-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet_test.py
71 lines (55 loc) · 2.39 KB
/
resnet_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
from torchvision import datasets, models, transforms
from torch.utils.data import TensorDataset
from efficientnet_pytorch import EfficientNet
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import classification_report, confusion_matrix
import time
import os
import copy
from PIL import Image
from tqdm import tqdm
from utils.data_utils import get_dataloader, get_dataloader_2
from utils.loss import LDAMLoss
from utils.model_train import train_model
from utils.mixed_precision_train import mixed_precision_train_with_tensorboard, mixed_precision_train
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
train_preprocess = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
transforms.RandomResizedCrop(224, scale=(0.85, 1.0)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
transform = {
"train": train_preprocess,
"val": preprocess,
"test": preprocess,
}
dataloaders, dataset_size, num_classes, distributions = get_dataloader_2("./data/top20.csv", "./data/train_224/", transform=transform, batch_size=64, shuffle=True, num_workers=32)
model_name = "Resnet50_top20_batch64_epoch5_LDAM_sgd_aug"
#model = EfficientNet.from_pretrained("efficientnet-b0")
model = models.resnet50(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, num_classes["train"])
# criterion = nn.CrossEntropyLoss()
criterion = LDAMLoss(distributions["train"][::-1], max_m=0.5, s=30)
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
model = model.to(device)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
model = mixed_precision_train(dataloaders, model, criterion, optimizer, exp_lr_scheduler,dataset_size, device=device, num_epochs=5, train=True)
model = mixed_precision_train(dataloaders, model, criterion, optimizer, exp_lr_scheduler,dataset_size, device=device, train=False)
torch.save(model, './model/'+model_name)