The goal of the project is to learn a general purpose descriptor for shape recognition. To do this we train discriminative models for shape recognition using convolutional neural networks (CNNs) where view-based shape representations are the only cues. Examples include line-drawings, clip art images where color is removed, or renderings of 3D models where there is little or no texture information present.
If you use any part of the code from this project, please cite:
Multi-view Convolutional Neural Networks for 3D Shape Recognition Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller Proceedings of the IEEE International Conference on Computer Vision 2015 (ICCV 2015)
- install dependencies
#!bash
git submodule init
git submodule update
- compile
(1) compile for CPU
#!bash
MEX=<MATLAB_ROOT>/bin/mex matlab -nodisplay -r "setup(true);exit;"
(2) compile for GPU:
#!bash
MEX=<MATLAB_ROOT>/bin/mex matlab -nodisplay -r "setup(true,struct('enableGpu',true));exit;"
(3) compile with cuDNN support:
#!bash
MEX=<MATLAB_ROOT>/bin/mex matlab -nodisplay -r "setup(true,struct('enableGpu',true,
'cudaRoot',<CUDA_ROOT>,'cudaMethod','nvcc','enableCudnn',true,'cudnnRoot',<CUDNN_ROOT>));exit;"
(note) You can alternatively run directly the scripts from the Matlab command window e.g. for Windows installations: setup(true,struct('enableGpu',true,'cudaRoot','C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0','cudaMethod','nvcc')); You may also need to add Visual Studio's cl.exe in your PATH environment (e.g., C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\amd64)
- extract descriptor for a shape (off/obj mesh) - the descriptor will be saved in a txt file (bunny_descriptor.txt) [assumes upright orientation]
shape_compute_descriptor('bunny.off');
- extract descriptor for all shapes in a folder (off/obj meshes), the descriptors will be saved in txt files in the same folder [assumes upright orientation]
shape_compute_descriptor('my_mesh_folder/');
- extract descriptor for all shapes in a folder (off/obj meshes), post-process descriptor with learned metric, and use the model that does not assume upright orientation [*-v2 models do not assume upright orientations]
shape_compute_descriptor('my_mesh_folder/', 'cnn_model', 'cnn-modelnet40-v2.mat', 'metric_model', 'metric-relu7-v2.mat','post_process_desriptor_metric',true);
- download datasets for training/evaluation
#!bash
#ModelNet40 (v1 - 12 views w/ upright assumption) (4.8G)
cd data
wget http://maxwell.cs.umass.edu/deep-shape-data/modelnet40-v1.tar
tar xf modelnet40-v1.tar
#ModelNet40 (v2 - 80 views w/o upright assumption) (7.2G)
cd data
wget http://maxwell.cs.umass.edu/deep-shape-data/modelnet40-v2.tar
tar xf modelnet40-v2.tar
#sketch (211M)
cd data
wget http://pegasus.cs.umass.edu/deep-shape-data/sketch160.tar
tar xf sketch160.tar
#clipart (701M)
cd data
wget http://pegasus.cs.umass.edu/deep-shape-data/clipart100.tar
tar xf clipart100.tar
- run experiments in the paper (see run_experiments.m for options and other details)
#!bath
LD_LIBRARY_PATH=<CUDA_ROOT>/lib64:<CUDNN_ROOT> matlab -nodisplay -r "run_experiments;exit;"
LD_LIBRARY_PATH may not be necessary depending on your installation, e.g. whether includes cuDNN support. LD_LIBRARY_PATH may not be necessary depending on your installation, e.g. whether includes cuDNN support.