-
Notifications
You must be signed in to change notification settings - Fork 0
/
model2.py
348 lines (292 loc) · 14.1 KB
/
model2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import numpy as np
import itertools
import random
import copy
import math
import ipdb
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.utils.rnn import pad_sequence
from torch_geometric.nn import RGCNConv, GraphConv
from logger import log
from conv import HGTConv
from hgt_utils import hgt_batch_graphify
from utils import pad, edge_perms, batch_graphify, attentive_node_features, classify_node_features
from attention import SimpleAttention, MatchingAttention, MaskedEdgeAttention
######### DialogueRNN #########
class DialogueRNNCell(nn.Module):
def __init__(self, D_m, D_g, D_p, D_e, listener_state=False,
context_attention='simple', D_a=100, dropout=0.5):
super(DialogueRNNCell, self).__init__()
self.D_m = D_m
self.D_g = D_g
self.D_p = D_p
self.D_e = D_e
self.listener_state = listener_state
# input_size:输入数据X的特征值的数目。
# hidden_size:隐藏层的神经元数量,也就是隐藏层的特征数量。
self.g_cell = nn.GRUCell(D_m + D_p, D_g)
self.p_cell = nn.GRUCell(D_m + D_g, D_p)
self.e_cell = nn.GRUCell(D_p, D_e)
if listener_state: # Listener Update part in paper.
self.l_cell = nn.GRUCell(D_m + D_p, D_p)
self.dropout = nn.Dropout(dropout)
if context_attention == 'simple':
self.attention = SimpleAttention(D_g)
else:
self.attention = MatchingAttention(D_g, D_m, D_a, context_attention)
def _select_parties(self, X, indices):
pass
def forward(self, U, qmask, g_hist, q0, e0):
pass
class DialogueRNN(nn.Module):
def __init__(self, D_m, D_g, D_p, D_e, listener_state=False,
context_attention='simple', D_a=100, dropout=0.5):
super(DialogueRNN, self).__init__()
# D_m: utterance representation size
# D_g: size of global state vector
# D_p: size of party state vector
# D_e: size of emotion representation vector
self.D_m = D_m
self.D_g = D_g
self.D_p = D_p
self.D_e = D_e
self.dropout = nn.Dropout(dropout)
self.dialogue_cell = DialogueRNNCell(D_m, D_g, D_p, D_e,
listener_state, context_attention, D_a, dropout)
######### DialogueGCN #########
class GraphNet(nn.Module):
def __init__(self, num_features, num_classes, num_relations, max_seq_len,
hidden_size=64, dropout=0.5, no_cuda=False):
"""
The Speaker-level context encoder in the form of a 2 layer GCN.
"""
super(GraphNet, self).__init__()
self.conv1 = RGCNConv(num_features, hidden_size, num_relations, num_bases=30)
self.conv2 = GraphConv(hidden_size, hidden_size)
self.matchatt = MatchingAttention(num_features + hidden_size, num_features + hidden_size, att_type='general2')
self.linear = nn.Linear(num_features + hidden_size, hidden_size)
self.dropout = nn.Dropout(dropout)
self.softmax_fc = nn.Linear(hidden_size, num_classes)
self.no_cuda = no_cuda
def forward(self, x, edge_index, edge_norm, edge_type, seq_lengths, umask, nodal_attn, avec):
out = self.conv1(x, edge_index, edge_type, edge_norm)
out = self.conv2(out, edge_index)
emotions = torch.cat([x, out], dim=-1)
log_prob = classify_node_features(emotions, seq_lengths, umask, self.matchatt, self.linear, self.dropout,
self.softmax_fc, nodal_attn, avec, self.no_cuda)
return log_prob
class DialogueGCNModel(nn.Module):
# D_m: 文本特征维度
# D_e: 通过 sequential context encoder 后的维度,双向,2 * D_e
def __init__(self, base_model, D_m, D_g, D_p, D_e, D_h, D_a,
graph_hidden_size, n_speakers, max_seq_len,
window_past, window_future, n_classes=7,
listener_state=False, context_attention='simple',
dropout_rec=0.5, dropout=0.5, nodal_attention=True,
avec=False, no_cuda=False):
super(DialogueGCNModel, self).__init__()
self.base_model = base_model
self.avec = avec
self.no_cuda = no_cuda
# The base model is the sequential context encoder.
if self.base_model == 'DialogRNN':
self.dialog_rnn_f = DialogueRNN(D_m, D_g, D_p, D_e, listener_state, context_attention, D_a, dropout_rec)
self.dialog_rnn_r = DialogueRNN(D_m, D_g, D_p, D_e, listener_state, context_attention, D_a, dropout_rec)
elif self.base_model == 'LSTM':
self.lstm = nn.LSTM(input_size=D_m, hidden_size=D_e, num_layers=2, bidirectional=True, dropout=dropout)
elif self.base_model == 'GRU':
self.gru = nn.GRU(input_size=D_m, hidden_size=D_e, num_layers=2, bidirectional=True, dropout=dropout)
elif self.base_model == 'None':
self.base_linear = nn.Linear(D_m, 2 * D_e)
else:
log.info('Base model must be one of DialogRNN/LSTM/GRU')
raise NotImplementedError
n_relations = 2 * (n_speakers ** 2) # 例如,n_speakers=2,则 n_relations=8. 表示 relation types.
self.window_past = window_past
self.window_future = window_future
self.att_model = MaskedEdgeAttention(2 * D_e, max_seq_len, self.no_cuda)
self.nodal_attention = nodal_attention
self.graph_net = GraphNet(2 * D_e, n_classes, n_relations, max_seq_len,
graph_hidden_size, dropout, self.no_cuda)
edge_type_mapping = {} # 边类型
for j in range(n_speakers):
for k in range(n_speakers):
edge_type_mapping[str(j) + str(k) + '0'] = len(edge_type_mapping)
edge_type_mapping[str(j) + str(k) + '1'] = len(edge_type_mapping)
self.edge_type_mapping = edge_type_mapping
def _reverse_seq(self, X, mask): ## 这个函数需要理解,主要是用于 DialogueRNN 当中
"""
X -> seq_len, batch, dim
mask -> batch, seq_len
"""
X_ = X.transpose(0, 1)
mask_sum = torch.sum(mask, 1).int()
xfs = []
for x, c in zip(X_, mask_sum):
xf = torch.flip(x[:c], [0])
xfs.append(xf)
return pad_sequence(xfs)
def forward(self, U, qmask, umask, seq_lengths):
"""
U -> seq_len, batch, D_m
qmask -> seq_len, batch, party
"""
# 这里的U是文本特征。需要添加与语音特征的交互模块。
"""
U -> U + audiof
"""
if self.base_model == "DialogRNN":
if self.avec:
emotions, _ = self.dialog_rnn_f(U, qmask)
else:
emotions_f, alpha_f = self.dialog_rnn_f(U, qmask)
rev_U = self._reverse_seq(U, umask)
rev_qmask = self._reverse_seq(qmask, umask)
emotions_b, alpha_b = self.dialog_rnn_r(rev_U, rev_qmask)
emotions_b = self._reverse_seq(emotions_b, umask)
emotions = torch.cat([emotions_f, emotions_b], dim=-1)
elif self.base_model == "LSTM":
emotions, hidden = self.lstm(U) # seq_len, batch, D_e
elif self.base_model == "GRU":
emotions, hidden = self.gru(U)
elif self.base_model == "None":
emotions = self.base_linear(U)
features, edge_index, edge_norm, edge_type, edge_index_lengths = \
batch_graphify(emotions, qmask, seq_lengths, self.window_past,
self.window_future, self.edge_type_mapping,
self.att_model, self.no_cuda)
log_prob = self.graph_net(features, edge_index, edge_norm, edge_type, seq_lengths, umask,
self.nodal_attention, self.avec)
return log_prob, edge_index, edge_norm, edge_type, edge_index_lengths
class HGTNet(nn.Module):
def __init__(self, in_dim, n_hid, num_types, num_relations, n_heads, n_layers, dropout=0.2, pre_norm=False,
last_norm=False, use_RTE=False):
super(HGTNet, self).__init__()
self.hgts = nn.ModuleList()
self.num_types = num_types # 相当于 speakers 数量
self.in_dim = in_dim
self.n_hid = n_hid
self.adapt_ws = nn.ModuleList()
self.drop = nn.Dropout(dropout)
for t in range(num_types):
self.adapt_ws.append(nn.Linear(in_dim, n_hid))
for _ in range(n_layers - 1):
self.hgts.append(HGTConv(n_hid, n_hid, num_types, num_relations, n_heads, dropout,
use_norm=pre_norm, use_RTE=use_RTE))
self.hgts.append(HGTConv(n_hid, n_hid, num_types, num_relations, n_heads, dropout,
use_norm=last_norm, use_RTE=use_RTE))
def forward(self, node_features, node_type, edge_index, edge_type):
res = torch.zeros(node_features.size(0), self.n_hid).to(node_features.device)
for t_id in range(self.num_types):
idx = (node_type == int(t_id))
if idx.sum() == 0:
continue
res[idx] = torch.tanh(self.adapt_ws[t_id](node_features[idx]))
meta_xs = self.drop(res)
del res
for hgt in self.hgts:
meta_xs = hgt(meta_xs, node_type, edge_index, edge_type)
return meta_xs
class DialogueHGTModel(nn.Module):
"""
Implementation of DialogueHGT Model.
"""
def __init__(self, args, D_m, D_g, D_p, D_e, D_a,
graph_hidden_size, n_speakers, n_classes=7,
dropout_rec=0.5, avec=False):
super(DialogueHGTModel, self).__init__()
self.base_model = args.base_model
self.avec = avec
self.no_cuda = args.no_cuda
self.mode = args.mode
# Sequential Encoder
if self.base_model == 'DialogRNN':
self.dialog_rnn_f = DialogueRNN(D_m, D_g, D_p, D_e, args.active_listener, args.attention, D_a, dropout_rec)
self.dialog_rnn_r = DialogueRNN(D_m, D_g, D_p, D_e, args.active_listener, args.attention, D_a, dropout_rec)
elif self.base_model == 'LSTM':
self.lstm = nn.LSTM(input_size=D_m, hidden_size=D_e, num_layers=2, bidirectional=True, dropout=args.dropout)
elif self.base_model == 'GRU':
self.gru = nn.GRU(input_size=D_m, hidden_size=D_e, num_layers=2, bidirectional=True, dropout=args.dropout)
elif self.base_model == 'None':
self.base_linear = nn.Linear(D_m, 2 * D_e)
else:
log.error('Base model must be one of DialogRNN/LSTM/GRU')
raise NotImplementedError
self.nodal_attention = args.nodal_attention
self.window_past = args.windowp
self.window_future = args.windowf
self.num_gnn_layers = args.num_layers
self.num_heads = args.num_heads
# 暂不添加其他 attention 结构,只将图结构经过 HGT模型
# Graph Encoder
self.graphnet = HGTNet(2 * D_e, graph_hidden_size, n_speakers, num_relations=2,
n_heads=self.num_heads, n_layers=self.num_gnn_layers, dropout=0.2)
if self.mode == 0:
final_out_size = 2 * D_e + graph_hidden_size
elif self.mode == 1:
final_out_size = 2 * D_e + graph_hidden_size + D_m
elif self.mode == 2:
final_out_size = 2 * D_e + graph_hidden_size
self.fc = nn.Linear(D_m, final_out_size)
self.matchatt = MatchingAttention(final_out_size, final_out_size, att_type='general')
self.linear = nn.Linear(final_out_size, graph_hidden_size)
self.dropout = nn.Dropout(args.dropout)
self.softmax_fc = nn.Linear(graph_hidden_size, n_classes)
def _reverse_seq(self, X, mask): ## 这个函数需要理解,主要是用于 DialogueRNN 当中
"""
X -> seq_len, batch, dim
mask -> batch, seq_len
"""
X_ = X.transpose(0, 1)
mask_sum = torch.sum(mask, 1).int()
xfs = []
for x, c in zip(X_, mask_sum):
xf = torch.flip(x[:c], [0])
xfs.append(xf)
return pad_sequence(xfs)
def forward(self, U, qmask, umask, seq_lengths):
"""
U -> seq_len, batch, D_m
qmask -> seq_len, batch, party
"""
# ipdb.set_trace()
if self.base_model == 'DialogRNN':
if self.avec:
emotions, _ = self.dialog_rnn_f(U, qmask)
else:
emotions_f, alpha_f = self.dialog_rnn_f(U, qmask)
rev_U = self._reverse_seq(U, umask)
rev_qmask = self._reverse_seq(qmask, umask)
emotions_b, alpha_b = self.dialog_rnn_r(rev_U, rev_qmask)
emotions_b = self._reverse_seq(emotions_b, umask)
emotions = torch.cat([emotions_f, emotions_b], dim=-1)
elif self.base_model == 'LSTM':
emotions, hidden = self.lstm(U) # seq_len, batch, D_e
elif self.base_model == 'GRU':
emotions, hidden = self.gru(U)
elif self.base_model == 'None':
emotions = self.base_linear(U)
# Construct graph.
features, node_type, edge_index, edge_type, edge_index_lengths = \
hgt_batch_graphify(emotions, qmask, seq_lengths, self.window_past,
self.window_future, self.no_cuda)
U_graph = []
for j in range(U.size(1)):
U_graph.append(U[:seq_lengths[j], j, :])
U_graph = torch.cat(U_graph, dim=0)
out = self.graphnet(features, node_type, edge_index, edge_type)
# Classification layer.
if self.mode == 0:
emotions = torch.cat([features, out], dim=-1)
elif self.mode == 1:
emotions = torch.cat([features, U_graph, out], dim=-1)
elif self.mode == 2:
emotions1 = torch.cat([features, out], dim=-1)
emotions2 = self.fc(U_graph)
emotions = emotions1 + emotions2
log_prob = classify_node_features(emotions, seq_lengths, umask, self.matchatt, self.linear, self.dropout,
self.softmax_fc, self.nodal_attention, self.avec, self.no_cuda)
return log_prob