This library allows to create and process long-term dependent datasets.
You can install FluctuationAnalysisTools from PyPI.
pip install FluctuationAnalysisTools
Or you can clone the repository and build it using the command
pip install .
- To create a simple dataset with given Hurst parameter:
from StatTools.filters import FilteredArray
h = 0.8 # choose Hurst parameter
total_vectors = 1000 # total number of vectors in output
vectors_length = 1440 # each vector's length
t = 8 # threads in use during computation
correlated_vectors = Filter(h, vectors_length).generate(n_vectors=total_vectors,
threads=t, progress_bar=True)
- Example of sequence generation based on the Hurst exponent.
from StatTools.generators.hurst_generator import LBFBmGenerator
h = 0.8 # choose Hurst parameter
filter_len = 40 # length of the optimized filter
base = 1.2 # the basis for the filter optimization algorithm
target_len = 4000 # number of generation iterations
generator = LBFBmGenerator(h, filter_len, base)
trajectory = []
for value in islice(generator, target_len):
trajectory.append(value)
For more information and generator validation, see lbfbm_generator.ipynb.
- Example of Detrended Fluctuational Analysis (DFA)
from StatTools.generators.base_filter import Filter
from StatTools.analysis.dfa import DFA
h = 0.7 # choose Hurst parameter
length = 6000 # vector's length
target_std = 1.0
target_mean = 0.0
generator = Filter(h, length, set_mean=target_mean, set_std=target_std)
trajectory = generator.generate(n_vectors=1)
actual_mean = np.mean(trajectory)
actual_std = np.std(trajectory, ddof=1)
actual_h = DFA(trajectory).find_h()
print(actual_h) # Should print a value close to 0.7