|
| 1 | + |
| 2 | + |
| 3 | +#include <complex> |
| 4 | +#include <iostream> |
| 5 | +#include <valarray> |
| 6 | + |
| 7 | + |
| 8 | +using namespace std; |
| 9 | + |
| 10 | +typedef complex<double> base; |
| 11 | + |
| 12 | +void fft(vector<base> &a, bool inv) |
| 13 | +{ |
| 14 | + int n = a.size(), j = 0; |
| 15 | + vector<base> roots(n/2); |
| 16 | + |
| 17 | + for(int i=1; i<n; i++) |
| 18 | + { |
| 19 | + int bit = (n >> 1); |
| 20 | + while(j >= bit) |
| 21 | + { |
| 22 | + j -= bit; |
| 23 | + bit >>= 1; |
| 24 | + } |
| 25 | + j += bit; |
| 26 | + if(i < j) |
| 27 | + swap(a[i], a[j]); |
| 28 | + } |
| 29 | + |
| 30 | + double ang = 2 * acos(-1) / n * (inv ? -1 : 1); |
| 31 | + for(int i=0; i<n/2; i++) |
| 32 | + { |
| 33 | + roots[i] = base(cos(ang * i), sin(ang * i)); |
| 34 | + } |
| 35 | + /* In NTT, let prr = primitive root. Then, |
| 36 | + int ang = ipow(prr, (mod - 1) / n); |
| 37 | + if(inv) ang = ipow(ang, mod - 2); |
| 38 | + for(int i=0; i<n/2; i++){ |
| 39 | + roots[i] = (i ? (1ll * roots[i-1] * ang % mod) : 1); |
| 40 | + } |
| 41 | + XOR Convolution : set roots[*] = 1. |
| 42 | + OR Convolution : set roots[*] = 1, and do following: |
| 43 | + if (!inv) { |
| 44 | + a[j + k] = u + v; |
| 45 | + a[j + k + i/2] = u; |
| 46 | + } else { |
| 47 | + a[j + k] = v; |
| 48 | + a[j + k + i/2] = u - v; |
| 49 | + } |
| 50 | + */ |
| 51 | + for(int i=2; i<=n; i<<=1) |
| 52 | + { |
| 53 | + int step = n / i; |
| 54 | + for(int j=0; j<n; j+=i) |
| 55 | + { |
| 56 | + for(int k=0; k<i/2; k++) |
| 57 | + { |
| 58 | + base u = a[j+k], |
| 59 | + v = a[j+k+i/2] * roots[step * k]; |
| 60 | + a[j+k] = u+v; |
| 61 | + a[j+k+i/2] = u-v; |
| 62 | + } |
| 63 | + } |
| 64 | + } |
| 65 | + if(inv) |
| 66 | + for(int i=0; i<n; i++) |
| 67 | + a[i] /= n; // skip for OR convolution. |
| 68 | +} |
| 69 | + |
| 70 | + |
| 71 | +vector<lint> multiply(vector<lint> &v, vector<lint> &w) |
| 72 | +{ |
| 73 | + vector<base> fv(v.begin(), v.end()), fw(w.begin(), w.end()); |
| 74 | + int n =2; |
| 75 | + while(n < v.size() + w.size()) |
| 76 | + n <<=1; |
| 77 | + fv.resize(n); |
| 78 | + fw.resize(n); |
| 79 | + fft(fv,0); |
| 80 | + fft(fw,0); |
| 81 | + for(int i=0; i<n; i++) |
| 82 | + fv[i] *= fw[i]; |
| 83 | + fft(fv,1); |
| 84 | + vector<lint> ret(n); |
| 85 | + for(int i=0; i<n; i++) |
| 86 | + ret[i] = (lint)round(fv[i].real()); |
| 87 | + return ret; |
| 88 | +} |
| 89 | + |
| 90 | +vector<lint> multiply(vector<lint> &v, vector<lint> &w, lint mod) |
| 91 | +{ |
| 92 | + int n =2; |
| 93 | + while(n < v.size() + w.size()) |
| 94 | + n <<=1s; |
| 95 | + vector<base> v1(n), v2(n), r1(n), r2(n); |
| 96 | + for(int i=0; i<v.size(); i++) |
| 97 | + { |
| 98 | + v1[i] = base(v[i] >> 15, v[i] & 32767); |
| 99 | + } |
| 100 | + for(int i=0; i<w.size(); i++) |
| 101 | + { |
| 102 | + v2[i] = base(w[i] >> 15, w[i] & 32767); |
| 103 | + } |
| 104 | + fft(v1,0); |
| 105 | + fft(v2,0); |
| 106 | + for(int i=0; i<n; i++) |
| 107 | + { |
| 108 | + int j = (i ? (n - i) : i); |
| 109 | + base ans1 = (v1[i] + conj(v1[j])) * base(0.5,0); |
| 110 | + base ans2 = (v1[i] - conj(v1[j])) * base(0, -0.5); |
| 111 | + base ans3 = (v2[i] + conj(v2[j])) * base(0.5,0); |
| 112 | + base ans4 = (v2[i] - conj(v2[j])) * base(0, -0.5); |
| 113 | + r1[i] = (ans1 * ans3) + (ans1 * ans4) * base(0,1); |
| 114 | + r2[i] = (ans2 * ans3) + (ans2 * ans4) * base(0,1); |
| 115 | + } |
| 116 | + fft(r1,1); |
| 117 | + fft(r2,1); |
| 118 | + vector<lint> ret(n); |
| 119 | + for(int i=0; i<n; i++) |
| 120 | + { |
| 121 | + lint av = (lint)round(r1[i].real()); |
| 122 | + lint bv = (lint)round(r1[i].imag()) + (lint)round(r2[i].real()); |
| 123 | + lint cv = (lint)round(r2[i].imag()); |
| 124 | + av %= mod, bv %= mod, cv %= mod; |
| 125 | + ret[i] = (av << 30) + (bv << 15) + cv; |
| 126 | + ret[i] %= mod; |
| 127 | + ret[i] += mod; |
| 128 | + ret[i] %= mod; |
| 129 | + } |
| 130 | + return ret; |
| 131 | +} |
0 commit comments