forked from Huydatnguyen/LSDMLab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
question8.py
65 lines (48 loc) · 2.86 KB
/
question8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import sys
import random
from pyspark import SparkContext
import time
from definition import *
# Question 8____________________________________________________________start
# start timer
start = time.time()
# start spark with 1 worker thread
sc = SparkContext("local[1]")
sc.setLogLevel("ERROR")
# load all files from table and return an RDD[String]
task_events_RDD_combined = sc.textFile("./Task_events/*")
# transformation to a new RDD with spliting each line into an array of items
task_events_RDD_combined = task_events_RDD_combined.map(lambda x: x.split(','))
# transformation to a new RDD with each line is a pair of the priority and cpu request
# with removing elements having the empty value of cpu request
priority_CPU_RDD = task_events_RDD_combined.map(lambda x: (x[Task_events_table.PRIORITY],x[Task_events_table.CPU_REQUEST])).filter(lambda x: x[1] != '')
# countByKey() return a hashmap with the count of each key for CPU request
# after that convert to a dictionary
dict_CPU_countByPriority = dict(priority_CPU_RDD.countByKey())
# transformation to a new RDD with merging the values of CPU request for each key using reduce function
reduce_prio_CPU_RDD = priority_CPU_RDD.reduceByKey(lambda a,b: float(a)+float(b))
# and return as a dictionary
dict_priority_CPU = dict(reduce_prio_CPU_RDD.collect())
# iterate each element in dictionary of priority and CPU
for key in dict_priority_CPU:
if key != '':
print("CPU Average corresponds to prior: " , key ," is ", round(dict_priority_CPU[key]/dict_CPU_countByPriority[key],5))
# transformation to a new RDD with each line is a pair of the priority and memory request
# with removing elements having the empty value of memory request
priority_memory_RDD = task_events_RDD_combined.map(lambda x: (x[Task_events_table.PRIORITY],x[Task_events_table.MEMORY_REQUEST])).filter(lambda x: x[1] != '')
# countByKey() return a hashmap with the count of each key for MEMORY request
# after that convert to a dictionary
dict_memory_countByPriority = dict(priority_memory_RDD.countByKey())
# transformation to a new RDD with merging the values of MEMORY request for each key using reduce function
reduce_prio_memory_RDD = priority_memory_RDD.reduceByKey(lambda a,b: float(a)+float(b))
# and return as a dictionary
dict_priority_memory = dict(reduce_prio_memory_RDD.collect())
# iterate each element in dictionary of priority and MEMORY
for key in dict_priority_memory:
if key != '':
print("MEMORY Average corresponds to prior: " , key ," is ", round(dict_priority_memory[key]/dict_memory_countByPriority[key],5))
# end timer
end = time.time()
print("elapsed time: " , end-start)
# Question 8______________________________________________________________end
input("Press Enter to continnnue...")