a means for programming computers by natural selection. Statistics and Computing, 4(2), pp.87-112.
    • Koza, J.R., Bennet, F.H., Andre, D. and Keane, M.A., 1999. Genetic programming III: Automatic synthesis of analog circuits. MIT Press.
    • Koza, J.R., 1994. Genetic programming II: Automatic discovery of reusable programs. MIT Press.
    • Koza, J.R., 1992. Genetic programming: On the programming of computers by means of natural selection. MIT Press.
    • Koza, J.R., 1990. Non-linear genetic algorithms for solving problems. U.S. Patent 4,935,877.
    • Koza, J.R., 1989, August. Hierarchical genetic algorithms operating on populations of computer programs. In Proceedings of International Joint Conference on Artificial Intelligence (pp. 768-774).
  • Cramer, N.L., 1985, July. A representation for the adaptive generation of simple sequential programs. In Proceedings of International Conference on Genetic Algorithms (pp. 183-187).
  • Forsyth, R., 1981. BEAGLE—A Darwinian approach to pattern recognition. Kybernetes, 10(3), pp.159-166.

Ant Colony Optimization (ACO)

  • https://iridia.ulb.ac.be/~mdorigo/HomePageDorigo/ (This is the official homepage of ACO's inventor Marco Dorigo, which includes much information about ACO.) [ AAAI Fellow + IEEE Frank Rosenblatt Award + IEEE Fellow + IEEE Evolutionary Computation Pioneer Award ]
  • Dorigo, M. and Stützle, T., 2019. Ant colony optimization: Overview and recent advances. Handbook of Metaheuristics, pp.311-351.
  • Dorigo, M., Birattari, M. and Stutzle, T., 2006. Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), pp.28-39.
  • Dorigo, M. and Blum, C., 2005. Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2-3), pp.243-278.
  • Stützle, T. and Hoos, H.H., 2000. MAX–MIN ant system. Future Generation Computer Systems, 16(8), pp.889-914.
  • Gambardella, L.M. and Dorigo, M., 2000. An ant colony system hybridized with a new local search for the sequential ordering problem. INFORMS Journal on Computing, 12(3), pp.237-255.
  • Bonabeau, E., Dorigo, M. and Theraulaz, G., 2000. Inspiration for optimization from social insect behaviour. Nature, 406(6791), pp.39-42.
  • Maniezzo, V. and Colorni, A., 1999. The ant system applied to the quadratic assignment problem. IEEE Transactions on Knowledge and Data Engineering, 11(5), pp.769-778.
  • Bonabeau, E., Dorigo, M. and Theraulaz, G., 1999. Swarm intelligence: from natural to artificial systems. Oxford University Press.
  • Gambardella, L.M., Taillard, É.D. and Dorigo, M., 1999. Ant colonies for the quadratic assignment problem. Journal of the Operational Research Society, 50(2), pp.167-176.
  • Dorigo, M., Di Caro, G. and Gambardella, L.M., 1999. Ant algorithms for discrete optimization. Artificial Life, 5(2), pp.137-172.
  • Di Caro, G. and Dorigo, M., 1998. AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research, 9, pp.317-365.
  • Dorigo, M. and Gambardella, L.M., 1997. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), pp.53-66.
  • Dorigo, M., Maniezzo, V. and Colorni, A., 1996. Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), pp.29-41.
  • Gambardella, L.M. and Dorigo, M., 1995. Ant-Q: A reinforcement learning approach to the traveling salesman problem. In International Conference on Machine Learning (pp. 252-260). Morgan Kaufmann.
  • Biosystems, 1997, TEVC - Guest Editorial, 2002, Book Review on Artificial Intelligence (2005), Economist, 2010, etc.

Particle Swarm Optimization (PSO)

CBO: Bungert et al., 2024, MP; Huang et al., 2024, SICON; Schillings et al., 2023, SIAM/ASA-JUQ; Fornasie et al., 2021; Carrillo et al., ESAIM, 2021; Ha et al., 2020

  • Carrillo, J.A., Choi, Y.P., Totzeck, C. and Tse, O., 2018. An analytical framework for consensus-based global optimization method. Mathematical Models and Methods in Applied Sciences, 28(06), pp.1037-1066.
  • Pinnau, R., Totzeck, C., Tse, O. and Martin, S., 2017. A consensus-based model for global optimization and its mean-field limit. Mathematical Models and Methods in Applied Sciences, 27(01), pp.183-204.
  • Eberhart, R.C., Shi, Y. and Kennedy, J., 2001. Swarm intelligence. Elsevier.
  • Kennedy, J. and Eberhart, R., 1995, November. Particle swarm optimization. In Proceedings of International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE.

Non-dominated Sorting Genetic Algorithm II (NSGA-II)

Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D)

  • Zhang, Q. and Li, H., 2007. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), pp.712-731.

CoOperative coEvolutionary Algorithms (COEA)

  • Gomez, F., Schmidhuber, J. and Miikkulainen, R., 2008. Accelerated neural evolution through cooperatively coevolved synapses. Journal of Machine Learning Research, 9(31), pp.937-965.
  • Panait, L., Tuyls, K. and Luke, S., 2008. Theoretical advantages of lenient learners: An evolutionary game theoretic perspective. Journal of Machine Learning Research, 9, pp.423-457.
  • Schmidhuber, J., Wierstra, D., Gagliolo, M. and Gomez, F., 2007. Training recurrent networks by evolino. Neural Computation, 19(3), pp.757-779.
  • Gomez, F.J. and Schmidhuber, J., 2005, June. Co-evolving recurrent neurons learn deep memory POMDPs. In Proceedings of Annual Conference on Genetic and Evolutionary Computation (pp. 491-498). ACM.
  • Fan, J., Lau, R. and Miikkulainen, R., 2003. Utilizing domain knowledge in neuroevolution. In International Conference on Machine Learning (pp. 170-177).
  • Potter, M.A. and De Jong, K.A., 2000. Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolutionary Computation, 8(1), pp.1-29.
  • Gomez, F.J. and Miikkulainen, R., 1999, July. Solving non-Markovian control tasks with neuroevolution. In Proceedings of International Joint Conference on Artificial Intelligence (pp. 1356-1361).
  • Moriarty, D.E. and Mikkulainen, R., 1996. Efficient reinforcement learning through symbiotic evolution. Machine Learning, 22(1), pp.11-32.
  • Moriarty, D.E. and Miikkulainen, R., 1995. Efficient learning from delayed rewards through symbiotic evolution. In International Conference on Machine Learning (pp. 396-404). Morgan Kaufmann.
  • Potter, M.A. and De Jong, K.A., 1994, October. A cooperative coevolutionary approach to function optimization. In International Conference on Parallel Problem Solving from Nature (pp. 249-257). Springer, Berlin, Heidelberg.
  • Hillis, W.D., 1990. Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D: Nonlinear Phenomena, 42(1-3), pp.228-234.

CoMpetitive co-Evolutionary Algorithms (CMEA)

  • Ficici, S.G. and Pollack, J.B., 2000. A game-theoretic approach to the simple coevolutionary algorithm. In Parallel Problem Solving from Nature (pp. 467-476). Springer Berlin Heidelberg.
  • Ficici, S.G. and Pollack, J.B., 1998, June. Challenges in coevolutionary learning: Arms-race dynamics, open-endedness, and mediocre stable states. In Proceedings of International Conference on Artificial Life (pp. 238-247). Cambridge, MA: MIT Press.
  • Rosin, C.D. and Belew, R.K., 1997. New methods for competitive coevolution. Evolutionary Computation, 5(1), pp.1-29.

Differential Evolution (DE)

Estimation of Distribution Algorithms (EDAs)

  • Zhang, Q. and Muhlenbein, H., 2004. On the convergence of a class of estimation of distribution algorithms. IEEE Transactions on Evolutionary Computation, 8(2), pp.127-136.
  • Larrañaga, P. and Lozano, J.A. eds., 2001. Estimation of distribution algorithms: A new tool for evolutionary computation. Springer Science & Business Media.
  • Inza, I., Larrañaga, P., Etxeberria, R. and Sierra, B., 2000. Feature subset selection by Bayesian network-based optimization. Artificial Intelligence, 123(1-2), pp.157-184.
  • Baluja, S., 1996. Genetic algorithms and explicit search statistics. In Advances in Neural Information Processing Systems, pp.319-325.
  • Baluja, S. and Caruana, R., 1995. Removing the genetics from the standard genetic algorithm. In International Conference on Machine Learning (pp. 38-46). Morgan Kaufmann.

Natural Evolution Strategies (NES)

Quality Diversity (QD)

  • https://quality-diversity.github.io/ (Now it is actively updated by Antoine Cully, Jean-Baptiste Mouret, and Stephane Doncieux.)
  • Fontaine, M.C. and Nikolaidis, S., 2021. Differentiable quality diversity. Advances in Neural Information Processing Systems.
  • Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K.O. and Clune, J., 2021. First return, then explore. Nature, 590(7847), pp.580-586.
  • Chatzilygeroudis, K., Cully, A., Vassiliades, V. and Mouret, J.B., 2021. Quality-diversity optimization: A novel branch of stochastic optimization. In Black Box Optimization, Machine Learning, and No-Free Lunch Theorems (pp. 109-135). Springer, Cham.
  • Cully, A. and Demiris, Y., 2018. Quality and diversity optimization: A unifying modular framework. IEEE Transactions on Evolutionary Computation, 22(2), pp.245-259.
  • Pugh, J.K., Soros, L.B. and Stanley, K.O., 2016. Quality diversity: A new frontier for evolutionary computation. Frontiers in Robotics and AI, 3, pp.1-17.
  • Cully, A., Clune, J., Tarapore, D. and Mouret, J.B., 2015. Robots that can adapt like animals. Nature, 521(7553), pp.503-507.
  • Mouret, J.B. and Clune, J., 2015. Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909.
  • Lehman, J. and Stanley, K.O., 2011, July. Evolving a diversity of virtual creatures through novelty search and local competition. In Proceedings of Annual Conference on Genetic and Evolutionary Computation (pp. 211-218).
  • Lehman, J. and Stanley, K.O., 2011. Abandoning objectives: Evolution through the search for novelty alone. Evolutionary Computation, 19(2), pp.189-223.

NeuroEvolution (aka Evolving Neural Networks) [ wired ]

  • Stanley, K.O., Clune, J., Lehman, J. and Miikkulainen, R., 2019. Designing neural networks through neuroevolution. Nature Machine Intelligence, 1(1), pp.24-35.
  • Jaderberg, M., Czarnecki, W.M., Dunning, I., Marris, L., Lever, G., Castaneda, A.G., Beattie, C., Rabinowitz, N.C., Morcos, A.S., Ruderman, A. and Sonnerat, N., 2019. Human-level performance in 3D multiplayer games with population-based reinforcement learning. Science, 364(6443), pp.859-865.
  • Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M., Yang, Z., Paul, W., Jordan, M.I. and Stoica, I., 2018. Ray: A distributed framework for emerging AI applications. In USENIX Symposium on Operating Systems Design and Implementation (pp. 561-577).
  • Floreano, D., Dürr, P. and Mattiussi, C., 2008. Neuroevolution: From architectures to learning. Evolutionary Intelligence, 1(1), pp.47-62.
  • Stanley, K.O. and Miikkulainen, R., 2002. Evolving neural networks through augmenting topologies. Evolutionary Computation, 10(2), pp.99-127.
  • Yao, X., 1999. Evolving artificial neural networks. Proceedings of the IEEE, 87(9), pp.1423-1447.

Evolutionary/Swarm Robotics

  • Floreano, D. and Lipson, H., 2021. From individual robots to robot societies. Science Robotics, 6(56).
  • Dorigo, M., Theraulaz, G. and Trianni, V., 2021. Swarm robotics: Past, present, and future. Proceedings of the IEEE, 109(7), pp.1152-1165.
  • Kriegman, S., Blackiston, D., Levin, M. and Bongard, J., 2020. A scalable pipeline for designing reconfigurable organisms. Proceedings of the National Academy of Sciences, 117(4), pp.1853-1859.
  • Dorigo, M., Theraulaz, G. and Trianni, V., 2020. Reflections on the future of swarm robotics. Science Robotics, 5(49).
  • Howard, D., Eiben, A.E., Kennedy, D.F., Mouret, J.B., Valencia, P. and Winkler, D., 2019. Evolving embodied intelligence from materials to machines. Nature Machine Intelligence, 1(1), pp.12-19.
  • Doncieux, S., Bredeche, N., Mouret, J.B. and Eiben, A.E.G., 2015. Evolutionary robotics: What, why, and where to. Frontiers in Robotics and AI, 2, p.4.
  • Bongard, J. and Lipson, H., 2014. Evolved machines shed light on robustness and resilience. Proceedings of the IEEE, 102(5), pp.899-914.
  • Bongard, J.C., 2013. Evolutionary robotics. Communications of the ACM, 56(8), pp.74-83.
  • Pfeifer, R. and Bongard, J., 2007. How the body shapes the way we think: A new view of intelligence. MIT Press.
  • Nolfi, S. and Floreano, D., 2000. Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines. MIT Press.
  • Lipson, H. and Pollack, J.B., 2000. Automatic design and manufacture of robotic lifeforms. Nature, 406(6799), pp.974-978.
  • Jakobi, N., 1997. Evolutionary robotics and the radical envelope-of-noise hypothesis. Adaptive Behavior, 6(2), pp.325-368.
  • Sims, K., 1995. Evolving 3D morphology and behavior by competition. Artificial Life, 1(4), pp.353-372.
  • Sims, K., 1994, July. Evolving virtual creatures. In Proceedings of Annual Conference on Computer Graphics and Interactive Techniques (pp. 15-22).
  • Reynolds, C.W., 1987, August. Flocks, herds and schools: A distributed behavioral model. In Proceedings of Annual Conference on Computer Graphics and Interactive Techniques (pp. 25-34).

Evolutionary Design

Algorithm Selection and Configuration (and Meta-EAs)

Broader Viewpoints From CS/AI/ML/Optimization/OR/Biology

Some Interesting Applications

MetaHeuristics