-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathding_test.py
146 lines (113 loc) · 5.49 KB
/
ding_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from base_config import BaseConfigByEpoch
from model_map import get_model_fn
from dataset import create_dataset, load_cuda_data
from torch.nn.modules.loss import CrossEntropyLoss
from utils.engine import Engine
from utils.misc import torch_accuracy, AvgMeter
from utils.comm import reduce_loss_dict
from collections import OrderedDict
import torch
from tqdm import tqdm
import time
from builder import ConvBuilder
import sys
from utils.misc import log_important, extract_deps_from_weights_file
from base_config import get_baseconfig_for_test
SPEED_TEST_SAMPLE_IGNORE_RATIO = 0.5
TEST_BATCH_SIZE = 100
OVERALL_LOG_FILE = 'overall_test_log.txt'
DETAIL_LOG_FILE = 'detail_test_log.txt'
def run_eval(ds_val, max_iters, net, criterion, discrip_str, dataset_name):
pbar = tqdm(range(max_iters))
top1 = AvgMeter()
top5 = AvgMeter()
losses = AvgMeter()
pbar.set_description('Validation' + discrip_str)
total_net_time = 0
with torch.no_grad():
for iter_idx, i in enumerate(pbar):
start_time = time.time()
data, label = load_cuda_data(ds_val, dataset_name=dataset_name)
data_time = time.time() - start_time
net_time_start = time.time()
pred = net(data)
net_time_end = time.time()
if iter_idx >= SPEED_TEST_SAMPLE_IGNORE_RATIO * max_iters:
total_net_time += net_time_end - net_time_start
loss = criterion(pred, label)
acc, acc5 = torch_accuracy(pred, label, (1, 5))
top1.update(acc.item())
top5.update(acc5.item())
losses.update(loss.item())
pbar_dic = OrderedDict()
pbar_dic['data-time'] = '{:.2f}'.format(data_time)
pbar_dic['top1'] = '{:.5f}'.format(top1.mean)
pbar_dic['top5'] = '{:.5f}'.format(top5.mean)
pbar_dic['loss'] = '{:.5f}'.format(losses.mean)
pbar.set_postfix(pbar_dic)
metric_dic = {'top1':torch.tensor(top1.mean),
'top5':torch.tensor(top5.mean),
'loss':torch.tensor(losses.mean)}
reduced_metirc_dic = reduce_loss_dict(metric_dic)
return reduced_metirc_dic, total_net_time
def get_criterion(cfg):
return CrossEntropyLoss()
def ding_test(cfg:BaseConfigByEpoch, net=None, val_dataloader=None, show_variables=False, convbuilder=None,
init_hdf5=None, ):
with Engine() as engine:
engine.setup_log(
name='test', log_dir='./', file_name=DETAIL_LOG_FILE)
if net is None:
net = get_model_fn(cfg.dataset_name, cfg.network_type)
if convbuilder is None:
convbuilder = ConvBuilder(base_config=cfg)
model = net(cfg, convbuilder).cuda()
if val_dataloader is None:
val_dataloader = create_dataset(cfg.dataset_name, cfg.dataset_subset, batch_size=cfg.global_batch_size)
val_iters = 50000 // cfg.global_batch_size if cfg.dataset_name == 'imagenet' else 10000 // cfg.global_batch_size
print('NOTE: Data prepared')
print('NOTE: We have global_batch_size={} on {} GPUs, the allocated GPU memory is {}'.format(cfg.global_batch_size, torch.cuda.device_count(), torch.cuda.memory_allocated()))
criterion = get_criterion(cfg).cuda()
engine.register_state(
scheduler=None, model=model, optimizer=None, cfg=cfg)
if show_variables:
engine.show_variables()
if engine.distributed:
print('Distributed training, engine.world_rank={}'.format(engine.world_rank))
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[engine.world_rank],
broadcast_buffers=False, )
# model = DistributedDataParallel(model, delay_allreduce=True)
elif torch.cuda.device_count() > 1:
print('Single machine multiple GPU training')
model = torch.nn.parallel.DataParallel(model)
if cfg.init_weights:
engine.load_checkpoint(cfg.init_weights, just_weights=True)
if init_hdf5:
engine.load_hdf5(init_hdf5)
model.eval()
eval_dict, _ = run_eval(val_dataloader, val_iters, model, criterion, 'TEST', dataset_name=cfg.dataset_name)
val_top1_value = eval_dict['top1'].item()
val_top5_value = eval_dict['top5'].item()
val_loss_value = eval_dict['loss'].item()
msg = '{},{},{},top1={:.5f},top5={:.5f},loss={:.7f}'.format(cfg.network_type, init_hdf5 or cfg.init_weights, cfg.dataset_subset,
val_top1_value, val_top5_value, val_loss_value)
log_important(msg, OVERALL_LOG_FILE)
def general_test(network_type, weights, builder=None):
if weights.endswith('.hdf5'):
init_weights = None
init_hdf5 = weights
else:
init_weights = weights
init_hdf5 = None
deps = extract_deps_from_weights_file(weights)
if deps is None and ('wrnc16' in network_type or 'wrnh16' in network_type):
from constants import wrn_origin_deps_flattened
deps = wrn_origin_deps_flattened(2, 8)
test_config = get_baseconfig_for_test(network_type=network_type, dataset_subset='val', global_batch_size=TEST_BATCH_SIZE,
init_weights=init_weights, deps=deps)
ding_test(cfg=test_config, show_variables=True, init_hdf5=init_hdf5, convbuilder=builder)
if __name__ == '__main__':
network_type = sys.argv[1]
weights = sys.argv[2]
general_test(network_type=network_type, weights=weights)