Skip to content

a implement and derivation of "CCS-TA: quality-guaranteed online task allocation in compressive crowdsensing"

Notifications You must be signed in to change notification settings

Esmidth/CCS_TA_implement

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CCS-TA implement

Init

Project Structure

Folders

Name Description
cvxpy_convex Examples of using cvxpy library to solve convex optimization
Dataset Includes Sensorscope, Air Quality Data, Rat_Sightings, Noise_Complaints_Heatmap
mean_png 336 Temper PNGs computed by optimal.h5, optimal_df with time_gap=1800
more_with_less_rat Examples of Data Conversion Procedure in paper More with less
pytorch_tutorial Offical tutorial from Pytorch, Facebook
results PNGs outputed from Rat_Sightings dataset, demostrate the S.T correlations
tensorflow1.x_tutorial Offical tutorial of Tensorflow 1.x from Google

Standard Procedure for data processing

step program files description input output
1 lune copy.ipynb read txt, generate data.h5 txt data.h5
2 rename.ipynb divide data in "data.h5" into "day1.h5" with unix_time_timestamps in a day data.h5 day1.h5 / day2.h5
3 multi_process_compute.py read day1.h5 day1.h5 dict_list3.pkl / dict_list3_1.pkl
3-1 lune6.ipynb generate "optimal.h5" data.h5 optimal.h5
4 read_dict_list_pkl.ipynb dict_list3.pkl, day1.h5 sub_index_array_drop_na.pkl, sub_index_array.pkl, tensor2.pkl, time_stamp_array.pkl,indices_na.pkl, new_indices.pkl
??5 tensor3.ipynb optimal_df.h5
5-1 tensor3_intel.ipynb create pytorch dataset for intel indoor intel_indoor_10_4.pkl dataloader_intel_indoor_1_train.pt, dataloader_intel_indoor_1_test.pt
5-2 tensor_prepare.ipynb create pytorch dataset for sensorscope tensor2.pkl, time_stamp_array.pkl, indcies_na.pkl, new_indices.pkl dataloader_temp_train2.pt, dataloader_temp_test2.pt
6 DCS/DCS_GAN_example.ipynb train & reconstruction for sensorscope dataloader_temp_test2.pt, dataloader_temp_train2.pt Nan
6-1 DCS/DCS_GAN_intel_indoor.ipynb train & reconstruction for intel indoor dataloader_intel_indoor_1_test.pt, dataloader_intel_indoor_1_train.pt Nan

Program Files

Name Description
consts.py define common connst variables
main.py Empty
tensor_distribution.py Compute Tensor distribution
multi_process_compute.py Python process pool computing example
test.py Empty
utils.py Utilty function
esti_cs.ipynb Implement ESTI_CS data matrix recovery
loc_mapping.ipynb Empty
lune copy.ipynb export data into data.h5, df_sub
lune.ipynb Read csv files of lune dataset, export to data.h5, df,dfs, find duplicated stations in a area, count NaN numbers
lune3.ipynb try to get the optimal period of a week in dataset
lune4.ipynb coverage_test for getting optimal sub dataset
lune5.ipynb try to use multi process pool to compute coverage while there is a bug in Juypter plugin, which could not use multi process pool
lune6.ipynb coverage test
lune7.ipynb try to get optimal time_gap while tensor_distribution.py does the actual process
rename.ipynb Transform data in data.h5,df_sub into data in day.h5,start_point, which starts from unix time 1162393768
svd_tmp.ipynb try to use scipy & numpy implementing svd
tensor.ipynb try to build tensor used in GAN, including remove_duplicated, dataframe_to_matrix
tensor1.ipynb Store data into hdf5 dataset, implement dataset_write & dataset_read function
tensor2.ipynb Test dataset read & write
tensor3.ipynb try to work with dataload in Pytorch
tensor4.ipynb test Pytorch dataloader
tensor_prepare.ipynb Unknown
test.ipynb Example of dealing with data.pkl
read_dict_list_pkl.ipynb read "dict_list3.pkl" & generate " sub_index_array.pkl" & example of using "dict_list3.pkl"

Dataset

Python Variable Name HDF key Name Description Current Size File Name
rb_sub_df_list_optimal rb_optimal 5959 ds_rb_optimal.h5
sub_df_list_optimal optimal 5959 ds_optimal.h5
sub_df_list df_list 20160 ds_df_list.h5
a_temperature_array 5959,44 dataset.hdf5
a_temperature_mean 5959 dataset.hdf5
a_temperature_std 5959 dataset.hdf5
sub_df_list_optimal_index 5959 dataset.hdf5
time_stamp 20161 dataset.hdf5
dataloader batch_size=500 dataloader.pt

2020.6.6

Baseline

state-of-art description
ARMA & SARIMA not yet
stKNN not yet
Kriging done
AKE done
DESM delay
IDW+SES done
CF partial
NMF done
NMF-MVL not yet

About

a implement and derivation of "CCS-TA: quality-guaranteed online task allocation in compressive crowdsensing"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published