-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_2d.py
257 lines (220 loc) · 11.7 KB
/
train_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torch
import torch.nn as nn
import time
from loss import control_obj, bsde_penalty, hjb_penalty, terminal_penalty
import os
from utils import count_parameters, makedirs, get_logger
import datetime
import pandas as pd
import numpy as np
import matplotlib
try:
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
except:
matplotlib.use('Agg') # for linux server with no tkinter
import matplotlib.pyplot as plt
import argparse
parser = argparse.ArgumentParser('Optimal Control')
parser.add_argument('--prob', choices=['Trajectory', 'Trajectory2'], type=str, default='Trajectory2')
parser.add_argument('--sampler', choices=['PMPSampler'], type=str, default='PMPSampler')
parser.add_argument('--net', choices=['ResNN', 'ResNet_OTflow', 'ResNet_hessquik'], type=str, default='ResNet_hessquik')
parser.add_argument("--nt_train" , type=int, default=20, help="number of time steps for training")
parser.add_argument("--n_train" , type=int, default=64, help="number of training examples")
parser.add_argument("--n_val" , type=int, default=128, help="number of validation examples")
parser.add_argument("--n_plot" , type=int, default=10, help="number of plot examples")
parser.add_argument("--nt_val", type=int, default=40, help="number of time steps for validation")
parser.add_argument('--beta' , type=str, default='1.0, 1.0, 1.0, 0.0, 1.0, 0.0') # BSDE penalty, Terminal, grad terminal, HJB, J, Phi(0)-J; Note: Terminal already has a weight of 100
parser.add_argument('--m' , type=int, default=32, help="NN width")
parser.add_argument('--save' , type=str, default='experiments/oc/run', help="define the save directory")
parser.add_argument('--gpu' , type=int, default=0, help="send to specific gpu")
parser.add_argument('--prec' , type=str, default='single', choices=['single','double'], help="single or double precision")
parser.add_argument('--track_z' , type=str, choices=['False', 'True'], default='False', help="to track gradients for state")
parser.add_argument('--resume' , type=str, default=None, help="for loading a pretrained model")
parser.add_argument('--n_iters', type=int, default=2000)
parser.add_argument('--lr' , type=float, default=0.01)
parser.add_argument('--optim' , type=str, default='adam', choices=['adam'])
parser.add_argument('--weight_decay', type=float, default=0.0)
parser.add_argument('--lr_freq' , type=int , default=1500, help="how often to decrease lr")
parser.add_argument('--lr_decay', type=float, default=0.1, help="how much to decrease lr")
parser.add_argument('--val_freq', type=int, default=25, help="how often to run model on validation set")
parser.add_argument('--viz_freq', type=int, default=100, help="how often to plot visuals") # must be >= val_freq
parser.add_argument('--print_freq', type=int, default=50, help="how often to print results to log")
parser.add_argument('--sample_freq',type=int, default=1, help="how often to resample training data")
args = parser.parse_args()
beta = [float(item) for item in args.beta.split(',')]
sStartTime = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
# logger
logger = {}
makedirs(args.save)
logger = get_logger(logpath=os.path.join(args.save, 'logs'), filepath=os.path.abspath(__file__), saving = True)
logger.info("start time: " + sStartTime)
logger.info(args)
if __name__ == '__main__':
if args.resume is not None:
logger.info(' ')
logger.info("loading model: {:}".format(args.resume))
logger.info(' ')
checkpt = torch.load(args.resume, map_location=lambda storage, loc: storage)
args.m = checkpt['args'].m
args.nTh = checkpt['args'].nTh
# set precision and device
if args.prec == 'double':
argPrec = torch.float64
else:
argPrec = torch.float32
torch.set_default_dtype(argPrec)
device = torch.device('cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu')
if args.prob == 'Trajectory':
from TrajectoryProblem import TrajectoryProblem
prob = TrajectoryProblem()
elif args.prob == 'Trajectory2' and args.net == 'ResNet_hessquik':
from TrajectoryProblem import TrajectoryProblem2
prob = TrajectoryProblem2()
else:
raise ValueError("Invalid combination of problem and network.")
if args.net == "ResNet_OTflow":
from Phi_OTflow import Phi_OTflow
Phi = Phi_OTflow(2, args.m, prob.d)
elif args.net == "ResNet_hessquik":
import hessQuik.activations as act
import hessQuik.layers as lay
import hessQuik.networks as net
from Phi_hessQuik import Phi_hessQuik
net = net.NN(
lay.singleLayer(prob.d + 1, args.m, act.tanhActivation()),
lay.resnetLayer(args.m, 1.0, act.tanhActivation()),
lay.singleLayer(args.m, 1, act.identityActivation())
)
Phi = Phi_hessQuik(net)
elif args.net == "ResNN":
from Phi import PhiNN
from networks import ResNN
net = nn.Sequential(
ResNN(prob.d, args.m, 2),
nn.Linear(args.m, 1))
Phi = PhiNN(net)
if args.resume is not None:
Phi.net.load_state_dict(checkpt["state_dict"])
Phi.net = Phi.net.to(argPrec).to(device)
if args.net == 'ResNet_OTflow':
Phi.w.load_state_dict(checkpt["w"]); Phi.w = Phi.w.to(argPrec).to(device)
Phi.c.load_state_dict(checkpt["c"]); Phi.c = Phi.c.to(argPrec).to(device)
Phi.A = checkpt["A"]; Phi.A = Phi.A.to(argPrec).to(device)
from fsde import PMPSampler
sampler = PMPSampler(Phi, prob, prob.t,prob.T,args.nt_train)
sampler_val = PMPSampler(Phi,prob,prob.t,prob.T,args.nt_val)
lr = args.lr
optim = torch.optim.Adam(Phi.parameters(), lr=lr, weight_decay=args.weight_decay)
strTitle = prob.__class__.__name__ + '_' + Phi._get_name() + '_' + sampler._get_name() + '_track-z_' + args.track_z + '_betas_{:}_{:}_{:}_{:}_{:}_{:}_m{:}_'.format(
int(beta[0]), int(beta[1]), int(beta[2]),int(beta[3]), int(beta[4]), int(beta[5]), args.m) + sStartTime # add a flag before start time for tracking
logger.info("---------------------- Network ----------------------------")
logger.info(Phi.net)
logger.info("----------------------- Problem ---------------------------")
logger.info(prob)
logger.info("------------------------ Sampler (train) --------------------------")
logger.info(sampler)
logger.info("------------------------ Sampler (validation) --------------------------")
logger.info(sampler)
logger.info("--------------------------------------------------")
logger.info("beta={:}".format(args.beta))
logger.info("Number of trainable parameters: {}".format(count_parameters(Phi.net)))
logger.info("--------------------------------------------------")
logger.info(str(optim)) # optimizer info
logger.info("dtype={:} device={:}".format(argPrec, device))
logger.info("n_train={:} n_val={:} n_plot={:}".format(args.n_train, args.n_val, args.n_plot))
logger.info("maxIters={:} val_freq={:} viz_freq={:}".format(args.n_iters, args.val_freq, args.viz_freq))
logger.info("saveLocation = {:}".format(args.save))
logger.info(strTitle)
logger.info("--------------------------------------------------\n")
columns = ["step","loss","Phi0","L","G","cHJB","cBSDE","cPhi","cBSDEfin","cBSDEgrad","lr"]
logger.info(columns)
train_hist = pd.DataFrame(columns=columns)
val_hist = pd.DataFrame(columns=columns)
xp = prob.x_init(10)
s,z,dw,Phiz,gradPhiz = sampler(xp)
fig = plt.figure()
ax = plt.gca()
figPath = args.save + '/figures/'
if not os.path.exists(os.path.dirname(figPath)):
os.makedirs(os.path.dirname(figPath))
prob.render(s,z,dw,Phi,os.path.join(figPath, '%s_iter_%s.png' % (strTitle, 'pre-training')))
best_loss = float('inf')
bestParams = None
Phi.net.train()
xv = prob.x_init(args.n_val)
xp = prob.x_init(args.n_plot)
makedirs(args.save)
start_time = time.time()
for itr in range(args.n_iters - 1):
if itr==0 or itr % args.sample_freq == 0:
x = prob.x_init(args.n_train)
optim.zero_grad()
s, z, dw, Phiz, gradPhiz = sampler(x)
if args.track_z == 'False':
optim.zero_grad()
# (Phiz, gradPhiz) = (None,None)
J, L, G = control_obj(Phi, prob, s, z, gradPhiz)
term_Phi, term_gradPhi = terminal_penalty(Phi, prob, s, z, dw, Phiz, gradPhiz)
cBSDE = bsde_penalty(Phi, prob, s, z, dw, Phiz, gradPhiz)
cHJB = hjb_penalty(Phi, prob, s, z, dw, Phiz, gradPhiz)
Phi0 = Phi(s[0],x)
cPhi = torch.mean(torch.abs(Phi0-J))
loss = beta[0]*cBSDE + beta[1]*term_Phi + beta[2]*term_gradPhi + beta[3] * cHJB + beta[4]*J + beta[5] * cPhi
loss.backward()
optim.step()
train_hist.loc[len(train_hist.index)] = [itr,loss.item(),torch.mean(Phi0).item(),L.item(),G.item(),cHJB.item(),cBSDE.item(),cPhi.item(),term_Phi.item(),term_gradPhi.item(),lr]
# printing
if itr % args.print_freq == 0:
ch = train_hist.iloc[-1:]
if itr >0:
ch.columns=11*['']
ch.index.name=None
log_message = (ch.to_string().split("\n"))[1]
else:
log_message = ch
logger.info(log_message)
if itr % args.val_freq == 0 or itr == args.n_iters:
s, z, dw, Phiz, gradPhiz = sampler(x)
J, L, G = control_obj(Phi, prob, s, z, gradPhiz)
term_Phi, term_gradPhi = terminal_penalty(Phi, prob, s, z, dw, Phiz, gradPhiz)
cBSDE = bsde_penalty(Phi, prob, s, z, dw, Phiz, gradPhiz)
cHJB = hjb_penalty(Phi, prob, s, z, dw, Phiz, gradPhiz)
Phi0 = Phi(s[0], x)
cPhi = torch.mean(torch.abs(Phi0 - J))
test_loss = beta[0] * cBSDE + beta[1] * term_Phi + beta[2] * term_gradPhi + beta[3] * cHJB + beta[4] * J + beta[5] * cPhi
val_hist.loc[len(val_hist.index)] = [itr,test_loss.item(), torch.mean(Phi0).item(), L.item(),
G.item(), cHJB.item(), cBSDE.item(), cPhi.item(),
term_Phi.item(), term_gradPhi.item(),lr]
if test_loss.item() < best_loss:
best_loss = test_loss.item()
makedirs(args.save)
bestParams = Phi.net.state_dict()
if args.net == 'ResNet_OTflow':
torch.save({
'args': args,
'A': Phi.A,
'w': Phi.w.state_dict(),
'c': Phi.c.state_dict(),
'state_dict': bestParams,
}, os.path.join(args.save, strTitle + '_checkpt.pth'))
else:
torch.save({
'args': args,
'state_dict': bestParams,
}, os.path.join(args.save, strTitle + '_checkpt.pth'))
print('save new best model')
# shrink step size
if (itr + 1) % args.lr_freq == 0:
lr *= args.lr_decay
for p in optim.param_groups:
p['lr'] *= lr
if itr % args.viz_freq == 0:
s, z, dw, Phiz, gradPhiz = sampler(xp)
fig = plt.figure(figsize=plt.figaspect(1.0))
fig.suptitle('iteration=%d' % (itr))
prob.render(s, z, dw, Phi, os.path.join(figPath, '%s_iter_%d.png' % (strTitle, itr)))
elapsed = time.time() - start_time
print('Training time: %.2f secs' % (elapsed))
train_hist.to_csv(os.path.join(args.save, '%s_train_hist.csv' % (strTitle )))
val_hist.to_csv(os.path.join(args.save, '%s_val_hist.csv' % (strTitle )))