Skip to content

Eurus202425/Hardening-Deep-Neural-Networks-via-Adversarial-Model-Cascades

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hardening Deep Neural Networks via Adversarial Model Cascades

Official code repository for our publication Hardening Deep Neural Networks via Adversarial Model Cascades, accepted at IJCNN'19. A short blog summarizing the paper can be found here.

Working

  • Adversary gets hold of unlabelled data (not overlapping with target)
  • Make queries to black-box model, use results to create dataset.
  • Using this collected data, train a proxy network.
  • Generate adversarial examples for the trained proxy network.
  • Calculate error rate on the target network, for images generated by the proxy adversarial network.

Attacks present

  • FGSM
  • VAP
  • PGM
  • EAP

Setting it up

  • bash prepare.sh to download required data and models
  • python Code/test_accuracy.py --model_path <target_model> --dataset <dataset> to get test accuracy ,from Code/ folder
  • bash test*.sh <dataset> <target_model> <proxy_model>, where * denotes anoy of the 7 attacks given in the repo ,from the Scripts/ folder
  • For the basic bagging setup, run bash genericBagging.sh <dataset> <path_to_seed_model> <new_folder_for_bag> <path_to_file_containing_order_of_attacks> <transfer_parameters_per_bag?> ,from the Scripts/ folder

For example, bash genericBagging.sh mnist PlainModel MYBAG/ ORDER no

  • For the adaptive bagging setup, run bash adaptiveBagging.sh <dataset> <path_to_seed_model> <new_folder_for_bag> <path_to_file_containing_order_of_attacks> <transfer_parameters_per_bag?> <path_to_proxy_model>

For example, bash adaptiveBagging.sh mnist PlainModel MYBAG/ ORDER no ProxyNormal

  • For testing bagging on your own attack data, run python ../Code/bagging.py --mode test --dataset <dataset> --model_dir <model_bag_directory> --data_x <data_X> --data_y <data_Y> --predict_mode <voting/weighted>

Cite this work

You are encouraged to cite the following paper if you use AMC for academic research.

@INPROCEEDINGS{8851970,
  author={D. {Vijaykeerthy} and A. {Suri} and S. {Mehta} and P. {Kumaraguru}},
  booktitle={2019 International Joint Conference on Neural Networks (IJCNN)},
  title={Hardening Deep Neural Networks via Adversarial Model Cascades},
  year={2019},
  pages={1-8},
  doi={10.1109/IJCNN.2019.8851970},
  ISSN={},
  month={July}
}

About

Official code repository for our publication 'Hardening Deep Neural Networks via Adversarial Model Cascades'

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 94.0%
  • Shell 6.0%