Name | Description |
---|---|
cvxpy_convex | Examples of using cvxpy library to solve convex optimization |
Dataset | Includes Sensorscope, Air Quality Data, Rat_Sightings, Noise_Complaints_Heatmap |
mean_png | 336 Temper PNGs computed by optimal.h5, optimal_df with time_gap=1800 |
more_with_less_rat | Examples of Data Conversion Procedure in paper More with less |
pytorch_tutorial | Offical tutorial from Pytorch, Facebook |
results | PNGs outputed from Rat_Sightings dataset, demostrate the S.T correlations |
tensorflow1.x_tutorial | Offical tutorial of Tensorflow 1.x from Google |
step | program files | description | input | output |
---|---|---|---|---|
1 | lune copy.ipynb | read txt, generate data.h5 | txt | data.h5 |
2 | rename.ipynb | divide data in "data.h5" into "day1.h5" with unix_time_timestamps in a day | data.h5 | day1.h5 / day2.h5 |
3 | multi_process_compute.py | read day1.h5 | day1.h5 | dict_list3.pkl / dict_list3_1.pkl |
3-1 | lune6.ipynb | generate "optimal.h5" | data.h5 | optimal.h5 |
4 | read_dict_list_pkl.ipynb | dict_list3.pkl, day1.h5 | sub_index_array_drop_na.pkl, sub_index_array.pkl, tensor2.pkl, time_stamp_array.pkl,indices_na.pkl, new_indices.pkl | |
??5 | tensor3.ipynb | optimal_df.h5 | ||
5-1 | tensor3_intel.ipynb | create pytorch dataset for intel indoor | intel_indoor_10_4.pkl | dataloader_intel_indoor_1_train.pt, dataloader_intel_indoor_1_test.pt |
5-2 | tensor_prepare.ipynb | create pytorch dataset for sensorscope | tensor2.pkl, time_stamp_array.pkl, indcies_na.pkl, new_indices.pkl | dataloader_temp_train2.pt, dataloader_temp_test2.pt |
6 | DCS/DCS_GAN_example.ipynb | train & reconstruction for sensorscope | dataloader_temp_test2.pt, dataloader_temp_train2.pt | Nan |
6-1 | DCS/DCS_GAN_intel_indoor.ipynb | train & reconstruction for intel indoor | dataloader_intel_indoor_1_test.pt, dataloader_intel_indoor_1_train.pt | Nan |
Name | Description |
---|---|
consts.py | define common connst variables |
main.py | Empty |
tensor_distribution.py | Compute Tensor distribution |
multi_process_compute.py | Python process pool computing example |
test.py | Empty |
utils.py | Utilty function |
esti_cs.ipynb | Implement ESTI_CS data matrix recovery |
loc_mapping.ipynb | Empty |
lune copy.ipynb | export data into data.h5, df_sub |
lune.ipynb | Read csv files of lune dataset, export to data.h5, df,dfs, find duplicated stations in a area, count NaN numbers |
lune3.ipynb | try to get the optimal period of a week in dataset |
lune4.ipynb | coverage_test for getting optimal sub dataset |
lune5.ipynb | try to use multi process pool to compute coverage while there is a bug in Juypter plugin, which could not use multi process pool |
lune6.ipynb | coverage test |
lune7.ipynb | try to get optimal time_gap while tensor_distribution.py does the actual process |
rename.ipynb | Transform data in data.h5,df_sub into data in day.h5,start_point, which starts from unix time 1162393768 |
svd_tmp.ipynb | try to use scipy & numpy implementing svd |
tensor.ipynb | try to build tensor used in GAN, including remove_duplicated, dataframe_to_matrix |
tensor1.ipynb | Store data into hdf5 dataset, implement dataset_write & dataset_read function |
tensor2.ipynb | Test dataset read & write |
tensor3.ipynb | try to work with dataload in Pytorch |
tensor4.ipynb | test Pytorch dataloader |
tensor_prepare.ipynb | Unknown |
test.ipynb | Example of dealing with data.pkl |
read_dict_list_pkl.ipynb | read "dict_list3.pkl" & generate " sub_index_array.pkl" & example of using "dict_list3.pkl" |
Python Variable Name | HDF key Name | Description | Current Size | File Name |
---|---|---|---|---|
rb_sub_df_list_optimal | rb_optimal | 5959 | ds_rb_optimal.h5 | |
sub_df_list_optimal | optimal | 5959 | ds_optimal.h5 | |
sub_df_list | df_list | 20160 | ds_df_list.h5 | |
a_temperature_array | 5959,44 | dataset.hdf5 | ||
a_temperature_mean | 5959 | dataset.hdf5 | ||
a_temperature_std | 5959 | dataset.hdf5 | ||
sub_df_list_optimal_index | 5959 | dataset.hdf5 | ||
time_stamp | 20161 | dataset.hdf5 | ||
dataloader | batch_size=500 | dataloader.pt |
state-of-art | description |
---|---|
ARMA & SARIMA | not yet |
stKNN | not yet |
Kriging | done |
AKE | done |
DESM | delay |
IDW+SES | done |
CF | partial |
NMF | done |
NMF-MVL | not yet |