-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Rel.v
312 lines (255 loc) · 5.79 KB
/
Rel.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
Require Export Logic.
Import Playground1.
Definition relation (X:Type) := X -> X -> Prop.
Definition partial_function {X:Type} (R: relation X) :=
forall x y1 y2 : X, R x y1 -> R x y2 -> y1 = y2.
Theorem next_nat_partial_function :
partial_function next_nat.
Proof.
unfold partial_function.
intros x y1 y2 P Q.
inversion P.
inversion Q.
reflexivity.
Qed.
Theorem le_not_a_partial_function :
~ (partial_function le).
Proof.
unfold not.
unfold partial_function.
intros H.
assert (O = S O) as Nonsense.
Case "Proof of assertion.".
apply H with O.
apply le_n.
apply le_S.
apply le_n.
inversion Nonsense.
Qed.
Theorem total_relation_not_partial_function :
~ (partial_function total_relation).
Proof.
unfold not.
unfold partial_function.
intros H.
assert (O = S O) as Nonsense.
apply H with O.
apply total_relation1.
apply total_relation1.
inversion Nonsense.
Qed.
Theorem empty_relation_not_partial_funcion :
partial_function empty_relation.
Proof.
unfold partial_function.
intros x y1 y2.
intros H.
inversion H.
Qed.
Definition reflexive {X:Type} (R: relation X) :=
forall a : X, R a a.
Theorem le_reflexive :
reflexive le.
Proof.
unfold reflexive.
intros n. apply le_n.
Qed.
Definition transitive {X:Type} (R: relation X) :=
forall a b c : X, (R a b) -> (R b c) -> (R a c).
Theorem le_trans:
transitive le.
Proof.
intros n m o Hnm Hmo.
induction Hmo.
Case "le_n". apply Hnm.
Case "le_S". apply le_S. apply IHHmo.
Qed.
Theorem lt_trans:
transitive lt.
Proof.
unfold lt. unfold transitive.
intros n m o Hnm Hmo.
apply le_S in Hnm.
apply le_trans with (a := (S n)) (b := (S m)) (c := o).
apply Hnm.
apply Hmo.
Qed.
Theorem lt_trans' :
transitive lt.
Proof.
unfold lt. unfold transitive.
intros n m o Hnm Hmo.
induction Hmo as [| m' Hm'o].
apply le_S.
apply Hnm.
apply le_S.
apply IHHm'o.
Qed.
Theorem le_Sn_le: forall n m, S n <= m -> n <= m.
Proof.
intros n m H. apply le_trans with (S n).
apply le_S. apply le_n.
apply H. Qed.
Theorem le_S_n : forall n m,
(S n <= S m) -> (n <= m).
Proof.
intros n m H.
apply Sn_le_Sm__n_le_m.
apply H.
Qed.
Theorem le_Sn_n : forall n,
~ (S n <= n).
Proof.
induction n.
intros H.
inversion H.
unfold not in IHn.
intros H.
apply le_S_n in H.
apply IHn.
apply H.
Qed.
(*
TODO
Theorem lt_trans'' :
transitive lt.
Proof.
unfold lt. unfold transitive.
intros n m o Hnm Hmo.
induction o as [| o'].
*)
Definition symmetric {X: Type} (R: relation X) :=
forall a b : X, (R a b) -> (R b a).
Definition antisymmetric {X : Type} (R: relation X) :=
forall a b : X, (R a b) -> (R b a) -> a = b.
Theorem le_antisymmetric :
antisymmetric le.
Proof.
intros a b.
generalize dependent a.
induction b.
intros a.
intros H.
intros H1.
inversion H.
reflexivity.
intros a H1 H2.
destruct a.
inversion H2.
apply Sn_le_Sm__n_le_m in H1.
apply Sn_le_Sm__n_le_m in H2.
apply IHb in H1.
rewrite H1 in |- *.
reflexivity.
apply H2.
Qed.
(*
TODO
Theorem le_step : forall n m p,
n < m ->
n <= S p ->
n <= p.
Proof.
*)
Definition equivalence {X:Type} (R: relation X) :=
(reflexive R) /\ (symmetric R) /\ (transitive R).
Definition order {X:Type} (R: relation X) :=
(reflexive R) /\ (antisymmetric R) /\ (transitive R).
Definition preorder {X:Type} (R: relation X) :=
(reflexive R) /\ (transitive R).
Theorem le_order :
order le.
Proof.
unfold order. split.
Case "refl". apply le_reflexive.
split.
Case "antisym". apply le_antisymmetric.
Case "transitive". apply le_trans. Qed.
Inductive clos_refl_trans {A:Type} (R: relation A) : relation A :=
| rt_step : forall x y, R x y -> clos_refl_trans R x y
| rt_refl : forall x, clos_refl_trans R x x
| rt_trans : forall x y z,
clos_refl_trans R x y -> clos_refl_trans R y z -> clos_refl_trans R x z.
Theorem next_nat_closure_is_le : forall n m,
(n <= m) <-> ((clos_refl_trans next_nat) n m).
Proof.
intros n m.
split.
intro H.
induction H.
apply rt_refl.
apply rt_trans with m.
apply IHle.
apply rt_step.
apply nn.
intro H.
induction H.
inversion H.
apply le_S.
apply le_n.
apply le_n.
apply le_trans with y.
apply IHclos_refl_trans1.
apply IHclos_refl_trans2.
Qed.
Inductive refl_step_closure {X : Type} (R: relation X)
: X -> X -> Prop :=
| rsc_refl : forall (x : X), refl_step_closure R x x
| rsc_step : forall (x y z : X), R x y ->
refl_step_closure R y z ->
refl_step_closure R x z.
Tactic Notation "rt_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "rt_step" | Case_aux c "rt_refl" | Case_aux c "rt_trans" ].
Tactic Notation "rsc_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "rsc_refl" | Case_aux c "rsc_step" ].
Theorem rsc_R : forall (X:Type) (R:relation X) (x y:X),
R x y -> refl_step_closure R x y.
Proof.
intros X R x y r.
apply rsc_step with y.
apply r.
apply rsc_refl.
Qed.
Theorem rsc_trans :
forall (X : Type) (R : relation X) (x y z : X),
refl_step_closure R x y ->
refl_step_closure R y z ->
refl_step_closure R x z.
Proof.
intros X.
intros R x y z.
intros H.
induction H.
intros H1.
apply H1.
intros H1.
apply IHrefl_step_closure in H1.
apply rsc_step with y.
apply H.
apply H1.
Qed.
Theorem rtc_rsc_coincide:
forall (X:Type) (R: relation X) (x y : X),
clos_refl_trans R x y <-> refl_step_closure R x y.
Proof.
intros X R x y.
split.
intros H.
induction H.
apply rsc_step with y.
apply H.
apply rsc_refl.
apply rsc_refl.
apply rsc_trans with y.
apply IHclos_refl_trans1.
apply IHclos_refl_trans2.
intros H1.
induction H1.
apply rt_refl.
apply rt_trans with y.
apply rt_step.
apply H.
apply IHrefl_step_closure.
Qed.