-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathinit_layer.py
41 lines (37 loc) · 1.36 KB
/
init_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
import torch.nn as nn
import torch.nn.functional as F
class Linear(nn.Linear):
def __init__(self,
in_dim,
out_dim,
bias=True,
w_init_gain='linear'):
super(Linear, self).__init__(in_dim,
out_dim,
bias)
nn.init.xavier_uniform_(self.weight,
gain=nn.init.calculate_gain(w_init_gain))
class Conv1d(nn.Conv1d):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
padding_mode='zeros',
w_init_gain='linear'):
super(Conv1d, self).__init__(in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
padding_mode)
nn.init.xavier_uniform_(self.weight,
gain=nn.init.calculate_gain(w_init_gain))