title | category | tag | head | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Java 并发常见面试题总结(下) |
Java |
|
|
池化技术想必大家已经屡见不鲜了,线程池、数据库连接池、Http 连接池等等都是对这个思想的应用。池化技术的思想主要是为了减少每次获取资源的消耗,提高对资源的利用率。
线程池提供了一种限制和管理资源(包括执行一个任务)的方式。 每个线程池还维护一些基本统计信息,例如已完成任务的数量。
这里借用《Java 并发编程的艺术》提到的来说一下使用线程池的好处:
- 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
- 提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
- 提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
《阿里巴巴 Java 开发手册》中强制线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险
Executors 返回线程池对象的弊端如下:
- FixedThreadPool 和 SingleThreadExecutor : 允许请求的队列长度为 Integer.MAX_VALUE ,可能堆积大量的请求,从而导致 OOM。
- CachedThreadPool 和 ScheduledThreadPool : 允许创建的线程数量为 Integer.MAX_VALUE ,可能会创建大量线程,从而导致 OOM。
方式一:通过构造方法实现
方式二:通过 Executor 框架的工具类 Executors 来实现
我们可以创建三种类型的 ThreadPoolExecutor:
- FixedThreadPool : 该方法返回一个固定线程数量的线程池。该线程池中的线程数量始终不变。当有一个新的任务提交时,线程池中若有空闲线程,则立即执行。若没有,则新的任务会被暂存在一个任务队列中,待有线程空闲时,便处理在任务队列中的任务。
- SingleThreadExecutor: 方法返回一个只有一个线程的线程池。若多余一个任务被提交到该线程池,任务会被保存在一个任务队列中,待线程空闲,按先入先出的顺序执行队列中的任务。
- CachedThreadPool: 该方法返回一个可根据实际情况调整线程数量的线程池。线程池的线程数量不确定,但若有空闲线程可以复用,则会优先使用可复用的线程。若所有线程均在工作,又有新的任务提交,则会创建新的线程处理任务。所有线程在当前任务执行完毕后,将返回线程池进行复用。
对应 Executors 工具类中的方法如图所示:
/**
* 用给定的初始参数创建一个新的ThreadPoolExecutor。
*/
public ThreadPoolExecutor(int corePoolSize,//线程池的核心线程数量
int maximumPoolSize,//线程池的最大线程数
long keepAliveTime,//当线程数大于核心线程数时,多余的空闲线程存活的最长时间
TimeUnit unit,//时间单位
BlockingQueue<Runnable> workQueue,//任务队列,用来储存等待执行任务的队列
ThreadFactory threadFactory,//线程工厂,用来创建线程,一般默认即可
RejectedExecutionHandler handler//拒绝策略,当提交的任务过多而不能及时处理时,我们可以定制策略来处理任务
) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
ThreadPoolExecutor
3 个最重要的参数:
corePoolSize
: 核心线程数定义了最小可以同时运行的线程数量。maximumPoolSize
: 当队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。workQueue
: 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。
ThreadPoolExecutor
其他常见参数:
keepAliveTime
:当线程池中的线程数量大于corePoolSize
的时候,如果这时没有新的任务提交,核心线程外的线程不会立即销毁,而是会等待,直到等待的时间超过了keepAliveTime
才会被回收销毁;unit
:keepAliveTime
参数的时间单位。threadFactory
:executor 创建新线程的时候会用到。handler
:饱和策略。关于饱和策略下面单独介绍一下。
如果当前同时运行的线程数量达到最大线程数量并且队列也已经被放满了任务时,ThreadPoolTaskExecutor
定义一些策略:
ThreadPoolExecutor.AbortPolicy
: 抛出RejectedExecutionException
来拒绝新任务的处理。ThreadPoolExecutor.CallerRunsPolicy
: 调用执行自己的线程运行任务,也就是直接在调用execute
方法的线程中运行(run
)被拒绝的任务,如果执行程序已关闭,则会丢弃该任务。因此这种策略会降低对于新任务提交速度,影响程序的整体性能。如果您的应用程序可以承受此延迟并且你要求任何一个任务请求都要被执行的话,你可以选择这个策略。ThreadPoolExecutor.DiscardPolicy
: 不处理新任务,直接丢弃掉。ThreadPoolExecutor.DiscardOldestPolicy
: 此策略将丢弃最早的未处理的任务请求。
举个例子: Spring 通过 ThreadPoolTaskExecutor
或者我们直接通过 ThreadPoolExecutor
的构造函数创建线程池的时候,当我们不指定 RejectedExecutionHandler
饱和策略的话来配置线程池的时候默认使用的是 ThreadPoolExecutor.AbortPolicy
。在默认情况下,ThreadPoolExecutor
将抛出 RejectedExecutionException
来拒绝新来的任务 ,这代表你将丢失对这个任务的处理。 对于可伸缩的应用程序,建议使用 ThreadPoolExecutor.CallerRunsPolicy
。当最大池被填满时,此策略为我们提供可伸缩队列。(这个直接查看 ThreadPoolExecutor
的构造函数源码就可以看出,比较简单的原因,这里就不贴代码了)
为了搞懂线程池的原理,我们需要首先分析一下 execute
方法。
我们可以使用 executor.execute(worker)
来提交一个任务到线程池中去,这个方法非常重要,下面我们来看看它的源码:
// 存放线程池的运行状态 (runState) 和线程池内有效线程的数量 (workerCount)
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static int workerCountOf(int c) {
return c & CAPACITY;
}
//任务队列
private final BlockingQueue<Runnable> workQueue;
public void execute(Runnable command) {
// 如果任务为null,则抛出异常。
if (command == null)
throw new NullPointerException();
// ctl 中保存的线程池当前的一些状态信息
int c = ctl.get();
// 下面会涉及到 3 步 操作
// 1.首先判断当前线程池中执行的任务数量是否小于 corePoolSize
// 如果小于的话,通过addWorker(command, true)新建一个线程,并将任务(command)添加到该线程中;然后,启动该线程从而执行任务。
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
// 2.如果当前执行的任务数量大于等于 corePoolSize 的时候就会走到这里
// 通过 isRunning 方法判断线程池状态,线程池处于 RUNNING 状态并且队列可以加入任务,该任务才会被加入进去
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
// 再次获取线程池状态,如果线程池状态不是 RUNNING 状态就需要从任务队列中移除任务,并尝试判断线程是否全部执行完毕。同时执行拒绝策略。
if (!isRunning(recheck) && remove(command))
reject(command);
// 如果当前线程池为空就新创建一个线程并执行。
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
//3. 通过addWorker(command, false)新建一个线程,并将任务(command)添加到该线程中;然后,启动该线程从而执行任务。
//如果addWorker(command, false)执行失败,则通过reject()执行相应的拒绝策略的内容。
else if (!addWorker(command, false))
reject(command);
}
通过下图可以更好的对上面这 3 步做一个展示,下图是我为了省事直接从网上找到,原地址不明。
addWorker
这个方法主要用来创建新的工作线程,如果返回 true 说明创建和启动工作线程成功,否则的话返回的就是 false。
// 全局锁,并发操作必备
private final ReentrantLock mainLock = new ReentrantLock();
// 跟踪线程池的最大大小,只有在持有全局锁mainLock的前提下才能访问此集合
private int largestPoolSize;
// 工作线程集合,存放线程池中所有的(活跃的)工作线程,只有在持有全局锁mainLock的前提下才能访问此集合
private final HashSet<Worker> workers = new HashSet<>();
//获取线程池状态
private static int runStateOf(int c) { return c & ~CAPACITY; }
//判断线程池的状态是否为 Running
private static boolean isRunning(int c) {
return c < SHUTDOWN;
}
/**
* 添加新的工作线程到线程池
* @param firstTask 要执行
* @param core参数为true的话表示使用线程池的基本大小,为false使用线程池最大大小
* @return 添加成功就返回true否则返回false
*/
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
//这两句用来获取线程池的状态
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
//获取线程池中工作的线程的数量
int wc = workerCountOf(c);
// core参数为false的话表明队列也满了,线程池大小变为 maximumPoolSize
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
//原子操作将workcount的数量加1
if (compareAndIncrementWorkerCount(c))
break retry;
// 如果线程的状态改变了就再次执行上述操作
c = ctl.get();
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
// 标记工作线程是否启动成功
boolean workerStarted = false;
// 标记工作线程是否创建成功
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
// 加锁
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//获取线程池状态
int rs = runStateOf(ctl.get());
//rs < SHUTDOWN 如果线程池状态依然为RUNNING,并且线程的状态是存活的话,就会将工作线程添加到工作线程集合中
//(rs=SHUTDOWN && firstTask == null)如果线程池状态小于STOP,也就是RUNNING或者SHUTDOWN状态下,同时传入的任务实例firstTask为null,则需要添加到工作线程集合和启动新的Worker
// firstTask == null证明只新建线程而不执行任务
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
//更新当前工作线程的最大容量
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
// 工作线程是否启动成功
workerAdded = true;
}
} finally {
// 释放锁
mainLock.unlock();
}
//// 如果成功添加工作线程,则调用Worker内部的线程实例t的Thread#start()方法启动真实的线程实例
if (workerAdded) {
t.start();
/// 标记线程启动成功
workerStarted = true;
}
}
} finally {
// 线程启动失败,需要从工作线程中移除对应的Worker
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
更多关于线程池源码分析的内容推荐这篇文章:硬核干货:4W字从源码上分析JUC线程池ThreadPoolExecutor的实现原理
线程池数量的确定一直是困扰着程序员的一个难题,大部分程序员在设定线程池大小的时候就是随心而定。
很多人甚至可能都会觉得把线程池配置过大一点比较好!我觉得这明显是有问题的。就拿我们生活中非常常见的一例子来说:并不是人多就能把事情做好,增加了沟通交流成本。你本来一件事情只需要 3 个人做,你硬是拉来了 6 个人,会提升做事效率嘛?我想并不会。 线程数量过多的影响也是和我们分配多少人做事情一样,对于多线程这个场景来说主要是增加了上下文切换成本。不清楚什么是上下文切换的话,可以看我下面的介绍。
上下文切换:
多线程编程中一般线程的个数都大于 CPU 核心的个数,而一个 CPU 核心在任意时刻只能被一个线程使用,为了让这些线程都能得到有效执行,CPU 采取的策略是为每个线程分配时间片并轮转的形式。当一个线程的时间片用完的时候就会重新处于就绪状态让给其他线程使用,这个过程就属于一次上下文切换。概括来说就是:当前任务在执行完 CPU 时间片切换到另一个任务之前会先保存自己的状态,以便下次再切换回这个任务时,可以再加载这个任务的状态。任务从保存到再加载的过程就是一次上下文切换。
上下文切换通常是计算密集型的。也就是说,它需要相当可观的处理器时间,在每秒几十上百次的切换中,每次切换都需要纳秒量级的时间。所以,上下文切换对系统来说意味着消耗大量的 CPU 时间,事实上,可能是操作系统中时间消耗最大的操作。
Linux 相比与其他操作系统(包括其他类 Unix 系统)有很多的优点,其中有一项就是,其上下文切换和模式切换的时间消耗非常少。
类比于现实世界中的人类通过合作做某件事情,我们可以肯定的一点是线程池大小设置过大或者过小都会有问题,合适的才是最好。
如果我们设置的线程池数量太小的话,如果同一时间有大量任务/请求需要处理,可能会导致大量的请求/任务在任务队列中排队等待执行,甚至会出现任务队列满了之后任务/请求无法处理的情况,或者大量任务堆积在任务队列导致 OOM。这样很明显是有问题的! CPU 根本没有得到充分利用。
但是,如果我们设置线程数量太大,大量线程可能会同时在争取 CPU 资源,这样会导致大量的上下文切换,从而增加线程的执行时间,影响了整体执行效率。
有一个简单并且适用面比较广的公式:
- CPU 密集型任务(N+1): 这种任务消耗的主要是 CPU 资源,可以将线程数设置为 N(CPU 核心数)+1,比 CPU 核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。一旦任务暂停,CPU 就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用 CPU 的空闲时间。
- I/O 密集型任务(2N): 这种任务应用起来,系统会用大部分的时间来处理 I/O 交互,而线程在处理 I/O 的时间段内不会占用 CPU 来处理,这时就可以将 CPU 交出给其它线程使用。因此在 I/O 密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是 2N。
如何判断是 CPU 密集任务还是 IO 密集任务?
CPU 密集型简单理解就是利用 CPU 计算能力的任务比如你在内存中对大量数据进行排序。但凡涉及到网络读取,文件读取这类都是 IO 密集型,这类任务的特点是 CPU 计算耗费时间相比于等待 IO 操作完成的时间来说很少,大部分时间都花在了等待 IO 操作完成上。
AQS 的全称为 AbstractQueuedSynchronizer
,翻译过来的意思就是抽象队列同步器。这个类在 java.util.concurrent.locks
包下面。
AQS 就是一个抽象类,主要用来构建锁和同步器。
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable {
}
AQS 为构建锁和同步器提供了一些通用功能的是实现,因此,使用 AQS 能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的 ReentrantLock
,Semaphore
,其他的诸如 ReentrantReadWriteLock
,SynchronousQueue
等等皆是基于 AQS 的。
AQS 核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制 AQS 是用 CLH 队列锁 实现的,即将暂时获取不到锁的线程加入到队列中。
CLH(Craig,Landin,and Hagersten) 队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS 是将每条请求共享资源的线程封装成一个 CLH 锁队列的一个结点(Node)来实现锁的分配。在 CLH 同步队列中,一个节点表示一个线程,它保存着线程的引用(thread)、 当前节点在队列中的状态(waitStatus)、前驱节点(prev)、后继节点(next)。
CLH 队列结构如下图所示:
AQS(AbstractQueuedSynchronizer
)的核心原理图(图源Java 并发之 AQS 详解)如下:
AQS 使用 int 成员变量 state
表示同步状态,通过内置的 线程等待队列 来完成获取资源线程的排队工作。
state
变量由 volatile
修饰,用于展示当前临界资源的获锁情况。
// 共享变量,使用volatile修饰保证线程可见性
private volatile int state;
另外,状态信息 state
可以通过 protected
类型的getState()
、setState()
和compareAndSetState()
进行操作。并且,这几个方法都是 final
修饰的,在子类中无法被重写。
//返回同步状态的当前值
protected final int getState() {
return state;
}
// 设置同步状态的值
protected final void setState(int newState) {
state = newState;
}
//原子地(CAS操作)将同步状态值设置为给定值update如果当前同步状态的值等于expect(期望值)
protected final boolean compareAndSetState(int expect, int update) {
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}
以 ReentrantLock
为例,state
初始值为 0,表示未锁定状态。A 线程 lock()
时,会调用 tryAcquire()
独占该锁并将 state+1
。此后,其他线程再 tryAcquire()
时就会失败,直到 A 线程 unlock()
到 state=
0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A 线程自己是可以重复获取此锁的(state
会累加),这就是可重入的概念。但要注意,获取多少次就要释放多少次,这样才能保证 state 是能回到零态的。
再以 CountDownLatch
以例,任务分为 N 个子线程去执行,state
也初始化为 N(注意 N 要与线程个数一致)。这 N 个子线程是并行执行的,每个子线程执行完后countDown()
一次,state 会 CAS(Compare and Swap) 减 1。等到所有子线程都执行完后(即 state=0
),会 unpark()
主调用线程,然后主调用线程就会从 await()
函数返回,继续后余动作。
synchronized
和 ReentrantLock
都是一次只允许一个线程访问某个资源,而Semaphore
(信号量)可以用来控制同时访问特定资源的线程数量。
Semaphore 的使用简单,我们这里假设有 N(N>5) 个线程来获取 Semaphore
中的共享资源,下面的代码表示同一时刻 N 个线程中只有 5 个线程能获取到共享资源,其他线程都会阻塞,只有获取到共享资源的线程才能执行。等到有线程释放了共享资源,其他阻塞的线程才能获取到。
// 初始共享资源数量
final Semaphore semaphore = new Semaphore(5);
// 获取1个许可
semaphore.acquire();
// 释放1个许可
semaphore.release();
当初始的资源个数为 1 的时候,Semaphore
退化为排他锁。
Semaphore
有两种模式:。
- 公平模式: 调用
acquire()
方法的顺序就是获取许可证的顺序,遵循 FIFO; - 非公平模式: 抢占式的。
Semaphore
对应的两个构造方法如下:
public Semaphore(int permits) {
sync = new NonfairSync(permits);
}
public Semaphore(int permits, boolean fair) {
sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}
这两个构造方法,都必须提供许可的数量,第二个构造方法可以指定是公平模式还是非公平模式,默认非公平模式。
Semaphore
通常用于那些资源有明确访问数量限制的场景比如限流(仅限于单机模式,实际项目中推荐使用 Redis +Lua 来做限流)。
Semaphore
是共享锁的一种实现,它默认构造 AQS 的 state
值为 permits
,你可以将 permits
的值理解为许可证的数量,只有拿到许可证的线程才能执行。
调用semaphore.acquire()
,线程尝试获取许可证,如果 state >= 0
的话,则表示可以获取成功。如果获取成功的话,使用 CAS 操作去修改 state
的值 state=state-1
。如果 state<0
的话,则表示许可证数量不足。此时会创建一个 Node 节点加入阻塞队列,挂起当前线程。
/**
* 获取1个许可证
*/
public void acquire() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
/**
* 共享模式下获取许可证,获取成功则返回,失败则加入阻塞队列,挂起线程
*/
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
// 尝试获取许可证,arg为获取许可证个数,当可用许可证数减当前获取的许可证数结果小于0,则创建一个节点加入阻塞队列,挂起当前线程。
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
调用semaphore.release();
,线程尝试释放许可证,并使用 CAS 操作去修改 state
的值 state=state+1
。释放许可证成功之后,同时会唤醒同步队列中的一个线程。被唤醒的线程会重新尝试去修改 state
的值 state=state-1
,如果 state>=0
则获取令牌成功,否则重新进入阻塞队列,挂起线程。
// 释放一个许可证
public void release() {
sync.releaseShared(1);
}
// 释放共享锁,同时会唤醒同步队列中的一个线程。
public final boolean releaseShared(int arg) {
//释放共享锁
if (tryReleaseShared(arg)) {
//唤醒同步队列中的一个线程
doReleaseShared();
return true;
}
return false;
}
CountDownLatch
允许 count
个线程阻塞在一个地方,直至所有线程的任务都执行完毕。
CountDownLatch
是一次性的,计数器的值只能在构造方法中初始化一次,之后没有任何机制再次对其设置值,当 CountDownLatch
使用完毕后,它不能再次被使用。
CountDownLatch
是共享锁的一种实现,它默认构造 AQS 的 state
值为 count
。当线程使用 countDown()
方法时,其实使用了tryReleaseShared
方法以 CAS 的操作来减少 state
,直至 state
为 0 。当调用 await()
方法的时候,如果 state
不为 0,那就证明任务还没有执行完毕,await()
方法就会一直阻塞,也就是说 await()
方法之后的语句不会被执行。然后,CountDownLatch
会自旋 CAS 判断 state == 0
,如果 state == 0
的话,就会释放所有等待的线程,await()
方法之后的语句得到执行。
CountDownLatch
的作用就是 允许 count 个线程阻塞在一个地方,直至所有线程的任务都执行完毕。之前在项目中,有一个使用多线程读取多个文件处理的场景,我用到了 CountDownLatch
。具体场景是下面这样的:
我们要读取处理 6 个文件,这 6 个任务都是没有执行顺序依赖的任务,但是我们需要返回给用户的时候将这几个文件的处理的结果进行统计整理。
为此我们定义了一个线程池和 count 为 6 的CountDownLatch
对象 。使用线程池处理读取任务,每一个线程处理完之后就将 count-1,调用CountDownLatch
对象的 await()
方法,直到所有文件读取完之后,才会接着执行后面的逻辑。
伪代码是下面这样的:
public class CountDownLatchExample1 {
// 处理文件的数量
private static final int threadCount = 6;
public static void main(String[] args) throws InterruptedException {
// 创建一个具有固定线程数量的线程池对象(推荐使用构造方法创建)
ExecutorService threadPool = Executors.newFixedThreadPool(10);
final CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
final int threadnum = i;
threadPool.execute(() -> {
try {
//处理文件的业务操作
//......
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
//表示一个文件已经被完成
countDownLatch.countDown();
}
});
}
countDownLatch.await();
threadPool.shutdown();
System.out.println("finish");
}
}
有没有可以改进的地方呢?
可以使用 CompletableFuture
类来改进!Java8 的 CompletableFuture
提供了很多对多线程友好的方法,使用它可以很方便地为我们编写多线程程序,什么异步、串行、并行或者等待所有线程执行完任务什么的都非常方便。
CompletableFuture<Void> task1 =
CompletableFuture.supplyAsync(()->{
//自定义业务操作
});
......
CompletableFuture<Void> task6 =
CompletableFuture.supplyAsync(()->{
//自定义业务操作
});
......
CompletableFuture<Void> headerFuture=CompletableFuture.allOf(task1,.....,task6);
try {
headerFuture.join();
} catch (Exception ex) {
//......
}
System.out.println("all done. ");
上面的代码还可以继续优化,当任务过多的时候,把每一个 task 都列出来不太现实,可以考虑通过循环来添加任务。
//文件夹位置
List<String> filePaths = Arrays.asList(...)
// 异步处理所有文件
List<CompletableFuture<String>> fileFutures = filePaths.stream()
.map(filePath -> doSomeThing(filePath))
.collect(Collectors.toList());
// 将他们合并起来
CompletableFuture<Void> allFutures = CompletableFuture.allOf(
fileFutures.toArray(new CompletableFuture[fileFutures.size()])
);
CyclicBarrier
和 CountDownLatch
非常类似,它也可以实现线程间的技术等待,但是它的功能比 CountDownLatch
更加复杂和强大。主要应用场景和 CountDownLatch
类似。
CountDownLatch
的实现是基于 AQS 的,而CycliBarrier
是基于ReentrantLock
(ReentrantLock
也属于 AQS 同步器)和Condition
的。
CyclicBarrier
的字面意思是可循环使用(Cyclic)的屏障(Barrier)。它要做的事情是:让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有被屏障拦截的线程才会继续干活。
CyclicBarrier
内部通过一个 count
变量作为计数器,count
的初始值为 parties
属性的初始化值,每当一个线程到了栅栏这里了,那么就将计数器减 1。如果 count 值为 0 了,表示这是这一代最后一个线程到达栅栏,就尝试执行我们构造方法中输入的任务。
//每次拦截的线程数
private final int parties;
//计数器
private int count;
下面我们结合源码来简单看看。
1、CyclicBarrier
默认的构造方法是 CyclicBarrier(int parties)
,其参数表示屏障拦截的线程数量,每个线程调用 await()
方法告诉 CyclicBarrier
我已经到达了屏障,然后当前线程被阻塞。
public CyclicBarrier(int parties) {
this(parties, null);
}
public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}
其中,parties
就代表了有拦截的线程的数量,当拦截的线程数量达到这个值的时候就打开栅栏,让所有线程通过。
2、当调用 CyclicBarrier
对象调用 await()
方法时,实际上调用的是 dowait(false, 0L)
方法。 await()
方法就像树立起一个栅栏的行为一样,将线程挡住了,当拦住的线程数量达到 parties
的值时,栅栏才会打开,线程才得以通过执行。
public int await() throws InterruptedException, BrokenBarrierException {
try {
return dowait(false, 0L);
} catch (TimeoutException toe) {
throw new Error(toe); // cannot happen
}
}
dowait(false, 0L)
方法源码分析如下:
// 当线程数量或者请求数量达到 count 时 await 之后的方法才会被执行。上面的示例中 count 的值就为 5。
private int count;
/**
* Main barrier code, covering the various policies.
*/
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
// 锁住
lock.lock();
try {
final Generation g = generation;
if (g.broken)
throw new BrokenBarrierException();
// 如果线程中断了,抛出异常
if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
// cout减1
int index = --count;
// 当 count 数量减为 0 之后说明最后一个线程已经到达栅栏了,也就是达到了可以执行await 方法之后的条件
if (index == 0) { // tripped
boolean ranAction = false;
try {
final Runnable command = barrierCommand;
if (command != null)
command.run();
ranAction = true;
// 将 count 重置为 parties 属性的初始化值
// 唤醒之前等待的线程
// 下一波执行开始
nextGeneration();
return 0;
} finally {
if (!ranAction)
breakBarrier();
}
}
// loop until tripped, broken, interrupted, or timed out
for (;;) {
try {
if (!timed)
trip.await();
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
// We're about to finish waiting even if we had not
// been interrupted, so this interrupt is deemed to
// "belong" to subsequent execution.
Thread.currentThread().interrupt();
}
}
if (g.broken)
throw new BrokenBarrierException();
if (g != generation)
return index;
if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}
- 《深入理解 Java 虚拟机》
- 《实战 Java 高并发程序设计》
- Java 并发之 AQS 详解:https://www.cnblogs.com/waterystone/p/4920797.html
- Java 并发包基石-AQS 详解:https://www.cnblogs.com/chengxiao/archive/2017/07/24/7141160.html