-
Notifications
You must be signed in to change notification settings - Fork 11
/
builder.py
130 lines (95 loc) · 5.9 KB
/
builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch.nn as nn
import torch.nn.functional as F
from custom_layers.flatten_layer import FlattenLayer
from custom_layers.se_block import SEBlock
class ConvBuilder(nn.Module):
def __init__(self, base_config):
super(ConvBuilder, self).__init__()
print('ConvBuilder initialized.')
self.BN_eps = 1e-5
self.BN_momentum = 0.1
self.BN_affine = True
self.BN_track_running_stats = True
self.base_config = base_config
def set_BN_config(self, eps, momentum, affine, track_running_stats):
self.BN_eps = eps
self.BN_momentum = momentum
self.BN_afine = affine
self.BN_track_running_stats = track_running_stats
def Conv2d(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', use_original_conv=False):
return nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, padding_mode=padding_mode)
# The running estimates are kept with a default momentum of 0.1.
# By default, the elements of \gammaγ are sampled from \mathcal{U}(0, 1)U(0,1) and the elements of \betaβ are set to 0.
# If track_running_stats is set to False, this layer then does not keep running estimates, and batch statistics are instead used during evaluation time as well.
def BatchNorm2d(self, num_features, eps=None, momentum=None, affine=None, track_running_stats=None):
if eps is None:
eps = self.BN_eps
if momentum is None:
momentum = self.BN_momentum
if affine is None:
affine = self.BN_affine
if track_running_stats is None:
track_running_stats = self.BN_track_running_stats
return nn.BatchNorm2d(num_features=num_features, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats)
# def _succeedingBN2d(self, num_features, eps=None, momentum=None, affine=None, track_running_stats=None):
# return self._BatchNorm2d(num_features=num_features, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats)
#
# def SeparateBN2d(self, num_features, eps=None, momentum=None, affine=None, track_running_stats=None):
# return self._BatchNorm2d(num_features=num_features, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats)
def Sequential(self, *args):
return nn.Sequential(*args)
def ReLU(self):
return nn.ReLU()
def Conv2dBN(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', use_original_conv=False):
conv_layer = self.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False, padding_mode=padding_mode, use_original_conv=use_original_conv)
bn_layer = self.BatchNorm2d(num_features=out_channels)
se = self.Sequential()
se.add_module('conv', conv_layer)
se.add_module('bn', bn_layer)
if self.base_config is not None and self.base_config.se_reduce_scale is not None and self.base_config.se_reduce_scale > 0:
se.add_module('se', SEBlock(input_channels=out_channels, internal_neurons=out_channels // self.base_config.se_reduce_scale))
return se
def Conv2dBNReLU(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', use_original_conv=False):
conv = self.Conv2dBN(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, padding_mode=padding_mode, use_original_conv=use_original_conv)
conv.add_module('relu', self.ReLU())
return conv
def BNReLUConv2d(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', use_original_conv=False):
bn_layer = self.BatchNorm2d(num_features=in_channels)
conv_layer = self.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False, padding_mode=padding_mode)
se = self.Sequential()
se.add_module('bn', bn_layer)
se.add_module('relu', self.ReLU())
se.add_module('conv', conv_layer)
return se
def Linear(self, in_features, out_features, bias=True):
return nn.Linear(in_features=in_features, out_features=out_features, bias=bias)
def Identity(self):
return nn.Identity()
def ResIdentity(self, num_channels):
return nn.Identity()
def Dropout(self, keep_prob):
return nn.Dropout(p=1-keep_prob)
def Maxpool2d(self, kernel_size, stride=None):
return nn.MaxPool2d(kernel_size=kernel_size, stride=stride)
def Avgpool2d(self, kernel_size, stride=None):
return nn.AvgPool2d(kernel_size=kernel_size, stride=stride)
def Flatten(self):
return FlattenLayer()
def GAP(self, kernel_size):
gap = nn.Sequential()
gap.add_module('avg', nn.AvgPool2d(kernel_size=kernel_size, stride=kernel_size))
gap.add_module('flatten', FlattenLayer())
return gap
def relu(self, in_features):
return F.relu(in_features)
def max_pool2d(self, in_features, kernel_size, stride, padding):
return F.max_pool2d(in_features, kernel_size=kernel_size, stride=stride, padding=padding)
def avg_pool2d(self, in_features, kernel_size, stride, padding):
return F.avg_pool2d(in_features, kernel_size=kernel_size, stride=stride, padding=padding)
def flatten(self, in_features):
result = in_features.view(in_features.size(0), -1)
return result