diff --git a/README.md b/README.md index e004ed372..b5105d1b2 100644 --- a/README.md +++ b/README.md @@ -21,8 +21,14 @@ from viadot.sources.uk_carbon_intensity import UKCarbonIntensity ukci = UKCarbonIntensity() ukci.query("/intensity") df = ukci.to_df() +df ``` +**Output:** +| | from | to | forecast | actual | index | +|---:|:------------------|:------------------|-----------:|---------:|:---------| +| 0 | 2021-08-10T11:00Z | 2021-08-10T11:30Z | 211 | 216 | moderate | + The above `df` is a python pandas `DataFrame` object. The above df contains data downloaded from viadot from the Carbon Intensity UK API. ## Loading Data to a Source @@ -60,9 +66,9 @@ However, when developing, the easiest way is to use the provided Jupyter Lab con ## How to contribute 1. Clone the release branch -2. Pull the docker env by running `viadot/docker/update.sh` +2. Pull the docker env by running `viadot/docker/update.sh -t dev` 3. Run the env with `viadot/docker/run.sh` -4. Log into the dev container and install viadot in development mode: +4. Log into the dev container and install in development mode so that viadot will auto-install at each code change: ``` docker exec -it viadot_testing bash pip install -e .