-
Notifications
You must be signed in to change notification settings - Fork 0
/
experiments_synthetic_hide.py
281 lines (266 loc) · 14.8 KB
/
experiments_synthetic_hide.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from __future__ import division
from muturank import Muturank_new
from synthetic import SyntheticDataConverter
from metrics import evaluate
import networkx as nx
from itertools import combinations_with_replacement
import random
from tensor import TensorFact
import pickle
from collections import OrderedDict
import time
from tabulate import tabulate
import datetime
import pprint
class Data(object):
def __init__(self, comms, graphs, timeFrames, number_of_dynamic_communities, dynamic_truth=[]):
self.comms = comms
self.graphs = graphs
self.timeFrames = timeFrames
self.number_of_dynamic_communities = number_of_dynamic_communities
self.dynamic_truth = dynamic_truth
def object_decoder(obj, num):
if 'type' in obj[num] and obj[num]['type'] == 'hand':
edges = {int(tf): [(edge[0], edge[1]) for edge in edges] for tf, edges in obj[num]['edges'].items()}
graphs = {}
for i, edges in edges.items():
graphs[i] = nx.Graph(edges)
comms = {int(tf): {int(id): com for id, com in coms.items()} for tf, coms in obj[num]['comms'].items()}
dynamic_coms = {int(id): [str(node) for node in com] for id, com in obj[num]['dynamic_truth'].items()}
return Data(comms, graphs, len(graphs), len(dynamic_coms), dynamic_coms)
return obj
# def evaluate(results, ground_truth, method, name):
# nmi = NMI(ground_truth, method.dynamic_coms, evaluation_type="sets").results
# omega = Omega(ground_truth, method.dynamic_coms)
# bcubed = Bcubed(ground_truth, method.dynamic_coms)
# results["Method"].append(name)
# results['NMI'].append(nmi['NMI<Max>'])
# results['Omega'].append(omega.omega_score)
# results['Bcubed-Precision'].append(bcubed.precision)
# results['Bcubed-Recall'].append(bcubed.recall)
# results['Bcubed-F1'].append(bcubed.fscore)
# return results
def run_experiments(data, ground_truth, network_num):
all_res = []
# Timerank with one connection - default q
mutu4 = Muturank_new(data.graphs, threshold=1e-6, alpha=0.85, beta=0.85, connection='one',
clusters=len(ground_truth), default_q=True)
all_res.append(
evaluate.get_results(ground_truth, mutu4.dynamic_coms, "Timerank with one connection - default q", mutu4.tfs,
eval="dynamic", duration=mutu4.duration))
all_res.append(
evaluate.get_results(ground_truth, mutu4.dynamic_coms, "Timerank with one connection - default q", mutu4.tfs,
eval="sets", duration=mutu4.duration))
all_res.append(
evaluate.get_results(ground_truth, mutu4.dynamic_coms, "Timerank with one connection - default q", mutu4.tfs,
eval="per_tf", duration=mutu4.duration))
f = open(results_file, 'a')
f.write(tabulate(all_res, headers="keys", tablefmt="fancy_grid").encode('utf8') + "\n")
f.close()
# Timerank with all connections - default q
mutu5 = Muturank_new(data.graphs, threshold=1e-6, alpha=0.85, beta=0.85, connection='all',
clusters=len(ground_truth), default_q=True)
all_res.append(evaluate.get_results(ground_truth, mutu5.dynamic_coms, "Timerank with all connections - default q"
, mutu5.tfs,
eval="dynamic", duration=mutu5.duration))
all_res.append(evaluate.get_results(ground_truth, mutu5.dynamic_coms, "Timerank with all connections - default "
"q", mutu5.tfs,
eval="sets", duration=mutu5.duration))
all_res.append(evaluate.get_results(ground_truth, mutu5.dynamic_coms, "Timerank with all connections - default "
"q", mutu5.tfs,
eval="per_tf", duration=mutu5.duration))
f = open(results_file, 'a')
f.write(tabulate(all_res, headers="keys", tablefmt="fancy_grid").encode('utf8') + "\n")
f.close()
# Timerank with next connection - default q
mutu6 = Muturank_new(data.graphs, threshold=1e-6, alpha=0.85, beta=0.85, connection='next',
clusters=len(ground_truth), default_q=True)
all_res.append(evaluate.get_results(ground_truth, mutu6.dynamic_coms, "Timerank with next connection - default q"
, mutu6.tfs, eval="dynamic", duration=mutu6.duration))
all_res.append(evaluate.get_results(ground_truth, mutu6.dynamic_coms, "Timerank with next connection - default q",
mutu6.tfs, eval="sets", duration=mutu6.duration))
all_res.append(evaluate.get_results(ground_truth, mutu6.dynamic_coms, "Timerank with next connection - default q",
mutu6.tfs, eval="per_tf", duration=mutu6.duration))
f = open(results_file, 'a')
f.write(tabulate(all_res, headers="keys", tablefmt="fancy_grid").encode('utf8') + "\n")
f.close()
# NNTF
fact = TensorFact(data.graphs, num_of_coms=len(ground_truth), threshold=1e-4, seeds=10, overlap=False)
all_res.append(evaluate.get_results(ground_truth, fact.dynamic_coms, "NNTF", mutu6.tfs, eval="dynamic",
duration=fact.duration))
all_res.append(evaluate.get_results(ground_truth, fact.dynamic_coms, "NNTF", mutu6.tfs, eval="sets",
duration=fact.duration))
all_res.append(evaluate.get_results(ground_truth, fact.dynamic_coms, "NNTF", mutu6.tfs, eval="per_tf",
duration=fact.duration))
f = open(results_file, 'a')
f.write(tabulate(all_res, headers="keys", tablefmt="fancy_grid").encode('utf8') + "\n")
f.close()
with open(results_file, 'a') as f:
f.write("NNTF\n")
f.write("Error: " + str(fact.error) + "Seed: " + str(fact.best_seed) + "\n")
f.write("A\n")
pprint.pprint(fact.A, stream=f, width=150)
f.write("B\n")
pprint.pprint(fact.B, stream=f, width=150)
f.write("C\n")
pprint.pprint(fact.C, stream=f, width=150)
pprint.pprint(fact.dynamic_coms, stream=f, width=150)
# GED
import sys
sys.path.insert(0, '../GED/')
import preprocessing, Tracker
start_time = time.time()
from ged import GedWrite, ReadGEDResults
ged_data = GedWrite(data)
graphs = preprocessing.getGraphs(ged_data.fileName)
tracker = Tracker.Tracker(graphs)
tracker.compare_communities()
# outfile = 'tmpfiles/ged_results.csv'
outfile = './results/GED-events-handdrawn-' + str(network_num) + '.csv'
with open(outfile, 'w')as f:
for hypergraph in tracker.hypergraphs:
hypergraph.calculateEvents(f)
ged_time = str(datetime.timedelta(seconds=int(time.time() - start_time)))
print("--- %s seconds ---" % (ged_time))
ged = ReadGEDResults.ReadGEDResults(file_coms=ged_data.fileName, file_output=outfile)
with open(results_file, 'a') as f:
f.write("GED\n")
pprint.pprint(ged.dynamic_coms, stream=f, width=150)
all_res.append(
evaluate.get_results(ground_truth, ged.dynamic_coms, "GED", mutu6.tfs, eval="dynamic", duration=ged_time))
all_res.append(
evaluate.get_results(ground_truth, ged.dynamic_coms, "GED", mutu6.tfs, eval="sets", duration=ged_time))
f = open(results_file, 'a')
f.write(tabulate(all_res, headers="keys", tablefmt="fancy_grid").encode('utf8') + "\n")
f.close()
# all_res.append(evaluate.get_results(ground_truth, ged.dynamic_coms, "GED", mutu6.tfs, eval="per_tf"))
# Run Timerank - One connection
mutu1 = Muturank_new(data.graphs, threshold=1e-6, alpha=0.85, beta=0.85, connection='one',
clusters=len(ground_truth), default_q=False)
all_res.append(evaluate.get_results(ground_truth, mutu1.dynamic_coms, "Timerank with one connection", mutu1.tfs,
eval="dynamic", duration=mutu1.duration))
all_res.append(evaluate.get_results(ground_truth, mutu1.dynamic_coms, "Timerank with one connection", mutu1.tfs,
eval="sets", duration=mutu1.duration))
all_res.append(evaluate.get_results(ground_truth, mutu1.dynamic_coms, "Timerank with one connection", mutu1.tfs,
eval="per_tf", duration=mutu1.duration))
f = open(results_file, 'a')
f.write(tabulate(all_res, headers="keys", tablefmt="fancy_grid").encode('utf8') + "\n")
f.close()
muturank_res = OrderedDict()
muturank_res["tf/node"] = ['t' + str(tf) for tf in mutu1.tfs_list]
for i, node in enumerate(mutu1.node_ids):
muturank_res[node] = [mutu1.p_new[tf * len(mutu1.node_ids) + i] for tf in range(mutu1.tfs)]
f = open(results_file, 'a')
f.write("ONE CONNECTION\n")
f.write(tabulate(muturank_res, headers="keys", tablefmt="fancy_grid").encode('utf8') + "\n")
f.write(tabulate(zip(['t' + str(tf) for tf in mutu1.tfs_list], mutu1.q_new), headers="keys",
tablefmt="fancy_grid").encode('utf8') + "\n")
f.close()
# Timerank with all connections
mutu2 = Muturank_new(data.graphs, threshold=1e-6, alpha=0.85, beta=0.85, connection='all',
clusters=len(ground_truth), default_q=False)
all_res.append(evaluate.get_results(ground_truth, mutu2.dynamic_coms, "Timerank with all connections", mutu2.tfs,
eval="dynamic", duration=mutu2.duration))
all_res.append(evaluate.get_results(ground_truth, mutu2.dynamic_coms, "Timerank with all connections", mutu2.tfs,
eval="sets", duration=mutu2.duration))
all_res.append(evaluate.get_results(ground_truth, mutu2.dynamic_coms, "Timerank with all connections", mutu2.tfs,
eval="per_tf", duration=mutu2.duration))
f = open(results_file, 'a')
f.write(tabulate(all_res, headers="keys", tablefmt="fancy_grid").encode('utf8') + "\n")
f.close()
muturank_res = OrderedDict()
muturank_res["tf/node"] = ['t' + str(tf) for tf in mutu2.tfs_list]
for i, node in enumerate(mutu2.node_ids):
muturank_res[node] = [mutu2.p_new[tf * len(mutu2.node_ids) + i] for tf in range(mutu2.tfs)]
f = open(results_file, 'a')
f.write("ALL CONNECTIONS\n")
f.write(tabulate(muturank_res, headers="keys", tablefmt="fancy_grid").encode('utf8') + "\n")
f.write(tabulate(zip(['t' + str(tf) for tf in mutu2.tfs_list], mutu2.q_new), headers="keys",
tablefmt="fancy_grid").encode('utf8') + "\n")
f.close()
# Timerank with next connection
mutu3 = Muturank_new(data.graphs, threshold=1e-6, alpha=0.85, beta=0.85, connection='next',
clusters=len(ground_truth), default_q=False)
all_res.append(evaluate.get_results(ground_truth, mutu3.dynamic_coms, "Timerank with next connection", mutu3.tfs,
eval="dynamic", duration=mutu3.duration))
all_res.append(evaluate.get_results(ground_truth, mutu3.dynamic_coms, "Timerank with next connection", mutu3.tfs,
eval="sets", duration=mutu3.duration))
all_res.append(evaluate.get_results(ground_truth, mutu3.dynamic_coms, "Timerank with next connection", mutu3.tfs,
eval="per_tf", duration=mutu3.duration))
f = open(results_file, 'a')
f.write(tabulate(all_res, headers="keys", tablefmt="fancy_grid").encode('utf8') + "\n")
f.close()
muturank_res = OrderedDict()
muturank_res["tf/node"] = ['t' + str(tf) for tf in mutu3.tfs_list]
for i, node in enumerate(mutu3.node_ids):
muturank_res[node] = [mutu3.p_new[tf * len(mutu3.node_ids) + i] for tf in range(mutu3.tfs)]
f = open(results_file, 'a')
f.write("NEXT CONNECTION\n")
f.write(tabulate(muturank_res, headers="keys", tablefmt="fancy_grid").encode('utf8') + "\n")
f.write(tabulate(zip(['t' + str(tf) for tf in mutu3.tfs_list], mutu3.q_new), headers="keys",
tablefmt="fancy_grid").encode('utf8') + "\n")
f.write("GROUND TRUTH\n")
pprint.pprint(ground_truth, stream=f, width=150)
f.write("ONE CONNECTION\n")
pprint.pprint(mutu1.dynamic_coms, stream=f, width=150)
f.write("ALL CONNECTIONS\n")
pprint.pprint(mutu2.dynamic_coms, stream=f, width=150)
f.write("NEXT CONNECTION\n")
pprint.pprint(mutu3.dynamic_coms, stream=f, width=150)
f.close()
return all_res
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
folder = sys.argv[1]
else:
folder = "hide_data"
from os.path import expanduser
home = expanduser("~")
path_full = home + "/Dropbox/Msc/thesis/data/synthetic_generator/data/" + folder
results_file = "results_synthetic_" + path_full.split("/")[-1] + ".txt"
sd = SyntheticDataConverter(path_full, remove_redundant_nodes=True)
# nodes = sd.graphs[0].nodes()
# # edges_1 = random.sample(list(combinations_with_replacement(nodes, 2)), 50)
# # edges_2 = random.sample(list(combinations_with_replacement(nodes, 2)), 207)
# ---------------------------------
# Dynamic Network Generator data (50 nodes/3 tfs)
number_of_dynamic_communities = len(sd.graphs[0])
data = Data(comms=sd.comms, graphs=sd.graphs, timeFrames=len(sd.graphs), number_of_dynamic_communities=len(
sd.dynamic_truth), dynamic_truth=sd.dynamic_truth)
# ---------------------------------
# Dynamic Network Generator data (50 nodes/3 tfs) - Same network everywhere except one tf
# dict = {
# 0: sd.graphs[0],
# 1: sd.graphs[0],
# 2: sd.graphs[2],
# 3: sd.graphs[0],
# 4: sd.graphs[0]
# }
# comms = {0: sd.comms[0], 1: sd.comms[0],2: sd.comms[2], 3: sd.comms[0],4: sd.comms[0]}
# number_of_dynamic_communities = len(sd.comms[0])
# data = Data(comms, dict, len(dict), len(sd.comms[0]))
# ---------------------------------
# dblp = dblp_loader("data/dblp/my_dblp_data.json", start_year=2000, end_year=2004, coms='comp')
# number_of_dynamic_communities = len(dblp.dynamic_coms)
# data = Data(dblp.communities, dblp.graphs, len(dblp.graphs), len(dblp.dynamic_coms))
# ground_truth = dblp.dynamic_coms
# ---------------------------------
# from plot import PlotGraphs
# PlotGraphs(data.graphs, len(data.graphs), 'expand-contract', 100)
all_res = run_experiments(data, data.dynamic_truth, 'hide')
results = OrderedDict()
results["Method"] = []
results['Eval'] = []
results['NMI'] = []
results['Omega'] = []
results['Bcubed-Precision'] = []
results['Bcubed-Recall'] = []
results['Bcubed-F1'] = []
results['Duration'] = []
for res in all_res:
for k, v in res.items():
results[k].extend(v)
f = open(results_file, 'a')
f.write(tabulate(results, headers="keys", tablefmt="fancy_grid").encode('utf8') + "\n")
f.close()