Implementation for the paper entitled "Session-based Recommendation with Self-Attention Networks"
You can download the datasets which used in our paper from the following links. Then put them in the folder datasets/
:
-
DIGINETICA: http://cikm2016.cs.iupui.edu/cikm-cup or https://competitions.codalab.org/competitions/11161
After you download the YOOCHOOSE dataset, add headline with session_id,timestamp,item_id,category
in the yoochoose-clicks.dat.
Run the file datasets/preprocess.py
to preprocess the data before train the model.
For example: cd datasets; python preprocess.py --dataset=yoochoose
usage: preprocess.py [-h] [--dataset DATASET]
optional arguments:
-h, --help show this help message and exit
--dataset DATASET dataset name: diginetica/yoochoose
Then you can run the file python main.py --dataset=yoochoose1_64
to train the model.
You can also change other parameters according to the usage:
usage: main.py [-h] [--dataset DATASET] [--batchSize BATCHSIZE]
[--hiddenSize HIDDENSIZE] [--nhead NHEAD] [--layer LAYER]
[--feedforward FEEDFORWARD] [--epoch EPOCH] [--lr LR]
[--lr_dc LR_DC] [--lr_dc_step LR_DC_STEP] [--l2 L2]
[--patience PATIENCE] [--validation]
[--valid_portion VALID_PORTION]
optional arguments:
-h, --help show this help message and exit
--dataset DATASET dataset name:
diginetica/yoochoose1_64
--batchSize BATCHSIZE
input batch size
--hiddenSize HIDDENSIZE
hidden state size
--nhead NHEAD
the number of heads of multi-head attention
--layer LAYER
number of SAN layers
--feedforward FEEDFORWARD
the multipler of hidden state size
--epoch EPOCH the number of epochs to train for
--lr LR learning rate
--lr_dc LR_DC learning rate decay rate
--lr_dc_step LR_DC_STEP
the number of epochs after which the learning rate
decay
--l2 L2 l2 penalty
--patience PATIENCE the number of epoch to wait before early stop
--validation validation
--valid_portion VALID_PORTION
split the portion of training set as validation set
- Python 3
- PyTorch 1.2