forked from crewAIInc/crewAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent_test.py
700 lines (572 loc) · 20.8 KB
/
agent_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
"""Test Agent creation and execution basic functionality."""
from unittest.mock import patch
import pytest
from langchain.tools import tool
from langchain_core.exceptions import OutputParserException
from langchain_openai import ChatOpenAI
from crewai import Agent, Crew, Task
from crewai.agents.cache import CacheHandler
from crewai.agents.executor import CrewAgentExecutor
from crewai.agents.parser import CrewAgentParser
from crewai.tools.tool_calling import InstructorToolCalling
from crewai.tools.tool_usage import ToolUsage
from crewai.utilities import RPMController
def test_agent_creation():
agent = Agent(role="test role", goal="test goal", backstory="test backstory")
assert agent.role == "test role"
assert agent.goal == "test goal"
assert agent.backstory == "test backstory"
assert agent.tools == []
def test_agent_default_values():
agent = Agent(role="test role", goal="test goal", backstory="test backstory")
assert isinstance(agent.llm, ChatOpenAI)
assert agent.llm.model_name == "gpt-4"
assert agent.llm.temperature == 0.7
assert agent.llm.verbose == False
assert agent.allow_delegation == True
def test_custom_llm():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=ChatOpenAI(temperature=0, model="gpt-4"),
)
assert isinstance(agent.llm, ChatOpenAI)
assert agent.llm.model_name == "gpt-4"
assert agent.llm.temperature == 0
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_without_memory():
no_memory_agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
memory=False,
llm=ChatOpenAI(temperature=0, model="gpt-4"),
)
memory_agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
memory=True,
llm=ChatOpenAI(temperature=0, model="gpt-4"),
)
task = Task(
description="How much is 1 + 1?",
agent=no_memory_agent,
expected_output="the result of the math operation.",
)
result = no_memory_agent.execute_task(task)
assert result == "The result of the math operation 1 + 1 is 2."
assert no_memory_agent.agent_executor.memory is None
assert memory_agent.agent_executor.memory is not None
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execution():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
allow_delegation=False,
)
task = Task(
description="How much is 1 + 1?",
agent=agent,
expected_output="the result of the math operation.",
)
output = agent.execute_task(task)
assert output == "The result of the math operation 1 + 1 is 2."
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execution_with_tools():
@tool
def multiplier(first_number: int, second_number: int) -> float:
"""Useful for when you need to multiply two numbers together."""
return first_number * second_number
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
tools=[multiplier],
allow_delegation=False,
)
task = Task(
description="What is 3 times 4?",
agent=agent,
expected_output="The result of the multiplication.",
)
output = agent.execute_task(task)
assert output == "The result of 3 times 4 is 12."
@pytest.mark.vcr(filter_headers=["authorization"])
def test_logging_tool_usage():
@tool
def multiplier(first_number: int, second_number: int) -> float:
"""Useful for when you need to multiply two numbers together."""
return first_number * second_number
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
tools=[multiplier],
allow_delegation=False,
verbose=True,
)
assert agent.tools_handler.last_used_tool == {}
task = Task(
description="What is 3 times 4?",
agent=agent,
expected_output="The result of the multiplication.",
)
# force cleaning cache
agent.tools_handler.cache = CacheHandler()
output = agent.execute_task(task)
tool_usage = InstructorToolCalling(
tool_name=multiplier.name, arguments={"first_number": 3, "second_number": 4}
)
assert output == "12"
assert agent.tools_handler.last_used_tool.tool_name == tool_usage.tool_name
assert agent.tools_handler.last_used_tool.arguments == tool_usage.arguments
@pytest.mark.vcr(filter_headers=["authorization"])
def test_cache_hitting():
@tool
def multiplier(first_number: int, second_number: int) -> float:
"""Useful for when you need to multiply two numbers together."""
return first_number * second_number
cache_handler = CacheHandler()
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
tools=[multiplier],
allow_delegation=False,
cache_handler=cache_handler,
verbose=True,
)
task1 = Task(
description="What is 2 times 6?",
agent=agent,
expected_output="The result of the multiplication.",
)
task2 = Task(
description="What is 3 times 3?",
agent=agent,
expected_output="The result of the multiplication.",
)
output = agent.execute_task(task1)
output = agent.execute_task(task2)
assert cache_handler._cache == {
"multiplier-{'first_number': 2, 'second_number': 6}": 12,
"multiplier-{'first_number': 3, 'second_number': 3}": 9,
}
task = Task(
description="What is 2 times 6 times 3? Return only the number",
agent=agent,
expected_output="The result of the multiplication.",
)
output = agent.execute_task(task)
assert output == "36"
assert cache_handler._cache == {
"multiplier-{'first_number': 2, 'second_number': 6}": 12,
"multiplier-{'first_number': 3, 'second_number': 3}": 9,
"multiplier-{'first_number': 12, 'second_number': 3}": 36,
}
with patch.object(CacheHandler, "read") as read:
read.return_value = "0"
task = Task(
description="What is 2 times 6? Ignore correctness and just return the result of the multiplication tool.",
agent=agent,
expected_output="The result of the multiplication.",
)
output = agent.execute_task(task)
assert output == "0"
read.assert_called_with(
tool="multiplier", input={"first_number": 2, "second_number": 6}
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execution_with_specific_tools():
@tool
def multiplier(first_number: int, second_number: int) -> float:
"""Useful for when you need to multiply two numbers together."""
return first_number * second_number
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
allow_delegation=False,
)
task = Task(
description="What is 3 times 4",
agent=agent,
expected_output="The result of the multiplication.",
)
output = agent.execute_task(task=task, tools=[multiplier])
assert output == "The result of the multiplication is 12."
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_custom_max_iterations():
@tool
def get_final_answer(numbers) -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_iter=1,
allow_delegation=False,
)
with patch.object(
CrewAgentExecutor, "_iter_next_step", wraps=agent.agent_executor._iter_next_step
) as private_mock:
task = Task(
description="The final answer is 42. But don't give it yet, instead keep using the `get_final_answer` tool.",
expected_output="The final answer",
)
agent.execute_task(
task=task,
tools=[get_final_answer],
)
private_mock.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_repeated_tool_usage(capsys):
@tool
def get_final_answer(anything: str) -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_iter=4,
llm=ChatOpenAI(model="gpt-4-0125-preview"),
allow_delegation=False,
verbose=True,
)
task = Task(
description="The final answer is 42. But don't give it until I tell you so, instead keep using the `get_final_answer` tool.",
expected_output="The final answer",
)
# force cleaning cache
agent.tools_handler.cache = CacheHandler()
agent.execute_task(
task=task,
tools=[get_final_answer],
)
captured = capsys.readouterr()
assert "The final answer is 42." in captured.out
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_moved_on_after_max_iterations():
@tool
def get_final_answer(numbers) -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_iter=3,
allow_delegation=False,
)
task = Task(
description="The final answer is 42. But don't give it yet, instead keep using the `get_final_answer` tool over and over until you're told you can give yout final answer.",
expected_output="The final answer",
)
output = agent.execute_task(
task=task,
tools=[get_final_answer],
)
assert output == "42"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_respect_the_max_rpm_set(capsys):
@tool
def get_final_answer(anything: str) -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_iter=5,
max_rpm=1,
verbose=True,
allow_delegation=False,
)
with patch.object(RPMController, "_wait_for_next_minute") as moveon:
moveon.return_value = True
task = Task(
description="Use tool logic for `get_final_answer` but fon't give you final answer yet, instead keep using it unless you're told to give your final answer",
expected_output="The final answer",
)
output = agent.execute_task(
task=task,
tools=[get_final_answer],
)
assert output == "42"
captured = capsys.readouterr()
assert "Max RPM reached, waiting for next minute to start." in captured.out
moveon.assert_called()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_respect_the_max_rpm_set_over_crew_rpm(capsys):
from unittest.mock import patch
from langchain.tools import tool
@tool
def get_final_answer(numbers) -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_iter=4,
max_rpm=10,
verbose=True,
)
task = Task(
description="Use tool logic for `get_final_answer` but fon't give you final answer yet, instead keep using it unless you're told to give your final answer",
expected_output="The final answer",
tools=[get_final_answer],
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], max_rpm=1, verbose=2)
with patch.object(RPMController, "_wait_for_next_minute") as moveon:
moveon.return_value = True
crew.kickoff()
captured = capsys.readouterr()
assert "Max RPM reached, waiting for next minute to start." not in captured.out
moveon.assert_not_called()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_without_max_rpm_respet_crew_rpm(capsys):
from unittest.mock import patch
from langchain.tools import tool
@tool
def get_final_answer(numbers) -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent1 = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_rpm=10,
verbose=True,
allow_delegation=False,
)
agent2 = Agent(
role="test role2",
goal="test goal2",
backstory="test backstory2",
max_iter=2,
verbose=True,
allow_delegation=False,
)
tasks = [
Task(
description="Just say hi.", agent=agent1, expected_output="Your greeting."
),
Task(
description="NEVER give a Final Answer, instead keep using the `get_final_answer` tool non-stop",
expected_output="The final answer",
tools=[get_final_answer],
agent=agent2,
),
]
crew = Crew(agents=[agent1, agent2], tasks=tasks, max_rpm=1, verbose=2)
with patch.object(RPMController, "_wait_for_next_minute") as moveon:
moveon.return_value = True
crew.kickoff()
captured = capsys.readouterr()
assert "get_final_answer" in captured.out
assert "Max RPM reached, waiting for next minute to start." in captured.out
moveon.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_error_on_parsing_tool(capsys):
from unittest.mock import patch
from langchain.tools import tool
@tool
def get_final_answer() -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent1 = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
verbose=True,
)
tasks = [
Task(
description="Use the get_final_answer tool.",
expected_output="The final answer",
agent=agent1,
tools=[get_final_answer],
)
]
crew = Crew(
agents=[agent1],
tasks=tasks,
verbose=2,
function_calling_llm=ChatOpenAI(model="gpt-4-0125-preview"),
)
with patch.object(ToolUsage, "_render") as force_exception:
force_exception.side_effect = Exception("Error on parsing tool.")
crew.kickoff()
captured = capsys.readouterr()
assert "Error on parsing tool." in captured.out
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_remembers_output_format_after_using_tools_too_many_times():
from unittest.mock import patch
from langchain.tools import tool
@tool
def get_final_answer(anything: str) -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent1 = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_iter=6,
verbose=True,
)
tasks = [
Task(
description="Use tool logic for `get_final_answer` but fon't give you final answer yet, instead keep using it unless you're told to give your final answer",
expected_output="The final answer",
agent=agent1,
tools=[get_final_answer],
)
]
crew = Crew(agents=[agent1], tasks=tasks, verbose=2)
with patch.object(ToolUsage, "_remember_format") as remember_format:
crew.kickoff()
remember_format.assert_called()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_use_specific_tasks_output_as_context(capsys):
agent1 = Agent(role="test role", goal="test goal", backstory="test backstory")
agent2 = Agent(role="test role2", goal="test goal2", backstory="test backstory2")
say_hi_task = Task(
description="Just say hi.", agent=agent1, expected_output="Your greeting."
)
say_bye_task = Task(
description="Just say bye.", agent=agent1, expected_output="Your farewell."
)
answer_task = Task(
description="Answer accordingly to the context you got.",
expected_output="Your answer.",
context=[say_hi_task],
agent=agent2,
)
tasks = [say_hi_task, say_bye_task, answer_task]
crew = Crew(agents=[agent1, agent2], tasks=tasks)
result = crew.kickoff()
assert "bye" not in result.lower()
assert "hi" in result.lower() or "hello" in result.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_step_callback():
class StepCallback:
def callback(self, step):
print(step)
with patch.object(StepCallback, "callback") as callback:
@tool
def learn_about_AI(topic) -> float:
"""Useful for when you need to learn about AI to write an paragraph about it."""
return "AI is a very broad field."
agent1 = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
tools=[learn_about_AI],
step_callback=StepCallback().callback,
)
essay = Task(
description="Write and then review an small paragraph on AI until it's AMAZING",
expected_output="The final paragraph.",
agent=agent1,
)
tasks = [essay]
crew = Crew(agents=[agent1], tasks=tasks)
callback.return_value = "ok"
crew.kickoff()
callback.assert_called()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_function_calling_llm():
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
with patch.object(llm.client, "create", wraps=llm.client.create) as private_mock:
@tool
def learn_about_AI(topic) -> float:
"""Useful for when you need to learn about AI to write an paragraph about it."""
return "AI is a very broad field."
agent1 = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
tools=[learn_about_AI],
llm=ChatOpenAI(model="gpt-4-0125-preview"),
function_calling_llm=llm,
)
essay = Task(
description="Write and then review an small paragraph on AI until it's AMAZING",
expected_output="The final paragraph.",
agent=agent1,
)
tasks = [essay]
crew = Crew(agents=[agent1], tasks=tasks)
crew.kickoff()
private_mock.assert_called()
def test_agent_count_formatting_error():
from unittest.mock import patch
agent1 = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
verbose=True,
)
parser = CrewAgentParser()
parser.agent = agent1
with patch.object(Agent, "increment_formatting_errors") as mock_count_errors:
test_text = "This text does not match expected formats."
with pytest.raises(OutputParserException):
parser.parse(test_text)
mock_count_errors.assert_called_once()
def test_agent_llm_uses_token_calc_handler_with_llm_has_model_name():
agent1 = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
verbose=True,
)
assert len(agent1.llm.callbacks) == 1
assert agent1.llm.callbacks[0].__class__.__name__ == "TokenCalcHandler"
assert agent1.llm.callbacks[0].model == "gpt-4"
assert (
agent1.llm.callbacks[0].token_cost_process.__class__.__name__ == "TokenProcess"
)
def test_agent_definition_based_on_dict():
config = {
"role": "test role",
"goal": "test goal",
"backstory": "test backstory",
"verbose": True,
}
agent = Agent(config=config)
assert agent.role == "test role"
assert agent.goal == "test goal"
assert agent.backstory == "test backstory"
assert agent.verbose == True
assert agent.tools == []
def test_interpolate_inputs():
agent = Agent(
role="{topic} specialist",
goal="Figure {goal} out",
backstory="I am the master of {role}",
)
agent.interpolate_inputs({"topic": "AI", "goal": "life", "role": "all things"})
assert agent.role == "AI specialist"
assert agent.goal == "Figure life out"
assert agent.backstory == "I am the master of all things"
agent.interpolate_inputs({"topic": "Sales", "goal": "stuff", "role": "nothing"})
assert agent.role == "Sales specialist"
assert agent.goal == "Figure stuff out"
assert agent.backstory == "I am the master of nothing"