Skip to content

Commit 45d1648

Browse files
committed
update
1 parent 8ad0930 commit 45d1648

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

52 files changed

+11351
-0
lines changed

common/__init__.py

Whitespace-only changes.

common/quaternion.py

Lines changed: 423 additions & 0 deletions
Large diffs are not rendered by default.

common/skeleton.py

Lines changed: 199 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,199 @@
1+
from common.quaternion import *
2+
import scipy.ndimage.filters as filters
3+
4+
class Skeleton(object):
5+
def __init__(self, offset, kinematic_tree, device):
6+
self.device = device
7+
self._raw_offset_np = offset.numpy()
8+
self._raw_offset = offset.clone().detach().to(device).float()
9+
self._kinematic_tree = kinematic_tree
10+
self._offset = None
11+
self._parents = [0] * len(self._raw_offset)
12+
self._parents[0] = -1
13+
for chain in self._kinematic_tree:
14+
for j in range(1, len(chain)):
15+
self._parents[chain[j]] = chain[j-1]
16+
17+
def njoints(self):
18+
return len(self._raw_offset)
19+
20+
def offset(self):
21+
return self._offset
22+
23+
def set_offset(self, offsets):
24+
self._offset = offsets.clone().detach().to(self.device).float()
25+
26+
def kinematic_tree(self):
27+
return self._kinematic_tree
28+
29+
def parents(self):
30+
return self._parents
31+
32+
# joints (batch_size, joints_num, 3)
33+
def get_offsets_joints_batch(self, joints):
34+
assert len(joints.shape) == 3
35+
_offsets = self._raw_offset.expand(joints.shape[0], -1, -1).clone()
36+
for i in range(1, self._raw_offset.shape[0]):
37+
_offsets[:, i] = torch.norm(joints[:, i] - joints[:, self._parents[i]], p=2, dim=1)[:, None] * _offsets[:, i]
38+
39+
self._offset = _offsets.detach()
40+
return _offsets
41+
42+
# joints (joints_num, 3)
43+
def get_offsets_joints(self, joints):
44+
assert len(joints.shape) == 2
45+
_offsets = self._raw_offset.clone()
46+
for i in range(1, self._raw_offset.shape[0]):
47+
# print(joints.shape)
48+
_offsets[i] = torch.norm(joints[i] - joints[self._parents[i]], p=2, dim=0) * _offsets[i]
49+
50+
self._offset = _offsets.detach()
51+
return _offsets
52+
53+
# face_joint_idx should follow the order of right hip, left hip, right shoulder, left shoulder
54+
# joints (batch_size, joints_num, 3)
55+
def inverse_kinematics_np(self, joints, face_joint_idx, smooth_forward=False):
56+
assert len(face_joint_idx) == 4
57+
'''Get Forward Direction'''
58+
l_hip, r_hip, sdr_r, sdr_l = face_joint_idx
59+
across1 = joints[:, r_hip] - joints[:, l_hip]
60+
across2 = joints[:, sdr_r] - joints[:, sdr_l]
61+
across = across1 + across2
62+
across = across / np.sqrt((across**2).sum(axis=-1))[:, np.newaxis]
63+
# print(across1.shape, across2.shape)
64+
65+
# forward (batch_size, 3)
66+
forward = np.cross(np.array([[0, 1, 0]]), across, axis=-1)
67+
if smooth_forward:
68+
forward = filters.gaussian_filter1d(forward, 20, axis=0, mode='nearest')
69+
# forward (batch_size, 3)
70+
forward = forward / np.sqrt((forward**2).sum(axis=-1))[..., np.newaxis]
71+
72+
'''Get Root Rotation'''
73+
target = np.array([[0,0,1]]).repeat(len(forward), axis=0)
74+
root_quat = qbetween_np(forward, target)
75+
76+
'''Inverse Kinematics'''
77+
# quat_params (batch_size, joints_num, 4)
78+
# print(joints.shape[:-1])
79+
quat_params = np.zeros(joints.shape[:-1] + (4,))
80+
# print(quat_params.shape)
81+
root_quat[0] = np.array([[1.0, 0.0, 0.0, 0.0]])
82+
quat_params[:, 0] = root_quat
83+
# quat_params[0, 0] = np.array([[1.0, 0.0, 0.0, 0.0]])
84+
for chain in self._kinematic_tree:
85+
R = root_quat
86+
for j in range(len(chain) - 1):
87+
# (batch, 3)
88+
u = self._raw_offset_np[chain[j+1]][np.newaxis,...].repeat(len(joints), axis=0)
89+
# print(u.shape)
90+
# (batch, 3)
91+
v = joints[:, chain[j+1]] - joints[:, chain[j]]
92+
v = v / np.sqrt((v**2).sum(axis=-1))[:, np.newaxis]
93+
# print(u.shape, v.shape)
94+
rot_u_v = qbetween_np(u, v)
95+
96+
R_loc = qmul_np(qinv_np(R), rot_u_v)
97+
98+
quat_params[:,chain[j + 1], :] = R_loc
99+
R = qmul_np(R, R_loc)
100+
101+
return quat_params
102+
103+
# Be sure root joint is at the beginning of kinematic chains
104+
def forward_kinematics(self, quat_params, root_pos, skel_joints=None, do_root_R=True):
105+
# quat_params (batch_size, joints_num, 4)
106+
# joints (batch_size, joints_num, 3)
107+
# root_pos (batch_size, 3)
108+
if skel_joints is not None:
109+
offsets = self.get_offsets_joints_batch(skel_joints)
110+
if len(self._offset.shape) == 2:
111+
offsets = self._offset.expand(quat_params.shape[0], -1, -1)
112+
joints = torch.zeros(quat_params.shape[:-1] + (3,)).to(self.device)
113+
joints[:, 0] = root_pos
114+
for chain in self._kinematic_tree:
115+
if do_root_R:
116+
R = quat_params[:, 0]
117+
else:
118+
R = torch.tensor([[1.0, 0.0, 0.0, 0.0]]).expand(len(quat_params), -1).detach().to(self.device)
119+
for i in range(1, len(chain)):
120+
R = qmul(R, quat_params[:, chain[i]])
121+
offset_vec = offsets[:, chain[i]]
122+
joints[:, chain[i]] = qrot(R, offset_vec) + joints[:, chain[i-1]]
123+
return joints
124+
125+
# Be sure root joint is at the beginning of kinematic chains
126+
def forward_kinematics_np(self, quat_params, root_pos, skel_joints=None, do_root_R=True):
127+
# quat_params (batch_size, joints_num, 4)
128+
# joints (batch_size, joints_num, 3)
129+
# root_pos (batch_size, 3)
130+
if skel_joints is not None:
131+
skel_joints = torch.from_numpy(skel_joints)
132+
offsets = self.get_offsets_joints_batch(skel_joints)
133+
if len(self._offset.shape) == 2:
134+
offsets = self._offset.expand(quat_params.shape[0], -1, -1)
135+
offsets = offsets.numpy()
136+
joints = np.zeros(quat_params.shape[:-1] + (3,))
137+
joints[:, 0] = root_pos
138+
for chain in self._kinematic_tree:
139+
if do_root_R:
140+
R = quat_params[:, 0]
141+
else:
142+
R = np.array([[1.0, 0.0, 0.0, 0.0]]).repeat(len(quat_params), axis=0)
143+
for i in range(1, len(chain)):
144+
R = qmul_np(R, quat_params[:, chain[i]])
145+
offset_vec = offsets[:, chain[i]]
146+
joints[:, chain[i]] = qrot_np(R, offset_vec) + joints[:, chain[i - 1]]
147+
return joints
148+
149+
def forward_kinematics_cont6d_np(self, cont6d_params, root_pos, skel_joints=None, do_root_R=True):
150+
# cont6d_params (batch_size, joints_num, 6)
151+
# joints (batch_size, joints_num, 3)
152+
# root_pos (batch_size, 3)
153+
if skel_joints is not None:
154+
skel_joints = torch.from_numpy(skel_joints)
155+
offsets = self.get_offsets_joints_batch(skel_joints)
156+
if len(self._offset.shape) == 2:
157+
offsets = self._offset.expand(cont6d_params.shape[0], -1, -1)
158+
offsets = offsets.numpy()
159+
joints = np.zeros(cont6d_params.shape[:-1] + (3,))
160+
joints[:, 0] = root_pos
161+
for chain in self._kinematic_tree:
162+
if do_root_R:
163+
matR = cont6d_to_matrix_np(cont6d_params[:, 0])
164+
else:
165+
matR = np.eye(3)[np.newaxis, :].repeat(len(cont6d_params), axis=0)
166+
for i in range(1, len(chain)):
167+
matR = np.matmul(matR, cont6d_to_matrix_np(cont6d_params[:, chain[i]]))
168+
offset_vec = offsets[:, chain[i]][..., np.newaxis]
169+
# print(matR.shape, offset_vec.shape)
170+
joints[:, chain[i]] = np.matmul(matR, offset_vec).squeeze(-1) + joints[:, chain[i-1]]
171+
return joints
172+
173+
def forward_kinematics_cont6d(self, cont6d_params, root_pos, skel_joints=None, do_root_R=True):
174+
# cont6d_params (batch_size, joints_num, 6)
175+
# joints (batch_size, joints_num, 3)
176+
# root_pos (batch_size, 3)
177+
if skel_joints is not None:
178+
# skel_joints = torch.from_numpy(skel_joints)
179+
offsets = self.get_offsets_joints_batch(skel_joints)
180+
if len(self._offset.shape) == 2:
181+
offsets = self._offset.expand(cont6d_params.shape[0], -1, -1)
182+
joints = torch.zeros(cont6d_params.shape[:-1] + (3,)).to(cont6d_params.device)
183+
joints[..., 0, :] = root_pos
184+
for chain in self._kinematic_tree:
185+
if do_root_R:
186+
matR = cont6d_to_matrix(cont6d_params[:, 0])
187+
else:
188+
matR = torch.eye(3).expand((len(cont6d_params), -1, -1)).detach().to(cont6d_params.device)
189+
for i in range(1, len(chain)):
190+
matR = torch.matmul(matR, cont6d_to_matrix(cont6d_params[:, chain[i]]))
191+
offset_vec = offsets[:, chain[i]].unsqueeze(-1)
192+
# print(matR.shape, offset_vec.shape)
193+
joints[:, chain[i]] = torch.matmul(matR, offset_vec).squeeze(-1) + joints[:, chain[i-1]]
194+
return joints
195+
196+
197+
198+
199+

data/__init__.py

Whitespace-only changes.

0 commit comments

Comments
 (0)