|
| 1 | +% Options for packages loaded elsewhere |
| 2 | +\PassOptionsToPackage{unicode}{hyperref} |
| 3 | +\PassOptionsToPackage{hyphens}{url} |
| 4 | +% |
| 5 | +\documentclass[ |
| 6 | +]{article} |
| 7 | +\usepackage{amsmath,amssymb} |
| 8 | +\usepackage{lmodern} |
| 9 | +\usepackage{iftex} |
| 10 | +\ifPDFTeX |
| 11 | + \usepackage[T1]{fontenc} |
| 12 | + \usepackage[utf8]{inputenc} |
| 13 | + \usepackage{textcomp} % provide euro and other symbols |
| 14 | +\else % if luatex or xetex |
| 15 | + \usepackage{unicode-math} |
| 16 | + \defaultfontfeatures{Scale=MatchLowercase} |
| 17 | + \defaultfontfeatures[\rmfamily]{Ligatures=TeX,Scale=1} |
| 18 | +\fi |
| 19 | +% Use upquote if available, for straight quotes in verbatim environments |
| 20 | +\IfFileExists{upquote.sty}{\usepackage{upquote}}{} |
| 21 | +\IfFileExists{microtype.sty}{% use microtype if available |
| 22 | + \usepackage[]{microtype} |
| 23 | + \UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts |
| 24 | +}{} |
| 25 | +\makeatletter |
| 26 | +\@ifundefined{KOMAClassName}{% if non-KOMA class |
| 27 | + \IfFileExists{parskip.sty}{% |
| 28 | + \usepackage{parskip} |
| 29 | + }{% else |
| 30 | + \setlength{\parindent}{0pt} |
| 31 | + \setlength{\parskip}{6pt plus 2pt minus 1pt}} |
| 32 | +}{% if KOMA class |
| 33 | + \KOMAoptions{parskip=half}} |
| 34 | +\makeatother |
| 35 | +\usepackage{xcolor} |
| 36 | +\usepackage{color} |
| 37 | +\usepackage{fancyvrb} |
| 38 | +\newcommand{\VerbBar}{|} |
| 39 | +\newcommand{\VERB}{\Verb[commandchars=\\\{\}]} |
| 40 | +\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}} |
| 41 | +% Add ',fontsize=\small' for more characters per line |
| 42 | +\newenvironment{Shaded}{}{} |
| 43 | +\newcommand{\AlertTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{#1}}} |
| 44 | +\newcommand{\AnnotationTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{#1}}}} |
| 45 | +\newcommand{\AttributeTok}[1]{\textcolor[rgb]{0.49,0.56,0.16}{#1}} |
| 46 | +\newcommand{\BaseNTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{#1}} |
| 47 | +\newcommand{\BuiltInTok}[1]{#1} |
| 48 | +\newcommand{\CharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{#1}} |
| 49 | +\newcommand{\CommentTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textit{#1}}} |
| 50 | +\newcommand{\CommentVarTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{#1}}}} |
| 51 | +\newcommand{\ConstantTok}[1]{\textcolor[rgb]{0.53,0.00,0.00}{#1}} |
| 52 | +\newcommand{\ControlFlowTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{#1}}} |
| 53 | +\newcommand{\DataTypeTok}[1]{\textcolor[rgb]{0.56,0.13,0.00}{#1}} |
| 54 | +\newcommand{\DecValTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{#1}} |
| 55 | +\newcommand{\DocumentationTok}[1]{\textcolor[rgb]{0.73,0.13,0.13}{\textit{#1}}} |
| 56 | +\newcommand{\ErrorTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{#1}}} |
| 57 | +\newcommand{\ExtensionTok}[1]{#1} |
| 58 | +\newcommand{\FloatTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{#1}} |
| 59 | +\newcommand{\FunctionTok}[1]{\textcolor[rgb]{0.02,0.16,0.49}{#1}} |
| 60 | +\newcommand{\ImportTok}[1]{#1} |
| 61 | +\newcommand{\InformationTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{#1}}}} |
| 62 | +\newcommand{\KeywordTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{#1}}} |
| 63 | +\newcommand{\NormalTok}[1]{#1} |
| 64 | +\newcommand{\OperatorTok}[1]{\textcolor[rgb]{0.40,0.40,0.40}{#1}} |
| 65 | +\newcommand{\OtherTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{#1}} |
| 66 | +\newcommand{\PreprocessorTok}[1]{\textcolor[rgb]{0.74,0.48,0.00}{#1}} |
| 67 | +\newcommand{\RegionMarkerTok}[1]{#1} |
| 68 | +\newcommand{\SpecialCharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{#1}} |
| 69 | +\newcommand{\SpecialStringTok}[1]{\textcolor[rgb]{0.73,0.40,0.53}{#1}} |
| 70 | +\newcommand{\StringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{#1}} |
| 71 | +\newcommand{\VariableTok}[1]{\textcolor[rgb]{0.10,0.09,0.49}{#1}} |
| 72 | +\newcommand{\VerbatimStringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{#1}} |
| 73 | +\newcommand{\WarningTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{#1}}}} |
| 74 | +\setlength{\emergencystretch}{3em} % prevent overfull lines |
| 75 | +\providecommand{\tightlist}{% |
| 76 | + \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}} |
| 77 | +\setcounter{secnumdepth}{-\maxdimen} % remove section numbering |
| 78 | +\ifLuaTeX |
| 79 | + \usepackage{selnolig} % disable illegal ligatures |
| 80 | +\fi |
| 81 | +\IfFileExists{bookmark.sty}{\usepackage{bookmark}}{\usepackage{hyperref}} |
| 82 | +\IfFileExists{xurl.sty}{\usepackage{xurl}}{} % add URL line breaks if available |
| 83 | +\urlstyle{same} % disable monospaced font for URLs |
| 84 | +\hypersetup{ |
| 85 | + hidelinks, |
| 86 | + pdfcreator={LaTeX via pandoc}} |
| 87 | + |
| 88 | +\author{} |
| 89 | +\date{} |
| 90 | + |
| 91 | +\begin{document} |
| 92 | + |
| 93 | +\hypertarget{header-n0}{% |
| 94 | +\section{一般带状线性方程组的分裂法}\label{header-n0}} |
| 95 | + |
| 96 | +\tableofcontents |
| 97 | + |
| 98 | +\hypertarget{header-n3}{% |
| 99 | +\subsection{描述:}\label{header-n3}} |
| 100 | + |
| 101 | +考虑带状线性方程组\(Ax=r\),其中\(A\)是上、下半带宽分别为\(\beta、\alpha\)的带状矩阵,现将其分块为 |
| 102 | + |
| 103 | +\begin{bmatrix} |
| 104 | + A^{(0,0)} & A^{(0,1)} & & & \\ |
| 105 | + A^{(1,0)} & A^{(1,1)} & A^{(1,2)} & & \\ |
| 106 | + & A^{(2,1)} & A^{(2,2)} & \ddots & \\ |
| 107 | + & & \ddots & \ddots & A^{(3,4)} \\ |
| 108 | + & & & A^{(4,3)} & A^{(4,4)} |
| 109 | +\end{bmatrix} |
| 110 | +\begin{bmatrix} |
| 111 | + x^{(0)} \\ |
| 112 | + x^{(1)} \\ |
| 113 | + x^{(2)} \\ |
| 114 | + \vdots \\ |
| 115 | + x^{(p-1)} \\ |
| 116 | +\end{bmatrix} |
| 117 | += |
| 118 | +\begin{bmatrix} |
| 119 | + r^{(0)} \\ |
| 120 | + r^{(1)} \\ |
| 121 | + r^{(2)} \\ |
| 122 | + \vdots \\ |
| 123 | + r^{(p-1)} \\ |
| 124 | +\end{bmatrix} |
| 125 | + |
| 126 | +\(\alpha\)包含主对角线的,\(\beta\)不包含主对角线。 |
| 127 | + |
| 128 | +其中\(A^{(i,j)}\)是\(n_i \times n_j\)矩阵,\(x^{(i)}=[x_{m_i+1},\cdots,x_{m_i+ni}]^T\)与\(r^{(i)}=[r_{m_i+1},r_{m_i+2},\cdots,r_{m_i+n_i}]^T\)为\(n_i\)维向量,\(\alpha+beta-2 \le \min\{n_i:0\le i \le p-1\}\),且 |
| 129 | + |
| 130 | +\[\left\{\begin{matrix} |
| 131 | + m_0=0\\ |
| 132 | + m_{i+1}=m_i+n_i,i=1,2,\cdots,p |
| 133 | +\end{matrix}\right.\] |
| 134 | + |
| 135 | +当\(n=24,\alpha=2,\beta=2,p=4\)且\(n_i \equiv 6\)时,矩阵\(A\)的分裂方式如下图所示. |
| 136 | + |
| 137 | +\[\small |
| 138 | +\begin{matrix} |
| 139 | + b_1 & c_1 & d_1 & & & & & & & & & & & & & & & & & & & & & \\ |
| 140 | + a_2 & b_2 & c_2 & d_2 & & & & & & & & & & & & & & & & & & & & \\ |
| 141 | + & a_3 & b_3 & c_3 & d_3 & & & & & & & & & & & & & & & & & & & \\ |
| 142 | + & & a_4 & b_4 & c_4 & d_4 & & & & & & & & & & & & & & & & & & \\ |
| 143 | + & & & a_5 & b_5 & c_5 & d_5 & & & & & & & & & & & & & & & & & \\ |
| 144 | + & & & & a_6 & b_6 & c_6 & d_6 & & & & & & & & & & & & & & & & \\ \hline |
| 145 | + & & & & & a_7 & b_7 & c_7 & d_7 & & & & & & & & & & & & & & & \\ |
| 146 | + & & & & & & a_8 & b_8 & c_8 & d_8 & & & & & & & & & & & & & & \\ |
| 147 | + & & & & & & & a_9 & b_9 & c_9 & d_9 & & & & & & & & & & & & & \\ |
| 148 | + & & & & & & & & a_{10} & b_{10} & c_{10} & d_{10} & & & & & & & & & & & & \\ |
| 149 | + & & & & & & & & & a_{11} & b_{11} & c_{11} & d_{11} & & & & & & & & & & & \\ |
| 150 | + & & & & & & & & & & a_{12} & b_{12} & c_{12} & d_{12} & & & & & & & & & & \\ \hline |
| 151 | + & & & & & & & & & & & a_{13} & b_{13} & c_{13} & d_{13} & & & & & & & & & \\ |
| 152 | + & & & & & & & & & & & & a_{14} & b_{14} & c_{14} & d_{14} & & & & & & & & \\ |
| 153 | + & & & & & & & & & & & & & a_{15} & b_{15} & c_{15} & d_{15} & & & & & & & \\ |
| 154 | + & & & & & & & & & & & & & & a_{16} & b_{16} & c_{16} & d_{16} & & & & & & \\ |
| 155 | + & & & & & & & & & & & & & & & a_{17} & b_{17} & c_{17} & d_{17} & & & & & \\ |
| 156 | + & & & & & & & & & & & & & & & & a_{18} & b_{18} & c_{18} & d_{18} & & & & \\ \hline |
| 157 | + & & & & & & & & & & & & & & & & & a_{19} & b_{19} & c_{19} & d_{19} & & & \\ |
| 158 | + & & & & & & & & & & & & & & & & & & a_{20} & b_{20} & c_{20} & d_{20} & & \\ |
| 159 | + & & & & & & & & & & & & & & & & & & & a_{21} & b_{21} & c_{21} & d_{21} & \\ |
| 160 | + & & & & & & & & & & & & & & & & & & & & a_{22} & b_{22} & c_{22} & d_{22}\\ |
| 161 | + & & & & & & & & & & & & & & & & & & & & & a_{23} & b_{23} & c_{23}\\ |
| 162 | + & & & & & & & & & & & & & & & & & & & & & & a_{24} & b_{24} |
| 163 | +\end{matrix}\] |
| 164 | + |
| 165 | +\hypertarget{header-n11}{% |
| 166 | +\subsection{解法 :}\label{header-n11}} |
| 167 | + |
| 168 | +\begin{Shaded} |
| 169 | +\begin{Highlighting}[] |
| 170 | +\NormalTok{ \#\#\# 第一步} |
| 171 | +\end{Highlighting} |
| 172 | +\end{Shaded} |
| 173 | + |
| 174 | +首先对\(i=0,1,\cdots,p-1\),消去\(A_{(i,j)}\)中对角线以下元素,即 |
| 175 | + |
| 176 | +\[\large e_{m_i+1,m_i+\alpha-1,1:\alpha-1} \gets a_{m_i+1,m_i+\alpha-1,m_i-\alpha+2:m_i}\] |
| 177 | + |
| 178 | +且对\(k=m_{i}+1,m_{i}+2,\cdots,m_{i+1}\),\(l=l_1,l_1+1,\cdots,k-1\),依次执行 |
| 179 | + |
| 180 | +\[a_{k,l} \gets a_{k,l}/a_{l,l}; r_k \gets r_k+a_{k,l}r_l;\\ |
| 181 | +a_{k,j} \gets a_{k,j}+a_{k,l}a_{l,j},j=l+1,\cdots,\min(l+\beta-1,n);\\ |
| 182 | +\begin{align} \tag{1} |
| 183 | +e_{k,j} \gets |
| 184 | +\begin{cases} |
| 185 | + a_{k,l}e_{l,j},\\ |
| 186 | + e_{k,j}+a_{k,l}e_{l,j}, |
| 187 | +\end{cases} |
| 188 | +\begin{matrix} |
| 189 | +l = l_1 且 k \ge m_i + \alpha\\ |
| 190 | +l \ne l_1 或 k < m_i + \alpha |
| 191 | +\end{matrix} |
| 192 | +,j=1,2,\cdots,\alpha-1 |
| 193 | +\end{align}\] |
| 194 | + |
| 195 | +其中\(l_1=\max(m_i+1,k-\alpha+1)\),且(1)式对\(i=0\)不需计算, |
| 196 | + |
| 197 | +其次,对\(i=0,1,\cdots,p-1\)消去\(A^{(i,j)}\)中对角线以上元素,即 |
| 198 | + |
| 199 | +\[\large f_{m_{i+1}-\beta+2:m_{i+1},1,\beta-1} \gets a_{m_{i+1}-\beta+2:m_{i+1},m_{m+1}+1,m_{i+1}+\beta-1}\] |
| 200 | + |
| 201 | +且对\(k=m_{i+1},\cdots,m_i+2,m_i+l,l=l_2,l_2-1,\cdots,k+1\),依次执行 |
| 202 | + |
| 203 | +\begin{equation} a_{k,l} \gets a_{k,l}/a_{l,l};r_k \gets r_k + a_{k,l}r_l;\tag{2} \end{equation} |
| 204 | + |
| 205 | +\begin{equation} e_{k,j} \gets e_{k,j}+a_{k,l}e_{l,j},j=1,2,\cdots,\alpha-1;\tag{3} |
| 206 | +\end{equation} |
| 207 | + |
| 208 | +\begin{align} |
| 209 | +\tag{4} |
| 210 | +f_{k,j} \gets |
| 211 | +\begin{cases} |
| 212 | +a_{k,l}f_{l,j},\\ |
| 213 | +f_{k,j}+a_{k,l}f_{l,j}, |
| 214 | +\end{cases} |
| 215 | +\begin{matrix} |
| 216 | +l = l_2 且 k < m_{i+1} - \beta + 2 \\ |
| 217 | +l \ne l_2 或 k \ge m_{i+1} - \beta + 2 |
| 218 | +\end{matrix}, j=1,2,\cdots,\beta-1, |
| 219 | +\end{align} |
| 220 | + |
| 221 | +其中\(l_2=\min(k+\beta-1,m_{i,1})\),且(3)式对\(i=0\)不需计算,(4)式对\(i=p-1\)不需计算。 |
| 222 | + |
| 223 | +当\(n=24,\alpha=2,\beta=3,p=4\) 且 \(n_i=6\) |
| 224 | +时,完成第一步后,得到的新系统矩阵如下图所示 |
| 225 | + |
| 226 | +\[\small\begin{matrix} |
| 227 | + b_1& & & & & & f_1& g_1& & & & & & & & & & & & & & & & \\ |
| 228 | + & b_2& & & & & f_2& g_2& & & & & & & & & & & & & & & & \\ |
| 229 | + & & b_3& & & & f_3& g_3& & & & & & & & & & & & & & & & \\ |
| 230 | + & & & b_4& & & f_4& g_4& & & & & & & & & & & & & & & & \\ |
| 231 | + & & & & b_5& & f_5& g_5& & & & & & & & & & & & & & & & \\ |
| 232 | + & & & & & b_6& f_6& g_6& & & & & & & & & & & & & & & & \\ \hline |
| 233 | + & & & & & e_7& b_7& & & & & & f_7& g_7& & & & & & & & & & \\ |
| 234 | + & & & & & e_8& & b_8& & & & & f_8& g_8& & & & & & & & & & \\ |
| 235 | + & & & & & e_9& & & b_9& & & & f_9& g_9& & & & & & & & & & \\ |
| 236 | + & & & & & e_{10}& & & & b_{10}& & & f_{10}& g_{10}& & & & & & & & & & \\ |
| 237 | + & & & & & e_{11}& & & & & b_{11}& & f_{11}& g_{11}& & & & & & & & & & \\ |
| 238 | + & & & & & e_{12}& & & & & & b_{12}& f_{12}& g_{12}& & & & & & & & & & \\ \hline |
| 239 | + & & & & & & & & & & & e_{13}& b_{13}& & & & & & f_{13}& g_{13}& & & & \\ |
| 240 | + & & & & & & & & & & & e_{14}& & b_{14}& & & & & f_{14}& g_{14}& & & & \\ |
| 241 | + & & & & & & & & & & & e_{15}& & & b_{15}& & & & f_{15}& g_{15}& & & & \\ |
| 242 | + & & & & & & & & & & & e_{16}& & & & b_{16}& & & f_{16}& g_{16}& & & & \\ |
| 243 | + & & & & & & & & & & & e_{17}& & & & & b_{17}& & f_{17}& g_{17}& & & & \\ |
| 244 | + & & & & & & & & & & & e_{18}& & & & & & b_{18}& f_{18}& g_{18}& & & & \\ \hline |
| 245 | + & & & & & & & & & & & & & & & & & e_{19}& b_{19}& & & & & \\ |
| 246 | + & & & & & & & & & & & & & & & & & e_{20}& & b_{20}& & & & \\ |
| 247 | + & & & & & & & & & & & & & & & & & e_{21}& & & b_{21}& & & \\ |
| 248 | + & & & & & & & & & & & & & & & & & e_{22}& & & & b_{22}& & \\ |
| 249 | + & & & & & & & & & & & & & & & & & e_{23}& & & & & b_{23}& \\ |
| 250 | + & & & & & & & & & & & & & & & & & e_{24}& & & & & & b_{24}\\ |
| 251 | +\end{matrix}\] |
| 252 | + |
| 253 | +\hypertarget{header-n27}{% |
| 254 | +\subsubsection{第二步}\label{header-n27}} |
| 255 | + |
| 256 | +设 \(\gamma = \alpha+\beta-2\),求解由 |
| 257 | + |
| 258 | +\[E^{(i,2)}x^{(i-1,2)}+D^{(i,2)}x^{(i,2)}+F^{(i,2)}x^{(i+1,1)}=r^{(i,2)},i=0,1,\cdots,p-2,\] |
| 259 | + |
| 260 | +\[E^{(i+1,1)}x^{(i,2)}+D^{(i+1,1)}x^{(i+1,1)}+F^{(i+1,1)}x^{(i+2,1)}=r^{(i+1,1)},i=0,1,\cdots,p-2,\] |
| 261 | + |
| 262 | +组成的\((p-1)\gamma\) 阶线性方程组,其中 |
| 263 | + |
| 264 | +\[E^{(i,1)}=e_{m_i+1:m_i+\beta-1,1:\alpha-1}, \quad E^{(i,2)}=e_{m_i-\alpha+2:m_{i+1},1:\alpha-1}, \\ |
| 265 | +F^{(i,1)}=f_{m_i+1:m_i+\beta-1,1:\beta-1}, \quad F^{(i,2)}=f_{m_i-1-\alpha+2:m_{i+1},1:\beta-1},\] |
| 266 | + |
| 267 | +\[D_{(i,1)}=diag(a_{m_i+1,m_i+1},\cdots,a_{m_{i+\beta-1},m_{i+\beta-1}}), |
| 268 | +\\ |
| 269 | +D_{(i,2)}=diag(a_{m_{i-1}-\alpha+2,m_{i+1}-\alpha+2},\cdots,a_{m_i+1,m_{i+1}}),\] |
| 270 | + |
| 271 | +\[x^{(i,1)}=[x_{m_i+1},x_{m_i+2},\cdots,x_{m_i+\beta-1}]^T \\ |
| 272 | +r^{(i,1)}=[r_{m_i+1},r_{m_i+2},\cdots,r_{m_i+\beta-1}]^T\] |
| 273 | + |
| 274 | +可以将以上线性方程组写为 |
| 275 | + |
| 276 | +\[By=s\] |
| 277 | + |
| 278 | +其中 |
| 279 | + |
| 280 | +\[B= |
| 281 | +\begin{bmatrix} |
| 282 | +F^{(0,2)} & D^{(0,2)} \\ |
| 283 | +D^{(1,1)} & E^{(1,1)} & F^{(1,1)} \\ |
| 284 | + & E^{(1,2)} & F^{(1,2)} & D^{(1,2)} \\ |
| 285 | + & & D^{(2,1)} & E^{(2,1)} & F^{(2,1)} \\ |
| 286 | + & & & \ddots & \ddots & \ddots \\ |
| 287 | + & & & & E^{(p-2,2)} & F^{(p-2,2)} & D^{(p-2,2)} \\ |
| 288 | + & & & & & D^{(p-1,1)} & E^{(p-1,1)} |
| 289 | +\end{bmatrix}\] |
| 290 | + |
| 291 | +\[y=[ (x^{(1,1)})^T , (x^{(0,2)})^T , (x^{(2,1)})^T , (x^{(1,2)})^T,\cdots,(x^{p-1,1})^T,(x^{(p-2,2)})^T]^T, \\ |
| 292 | +s=[ (r^{(1,1)})^T , (r^{(0,2)})^T , (r^{(2,1)})^T , (r^{(1,2)})^T,\cdots,(r^{p-1,1})^T,(r^{(p-2,2)})^T]^T,\] |
| 293 | + |
| 294 | +\hypertarget{header-n40}{% |
| 295 | +\subsubsection{第三步}\label{header-n40}} |
| 296 | + |
| 297 | +利用得到的\(x_{m_i-\alpha+2}, \cdots, x_{m_i}, x_{m_i+1}, \cdots, x_{m_i+\beta-1}, i=1, 2, \cdots, p-1\)求出所有其他解的分量,即进行如下操作: |
| 298 | + |
| 299 | +\[x_k \gets |
| 300 | +(r_k - \sum_{j=1}^{\beta-1} f_{k,j} x_{n_1-\beta+1+j}) / a_k, |
| 301 | +\quad k=1, 2, \cdots, n1 - \alpha + 1\] |
| 302 | + |
| 303 | +\begin{align} |
| 304 | +x_{m_i+k} \gets |
| 305 | +(r_{m_i+k}-\sum^{\alpha-1}_{j=1}e_{m_i+k_{i,j}}x_{m_i-\alpha+1+j}-\sum^{\beta-1}_{j=1}f_{m_i+k\cdot j}x_{m_{i-1}-\beta+1+j})/a_{m_i+k}, |
| 306 | +\end{align} |
| 307 | +\quad |
| 308 | +\begin{matrix} |
| 309 | +k=\beta,\cdots,n_i-\alpha+1 \\ |
| 310 | +i=1,2,\cdots,p-2 \quad |
| 311 | +\end{matrix}, |
| 312 | + |
| 313 | +\[x_{m_{p-1}+k} \gets |
| 314 | +(r_{m_{p-1}+k}-\sum^{\alpha-1}_{j=1}e_{m_{p-1}+k\cdot j}x_{m_{p-1}-\alpha+1+j})/a_{m_{p-1}+k},k=\beta,\beta+1,\cdots,n_{p-1 |
| 315 | +}.\] |
| 316 | + |
| 317 | +显然,带状线性方程组求解的分裂法可以直接推广到块带状线性方程组,对于循环带状线性方程组与循环块带状线性方程组,也可以类似求解,其求解算法跟带状线性方程组与块带状线性方程组的求解并无本质区别。 |
| 318 | + |
| 319 | +\end{document} |
0 commit comments