forked from zjk1988/IDOL-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIM_net.py
218 lines (177 loc) · 7.9 KB
/
IM_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
# import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
class _NonLocalBlockND(nn.Module):
def __init__(self, in_channels, inter_channels=None, dimension=3, sub_sample=True, bn_layer=True):
super(_NonLocalBlockND, self).__init__()
assert dimension in [1, 2, 3]
self.dimension = dimension
self.sub_sample = sub_sample
self.in_channels = in_channels
self.inter_channels = inter_channels
if self.inter_channels is None:
self.inter_channels = in_channels // 2
if self.inter_channels == 0:
self.inter_channels = 1
if dimension == 3:
conv_nd = nn.Conv3d
max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2))
bn = nn.BatchNorm3d
elif dimension == 2:
conv_nd = nn.Conv2d
max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2))
bn = nn.BatchNorm2d
else:
conv_nd = nn.Conv1d
max_pool_layer = nn.MaxPool1d(kernel_size=(2))
bn = nn.BatchNorm1d
self.g = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,
kernel_size=1, stride=1, padding=0)
if bn_layer:
self.W = nn.Sequential(
conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels,
kernel_size=1, stride=1, padding=0),
bn(self.in_channels)
)
nn.init.constant_(self.W[1].weight, 0)
nn.init.constant_(self.W[1].bias, 0)
else:
self.W = conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels,
kernel_size=1, stride=1, padding=0)
nn.init.constant_(self.W.weight, 0)
nn.init.constant_(self.W.bias, 0)
self.theta = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,
kernel_size=1, stride=1, padding=0)
self.phi = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,
kernel_size=1, stride=1, padding=0)
if sub_sample:
self.g = nn.Sequential(self.g, max_pool_layer)
self.phi = nn.Sequential(self.phi, max_pool_layer)
def forward(self, x):
'''
:param x: (b, c, t, h, w)
:return:
'''
batch_size = x.size(0)
g_x = self.g(x).view(batch_size, self.inter_channels, -1)
g_x = g_x.permute(0, 2, 1)
theta_x = self.theta(x).view(batch_size, self.inter_channels, -1)
theta_x = theta_x.permute(0, 2, 1)
phi_x = self.phi(x).view(batch_size, self.inter_channels, -1)
f = torch.matmul(theta_x, phi_x)
f_div_C = F.softmax(f, dim=-1)
y = torch.matmul(f_div_C, g_x)
y = y.permute(0, 2, 1).contiguous()
y = y.view(batch_size, self.inter_channels, *x.size()[2:])
W_y = self.W(y)
z = W_y + x
return z
class NONLocalBlock2D(_NonLocalBlockND):
def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True):
super(NONLocalBlock2D, self).__init__(in_channels,
inter_channels=inter_channels,
dimension=2, sub_sample=sub_sample,
bn_layer=bn_layer)
class conv_block1(nn.Module):
def __init__(self,in_c,o_c):
super(conv_block1,self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_c,o_c,kernel_size=3,stride=1,padding=1,bias=True),
nn.BatchNorm2d(o_c),
nn.ReLU(),
nn.Conv2d(o_c,o_c,kernel_size=3,stride=1,padding=1,bias=True),
nn.BatchNorm2d(o_c),
nn.ReLU()
)
def forward(self,x):
out = self.conv(x)
return out
class conv_block(nn.Module):
def __init__(self,in_c,o_c):
super(conv_block,self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_c, in_c, kernel_size=4,stride=2, padding=3, dilation=2),
nn.LeakyReLU(0.2, True),
nn.BatchNorm2d(in_c),
nn.Conv2d(in_c,o_c,kernel_size=3,stride=1,padding=1,bias=True),
nn.BatchNorm2d(o_c),
nn.LeakyReLU(0.2, True),
# nn.Conv2d(o_c,o_c,kernel_size=3,stride=1,padding=1,bias=True),
# nn.BatchNorm2d(o_c),
# nn.LeakyReLU(0.2, True),
)
def forward(self,x):
out = self.conv(x)
return out
class up_conv(nn.Module):
def __init__(self,in_c,o_c,size):
super(up_conv,self).__init__()
self.size = size
self.up = nn.Sequential(
# nn.Upsample(size=size,mode='bilinear',align_corners =True),
nn.Conv2d(in_c,o_c,kernel_size=3,stride=1,padding=1,bias=True),
nn.BatchNorm2d(o_c),
nn.LeakyReLU(0.2, True),
)
def forward(self,x):
o = F.interpolate(x,size=self.size,mode='bilinear',align_corners =True)
out = self.up(o)
return out
class IM_net(nn.Module):
def __init__(self,in_c=2,o_c=1):
super(IM_net,self).__init__()
n1 = 16
filters = [n1,n1*2,n1*4,n1*8,n1*16]
self.conv1 = nn.Sequential(
nn.Conv2d(in_c,filters[0],kernel_size=3,stride=1,padding=1,bias=True),
nn.BatchNorm2d(filters[0]),
nn.LeakyReLU(0.2, True),
nn.Conv2d(filters[0],filters[0],kernel_size=3,stride=1,padding=1,bias=True),
nn.BatchNorm2d(filters[0]),
nn.LeakyReLU(0.2, True),
)
self.conv2 = conv_block(filters[0],filters[1])
self.conv3 = conv_block(filters[1],filters[2])
self.conv4 = conv_block(filters[2],filters[3])
self.conv5 = conv_block(filters[3],filters[4])
self.Up5 = up_conv(filters[4],filters[3],size=[32,32])
self.up_conv5 = conv_block1(filters[4],filters[3])
self.Up4 = up_conv(filters[3],filters[2],size=[64,64])
self.up_conv4 = conv_block1(filters[3],filters[2])
self.Up3 = up_conv(filters[2],filters[1],size=[128,128])
self.up_conv3 = conv_block1(filters[2],filters[1])
self.Up2 = up_conv(filters[1],filters[0],size=[256,256])
self.up_conv2 = conv_block1(filters[1],filters[0])
self.conv_f5 = nn.Conv2d(filters[4],o_c,kernel_size=1,stride=1,padding=0)
self.conv_f4 = nn.Conv2d(filters[3],o_c,kernel_size=1,stride=1,padding=0)
self.conv_f3 = nn.Conv2d(filters[2],o_c,kernel_size=1,stride=1,padding=0)
self.conv_f2 = nn.Conv2d(filters[1],o_c,kernel_size=1,stride=1,padding=0)
self.conv_f1 = nn.Conv2d(filters[0],o_c,kernel_size=1,stride=1,padding=0)
self.non2 = NONLocalBlock2D(filters[1])
self.non3 = NONLocalBlock2D(filters[2])
def forward(self,x,batch_has_m1):
e1 = self.conv1(x)
# e1 = self.non1(e1)
e2 = self.conv2(e1)
e2 = self.non2(e2)
e3 = self.conv3(e2)
e3 = self.non3(e3)
e4 = self.conv4(e3)
e5 = self.conv5(e4)
d5 = self.Up5(e5)
d5 = torch.cat((e4,d5),dim=1)
d5 = self.up_conv5(d5)
d4 = self.Up4(d5)
d4 = torch.cat((e3,d4),dim=1)
d4 = self.up_conv4(d4)
d3 = self.Up3(d4)
d3 = torch.cat((e2,d3),dim=1)
d3 = self.up_conv3(d3)
d2 = self.Up2(d3)
d2 = torch.cat((e1,d2),dim=1)
d2 = self.up_conv2(d2)
out1 = self.conv_f1(d2)
out = out1 + batch_has_m1
return out