-
Notifications
You must be signed in to change notification settings - Fork 0
/
k_ep_3d.py
503 lines (441 loc) · 18.8 KB
/
k_ep_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
"""Equations related to Navier Stokes Equations
"""
from sympy import Symbol, Function, Number, log, Abs, simplify
from modulus.sym.eq.pde import PDE
from modulus.sym.node import Node
class kEpsilonInit(PDE):
def __init__(self, nu=1, rho=1):
# set params
nu = Number(nu)
rho = Number(rho)
# coordinates
x = Symbol("x")
y = Symbol("y")
z = Symbol("z")
# make input variables
input_variables = {"x": x, "y": y, "z": z}
# velocity componets
u = Function("u")(*input_variables)
v = Function("v")(*input_variables)
w = Function("w")(*input_variables)
p = Function("p")(*input_variables)
k = Function("k")(*input_variables)
ep = Function("ep")(*input_variables)
# flow initialization
C_mu = 0.09
u_avg = 21 # Approx average velocity
Re_d = (
u_avg * 1 / nu
) # Reynolds number based on centerline and channel hydraulic dia
l = 0.038 * 2 # Approx turbulent length scale
I = 0.16 * Re_d ** (
-1 / 8
) # Turbulent intensity for a fully developed pipe flow
u_init = u_avg
v_init = 0
w_init = 0
p_init = 0
k_init = 1.5 * (u_avg * I) ** 2
ep_init = (C_mu ** (3 / 4)) * (k_init ** (3 / 2)) / l
# set equations
self.equations = {}
self.equations["u_init"] = u - u_init
self.equations["v_init"] = v - v_init
self.equations["w_init"] = w - w_init
self.equations["p_init"] = p - p_init
self.equations["k_init"] = k - k_init
self.equations["ep_init"] = ep - ep_init
class kEpsilon(PDE):
def __init__(self, nu=1, rho=1):
# set params
nu = Number(nu)
rho = Number(rho)
# coordinates
x = Symbol("x")
y = Symbol("y")
z = Symbol("z") # Add z coordinate
t = Symbol("t")
# make input variables
input_variables = {"x": x, "y": y, "z": z, "t": t}
# velocity components
u = Function("u")(*input_variables)
v = Function("v")(*input_variables)
w = Function("w")(*input_variables) # Add w velocity component
p = Function("p")(*input_variables)
k = Function("k")(*input_variables)
ep = Function("ep")(*input_variables)
# Model constants
sig_k = Number(1.0)
sig_ep = Number(1.3)
C_ep1 = Number(1.44)
C_ep2 = Number(1.92)
C_mu = Number(0.09)
E = Number(9.793)
# Turbulent Viscosity
nu_t = C_mu * (k ** 2) / (ep + 1e-4)
# Turbulent Production Term
P_k = nu_t * (
2 * (u.diff(x)) ** 2
+ 2 * (v.diff(y)) ** 2
+ 2 * (w.diff(z)) ** 2 # Add w term
+ (u.diff(y) + v.diff(x)) ** 2
+ (u.diff(z) + w.diff(x)) ** 2 # Add w term
+ (v.diff(z) + w.diff(y)) ** 2 # Add w term
)
# set equations
self.equations = {}
self.equations["continuity"] = simplify(u.diff(x) + v.diff(y) + w.diff(z)) # Modify for 3D
self.equations["momentum_x"] = simplify(
u * u.diff(x)
+ v * u.diff(y)
+ w * u.diff(z) # Add w term
+ p.diff(x)
- ((nu + nu_t) * u.diff(x)).diff(x)
- ((nu + nu_t) * u.diff(y)).diff(y)
- ((nu + nu_t) * u.diff(z)).diff(z) # Add w term
)
self.equations["momentum_y"] = simplify(
u * v.diff(x)
+ v * v.diff(y)
+ w * v.diff(z) # Add w term
+ p.diff(y)
- ((nu + nu_t) * v.diff(x)).diff(x)
- ((nu + nu_t) * v.diff(y)).diff(y)
- ((nu + nu_t) * v.diff(z)).diff(z) # Add w term
)
self.equations["momentum_z"] = simplify( # Add momentum equation for z
u * w.diff(x)
+ v * w.diff(y)
+ w * w.diff(z)
+ p.diff(z)
- ((nu + nu_t) * w.diff(x)).diff(x)
- ((nu + nu_t) * w.diff(y)).diff(y)
- ((nu + nu_t) * w.diff(z)).diff(z)
)
self.equations["k_equation"] = simplify(
u * k.diff(x)
+ v * k.diff(y)
+ w * k.diff(z) # Add w term
- ((nu + nu_t / sig_k) * k.diff(x)).diff(x)
- ((nu + nu_t / sig_k) * k.diff(y)).diff(y)
- ((nu + nu_t / sig_k) * k.diff(z)).diff(z) # Add w term
- P_k
+ ep
)
self.equations["ep_equation"] = simplify(
u * ep.diff(x)
+ v * ep.diff(y)
+ w * ep.diff(z) # Add w term
- ((nu + nu_t / sig_ep) * ep.diff(x)).diff(x)
- ((nu + nu_t / sig_ep) * ep.diff(y)).diff(y)
- ((nu + nu_t / sig_ep) * ep.diff(z)).diff(z) # Add w term
- (C_ep1 * P_k - C_ep2 * ep) * ep / (k + 1e-3)
)
class kEpsilonLSWF(PDE):
def __init__(self, nu=1, rho=1):
# set params
nu = Number(nu)
rho = Number(rho)
# coordinates
x = Symbol("x")
y = Symbol("y")
z = Symbol("z")
# make input variables
input_variables = {"x": x, "y": y, "z": z}
# velocity components
u = Function("u")(*input_variables)
v = Function("v")(*input_variables)
w = Function("w")(*input_variables) # w component for the third dimension
k = Function("k")(*input_variables)
ep = Function("ep")(*input_variables)
# normals
normal_x = -1 * Symbol("normal_x") # Flip the direction of normal
normal_y = -1 * Symbol("normal_y") # Flip the direction of normal
normal_z = -1 * Symbol("normal_z") # Correct the symbol and flip the direction of normal
# wall distance
normal_distance = Function("normal_distance")(*input_variables)
# Model constants
C_mu = 0.09
E = 9.793
C_k = -0.36
B_k = 8.15
karman_constant = 0.4187
# Turbulent Viscosity
nu_t = C_mu * (k ** 2) / (ep + 1e-4)
u_tau = (C_mu ** 0.25) * (k ** 0.5)
y_plus = u_tau * normal_distance / nu
u_plus = log(Abs(E * y_plus)) / karman_constant
ep_true = (C_mu ** (3 / 4)) * (k ** (3 / 2)) / karman_constant / normal_distance
u_parallel_to_wall = [
u - (u * normal_x + v * normal_y + w * normal_z) * normal_x,
v - (u * normal_x + v * normal_y + w * normal_z) * normal_y,
w - (u * normal_x + v * normal_y + w * normal_z) * normal_z, # Added third component
]
# Added derivatives for the third dimension
du_parallel_to_wall_dx = [
u.diff(x) - (u.diff(x) * normal_x + v.diff(x) * normal_y + w.diff(x) * normal_z) * normal_x,
v.diff(x) - (u.diff(x) * normal_x + v.diff(x) * normal_y + w.diff(x) * normal_z) * normal_y,
w.diff(x) - (u.diff(x) * normal_x + v.diff(x) * normal_y + w.diff(x) * normal_z) * normal_z,
]
du_parallel_to_wall_dy = [
u.diff(y) - (u.diff(y) * normal_x + v.diff(y) * normal_y + w.diff(y) * normal_z) * normal_x,
v.diff(y) - (u.diff(y) * normal_x + v.diff(y) * normal_y + w.diff(y) * normal_z) * normal_y,
w.diff(y) - (u.diff(y) * normal_x + v.diff(y) * normal_y + w.diff(y) * normal_z) * normal_z,
]
# Add derivatives with respect to z
du_parallel_to_wall_dz = [
u.diff(z) - (u.diff(z) * normal_x + v.diff(z) * normal_y + w.diff(z) * normal_z) * normal_x,
v.diff(z) - (u.diff(z) * normal_x + v.diff(z) * normal_y + w.diff(z) * normal_z) * normal_y,
w.diff(z) - (u.diff(z) * normal_x + v.diff(z) * normal_y + w.diff(z) * normal_z) * normal_z,
]
# Correct the calculation of the derivative in the direction of the surface (du/ds)
du_dsdf = [
sum(du_parallel_to_wall_dx[i] * normal[i] for i in range(3)),
sum(du_parallel_to_wall_dy[i] * normal[i] for i in range(3)),
sum(du_parallel_to_wall_dz[i] * normal[i] for i in range(3)),
]
# Update wall shear stresses to include the w component
wall_shear_stress_true_x = (
u_tau * u_parallel_to_wall[0] * karman_constant / log(Abs(E * y_plus))
)
wall_shear_stress_true_y = (
u_tau * u_parallel_to_wall[1] * karman_constant / log(Abs(E * y_plus))
)
# Introducing wall shear stress in the z direction for completeness
wall_shear_stress_true_z = (
u_tau * u_parallel_to_wall[2] * karman_constant / log(Abs(E * y_plus))
)
# Calculating the wall shear stress in all three directions
wall_shear_stress_x = (nu + nu_t) * du_dsdf[0]
wall_shear_stress_y = (nu + nu_t) * du_dsdf[1]
wall_shear_stress_z = (nu + nu_t) * du_dsdf[2]
# Velocity normal to the wall
u_normal_to_wall = u * normal_x + v * normal_y + w * normal_z
u_normal_to_wall_true = 0
# Magnitude of the velocity parallel to the wall, now including the w component
u_parallel_to_wall_mag = (
u_parallel_to_wall[0] ** 2 + u_parallel_to_wall[1] ** 2 + u_parallel_to_wall[2] ** 2
) ** 0.5
u_parallel_to_wall_true = u_plus * u_tau
# Gradient of k normal to the wall, now accounting for all three spatial directions
k_normal_gradient = normal_x * k.diff(x) + normal_y * k.diff(y) + normal_z * k.diff(z)
k_normal_gradient_true = 0
# Set equations with 3D considerations
self.equations = {}
self.equations["velocity_wall_normal_wf"] = (
u_normal_to_wall - u_normal_to_wall_true
)
self.equations["velocity_wall_parallel_wf"] = (
u_parallel_to_wall_mag - u_parallel_to_wall_true
)
self.equations["ep_wf"] = ep - ep_true
self.equations["wall_shear_stress_x_wf"] = (
wall_shear_stress_x - wall_shear_stress_true_x
)
self.equations["wall_shear_stress_y_wf"] = (
wall_shear_stress_y - wall_shear_stress_true_y
)
# Adding the equation for wall shear stress in the z direction
self.equations["wall_shear_stress_z_wf"] = (
wall_shear_stress_z - wall_shear_stress_true_z
)
class kEpsilonTransient(PDE):
def __init__(self, nu=1, rho=1):
# set params
nu = Number(nu)
rho = Number(rho)
# coordinates
x = Symbol("x")
y = Symbol("y")
z = Symbol("z") # Add z coordinate
t = Symbol("t")
# make input variables
input_variables = {"x": x, "y": y, "z": z, "t": t}
# velocity components
u = Function("u")(*input_variables)
v = Function("v")(*input_variables)
w = Function("w")(*input_variables) # Add w velocity component
p = Function("p")(*input_variables)
k = Function("k")(*input_variables)
ep = Function("ep")(*input_variables)
# Model constants
sig_k = Number(1.0)
sig_ep = Number(1.3)
C_ep1 = Number(1.44)
C_ep2 = Number(1.92)
C_mu = Number(0.09)
E = Number(9.793)
# Turbulent Viscosity
nu_t = C_mu * (k ** 2) / (ep + 1e-4)
# Turbulent Production Term
P_k = nu_t * (
2 * (u.diff(x)) ** 2
+ 2 * (v.diff(y)) ** 2
+ 2 * (w.diff(z)) ** 2 # Add w term
+ (u.diff(y) + v.diff(x)) ** 2
+ (u.diff(z) + w.diff(x)) ** 2 # Add w term
+ (v.diff(z) + w.diff(y)) ** 2 # Add w term
)
# set equations
self.equations = {}
self.equations["continuity"] = simplify(u.diff(x) + v.diff(y) + w.diff(z)) # Modify for 3D
self.equations["momentum_x"] = simplify(
rho * u.diff(t)
+ u * u.diff(x)
+ v * u.diff(y)
+ w * u.diff(z) # Add w term
+ p.diff(x)
- ((nu + nu_t) * u.diff(x)).diff(x)
- ((nu + nu_t) * u.diff(y)).diff(y)
- ((nu + nu_t) * u.diff(z)).diff(z) # Add w term
)
self.equations["momentum_y"] = simplify(
rho * v.diff(t)
+ u * v.diff(x)
+ v * v.diff(y)
+ w * v.diff(z) # Add w term
+ p.diff(y)
- ((nu + nu_t) * v.diff(x)).diff(x)
- ((nu + nu_t) * v.diff(y)).diff(y)
- ((nu + nu_t) * v.diff(z)).diff(z) # Add w term
)
self.equations["momentum_z"] = simplify( # Add momentum equation for z
rho * w.diff(t)
+ u * w.diff(x)
+ v * w.diff(y)
+ w * w.diff(z)
+ p.diff(z)
- ((nu + nu_t) * w.diff(x)).diff(x)
- ((nu + nu_t) * w.diff(y)).diff(y)
- ((nu + nu_t) * w.diff(z)).diff(z)
)
self.equations["k_equation"] = simplify(
k.diff(t)
+ u * k.diff(x)
+ v * k.diff(y)
+ w * k.diff(z) # Add w term
- ((nu + nu_t / sig_k) * k.diff(x)).diff(x)
- ((nu + nu_t / sig_k) * k.diff(y)).diff(y)
- ((nu + nu_t / sig_k) * k.diff(z)).diff(z) # Add z term
- P_k
+ ep
)
self.equations["ep_equation"] = simplify(
ep.diff(t)
+ u * ep.diff(x)
+ v * ep.diff(y)
+ w * ep.diff(z) # Add w term
- ((nu + nu_t / sig_ep) * ep.diff(x)).diff(x)
- ((nu + nu_t / sig_ep) * ep.diff(y)).diff(y)
- ((nu + nu_t / sig_ep) * ep.diff(z)).diff(z) # Add z term
- (C_ep1 * P_k - C_ep2 * ep) * ep / (k + 1e-3)
)
class kEpsilonLSWFTransient(PDE):
def __init__(self, nu=1, rho=1):
# set params
nu = Number(nu)
rho = Number(rho)
# coordinates
x = Symbol("x")
y = Symbol("y")
z = Symbol("z")
t = Symbol("t")
# make input variables
input_variables = {"x": x, "y": y, "z": z, "t": t}
# velocity components
u = Function("u")(*input_variables)
v = Function("v")(*input_variables)
w = Function("w")(*input_variables) # w component for the third dimension
k = Function("k")(*input_variables)
ep = Function("ep")(*input_variables)
# normals
normal_x = -1 * Symbol("normal_x") # Flip the direction of normal
normal_y = -1 * Symbol("normal_y") # Flip the direction of normal
normal_z = -1 * Symbol("normal_z") # Correct the symbol and flip the direction of normal
# wall distance
normal_distance = Function("normal_distance")(*input_variables)
# Model constants
C_mu = 0.09
E = 9.793
C_k = -0.36
B_k = 8.15
karman_constant = 0.4187
# Turbulent Viscosity
nu_t = C_mu * (k ** 2) / (ep + 1e-4)
u_tau = (C_mu ** 0.25) * (k ** 0.5)
y_plus = u_tau * normal_distance / nu
u_plus = log(Abs(E * y_plus)) / karman_constant
ep_true = (C_mu ** (3 / 4)) * (k ** (3 / 2)) / karman_constant / normal_distance
u_parallel_to_wall = [
u - (u * normal_x + v * normal_y + w * normal_z) * normal_x,
v - (u * normal_x + v * normal_y + w * normal_z) * normal_y,
w - (u * normal_x + v * normal_y + w * normal_z) * normal_z, # Added third component
]
# Added derivatives for the third dimension
du_parallel_to_wall_dx = [
u.diff(x) - (u.diff(x) * normal_x + v.diff(x) * normal_y + w.diff(x) * normal_z) * normal_x,
v.diff(x) - (u.diff(x) * normal_x + v.diff(x) * normal_y + w.diff(x) * normal_z) * normal_y,
w.diff(x) - (u.diff(x) * normal_x + v.diff(x) * normal_y + w.diff(x) * normal_z) * normal_z,
]
du_parallel_to_wall_dy = [
u.diff(y) - (u.diff(y) * normal_x + v.diff(y) * normal_y + w.diff(y) * normal_z) * normal_x,
v.diff(y) - (u.diff(y) * normal_x + v.diff(y) * normal_y + w.diff(y) * normal_z) * normal_y,
w.diff(y) - (u.diff(y) * normal_x + v.diff(y) * normal_y + w.diff(y) * normal_z) * normal_z,
]
# Add derivatives with respect to z
du_parallel_to_wall_dz = [
u.diff(z) - (u.diff(z) * normal_x + v.diff(z) * normal_y + w.diff(z) * normal_z) * normal_x,
v.diff(z) - (u.diff(z) * normal_x + v.diff(z) * normal_y + w.diff(z) * normal_z) * normal_y,
w.diff(z) - (u.diff(z) * normal_x + v.diff(z) * normal_y + w.diff(z) * normal_z) * normal_z,
]
# Correct the calculation of the derivative in the direction of the surface (du/ds)
du_dsdf = [
sum(du_parallel_to_wall_dx[i] * normal[i] for i in range(3)),
sum(du_parallel_to_wall_dy[i] * normal[i] for i in range(3)),
sum(du_parallel_to_wall_dz[i] * normal[i] for i in range(3)),
]
# Update wall shear stresses to include the w component
wall_shear_stress_true_x = (
u_tau * u_parallel_to_wall[0] * karman_constant / log(Abs(E * y_plus))
)
wall_shear_stress_true_y = (
u_tau * u_parallel_to_wall[1] * karman_constant / log(Abs(E * y_plus))
)
# Introducing wall shear stress in the z direction for completeness
wall_shear_stress_true_z = (
u_tau * u_parallel_to_wall[2] * karman_constant / log(Abs(E * y_plus))
)
# Calculating the wall shear stress in all three directions
wall_shear_stress_x = (nu + nu_t) * du_dsdf[0]
wall_shear_stress_y = (nu + nu_t) * du_dsdf[1]
wall_shear_stress_z = (nu + nu_t) * du_dsdf[2]
# Velocity normal to the wall
u_normal_to_wall = u * normal_x + v * normal_y + w * normal_z
u_normal_to_wall_true = 0
# Magnitude of the velocity parallel to the wall, now including the w component
u_parallel_to_wall_mag = (
u_parallel_to_wall[0] ** 2 + u_parallel_to_wall[1] ** 2 + u_parallel_to_wall[2] ** 2
) ** 0.5
u_parallel_to_wall_true = u_plus * u_tau
# Gradient of k normal to the wall, now accounting for all three spatial directions
k_normal_gradient = normal_x * k.diff(x) + normal_y * k.diff(y) + normal_z * k.diff(z)
k_normal_gradient_true = 0
# Set equations with 3D considerations
self.equations = {}
self.equations["velocity_wall_normal_wf"] = (
u_normal_to_wall - u_normal_to_wall_true
)
self.equations["velocity_wall_parallel_wf"] = (
u_parallel_to_wall_mag - u_parallel_to_wall_true
)
self.equations["ep_wf"] = ep - ep_true
self.equations["wall_shear_stress_x_wf"] = (
wall_shear_stress_x - wall_shear_stress_true_x
)
self.equations["wall_shear_stress_y_wf"] = (
wall_shear_stress_y - wall_shear_stress_true_y
)
# Adding the equation for wall shear stress in the z direction
self.equations["wall_shear_stress_z_wf"] = (
wall_shear_stress_z - wall_shear_stress_true_z
)