forked from Thinklab-SJTU/EDA-AI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplace_env.py
150 lines (126 loc) · 4.43 KB
/
place_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from gym.spaces import Discrete
import torch
import torch.nn as nn
import numpy as np
from gym.utils import seeding
import os
import sys
import logging
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
if root_dir not in sys.path:
sys.path.append(root_dir)
from rnd import RNDModel
import torch.optim as optim
np.set_printoptions(threshold=np.inf)
rnd = RNDModel((1, 1, 84, 84), 32*32)
forward_mse = nn.MSELoss(reduction='none')
optimizer = optim.Adam(rnd.predictor.parameters(), lr=5e-6)
def compute_intrinsic_reward(rnd, next_obs):
target_next_feature = rnd.target(next_obs)
predict_next_feature = rnd.predictor(next_obs)
forward_loss = forward_mse(predict_next_feature, target_next_feature).mean(-1)
intrinsic_reward = (target_next_feature - predict_next_feature).pow(2).sum(1) / 2
optimizer.zero_grad()
forward_loss.backward()
return intrinsic_reward.item()/100
def is_valid(x, y):
if -1 < x < 32 and -1 < y < 32:
return True
return False
def search(ob, x, y, depth, n):
if ob[x, y] < 1.0:
return x, y
if depth > 7:
return -1, -1
elif x-1 >= 0 and ob[x-1, y] < 1.0:
return x-1, y
elif x+1 < n and ob[x+1, y] < 1.0:
return x+1, y
elif y-1 >= 0 and ob[x, y-1] < 1.0:
return x, y-1
elif y+1 < n and ob[x, y+1] < 1.0:
return x, y+1
else:
return search(ob, x-1, y-1, depth+1, n)
def find(ob, n):
center = [n//2, n//2]
for i in range(n):
for j in range(i):
if is_valid(center[0]-j, center[1]-(i-j)) and ob[center[0]-j, center[1]-(i-j)] < 1.0:
return center[0]-j, center[1]-(i-j)
if is_valid(center[0]-j, center[1]+(i-j)) and ob[center[0]-j, center[1]+(i-j)] < 1.0:
return center[0]-j, center[1]+(i-j)
if is_valid(center[0]+j, center[1]-(i-j)) and ob[center[0]+j, center[1]-(i-j)] < 1.0:
return center[0]+j, center[1]-(i-j)
if is_valid(center[0]+j, center[1]+(i-j)) and ob[center[0]+j, center[1]+(i-j)] < 1.0:
return center[0]+j, center[1]+(i-j)
def cal_re(r, x):
wl = 0
con = np.zeros((32, 32))
for net in x:
left = 31
right = 0
up = 31
down = 0
for i in net:
left = min(left, r[i][1])
right = max(right, r[i][1])
up = min(up, r[i][0])
down = max(down, r[i][0])
wn = int(right-left+1)
hn = int(down-up+1)
dn = (wn+hn) / (wn*hn)
con[up:down+1, left:right+1] += dn
wl += wn + hn
con = list(con.flatten())
con.sort(reverse=True)
return (-np.mean(con[:32]) - (wl-34000)*0.1)*0.2
class Placememt():
def __init__(self, grid_size=32, num_cell=710):
self.n = grid_size
self.steps = num_cell
self.action_space = Discrete(self.n * self.n)
self.obs_space = (1, 84, 84)
self.obs = torch.zeros((1, 1, self.n, self.n))
self.results = []
self.best = -500
self.f = open("./result/result.txt", 'w')
f = open("./data/n_edges_710.dat", "r")
for line in f:
self.net = eval(line)
self.seed()
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def reset(self):
self.obs = torch.zeros((1, 1, self.n, self.n))
return self.obs
def transform(self, x):
up = nn.Upsample(size=84, mode='bilinear', align_corners=False)
return up(x)*255
def step(self, action):
x = action // self.n
y = action % self.n
x, y = search(self.obs[0, 0], x, y, 0, self.n)
if x == -1 or y == -1:
x, y = find(self.obs[0, 0], self.n)
self.obs[0, 0, x, y] = 1
self.results.append([int(x), int(y)])
obs = self.transform(self.obs)
if len(self.results) == self.steps:
done = True
reward = cal_re(self.results, self.net)
if reward > self.best:
self.best = reward
self.f.write(str(self.obs))
self.f.write(str(self.results))
self.f.write('\n')
self.f.write(str(reward))
self.f.write('\n')
self.results = []
else:
done = False
reward = compute_intrinsic_reward(rnd, obs / 255.0)
return obs, done, torch.FloatTensor([[reward]])
def place_envs():
return Placememt()