Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update Makefile.2 #1

Merged
merged 38 commits into from
Apr 26, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
38 commits
Select commit Hold shift + click to select a range
3dd61b8
Update Makefile.2
Emad-Rezaei Apr 14, 2022
f833ba0
Update Makefile.header
Emad-Rezaei Apr 14, 2022
6c48d03
Update readwrite.F90
Emad-Rezaei Apr 15, 2022
b9b37d5
Update postw90_common.F90
Emad-Rezaei Apr 15, 2022
56e529b
Update postw90.F90
Emad-Rezaei Apr 15, 2022
9526b11
Update postw90_readwrite.F90
Emad-Rezaei Apr 15, 2022
7d812ed
Update postw90_types.F90
Emad-Rezaei Apr 15, 2022
2ba6112
Update wan_ham.F90
Emad-Rezaei Apr 15, 2022
86abce8
Add files via upload
Emad-Rezaei Apr 15, 2022
fa00998
Update CHANGELOG.md
Emad-Rezaei Apr 15, 2022
6321981
Update user_guide.tex
Emad-Rezaei Apr 21, 2022
a123c43
Create nerwann.tex
Emad-Rezaei Apr 21, 2022
e353355
Update postw90params.tex
Emad-Rezaei Apr 21, 2022
2db7e3f
Update tutorial.tex
Emad-Rezaei Apr 21, 2022
659014d
Add files via upload
Emad-Rezaei Apr 22, 2022
8eb7330
Update nerwann.F90
Emad-Rezaei Apr 22, 2022
d77ae7c
Add files via upload
Emad-Rezaei Apr 22, 2022
949140c
Update nerwann.tex
Emad-Rezaei Apr 22, 2022
307f00b
Update tutorial.tex
Emad-Rezaei Apr 22, 2022
6ec7ff9
Update tutorial.tex
Emad-Rezaei Apr 22, 2022
f438689
Update postw90params.tex
Emad-Rezaei Apr 23, 2022
25c63dd
Add files via upload
Emad-Rezaei Apr 23, 2022
13e8ab6
Add files via upload
Emad-Rezaei Apr 23, 2022
4c0e5b4
Add files via upload
Emad-Rezaei Apr 23, 2022
4030211
Add files via upload
Emad-Rezaei Apr 23, 2022
3b3b8d7
Add files via upload
Emad-Rezaei Apr 23, 2022
fce0f60
Add files via upload
Emad-Rezaei Apr 23, 2022
c7c1b58
Add files via upload
Emad-Rezaei Apr 23, 2022
c8ca831
Add files via upload
Emad-Rezaei Apr 23, 2022
b3b4db1
Update ZnSe.win
Emad-Rezaei Apr 23, 2022
108cd77
Update tutorial.tex
Emad-Rezaei Apr 23, 2022
ef79238
Update nerwann.tex
Emad-Rezaei Apr 23, 2022
f3c1fa6
Add files via upload
Emad-Rezaei Apr 26, 2022
1ddead3
Add files via upload
Emad-Rezaei Apr 26, 2022
393cc82
Add files via upload
Emad-Rezaei Apr 26, 2022
e71fc44
Add files via upload
Emad-Rezaei Apr 26, 2022
fc351e8
Add files via upload
Emad-Rezaei Apr 26, 2022
ba96787
Add files via upload
Emad-Rezaei Apr 26, 2022
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@

### New features

- Calculation of the isothermal Nernst, isothermal Hall, and ettingshausen coefficients explained in malism given in S.Emad Rezaei, Mona Zebarjadi,and Keivan Esfarjani, COMMAT_111412, 214402 (2022) + examples 34
-
- Calculation of spin Hall conductivity according to the formalism given in Junfeng Qiao, Jiaqi Zhou, Zhe Yuan and Weisheng Zhao, PRB 98, 214402 (2018) + examples 29 and 30 and tests [[#264]](https://github.com/wannier-developers/wannier90/pull/264)

- Implementation of the SCDM method in Wannier90 for spinor wavefunctions and added example31 for the tutorial [[#277]](https://github.com/wannier-developers/wannier90/pull/277)
Expand Down
56 changes: 56 additions & 0 deletions doc/tutorial/tutorial.tex
Original file line number Diff line number Diff line change
Expand Up @@ -3795,7 +3795,63 @@ \subsection*{Expansion coefficients}

\end{itemize}

\sectiontitle{34: ZnSe -- Nernst effect}
\begin{itemize}
\item{Outline: \it{Achieve MLWFs for the valence and low-lying
conduction bands of ZnSe. Compute the isothermal Nernst, isothermal Hall, and Ettingshausen coefficients within the constant relaxation time approximation the \nw\ module.}}
\end{itemize}
\begin{itemize}
\item{Directory: {\tt examples/example34}}
\item{Input Files}
\begin{itemize}
\item{ {\tt ZnSe.scf} {\it The \pwscf\ input file for ground state
calculation}}
\item{ {\tt ZnSe.nscf} {\it The \pwscf\ input file to achieve Bloch
states for the conduction states}}
\item{ {\tt ZnSe.pw2wan} {\it Input file for {\tt pw2wannier90}}}
\item{ {\tt ZnSe.win} {\it The {\tt wannier90} input file}}
\end{itemize}
\end{itemize}


\begin{enumerate}
\item Run \pwscf\ to achieve the ground bands of ZnSe\\
{\tt pw.x < ZnSe.scf > scf.out}

\item Run \pwscf\ to achieve the Bloch states on a uniform k-point
grid.\\
{\tt pw.x < ZnSe.nscf > nscf.out}

\item Run \wannier\ to generate a list of the required overlaps (written
into the {\tt ZnSe.nnkp} file).\\
{\tt wannier90.x -pp ZnSe}

\item Run {\tt pw2wannier90} to obtain the overlap between Bloch
states and the projections for the starting guess (written in the
{\tt ZnSe.mmn} and {\tt ZnSe.amn} files).\\
{\tt pw2wannier90.x < ZnSe.pw2wan > pw2wan.out}

\item Run \wannier\ to compute the MLWFs.\\
{\tt wannier90.x ZnSe}


\item Run \postw\ to calculate thermomagnetic responses.\\
{\tt postw90.x ZnSe} (serial execution) \\
{\tt mpirun -np 8 postw90.x ZnSe} (parallel execution)
\end{enumerate}

The output file {\tt ZnSe.wpout} shows the details of the calculation. Ensure that there are no errors and no unwanted flags are passed to \nw . A constant relaxation time of $\tau=10$~fs is assumed as an arbitrary value and in reality thermomagnetic coefficients depend on the relaxation time value. You can plot the isothermal Hall conductivity ({\tt ZnSe\_Hall_T.dat}), isothermal Nernst coefficient ({\tt ZnSe\_Nernst_T.dat}), and Ettingshausen coefficient ({\tt ZnSe\_Etn.dat}).

Please keep in mind that this is only a representative example and the results have to converge with respect to interpolation mesh which often requires a reasonably fine mesh.

\subsection*{Further ideas}

\begin{itemize}
\item Change the interpolation to a $60\times 60\times 60$ mesh and run again \postw\ to check if the results for thermomagnetic responses converge. Please note that it might take long depending on your machine.

\item You might want to plot the Nernst coefficient versus carrier concentration, also change the temperature and see how the Nernst coefficient behaves.

\end{itemize}
%\cleardoublepage

\bibliographystyle{apsrev4-1}
Expand Down
114 changes: 114 additions & 0 deletions doc/user_guide/nerwann.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
%!TEX root=./user_guide.tex
\chapter{Thermomagnetic calculations with the \bw\ module} \textbf{nerwann}.

The flag $\verb#nerwann#=\verb#TRUE#$ will prompt the computation of the isothermal Nernst, isothermal Hall, and Ettingshausen coefficients by solving the Boltzmann transport equation in the presence of a magnetic field within the constant time relaxation approximation. Each quantity is defined in the following section\ref{nerwann-theory}

The parameters of the nerwann module are described in the documentation as well as an example of computing thermomagnetic properties of GaAs in the Tutorial.

Thermomagnetic responses largely depend on the magnitude of magnetic field which needs to be specified by the user via the \textbf{bext} flag in the input file.


citing the following paper would be greatly appreciated when publishing data attained using the nerwann module:
\begin{quote}
S.E. Rezaei, M. Zebarjadi, and K. Esfarjani, \\
\emph{Calculation of thermomagnetic properties using first-principles density functional theory}, Comput. Mater. Sci. 210, 111412 (2022), DOI:10.1016/j.commatsci.2022.111412.
\end{quote}

%Reference: [Comput. Mater. Sci paper]
\section{Theory}
\label{nerwann-theory}
In response to external fields, at a point $k$ in the reciprocal space, the distribution function $f_{k}$ deviates from the equilibrium distribution function $f_{k}^{0}$ as $f_{k}\textbf{=}f_{k}^{0}+f_{k}^{1}$. Moreover, the presence of a magnetic field causes a force acting on a particle described by Lorentz force $q\nu\times H$, and subsequently, the BTE will be modified as follows~\cite{smith1967electronic}:
\begin{equation}
\frac{q}{\hbar}\nu\times H\cdot \nabla _{k} f_{k}^{1}+\nu \cdot [q\varepsilon + T\nabla (\frac{E_{k}-\mu}{T})]\frac{\partial f_{k}^{0}}{\partial E_{k}}\textbf{=}- \frac{f_{k}^{1}}{\tau}
\label{eq1}
\end{equation}
Where q is the electron charge, $\hbar$ is the Planck constant, T is the temperature, $\varepsilon$ is the electric field, $E_{k}$ is the band energy and $\mu$ is the chemical potential. Eq.~\ref{eq1} can be abbreviated by introducing a generalized force, $F$, and a band operator, $\Omega$ defined as follows:
\begin{equation}
\begin{split}
%&F\textbf{=}-\nabla \mu +(E_{k}-\mu)T\nabla (\frac{1}{T}) \\
&F\textbf{=}-\nabla \mu -\frac{(E_{k}-\mu)}{T}\nabla T) \\
&\Omega\textbf{=}\frac{q}{\hbar}\nu\times H\cdot\nabla _{k}\textbf{=}\frac{q}{\hbar}\nu _{j}H_{k}\epsilon _{ijk}(\frac{\partial}{\partial k_{i}})
\end{split}
\label{eq2}
\end{equation}
Inserting ~\ref{eq2} in ~\ref{eq1} results in an equation for $f_{k}^{1}$:
\begin{equation}
f_{k}^{1}\textbf{=}(1+\tau \Omega)^{-1}\tau \nu \cdot F(-\frac{\partial f_{k}^{0}}{\partial E_{k}})
\label{eq3}
\end{equation}
When $\tau \Omega$ is small, at small magnetic fields, the term $(1+\tau \Omega)^{-1}$ can be expanded according to the Jones-Zener expansion~\cite{jones-zener}:
\begin{equation}
(1+\tau \Omega)^{-1}\textbf{=}1-\tau \Omega +(\tau \Omega)^{2}-\dots
\label{eq4}
\end{equation}
For the Nernst effect the first two terms (1-$\tau \Omega$) are needed to achieve a response linear in $H$, and higher order terms are neglected, thus, the transport distribution function (Eq.~\ref{eq3}) is modified as:
\begin{equation}
f_{k}^{1}\textbf{=}-F_{i}\frac{\partial f_{k}^{0}}{\partial E_{k}}\tau [1-\tau \Omega]\nu _{j}
\label{eq5}
\end{equation}
The physical constants (G) and transport coefficients($(ij)_{H}$) are defined as comprehensive tensors.
\begin{equation}
\begin{split}
G\textbf{=}\begin{pmatrix}
q^2 \\
\frac{q}{T}(E-\mu) \\
q(E-\mu) \\
\frac{(E-\mu)^2}{T} \\
\end{pmatrix} \\
(ij)_{H}\textbf{=}\begin{pmatrix}
\sigma_{ij}(H) \\
B_{ij}(H) \\
\rho _{ij}(H) \\
\kappa _{ij} (H) \\
\end{pmatrix}
\label{eqmtrx}
\end{split}
\end{equation}
The transport distribution function ($\Xi ^H$) for thermomagnetic effect relates the $(ij)_H$ and G tensors as below:
\begin{equation}
%\fontsize{8}{11}\selectfont
\begin{split}
&(ij)_H\textbf{=}\int G \, \Xi_{ij}^H (E)\left(-\frac{\partial f(E,\mu,T)}{\partial E}\right) dE \\
&\Xi_{ij}^H(E)\textbf{=}\frac{1}{VN_k}\sum_{n,k}\nu_{i,nk}\tau_{nk}[\nu_{j,nk}-\Omega\,\tau_{nk}\,\nu_{j,nk}]\,\delta(E-E_{k})
\label{eq6}
\end{split}
\end{equation}
Table.~\ref{TMco} summarizes the definition of each thermomagnetic response function along with their corresponding boundary conditions.
\begin{table}
\caption{Isothermal Nernst (N$_{T}$), Isothermal Hall (H$_{T}$), and Ettinghausen ($\eta$) coefficients in Adiabatic (A) and Isothermal (T) conditions. $\alpha$,$\rho$,$\kappa$, and $\pi$ are the Seebeck coefficient, electrical resistivity, thermal conductivity and Peltier coefficient, respectively.}
\centering
\noindent
\begin{tabular}{lccc} %crrrr}
\hline
\hline
\textbf{Coefficient} &\textbf{Measure} &\textbf{Boundary Conditions} & \textbf{Equation} \\
\hline
\hline
$N_{T}$ & $\frac{\varepsilon_y}{\partial_x T}$ & J=0, $ \partial_yT\textbf{=}0$ & $\alpha_{yx}(H)$ \\
$H_{T}$ & $\frac{\varepsilon_y}{J_x }$ & J=J$_x, \nabla T\textbf{=}0$ & $\rho _{yx}(H)$ \\
$\eta$ & $\frac{\partial_yT}{J_x}$ & J=J$_x$, $Q_y\textbf{=}0$ $\partial_xT\textbf{=}0$ & $\frac{\pi_{yx}(H)}{\kappa_{yy}(H)}$\\
\hline
\hline
\end{tabular}
\label{TMco}
\end{table}

\section{Files}

\subsection{{\tt seedname\_tdftotz.dat}}
OUTPUT. This file contains the total Transport Distribution Function (TDF) tensor ($\Xi_{ijz}^H(E)$). The first few lines are descriptions that are commented. The first column is energy in eV unit, followed by nine components of the total Transport Distribution Function. When spin decomposition is needed, 12 more columns will be added for spin up and down contributions. It is noteworthy to add that the total Transport Distribution Function is printed out in the SI units of $m^2C^3/S^3$.

\subsection{{\tt seedname\_Hall_T.dat}}
OUTPUT. This file contains the isothermal Hall conductivity on the grid of temperature and chemical points.

The first few lines are descriptions that are commented. The first and second columns are chemical potential in eV unit, and temperature in Kelvin, respectively. The last column is the isothermal Hall conductivity in units of $m^3/C$.

\subsection{{\tt seedname\_Nernst_T.dat}}
OUTPUT. This file contains the isothermal Nernst coefficient on the grid of temperature and chemical points.

The format of results is explained in the first lines which are commented. The first two columns are chemical potential in eV unit, and temperature in Kelvin, respectively. The last column is the isothermal Nernst coefficient in units of $V/K$.

\subsection{{\tt seedname\_Etn.dat}}
OUTPUT. This file contains the Ettingshausen coefficient on the grid of temperature and chemical points.

The first few commented lines are descriptions. The first column is chemical potential in eV and the second columns is temperature in Kelvin. The third column is the Ettingshausen coefficient in $m.K/Amp$ units.
137 changes: 134 additions & 3 deletions doc/user_guide/postw90params.tex
Original file line number Diff line number Diff line change
Expand Up @@ -102,6 +102,8 @@ \section{List of available modules}
properties for bulk materials using the semiclassical Boltzmann
transport equation (see Chap.~\ref{ch:boltzwann} and example 16 of
the tutorial).
\item \texttt{NerWann}: Calculation of thermomagnetic properties for bulk materials using the semiclassical Boltzmann transport equation in the presence of a magnetic field (see Chap.~\ref{ch:nerwann} and example 33 of
the tutorial).
\item \texttt{geninterp} (Generic Band Interpolation): Calculation band energies (and band
derivatives) on a generic list of $k$ points (see Chap.~\ref{ch:geninterp}).
\end{itemize}
Expand Down Expand Up @@ -419,6 +421,45 @@ \section{Keyword List}
\end{center}
\end{table}

%nerwann table
\begin{table}[h!]
\begin{center}
\begin{tabular}{|c|c|p{6cm}|}
\hline
Keyword & Type & Description \\
& & \\
\hline\hline
\multicolumn{3}{|c|}{{\tt NerWann} Parameters} \\
\hline
{\sc nerwann} & L & Calculate thermomagnetic properties \\
{\sc [ner\_]kmesh} & I & Dimensions of the uniform interpolation
$k$-mesh (one or three integers)\\
{\sc [ner\_]kmesh\_spacing} & R & Minimum distance between $k$ points in \AA$^{-1}$\\
{\sc ner\_2d\_dir} & S & Non-periodic direction in 2D systems\\
{\sc ner\_mu\_min} & P & Minimum value of the chemical potential in eV\\
{\sc ner\_mu\_max} & P & Maximum value of the chemical potential in eV\\
{\sc ner\_mu\_step} & R & Step size of chemical potential in eV\\
{\sc ner\_temp\_min} & P & Minimum value of the temperature~$T$ in Kelvin \\
{\sc ner\_temp\_max} & P & Maximum value of the temperature~$T$ in Kelvin \\
{\sc ner\_temp\_step} & R & Step size of temperature in Kelvin \\
{\sc ner\_tdf\_energy\_step} & R & Energy step size for the total transport distribution (eV) \\
{\sc ner\_tdf\_smr\_type} & S & Smearing type for the total transport distribution \\
{\sc ner\_tdf\_smr\_fixed\_en\_width} & P & Smearing for the total transport distribution (eV) \\
{\sc ner\_bandshift} & L & shift of the conduction bands\\
{\sc ner\_bandshift\_firstband} & I & Index of the first band to be shifted\\
{\sc ner\_bandshift\_energyshift} & P & Energy shift of the conduction bands in eV\\
{\sc ner\_relax\_time} & P & Constant relaxation time in fs\\
{\sc ner_bext} & R & External magnetic field in T\\
\hline
\end{tabular}
\caption[Parameter file keywords controlling the \nw\ module.]
{{\tt seedname.win} file keywords controlling the \nw\ module (calculation of thermomagnetic properties in the Wannier basis). Argument types
are represented by, I for a integer, R for a real number, P for a
physical value, L for a logical value and S for a text string.}
\label{parameter_keywords_bw}
\end{center}
\end{table}

\begin{table}[h!]
\begin{center}
\begin{tabular}{|c|c|p{6cm}|}
Expand Down Expand Up @@ -573,9 +614,9 @@ \section{Global variables}
\subsection[spin\_decomp]{\tt logical :: spin\_decomp}
If {\tt true}, extra columns are added to some output files (such as
{\tt seedname-dos.dat} for the {\tt dos} module, and analogously for
the {\tt berry} and {\tt BoltzWann} modules).
the {\tt berry}, {\tt BoltzWann} modules, and {\tt NerWann} modules).

For the {\tt dos} and {\tt BoltzWann} modules, two further columns are
For the {\tt dos}, {\tt BoltzWann}, and {\tt NerWann} modules, two further columns are
generated, which contain the decomposition of the required property
(e.g., total or orbital-projected DOS) of a spinor calculation into
up-spin and down-spin parts (relative to the quantization axis defined
Expand Down Expand Up @@ -1749,7 +1790,97 @@ \section{BoltzWann}
The units are eV.
No default value; if {\tt boltz\_bandshift} is \verb#true#, this flag must be provided.

\clearpage
\section{NerWann}
\subsection[nerwann]{\tt logical :: nerwann}
Determines whether to compute the isothermal Hall conductivity, isothermal Nernst coefficient , and Ettingshausen coefficient.

The default value is \verb#false#.

\subsection[ner\_kmesh]{\tt integer :: ner\_kmesh(:)}
It specifies the interpolation $k$ mesh used to calculate the total transport distribution function.

\subsection[ner\_kmesh\_spacing]{\tt real(kind=dp) :: ner\_kmesh\_spacing}
Overrides the \verb#kmesh_spacing# global variable (see
Sec.~\ref{sec:postw90-globalflags}).

\subsection[ner\_2d\_dir]{\tt character(len=4) :: ner\_2d\_dir}
\label{sec:boltz2ddir}
It is the direction along which the system is non-periodic in 2D systems.

The default value is \texttt{no}.

\subsection[ner\_relax\_time]{\tt real(kind=dp) :: ner\_relax\_time}
The value of the constant relaxation time in fs to be used in the total transport distribution function.

The default value is 10~fs.

\subsection[ner\_mu\_min]{\tt real(kind=dp) :: ner\_mu\_min}
Minimum value of the chemical potential $\mu$ for which thermomagnetic properties are calculated.

The units are eV.
No default value.

\subsection[ner\_mu\_max]{\tt real(kind=dp) :: ner\_mu\_max}
Maximum value of the chemical potential $\mu$ for which thermomagnetic properties are calculated.

The units are eV.
No default value.

\subsection[ner\_mu\_step]{\tt real(kind=dp) :: ner\_mu\_step}
Energy step for the grid of chemical potentials from ner\_mu\_min to ner\_mu\_max in eV.

No default value.

\subsection[ner\_temp\_min]{\tt real(kind=dp) :: ner\_temp\_min}
Minimum value of temperature for which thermomagnetic properties are calculated.

The units are K and there is no default value.

\subsection[ner\_temp\_max]{\tt real(kind=dp) :: ner\_temp\_max}
Maximum value of temperature for which thermomagnetic properties are calculated.

The units are K and there is no default value.

\subsection[ner\_temp\_step]{\tt real(kind=dp) :: ner\_temp\_step}
Energy step for the grid of temperatures from ner\_temp\_min to ner\_temp\_max.

The units are K and there is no default value.

\subsection[ner\_tdf\_energy\_step]{\tt real(kind=dp) :: ner\_tdf\_energy\_step}
Energy step for the grid of energies in the total transport distribution function.

The units are eV and the default value is 0.001~eV.

\subsection[ner\_tdf\_smr\_type]{\tt character(len=120) :: ner\_tdf\_smr\_type}
The type of smearing function to be used for the total transport distribution function. The default value is the one given via the {\tt smr\_type} input flag (if defined).

\subsection[ner\_tdf\_smr\_fixed\_en\_width]{\tt real(kind=dp) :: ner\_tdf\_smr\_fixed\_en\_width}
Energy width for the smearing function in eV unit. For the total transport distribution function, a standard (non-adaptive) smearing scheme is used.

The default value is 0~eV. Note that if the width is smaller than twice the energy step {\tt ner\_tdf\_energy\_step}, the total transport distribution function will be unsmeared.


\subsection[ner\_bandshift]{\tt logical :: ner\_bandshift}
Shift all conduction bands by the value of {\tt ner\_bandshift\_energyshift}. Such a shift is applied after interpolation and the index of the first band to shift is required.


The default value is \verb#false#.

\subsection[ner\_bandshift\_firstband]{\tt integer :: ner\_bandshift\_firstband}
Index of the first conduction band to shift.

It means that this band and all the above bands all bands will be shifted by {\tt ner\_bandshift\_energyshift}. This

The units are eV and it has to be specified if {\tt ner\_bandshift} is \verb#true#.

\subsection[ner\_bandshift\_energyshift]{\tt real(kind=dp) :: ner\_bandshift\_energyshift}
Energy shift of the conduction bands in the unit of eV. It has to be provided if {\tt ner\_bandshift} is \verb#true#.

\subsection[ner_bext]{\tt real(kind=dp) :: ner_bext(3)}
The external magnetic field vector in units of Tesla for the calculation of thermomagnetic properties. The default value is (0.0,0.0,0.0)

\clearpage
\section{Generic Band Interpolation}
\subsection[boltzwann]{\tt logical :: geninterp}
Determines whether to enter the Generic Band Interpolation routines.
Expand All @@ -1770,4 +1901,4 @@ \section{Generic Band Interpolation}
See also the discussion in Sec.~\ref{sec:seedname.geninterp.dat} on
how to use this flag.

The default value is \verb#true#.
The default value is \verb#true#.
1 change: 1 addition & 0 deletions doc/user_guide/user_guide.tex
Original file line number Diff line number Diff line change
Expand Up @@ -109,6 +109,7 @@
\newcommand{\wannier}{\texttt{wannier90}}
\newcommand{\postw}{\texttt{postw90}}
\newcommand{\bw}{\texttt{BoltzWann}}
\newcommand{\nw}{\texttt{NerWann}}
\newcommand{\pwscf}{\textsc{pwscf}}
\newcommand{\QE}{\textsc{quantum-espresso}}
\newcommand{\Mkb}{\mathbf{M}^{(\mathbf{k},\mathbf{b})}}
Expand Down
Loading