Skip to content

Commit f5c6a1d

Browse files
authored
Update and rename latexTest.md to latexTest.tex
1 parent 903e91c commit f5c6a1d

File tree

2 files changed

+319
-2
lines changed

2 files changed

+319
-2
lines changed

src/latexTest.md

Lines changed: 0 additions & 2 deletions
This file was deleted.

src/latexTest.tex

Lines changed: 319 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,319 @@
1+
% Options for packages loaded elsewhere
2+
\PassOptionsToPackage{unicode}{hyperref}
3+
\PassOptionsToPackage{hyphens}{url}
4+
%
5+
\documentclass[
6+
]{article}
7+
\usepackage{amsmath,amssymb}
8+
\usepackage{lmodern}
9+
\usepackage{iftex}
10+
\ifPDFTeX
11+
\usepackage[T1]{fontenc}
12+
\usepackage[utf8]{inputenc}
13+
\usepackage{textcomp} % provide euro and other symbols
14+
\else % if luatex or xetex
15+
\usepackage{unicode-math}
16+
\defaultfontfeatures{Scale=MatchLowercase}
17+
\defaultfontfeatures[\rmfamily]{Ligatures=TeX,Scale=1}
18+
\fi
19+
% Use upquote if available, for straight quotes in verbatim environments
20+
\IfFileExists{upquote.sty}{\usepackage{upquote}}{}
21+
\IfFileExists{microtype.sty}{% use microtype if available
22+
\usepackage[]{microtype}
23+
\UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts
24+
}{}
25+
\makeatletter
26+
\@ifundefined{KOMAClassName}{% if non-KOMA class
27+
\IfFileExists{parskip.sty}{%
28+
\usepackage{parskip}
29+
}{% else
30+
\setlength{\parindent}{0pt}
31+
\setlength{\parskip}{6pt plus 2pt minus 1pt}}
32+
}{% if KOMA class
33+
\KOMAoptions{parskip=half}}
34+
\makeatother
35+
\usepackage{xcolor}
36+
\usepackage{color}
37+
\usepackage{fancyvrb}
38+
\newcommand{\VerbBar}{|}
39+
\newcommand{\VERB}{\Verb[commandchars=\\\{\}]}
40+
\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}}
41+
% Add ',fontsize=\small' for more characters per line
42+
\newenvironment{Shaded}{}{}
43+
\newcommand{\AlertTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{#1}}}
44+
\newcommand{\AnnotationTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{#1}}}}
45+
\newcommand{\AttributeTok}[1]{\textcolor[rgb]{0.49,0.56,0.16}{#1}}
46+
\newcommand{\BaseNTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{#1}}
47+
\newcommand{\BuiltInTok}[1]{#1}
48+
\newcommand{\CharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{#1}}
49+
\newcommand{\CommentTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textit{#1}}}
50+
\newcommand{\CommentVarTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{#1}}}}
51+
\newcommand{\ConstantTok}[1]{\textcolor[rgb]{0.53,0.00,0.00}{#1}}
52+
\newcommand{\ControlFlowTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{#1}}}
53+
\newcommand{\DataTypeTok}[1]{\textcolor[rgb]{0.56,0.13,0.00}{#1}}
54+
\newcommand{\DecValTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{#1}}
55+
\newcommand{\DocumentationTok}[1]{\textcolor[rgb]{0.73,0.13,0.13}{\textit{#1}}}
56+
\newcommand{\ErrorTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{#1}}}
57+
\newcommand{\ExtensionTok}[1]{#1}
58+
\newcommand{\FloatTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{#1}}
59+
\newcommand{\FunctionTok}[1]{\textcolor[rgb]{0.02,0.16,0.49}{#1}}
60+
\newcommand{\ImportTok}[1]{#1}
61+
\newcommand{\InformationTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{#1}}}}
62+
\newcommand{\KeywordTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{#1}}}
63+
\newcommand{\NormalTok}[1]{#1}
64+
\newcommand{\OperatorTok}[1]{\textcolor[rgb]{0.40,0.40,0.40}{#1}}
65+
\newcommand{\OtherTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{#1}}
66+
\newcommand{\PreprocessorTok}[1]{\textcolor[rgb]{0.74,0.48,0.00}{#1}}
67+
\newcommand{\RegionMarkerTok}[1]{#1}
68+
\newcommand{\SpecialCharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{#1}}
69+
\newcommand{\SpecialStringTok}[1]{\textcolor[rgb]{0.73,0.40,0.53}{#1}}
70+
\newcommand{\StringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{#1}}
71+
\newcommand{\VariableTok}[1]{\textcolor[rgb]{0.10,0.09,0.49}{#1}}
72+
\newcommand{\VerbatimStringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{#1}}
73+
\newcommand{\WarningTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{#1}}}}
74+
\setlength{\emergencystretch}{3em} % prevent overfull lines
75+
\providecommand{\tightlist}{%
76+
\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
77+
\setcounter{secnumdepth}{-\maxdimen} % remove section numbering
78+
\ifLuaTeX
79+
\usepackage{selnolig} % disable illegal ligatures
80+
\fi
81+
\IfFileExists{bookmark.sty}{\usepackage{bookmark}}{\usepackage{hyperref}}
82+
\IfFileExists{xurl.sty}{\usepackage{xurl}}{} % add URL line breaks if available
83+
\urlstyle{same} % disable monospaced font for URLs
84+
\hypersetup{
85+
hidelinks,
86+
pdfcreator={LaTeX via pandoc}}
87+
88+
\author{}
89+
\date{}
90+
91+
\begin{document}
92+
93+
\hypertarget{header-n0}{%
94+
\section{一般带状线性方程组的分裂法}\label{header-n0}}
95+
96+
\tableofcontents
97+
98+
\hypertarget{header-n3}{%
99+
\subsection{描述:}\label{header-n3}}
100+
101+
考虑带状线性方程组\(Ax=r\),其中\(A\)是上、下半带宽分别为\(\beta\alpha\)的带状矩阵,现将其分块为
102+
103+
\begin{bmatrix}
104+
A^{(0,0)} & A^{(0,1)} & & & \\
105+
A^{(1,0)} & A^{(1,1)} & A^{(1,2)} & & \\
106+
& A^{(2,1)} & A^{(2,2)} & \ddots & \\
107+
& & \ddots & \ddots & A^{(3,4)} \\
108+
& & & A^{(4,3)} & A^{(4,4)}
109+
\end{bmatrix}
110+
\begin{bmatrix}
111+
x^{(0)} \\
112+
x^{(1)} \\
113+
x^{(2)} \\
114+
\vdots \\
115+
x^{(p-1)} \\
116+
\end{bmatrix}
117+
=
118+
\begin{bmatrix}
119+
r^{(0)} \\
120+
r^{(1)} \\
121+
r^{(2)} \\
122+
\vdots \\
123+
r^{(p-1)} \\
124+
\end{bmatrix}
125+
126+
\(\alpha\)包含主对角线的,\(\beta\)不包含主对角线。
127+
128+
其中\(A^{(i,j)}\)\(n_i \times n_j\)矩阵,\(x^{(i)}=[x_{m_i+1},\cdots,x_{m_i+ni}]^T\)\(r^{(i)}=[r_{m_i+1},r_{m_i+2},\cdots,r_{m_i+n_i}]^T\)\(n_i\)维向量,\(\alpha+beta-2 \le \min\{n_i:0\le i \le p-1\}\),且
129+
130+
\[\left\{\begin{matrix}
131+
m_0=0\\
132+
m_{i+1}=m_i+n_i,i=1,2,\cdots,p
133+
\end{matrix}\right.\]
134+
135+
\(n=24,\alpha=2,\beta=2,p=4\)\(n_i \equiv 6\)时,矩阵\(A\)的分裂方式如下图所示.
136+
137+
\[\small
138+
\begin{matrix}
139+
b_1 & c_1 & d_1 & & & & & & & & & & & & & & & & & & & & & \\
140+
a_2 & b_2 & c_2 & d_2 & & & & & & & & & & & & & & & & & & & & \\
141+
& a_3 & b_3 & c_3 & d_3 & & & & & & & & & & & & & & & & & & & \\
142+
& & a_4 & b_4 & c_4 & d_4 & & & & & & & & & & & & & & & & & & \\
143+
& & & a_5 & b_5 & c_5 & d_5 & & & & & & & & & & & & & & & & & \\
144+
& & & & a_6 & b_6 & c_6 & d_6 & & & & & & & & & & & & & & & & \\ \hline
145+
& & & & & a_7 & b_7 & c_7 & d_7 & & & & & & & & & & & & & & & \\
146+
& & & & & & a_8 & b_8 & c_8 & d_8 & & & & & & & & & & & & & & \\
147+
& & & & & & & a_9 & b_9 & c_9 & d_9 & & & & & & & & & & & & & \\
148+
& & & & & & & & a_{10} & b_{10} & c_{10} & d_{10} & & & & & & & & & & & & \\
149+
& & & & & & & & & a_{11} & b_{11} & c_{11} & d_{11} & & & & & & & & & & & \\
150+
& & & & & & & & & & a_{12} & b_{12} & c_{12} & d_{12} & & & & & & & & & & \\ \hline
151+
& & & & & & & & & & & a_{13} & b_{13} & c_{13} & d_{13} & & & & & & & & & \\
152+
& & & & & & & & & & & & a_{14} & b_{14} & c_{14} & d_{14} & & & & & & & & \\
153+
& & & & & & & & & & & & & a_{15} & b_{15} & c_{15} & d_{15} & & & & & & & \\
154+
& & & & & & & & & & & & & & a_{16} & b_{16} & c_{16} & d_{16} & & & & & & \\
155+
& & & & & & & & & & & & & & & a_{17} & b_{17} & c_{17} & d_{17} & & & & & \\
156+
& & & & & & & & & & & & & & & & a_{18} & b_{18} & c_{18} & d_{18} & & & & \\ \hline
157+
& & & & & & & & & & & & & & & & & a_{19} & b_{19} & c_{19} & d_{19} & & & \\
158+
& & & & & & & & & & & & & & & & & & a_{20} & b_{20} & c_{20} & d_{20} & & \\
159+
& & & & & & & & & & & & & & & & & & & a_{21} & b_{21} & c_{21} & d_{21} & \\
160+
& & & & & & & & & & & & & & & & & & & & a_{22} & b_{22} & c_{22} & d_{22}\\
161+
& & & & & & & & & & & & & & & & & & & & & a_{23} & b_{23} & c_{23}\\
162+
& & & & & & & & & & & & & & & & & & & & & & a_{24} & b_{24}
163+
\end{matrix}\]
164+
165+
\hypertarget{header-n11}{%
166+
\subsection{解法 :}\label{header-n11}}
167+
168+
\begin{Shaded}
169+
\begin{Highlighting}[]
170+
\NormalTok{ \#\#\# 第一步}
171+
\end{Highlighting}
172+
\end{Shaded}
173+
174+
首先对\(i=0,1,\cdots,p-1\),消去\(A_{(i,j)}\)中对角线以下元素,即
175+
176+
\[\large e_{m_i+1,m_i+\alpha-1,1:\alpha-1} \gets a_{m_i+1,m_i+\alpha-1,m_i-\alpha+2:m_i}\]
177+
178+
且对\(k=m_{i}+1,m_{i}+2,\cdots,m_{i+1}\)\(l=l_1,l_1+1,\cdots,k-1\),依次执行
179+
180+
\[a_{k,l} \gets a_{k,l}/a_{l,l}; r_k \gets r_k+a_{k,l}r_l;\\
181+
a_{k,j} \gets a_{k,j}+a_{k,l}a_{l,j},j=l+1,\cdots,\min(l+\beta-1,n);\\
182+
\begin{align} \tag{1}
183+
e_{k,j} \gets
184+
\begin{cases}
185+
a_{k,l}e_{l,j},\\
186+
e_{k,j}+a_{k,l}e_{l,j},
187+
\end{cases}
188+
\begin{matrix}
189+
l = l_1 且 k \ge m_i + \alpha\\
190+
l \ne l_1 或 k < m_i + \alpha
191+
\end{matrix}
192+
,j=1,2,\cdots,\alpha-1
193+
\end{align}\]
194+
195+
其中\(l_1=\max(m_i+1,k-\alpha+1)\),且(1)式对\(i=0\)不需计算,
196+
197+
其次,对\(i=0,1,\cdots,p-1\)消去\(A^{(i,j)}\)中对角线以上元素,即
198+
199+
\[\large f_{m_{i+1}-\beta+2:m_{i+1},1,\beta-1} \gets a_{m_{i+1}-\beta+2:m_{i+1},m_{m+1}+1,m_{i+1}+\beta-1}\]
200+
201+
且对\(k=m_{i+1},\cdots,m_i+2,m_i+l,l=l_2,l_2-1,\cdots,k+1\),依次执行
202+
203+
\begin{equation} a_{k,l} \gets a_{k,l}/a_{l,l};r_k \gets r_k + a_{k,l}r_l;\tag{2} \end{equation}
204+
205+
\begin{equation} e_{k,j} \gets e_{k,j}+a_{k,l}e_{l,j},j=1,2,\cdots,\alpha-1;\tag{3}
206+
\end{equation}
207+
208+
\begin{align}
209+
\tag{4}
210+
f_{k,j} \gets
211+
\begin{cases}
212+
a_{k,l}f_{l,j},\\
213+
f_{k,j}+a_{k,l}f_{l,j},
214+
\end{cases}
215+
\begin{matrix}
216+
l = l_2 且 k < m_{i+1} - \beta + 2 \\
217+
l \ne l_2 或 k \ge m_{i+1} - \beta + 2
218+
\end{matrix}, j=1,2,\cdots,\beta-1,
219+
\end{align}
220+
221+
其中\(l_2=\min(k+\beta-1,m_{i,1})\),且(3)式对\(i=0\)不需计算,(4)式对\(i=p-1\)不需计算。
222+
223+
\(n=24,\alpha=2,\beta=3,p=4\)\(n_i=6\)
224+
时,完成第一步后,得到的新系统矩阵如下图所示
225+
226+
\[\small\begin{matrix}
227+
b_1& & & & & & f_1& g_1& & & & & & & & & & & & & & & & \\
228+
& b_2& & & & & f_2& g_2& & & & & & & & & & & & & & & & \\
229+
& & b_3& & & & f_3& g_3& & & & & & & & & & & & & & & & \\
230+
& & & b_4& & & f_4& g_4& & & & & & & & & & & & & & & & \\
231+
& & & & b_5& & f_5& g_5& & & & & & & & & & & & & & & & \\
232+
& & & & & b_6& f_6& g_6& & & & & & & & & & & & & & & & \\ \hline
233+
& & & & & e_7& b_7& & & & & & f_7& g_7& & & & & & & & & & \\
234+
& & & & & e_8& & b_8& & & & & f_8& g_8& & & & & & & & & & \\
235+
& & & & & e_9& & & b_9& & & & f_9& g_9& & & & & & & & & & \\
236+
& & & & & e_{10}& & & & b_{10}& & & f_{10}& g_{10}& & & & & & & & & & \\
237+
& & & & & e_{11}& & & & & b_{11}& & f_{11}& g_{11}& & & & & & & & & & \\
238+
& & & & & e_{12}& & & & & & b_{12}& f_{12}& g_{12}& & & & & & & & & & \\ \hline
239+
& & & & & & & & & & & e_{13}& b_{13}& & & & & & f_{13}& g_{13}& & & & \\
240+
& & & & & & & & & & & e_{14}& & b_{14}& & & & & f_{14}& g_{14}& & & & \\
241+
& & & & & & & & & & & e_{15}& & & b_{15}& & & & f_{15}& g_{15}& & & & \\
242+
& & & & & & & & & & & e_{16}& & & & b_{16}& & & f_{16}& g_{16}& & & & \\
243+
& & & & & & & & & & & e_{17}& & & & & b_{17}& & f_{17}& g_{17}& & & & \\
244+
& & & & & & & & & & & e_{18}& & & & & & b_{18}& f_{18}& g_{18}& & & & \\ \hline
245+
& & & & & & & & & & & & & & & & & e_{19}& b_{19}& & & & & \\
246+
& & & & & & & & & & & & & & & & & e_{20}& & b_{20}& & & & \\
247+
& & & & & & & & & & & & & & & & & e_{21}& & & b_{21}& & & \\
248+
& & & & & & & & & & & & & & & & & e_{22}& & & & b_{22}& & \\
249+
& & & & & & & & & & & & & & & & & e_{23}& & & & & b_{23}& \\
250+
& & & & & & & & & & & & & & & & & e_{24}& & & & & & b_{24}\\
251+
\end{matrix}\]
252+
253+
\hypertarget{header-n27}{%
254+
\subsubsection{第二步}\label{header-n27}}
255+
256+
\(\gamma = \alpha+\beta-2\),求解由
257+
258+
\[E^{(i,2)}x^{(i-1,2)}+D^{(i,2)}x^{(i,2)}+F^{(i,2)}x^{(i+1,1)}=r^{(i,2)},i=0,1,\cdots,p-2,\]
259+
260+
\[E^{(i+1,1)}x^{(i,2)}+D^{(i+1,1)}x^{(i+1,1)}+F^{(i+1,1)}x^{(i+2,1)}=r^{(i+1,1)},i=0,1,\cdots,p-2,\]
261+
262+
组成的\((p-1)\gamma\) 阶线性方程组,其中
263+
264+
\[E^{(i,1)}=e_{m_i+1:m_i+\beta-1,1:\alpha-1}, \quad E^{(i,2)}=e_{m_i-\alpha+2:m_{i+1},1:\alpha-1}, \\
265+
F^{(i,1)}=f_{m_i+1:m_i+\beta-1,1:\beta-1}, \quad F^{(i,2)}=f_{m_i-1-\alpha+2:m_{i+1},1:\beta-1},\]
266+
267+
\[D_{(i,1)}=diag(a_{m_i+1,m_i+1},\cdots,a_{m_{i+\beta-1},m_{i+\beta-1}}),
268+
\\
269+
D_{(i,2)}=diag(a_{m_{i-1}-\alpha+2,m_{i+1}-\alpha+2},\cdots,a_{m_i+1,m_{i+1}}),\]
270+
271+
\[x^{(i,1)}=[x_{m_i+1},x_{m_i+2},\cdots,x_{m_i+\beta-1}]^T \\
272+
r^{(i,1)}=[r_{m_i+1},r_{m_i+2},\cdots,r_{m_i+\beta-1}]^T\]
273+
274+
可以将以上线性方程组写为
275+
276+
\[By=s\]
277+
278+
其中
279+
280+
\[B=
281+
\begin{bmatrix}
282+
F^{(0,2)} & D^{(0,2)} \\
283+
D^{(1,1)} & E^{(1,1)} & F^{(1,1)} \\
284+
& E^{(1,2)} & F^{(1,2)} & D^{(1,2)} \\
285+
& & D^{(2,1)} & E^{(2,1)} & F^{(2,1)} \\
286+
& & & \ddots & \ddots & \ddots \\
287+
& & & & E^{(p-2,2)} & F^{(p-2,2)} & D^{(p-2,2)} \\
288+
& & & & & D^{(p-1,1)} & E^{(p-1,1)}
289+
\end{bmatrix}\]
290+
291+
\[y=[ (x^{(1,1)})^T , (x^{(0,2)})^T , (x^{(2,1)})^T , (x^{(1,2)})^T,\cdots,(x^{p-1,1})^T,(x^{(p-2,2)})^T]^T, \\
292+
s=[ (r^{(1,1)})^T , (r^{(0,2)})^T , (r^{(2,1)})^T , (r^{(1,2)})^T,\cdots,(r^{p-1,1})^T,(r^{(p-2,2)})^T]^T,\]
293+
294+
\hypertarget{header-n40}{%
295+
\subsubsection{第三步}\label{header-n40}}
296+
297+
利用得到的\(x_{m_i-\alpha+2}, \cdots, x_{m_i}, x_{m_i+1}, \cdots, x_{m_i+\beta-1}, i=1, 2, \cdots, p-1\)求出所有其他解的分量,即进行如下操作:
298+
299+
\[x_k \gets
300+
(r_k - \sum_{j=1}^{\beta-1} f_{k,j} x_{n_1-\beta+1+j}) / a_k,
301+
\quad k=1, 2, \cdots, n1 - \alpha + 1\]
302+
303+
\begin{align}
304+
x_{m_i+k} \gets
305+
(r_{m_i+k}-\sum^{\alpha-1}_{j=1}e_{m_i+k_{i,j}}x_{m_i-\alpha+1+j}-\sum^{\beta-1}_{j=1}f_{m_i+k\cdot j}x_{m_{i-1}-\beta+1+j})/a_{m_i+k},
306+
\end{align}
307+
\quad
308+
\begin{matrix}
309+
k=\beta,\cdots,n_i-\alpha+1 \\
310+
i=1,2,\cdots,p-2 \quad
311+
\end{matrix},
312+
313+
\[x_{m_{p-1}+k} \gets
314+
(r_{m_{p-1}+k}-\sum^{\alpha-1}_{j=1}e_{m_{p-1}+k\cdot j}x_{m_{p-1}-\alpha+1+j})/a_{m_{p-1}+k},k=\beta,\beta+1,\cdots,n_{p-1
315+
}.\]
316+
317+
显然,带状线性方程组求解的分裂法可以直接推广到块带状线性方程组,对于循环带状线性方程组与循环块带状线性方程组,也可以类似求解,其求解算法跟带状线性方程组与块带状线性方程组的求解并无本质区别。
318+
319+
\end{document}

0 commit comments

Comments
 (0)