forked from tesseract-ocr/tesseract
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparagraphs_internal.h
312 lines (253 loc) · 12.4 KB
/
paragraphs_internal.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/**********************************************************************
* File: paragraphs_internal.h
* Description: Paragraph Detection internal data structures.
* Author: David Eger
* Created: 11 March 2011
*
* (C) Copyright 2011, Google Inc.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#ifndef TESSERACT_CCMAIN_PARAGRAPHS_INTERNAL_H_
#define TESSERACT_CCMAIN_PARAGRAPHS_INTERNAL_H_
#include "paragraphs.h"
#ifdef _MSC_VER
#include <string>
#else
#include "strings.h"
#endif
// NO CODE OUTSIDE OF paragraphs.cpp AND TESTS SHOULD NEED TO ACCESS
// DATA STRUCTURES OR FUNCTIONS IN THIS FILE.
class WERD_CHOICE;
namespace tesseract {
// Return whether the given word is likely to be a list item start word.
bool AsciiLikelyListItem(const STRING &word);
// Return the first Unicode Codepoint from werd[pos].
int UnicodeFor(const UNICHARSET *u, const WERD_CHOICE *werd, int pos);
// Set right word attributes given either a unicharset and werd or a utf8
// string.
void RightWordAttributes(const UNICHARSET *unicharset, const WERD_CHOICE *werd,
const STRING &utf8,
bool *is_list, bool *starts_idea, bool *ends_idea);
// Set left word attributes given either a unicharset and werd or a utf8 string.
void LeftWordAttributes(const UNICHARSET *unicharset, const WERD_CHOICE *werd,
const STRING &utf8,
bool *is_list, bool *starts_idea, bool *ends_idea);
enum LineType {
LT_START = 'S', // First line of a paragraph.
LT_BODY = 'C', // Continuation line of a paragraph.
LT_UNKNOWN = 'U', // No clues.
LT_MULTIPLE = 'M', // Matches for both LT_START and LT_BODY.
};
// The first paragraph in a page of body text is often un-indented.
// This is a typographic convention which is common to indicate either that:
// (1) The paragraph is the continuation of a previous paragraph, or
// (2) The paragraph is the first paragraph in a chapter.
//
// I refer to such paragraphs as "crown"s, and the output of the paragraph
// detection algorithm attempts to give them the same paragraph model as
// the rest of the body text.
//
// Nonetheless, while building hypotheses, it is useful to mark the lines
// of crown paragraphs temporarily as crowns, either aligned left or right.
extern const ParagraphModel *kCrownLeft;
extern const ParagraphModel *kCrownRight;
inline bool StrongModel(const ParagraphModel *model) {
return model != NULL && model != kCrownLeft && model != kCrownRight;
}
struct LineHypothesis {
LineHypothesis() : ty(LT_UNKNOWN), model(NULL) {}
LineHypothesis(LineType line_type, const ParagraphModel *m)
: ty(line_type), model(m) {}
LineHypothesis(const LineHypothesis &other)
: ty(other.ty), model(other.model) {}
bool operator==(const LineHypothesis &other) const {
return ty == other.ty && model == other.model;
}
LineType ty;
const ParagraphModel *model;
};
class ParagraphTheory; // Forward Declaration
typedef GenericVectorEqEq<const ParagraphModel *> SetOfModels;
// Row Scratch Registers are data generated by the paragraph detection
// algorithm based on a RowInfo input.
class RowScratchRegisters {
public:
// We presume row will outlive us.
void Init(const RowInfo &row);
LineType GetLineType() const;
LineType GetLineType(const ParagraphModel *model) const;
// Mark this as a start line type, sans model. This is useful for the
// initial marking of probable body lines or paragraph start lines.
void SetStartLine();
// Mark this as a body line type, sans model. This is useful for the
// initial marking of probably body lines or paragraph start lines.
void SetBodyLine();
// Record that this row fits as a paragraph start line in the given model,
void AddStartLine(const ParagraphModel *model);
// Record that this row fits as a paragraph body line in the given model,
void AddBodyLine(const ParagraphModel *model);
// Clear all hypotheses about this line.
void SetUnknown() { hypotheses_.truncate(0); }
// Append all hypotheses of strong models that match this row as a start.
void StartHypotheses(SetOfModels *models) const;
// Append all hypotheses of strong models matching this row.
void StrongHypotheses(SetOfModels *models) const;
// Append all hypotheses for this row.
void NonNullHypotheses(SetOfModels *models) const;
// Discard any hypotheses whose model is not in the given list.
void DiscardNonMatchingHypotheses(const SetOfModels &models);
// If we have only one hypothesis and that is that this line is a paragraph
// start line of a certain model, return that model. Else return NULL.
const ParagraphModel *UniqueStartHypothesis() const;
// If we have only one hypothesis and that is that this line is a paragraph
// body line of a certain model, return that model. Else return NULL.
const ParagraphModel *UniqueBodyHypothesis() const;
// Return the indentation for the side opposite of the aligned side.
int OffsideIndent(tesseract::ParagraphJustification just) const {
switch (just) {
case tesseract::JUSTIFICATION_RIGHT: return lindent_;
case tesseract::JUSTIFICATION_LEFT: return rindent_;
default: return lindent_ > rindent_ ? lindent_ : rindent_;
}
}
// Return the indentation for the side the text is aligned to.
int AlignsideIndent(tesseract::ParagraphJustification just) const {
switch (just) {
case tesseract::JUSTIFICATION_RIGHT: return rindent_;
case tesseract::JUSTIFICATION_LEFT: return lindent_;
default: return lindent_ > rindent_ ? lindent_ : rindent_;
}
}
// Append header fields to a vector of row headings.
static void AppendDebugHeaderFields(GenericVector<STRING> *header);
// Append data for this row to a vector of debug strings.
void AppendDebugInfo(const ParagraphTheory &theory,
GenericVector<STRING> *dbg) const;
const RowInfo *ri_;
// These four constants form a horizontal box model for the white space
// on the edges of each line. At each point in the algorithm, the following
// shall hold:
// ri_->pix_ldistance = lmargin_ + lindent_
// ri_->pix_rdistance = rindent_ + rmargin_
int lmargin_;
int lindent_;
int rindent_;
int rmargin_;
private:
// Hypotheses of either LT_START or LT_BODY
GenericVectorEqEq<LineHypothesis> hypotheses_;
};
// A collection of convenience functions for wrapping the set of
// Paragraph Models we believe correctly model the paragraphs in the image.
class ParagraphTheory {
public:
// We presume models will outlive us, and that models will take ownership
// of any ParagraphModel *'s we add.
explicit ParagraphTheory(GenericVector<ParagraphModel *> *models)
: models_(models) {}
GenericVector<ParagraphModel *> &models() { return *models_; }
const GenericVector<ParagraphModel *> &models() const { return *models_; }
// Return an existing model if one that is Comparable() can be found.
// Else, allocate a new copy of model to save and return a pointer to it.
const ParagraphModel *AddModel(const ParagraphModel &model);
// Discard any models we've made that are not in the list of used models.
void DiscardUnusedModels(const SetOfModels &used_models);
// Return the set of all non-centered models.
void NonCenteredModels(SetOfModels *models);
// If any of the non-centered paragraph models we know about fit
// rows[start, end), return it. Else NULL.
const ParagraphModel *Fits(const GenericVector<RowScratchRegisters> *rows,
int start, int end) const;
int IndexOf(const ParagraphModel *model) const;
private:
GenericVector<ParagraphModel *> *models_;
GenericVectorEqEq<ParagraphModel *> models_we_added_;
};
bool ValidFirstLine(const GenericVector<RowScratchRegisters> *rows,
int row, const ParagraphModel *model);
bool ValidBodyLine(const GenericVector<RowScratchRegisters> *rows,
int row, const ParagraphModel *model);
bool CrownCompatible(const GenericVector<RowScratchRegisters> *rows,
int a, int b, const ParagraphModel *model);
// A class for smearing Paragraph Model hypotheses to surrounding rows.
// The idea here is that StrongEvidenceClassify first marks only exceedingly
// obvious start and body rows and constructs models of them. Thereafter,
// we may have left over unmarked lines (mostly end-of-paragraph lines) which
// were too short to have much confidence about, but which fit the models we've
// constructed perfectly and which we ought to mark. This class is used to
// "smear" our models over the text.
class ParagraphModelSmearer {
public:
ParagraphModelSmearer(GenericVector<RowScratchRegisters> *rows,
int row_start, int row_end,
ParagraphTheory *theory);
// Smear forward paragraph models from existing row markings to subsequent
// text lines if they fit, and mark any thereafter still unmodeled rows
// with any model in the theory that fits them.
void Smear();
private:
// Record in open_models_ for rows [start_row, end_row) the list of models
// currently open at each row.
// A model is still open in a row if some previous row has said model as a
// start hypothesis, and all rows since (including this row) would fit as
// either a body or start line in that model.
void CalculateOpenModels(int row_start, int row_end);
SetOfModels &OpenModels(int row) {
return open_models_[row - row_start_ + 1];
}
ParagraphTheory *theory_;
GenericVector<RowScratchRegisters> *rows_;
int row_start_;
int row_end_;
// open_models_ corresponds to rows[start_row_ - 1, end_row_]
//
// open_models_: Contains models which there was an active (open) paragraph
// as of the previous line and for which the left and right
// indents admit the possibility that this text line continues
// to fit the same model.
// TODO(eger): Think about whether we can get rid of "Open" models and just
// use the current hypotheses on RowScratchRegisters.
GenericVector<SetOfModels> open_models_;
};
// Clear all hypotheses about lines [start, end) and reset the margins to the
// percentile (0..100) value of the left and right row edges for this run of
// rows.
void RecomputeMarginsAndClearHypotheses(
GenericVector<RowScratchRegisters> *rows, int start, int end,
int percentile);
// Return the median inter-word space in rows[row_start, row_end).
int InterwordSpace(const GenericVector<RowScratchRegisters> &rows,
int row_start, int row_end);
// Return whether the first word on the after line can fit in the space at
// the end of the before line (knowing which way the text is aligned and read).
bool FirstWordWouldHaveFit(const RowScratchRegisters &before,
const RowScratchRegisters &after,
tesseract::ParagraphJustification justification);
// Return whether the first word on the after line can fit in the space at
// the end of the before line (not knowing the text alignment).
bool FirstWordWouldHaveFit(const RowScratchRegisters &before,
const RowScratchRegisters &after);
// Do rows[start, end) form a single instance of the given paragraph model?
bool RowsFitModel(const GenericVector<RowScratchRegisters> *rows,
int start, int end, const ParagraphModel *model);
// Do the text and geometry of two rows support a paragraph break between them?
bool LikelyParagraphStart(const RowScratchRegisters &before,
const RowScratchRegisters &after,
tesseract::ParagraphJustification j);
// Given a set of row_owners pointing to PARAs or NULL (no paragraph known),
// normalize each row_owner to point to an actual PARA, and output the
// paragraphs in order onto paragraphs.
void CanonicalizeDetectionResults(
GenericVector<PARA *> *row_owners,
PARA_LIST *paragraphs);
} // namespace
#endif // TESSERACT_CCMAIN_PARAGRAPHS_INTERNAL_H_