From 08f406c875fa588dc0aaf8ca0617664ef25a9647 Mon Sep 17 00:00:00 2001 From: Eugene Khvedchenya Date: Wed, 19 Jul 2023 11:51:09 +0300 Subject: [PATCH] Feature/dg 979 support classification (#149) * Classification support (WIP) * Added logging of the event if feature extractor failed * Fixing summary report for classification * Remove default value batches_early_stop for ClassificationAnalysisManager * Remove default value batches_early_stop for ClassificationAnalysisManager * Remove default value batches_early_stop for ClassificationAnalysisManager * Support dataset * Copy-paste bugfix * New feature extractor ClassificationClassDistributionVsArea * Change x axis to use image size instead of image area * Added action points to description * Added action points to description * Added action points to description * Fix PR * Added normalization to handle case when images were normalized with some unknown mean/std * Copy implementation of jupyter_ui_poll to DG * Added end2end test * Added end2end test * Update master * Added warning --------- Co-authored-by: Shay Aharon <80472096+shaydeci@users.noreply.github.com> --- ...lassification_torchvision_caltech101.ipynb | 242 ++++++++++++++ ...sification_torchvision_fashion_mnist.ipynb | 232 +++++++++++++ .../html/basic_info_fe_classification.html | 37 +++ .../batch_processors/classification.py | 25 ++ .../formatters/classification.py | 83 +++++ .../preprocessors/classification.py | 46 +++ src/data_gradients/config/classification.yaml | 12 + src/data_gradients/config/data/data_config.py | 5 + src/data_gradients/config/data/questions.py | 79 ++++- .../feature_extractors/__init__.py | 10 + .../classification/__init__.py | 11 + .../class_distribution_vs_area.py | 82 +++++ .../class_distribution_vs_area_scatter.py | 77 +++++ .../classification/class_frequency.py | 98 ++++++ .../classification/summary.py | 79 +++++ .../common/image_color_distribution.py | 2 + .../managers/abstract_manager.py | 23 ++ .../managers/classification_manager.py | 108 ++++++ .../utils/data_classes/data_samples.py | 20 ++ .../utils/jupyter_utils/__init__.py | 11 + .../utils/jupyter_utils/_async_thread.py | 58 ++++ .../utils/jupyter_utils/_poll.py | 314 ++++++++++++++++++ src/data_gradients/visualize/plot_options.py | 1 + .../visualize/seaborn_renderer.py | 1 + tests/unit_tests/end_to_end_tests.py | 50 +++ .../test_class_distribution_vs_area.py | 91 +++++ .../test_class_distribution_vs_area_plot.py | 93 ++++++ .../classification/test_class_frequency.py | 78 +++++ 28 files changed, 1967 insertions(+), 1 deletion(-) create mode 100644 examples/classification_torchvision_caltech101.ipynb create mode 100644 examples/classification_torchvision_fashion_mnist.ipynb create mode 100644 src/data_gradients/assets/html/basic_info_fe_classification.html create mode 100644 src/data_gradients/batch_processors/classification.py create mode 100644 src/data_gradients/batch_processors/formatters/classification.py create mode 100644 src/data_gradients/batch_processors/preprocessors/classification.py create mode 100644 src/data_gradients/config/classification.yaml create mode 100644 src/data_gradients/feature_extractors/classification/__init__.py create mode 100644 src/data_gradients/feature_extractors/classification/class_distribution_vs_area.py create mode 100644 src/data_gradients/feature_extractors/classification/class_distribution_vs_area_scatter.py create mode 100644 src/data_gradients/feature_extractors/classification/class_frequency.py create mode 100644 src/data_gradients/feature_extractors/classification/summary.py create mode 100644 src/data_gradients/managers/classification_manager.py create mode 100644 src/data_gradients/utils/jupyter_utils/__init__.py create mode 100644 src/data_gradients/utils/jupyter_utils/_async_thread.py create mode 100644 src/data_gradients/utils/jupyter_utils/_poll.py create mode 100644 tests/unit_tests/end_to_end_tests.py create mode 100644 tests/unit_tests/feature_extractors/classification/test_class_distribution_vs_area.py create mode 100644 tests/unit_tests/feature_extractors/classification/test_class_distribution_vs_area_plot.py create mode 100644 tests/unit_tests/feature_extractors/classification/test_class_frequency.py diff --git a/examples/classification_torchvision_caltech101.ipynb b/examples/classification_torchvision_caltech101.ipynb new file mode 100644 index 00000000..29e093cc --- /dev/null +++ b/examples/classification_torchvision_caltech101.ipynb @@ -0,0 +1,242 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true, + "pycharm": { + "name": "#%%\n" + }, + "ExecuteTime": { + "end_time": "2023-07-17T14:00:20.604151100Z", + "start_time": "2023-07-17T14:00:19.052148500Z" + } + }, + "outputs": [], + "source": [ + "import data_gradients\n", + "import torchvision" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "outputs": [], + "source": [ + "from torchvision.datasets.caltech import Caltech101\n", + "from torchvision.transforms import Compose, ToTensor\n" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-07-17T14:00:20.617135700Z", + "start_time": "2023-07-17T14:00:20.602137400Z" + } + } + }, + { + "cell_type": "code", + "execution_count": 3, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Files already downloaded and verified\n" + ] + }, + { + "data": { + "text/plain": "8677" + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "class ToRGB:\n", + " def __call__(self, pic):\n", + " return pic.convert('RGB')\n", + "\n", + "train = Caltech101(root='./data', download=True, transform=Compose([ToRGB(), ToTensor()]))\n", + "\n", + "len(train)\n" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-07-17T14:00:20.678149400Z", + "start_time": "2023-07-17T14:00:20.617135700Z" + } + } + }, + { + "cell_type": "code", + "execution_count": 4, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:data_gradients.utils.summary_writer:`log_dir` was not set, so the logs will be saved in D:\\Develop\\GitHub\\Deci\\data-gradients\\examples\\logs\\Caltech101\n", + "INFO:data_gradients.config.data.data_config:Cache deactivated for `ClassificationDataConfig`. Please set `load_cache=True` if you want to activate it.\n" + ] + } + ], + "source": [ + "from torch.utils.data import DataLoader\n", + "from data_gradients.managers.classification_manager import ClassificationAnalysisManager\n", + "\n", + "manager = ClassificationAnalysisManager(\n", + " train_data=DataLoader(train),\n", + " report_title='Caltech101',\n", + " class_names=train.categories,\n", + " batches_early_stop=None,\n", + " n_image_channels=3,\n", + ")\n" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-07-17T14:00:23.295132900Z", + "start_time": "2023-07-17T14:00:20.649136200Z" + } + } + }, + { + "cell_type": "code", + "execution_count": 4, + "outputs": [], + "source": [], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-07-17T14:00:23.317133600Z", + "start_time": "2023-07-17T14:00:23.292132800Z" + } + } + }, + { + "cell_type": "code", + "execution_count": 5, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " - Executing analysis with: \n", + " - batches_early_stop: None \n", + " - len(train_data): 8677 \n", + " - len(val_data): None \n", + " - log directory: D:\\Develop\\GitHub\\Deci\\data-gradients\\examples\\logs\\Caltech101 \n", + " - Archive directory: D:\\Develop\\GitHub\\Deci\\data-gradients\\examples\\logs\\Caltech101\\archive_20230717-170023 \n", + " - feature extractor list: {'Image Features': [ClassificationSummaryStats, ImagesResolution, ImageColorDistribution, ImagesAverageBrightness], 'Classification Features': [ClassificationClassFrequency, ClassificationClassDistributionVsArea]}\n", + "\u001B[34;1m╔\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m╗\u001B[0m\n", + "\u001B[34;1m║ \u001B[0mTo better understand how to tackle the data issues highlighted in this\u001B[34;1m ║\u001B[0m\n", + "\u001B[34;1m║ \u001B[0mreport, explore our comprehensive course on analyzing computer vision \u001B[34;1m ║\u001B[0m\n", + "\u001B[34;1m║ \u001B[0mdatasets. click here: https://hubs.ly/Q01XpHBT0 \u001B[34;1m ║\u001B[0m\n", + "\u001B[34;1m╚\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m╝\u001B[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Analyzing... : 8677it [01:06, 131.02it/s]\n", + "Summarizing... : 100%|██████████| 2/2 [00:04<00:00, 2.23s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dataset successfully analyzed!\n", + "Starting to write the report, this may take around 10 seconds...\n", + "****************************************************************************************************\n", + "We have finished evaluating your dataset!\n", + "\n", + "The cache of your DataConfig object can be found in:\n", + " - C:\\Users\\blood\\AppData\\Local\\Deci\\DataGradients\\Cache\\Caltech101.json\n", + "\n", + "The results can be seen in:\n", + " - D:\\Develop\\GitHub\\Deci\\data-gradients\\examples\\logs\\Caltech101\n", + " - D:\\Develop\\GitHub\\Deci\\data-gradients\\examples\\logs\\Caltech101\\archive_20230717-170023\n" + ] + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAIeCAYAAABN3hVuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQw0lEQVR4nO3deVxWdd7/8Tf7ouJCApbr6ABuCCYEqaXk7Til/SJnakqsXMrSyRpza3RSM81J09LJzMGlxkwrl8a7GsupaapbEUxtDNQoMU2RXFHZ4fz+cLjkuhACLg6H5fV8PHoM1/mec67v+VyHa3xzzvW5XAzDMAQAAAAAqFGuVk8AAAAAABoiwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJ3K2eQF2zd+9eGYYhDw8Pq6cCAAAAwEIFBQVycXFRREREtba3/MpWYWGhXn75ZQ0cOFAREREaMWKE9u3bZxtPTU1VfHy8wsPDFRsbqzfeeMNu++LiYi1dulT9+/dXeHi4Hn74YR07dqza8zEMw/Yfap9hGMrPz6f+FqH+1qL+1qL+1qL+1qL+1qL+1qqo/s7mAsuvbL366qt65513tGDBArVr105//etfNXbsWH3wwQfy8PDQqFGjFBsbqzlz5mjfvn2aM2eOmjRpouHDh0uSli9frvXr12vBggUKCgrSwoULNXbsWG3btk2enp5Vno+Hh4fy8/PVpUsX+fr61vTh4mdkZ2crNTWV+luE+luL+luL+luL+luL+luL+lurovr/5z//cWrfll/Z2rFjh4YOHap+/fqpQ4cOmj59ui5evKh9+/bp7bffloeHh5599ll17txZw4cP10MPPaSVK1dKkvLz87V69WpNnDhRAwYMUGhoqJYsWaKMjAx99NFHFh8ZAAAAgMbM8rDl7++vTz/9VMePH1dRUZE2btwoT09PhYaGKjk5WVFRUXJ3v3oBLjo6Wunp6Tp9+rQOHjyoy5cvKyYmxjbu5+enbt26KSkpyYrDAQAAAABJdeA2whkzZuiJJ57QbbfdJjc3N7m6umrZsmVq3769MjIyFBwcbLd+QECAJOnkyZPKyMiQJLVp06bMOiVj1ZWTk+PU9qiekrpTf2tQf2tRf2tRf2tRf2tRf2tRf2tVVH/DMOTi4lLtfVsettLS0tSsWTO98sorCgwM1DvvvKPJkydr3bp1ys3NLfO5Ky8vL0lSXl6erSDXWufChQtOzSs9Pd2p7eEc6m8t6m8t6m8t6m8t6m8t6m8t6m+t8upfnT4QJSwNWydPntRTTz2ltWvXqk+fPpKknj17Ki0tTcuWLZO3t7fy8/PttsnLy5Mk+fr6ytvbW9KVz26V/Fyyjo+Pj1Nz69ixo9P7QNXl5OQoPT2d+luE+luL+luL+luL+luL+luL+lurovqnpaU5tW9Lw9b+/ftVUFCgnj172i3v1auX/v3vf+v6669XZmam3VjJ48DAQBUWFtqWtW/f3m6dkJAQp+bm4+NDNxgLUX9rUX9rUX9rUX9rUX9rUX9rVbX+RUVFKigoMHFGDV/p79a9Vv2duYVQsjhsBQUFSZIOHTqksLAw2/LDhw+rY8eO6tWrlzZs2KCioiK5ublJknbt2qVOnTrJ399fzZo1U9OmTZWYmGgLW1lZWUpJSVF8fHztHxAAAABgMsMwlJGRofPnz1s9lQahSZMmpu3b0rAVFhamG2+8UdOmTdOsWbMUFBSkrVu3aufOnXrrrbfUtm1bJSQkaMaMGRo7dqy+/vprrV27VnPmzJF05f7J+Ph4LVq0SK1atdINN9yghQsXKigoSIMHD7by0AAAAABTlAStgIAA+fr6On31pbEyDEPZ2dk6deqUac9hadhydXXVq6++qpdeeklPP/20Lly4oODgYK1du1a9evWSJCUkJGjevHmKi4tT69atNXXqVMXFxdn2MXHiRBUWFmrmzJnKzc1VZGSkVq1aZXdJEAAAAGgIioqKbEHL39/f6unUez4+PiouLrZ9DVVNs7wbYfPmzTVr1izNmjXrmuNhYWHauHFjudu7ublpypQpmjJlillTBAAAAOqEks9o8dm6muPj4yMXFxdbP4iaZPmXGgMAAACoGm4drDkuLi6m1ZOwBQAAAAAmIGwBAAAAsJxhGFZPocYRtgAAAACYatmyZXbfgzty5EiNHDnS9vidd97Rn//8ZyumZirLG2QAAAAAaFwcm+O9+uqrioqKsmg25iFsAQAAAKhVXbp0sXoKtYLbCAEAAABU6MCBA3rwwQd14403KiIiQg899JD27dsnSZo+fbpGjhypd999VwMHDlRERIQefPBBHTx4sNz9lb6NMDY2Vj/++KO2bNmikJAQHT9+vDYOqVYQtgAAAACU69KlSxo7dqxatmypZcuWacmSJcrJydGYMWN08eJFSVJqaqqWLFmi3//+91q4cKHOnTun+Ph4ZWZm/uz+//KXv6h169a69dZbtXHjRgUEBJh9SLWG2wgBAAAAlCstLU3nzp3TAw88oN69e0uSfvGLX2jjxo26fPmyJOnixYtasWKF+vTpI0kKCwvToEGD9MYbb2jy5MkV7r9bt27y9PRUq1atFB4ebuqx1DbCFgAAAIBy/fKXv1SrVq306KOPasiQIerfv7/69u2rKVOm2NZp27atLWhJUkBAgCIiIpSUlGTFlOsMbiMEAAAAUK4mTZrozTff1K233qoPP/xQv//97xUTE6NnnnlG+fn5kqTAwMAy2/n7++v8+fO1PNu6hStbAAAAACr0i1/8QgsXLlRRUZG+/vprvffee3rrrbfUvn17SdK5c+fKbHP69Gn5+/vX9lTrFK5sAQAAACjXP/7xD0VHR+unn36Sm5ubIiIiNHv2bPn5+enEiROSpPT0dH333Xe2bU6dOqW9e/cqJiamUs/h6towY0nDPCoAAAAANaJ3794qLi7WhAkTtGPHDu3cuVPPPPOMLl68qMGDB0uSDMPQo48+qg8++EDbt2/X2LFj1bx5c1t795/j5+enlJQU7d69W7m5uWYeTq0ibAEAAAAoV0BAgBISEtSsWTPNmDFD48aN0zfffKNly5YpOjpaknT99ddr9OjRmj9/vv74xz+qY8eO2rBhg1q0aFGp5xg9erROnz6tMWPG6MCBAyYeTe3iM1sAAAAAKhQWFqZVq1ZVuM59992n++6775pjjz/+uB5//HHb47/97W9240OHDtXQoUOdn2gdw5UtAAAAADABYQsAAAAATMBthAAAAACqbcGCBVZPoc7iyhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAboQAAABAA3Apr1h5hYYlz+3l7qKmXlzHcUTYAgAAAOq5S3nF2vp1joqtyVpydZHuCvOpUuA6ceKE9u7dqzvuuKNaz5mYmKgHHnhA//znP9W2bdtq7cNsxE8AAACgnssrNCwLWpJUbKjKV9WmTZumzz//vNrPGRERoS+++EJt2rSp9j7MxpUtAAAAAPWOp6enWrdubfU0KkTYAgAAAFCrRo4cqd27d0uS7X9/9atf6bPPPtOZM2e0bNkyhYSEaOHChfrss8909uxZ+fn56bbbbtOMGTPk4+NT5jbC2NhYjRgxQvv27dMXX3whT09PDRs2TNOnT5e7uzWxh9sIAQAAANSqZcuWKSIiQr/+9a/17rvvSpLWrVunmTNnKiEhQeHh4Zo+fbpSUlL0l7/8Rdu3b9fTTz+trVu3auPGjeXu9+WXX1ZkZKT+/ve/a+rUqVq3bp3+93//t7YOqwyubAEAAACoVS1atJCHh4e8vb3VqlUrSdKtt96qm2++2bZO3759FRkZqZCQEElS27ZttW7dOh0+fLjc/fbr108PPPCAJKldu3b629/+pq+++kp33XWXeQdTAcIWAAAAAMt16NDB7vH999+vTz75RFu2bFF6errS0tJ0/Phx/eIXvyh3H507d7Z73KxZMxUUFJgy38rgNkIAAAAAlvP29rb9XFxcrHHjxum5556Tu7u7br/9dr322mvq3bt3hfvw9PQss8wwrGvTyJUtAAAAAHVKamqq/v3vf+vtt99Wr169JEkFBQX64Ycf1K5dO4tnV3mELQAAAAC1rkmTJvrxxx+VkZFRZuy6666Tu7u7PvzwQ7Vq1Urnz5/XihUr9NNPPyk/P9+C2VYPtxECAAAAqHW/+93vdPjwYd15550qKiqyGwsMDNSCBQv0ySef6Pbbb9cTTzyhwMBAPfTQQzpw4IBFM646rmwBAAAA9ZyXu4tcXaRiiz6e5OpyZQ5VMWDAACUmJpY7PmzYMA0bNqzM8qefflqSdNNNN+nQoUO25Z988kmZdf/2t79VaU41jbAFAAAA1HNNvVx1V5iP8gqtSVte7i5q6sVNc44IWwAAAEAD0NTLVU29rJ4FSiN+AgAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAA1DOGYVHbwQbIMAzT6knYAgAAAOoJDw8PSVJ2drbFM2k4cnJyZBiG3N1rvncg3QgBAACAesLNzU0tWrRQZmamJMnX11cuLlX7fitcYRiGsrOz9dNPP6m4uFhubm41/hyELQAAAKAeCQoKkiRb4IJzmjZtqpycHFP2TdgCAAAA6hEXFxe1adNGAQEBKigosHo69ZqHh4fy8vL0008/mbJ/S8NWYmKiHnjggWuOtW3bVv/85z91/PhxzZ07V0lJSfL19dVvfvMbPf7443aX+d58802tXr1aP/30k3r06KGZM2eqW7dutXUYAAAAQK1zc3Mz5dY31BxLw1ZERIS++OILu2X79u3T448/rvHjx6ugoEBjxoxRx44dtWHDBv3www+aMWOGXF1dNXHiREnSli1b9MILL2ju3Lnq1q2bVq5cqVGjRunDDz9Uq1atrDgsAAAAALC2G6Gnp6dat25t+69JkyZ6/vnnFRcXp+HDh2v79u06ceKEXnjhBQUHB2vQoEGaNGmSXn/9deXn50uSVqxYofj4eN15553q0qWL5s+fLx8fH73zzjtWHhoAAACARq5OtX5fsWKFcnJyNG3aNElScnKyunfvrubNm9vWiY6O1qVLl5SamqozZ84oPT1dMTExtnF3d3f16dNHSUlJtT5/AAAAAChRZxpknD17VmvXrtVTTz2lFi1aSJIyMjJs3VZKBAQESJJOnjxp64Xfpk2bMuscPHjQqfmY1ZEEFSupO/W3BvW3FvW3FvW3FvW3FvW3FvW3VkX1NwzDqdb6dSZsrV+/Xs2aNdO9995rW5abmys/Pz+79by8vCRJeXl5toJ4enqWWScvL8+p+aSnpzu1PZxD/a1F/a1F/a1F/a1F/a1F/a1F/a1VXv0ds0ZV1JmwtXXrVt11113y9va2LfP29rZ9NqtESYjy9fW1rXutdXx8fJyaT8eOHZ3eB6ouJydH6enp1N8i1N9a1N9a1N9a1N9a1N9a1N9aFdU/LS3NqX3XibB18OBBHTt2TMOGDbNbHhQUpMOHD9stK/nytsDAQNvtg5mZmercubPdOoGBgU7NycfHR76+vk7tA9VH/a1F/a1F/a1F/a1F/a1F/a1F/a11rfo7cwuhVEcaZCQnJ8vf31+hoaF2yyMjI5WSkqJLly7Zlu3atUtNmjRRaGio/P391alTJyUmJtrGCwsLlZycrMjIyFqbPwAAAAA4qhNhKyUlRSEhIWWWDxo0SK1bt9aTTz6pgwcPaseOHVq8eLFGjx5tu3dy9OjRWrNmjbZs2aK0tDT98Y9/VG5urn7zm9/U9mEAAAAAgE2duI3wp59+snUgLM3Ly0sJCQmaM2eO7rnnHjVv3lz333+/xo8fb1vnnnvu0cWLF/XSSy/p/Pnz6tGjh9asWcMXGgMAAACwVJ0IW3/961/LHevQoYNWr15d4fZjxozRmDFjanpaAAAAAFBtdeI2QgAAAABoaAhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYII6Eba2bt2q22+/XT179tQdd9yhDz/80DZ2/PhxjRs3Tr1791a/fv300ksvqaioyG77N998U7fddpvCwsJ0//33KyUlpbYPAQAAAADsWB623nvvPc2YMUMjRozQ+++/r6FDh2rSpEnau3evCgoKNGbMGEnShg0bNHv2bL311lt65ZVXbNtv2bJFL7zwgp544glt3rxZbdu21ahRo3T27FmrDgkAAAAA5G7lkxuGoZdfflkPPPCARowYIUl67LHHlJycrN27d+vHH3/UiRMn9Pbbb6t58+YKDg7WmTNn9MILL+jRRx+Vp6enVqxYofj4eN15552SpPnz52vQoEF65513NG7cOCsPDwAAAEAjZumVrSNHjujHH3/UsGHD7JavWrVK48aNU3Jysrp3767mzZvbxqKjo3Xp0iWlpqbqzJkzSk9PV0xMjG3c3d1dffr0UVJSUq0dBwAAAAA4svTK1pEjRyRJ2dnZGjNmjFJSUtS2bVs99thjio2NVUZGhoKCguy2CQgIkCSdPHlS7u5Xpt+mTZsy6xw8eNCpueXk5Di1PaqnpO7U3xrU31rU31rU31rU31rU31rU31oV1d8wDLm4uFR735aGrUuXLkmSpk2bpt///veaPHmytm/frvHjx2vNmjXKzc2Vn5+f3TZeXl6SpLy8PFtBPD09y6yTl5fn1NzS09Od2h7Oof7Wov7Wov7Wov7Wov7Wov7Wov7WKq/+jlmjKiwNWx4eHpKkMWPGKC4uTpLUtWtXpaSkaM2aNfL29lZ+fr7dNiUhytfXV97e3pJ0zXV8fHycmlvHjh2d3geqLicnR+np6dTfItTfWtTfWtTfWtTfWtTfWtTfWhXVPy0tzal9Wxq2AgMDJUnBwcF2y7t06aJ//etfioqK0uHDh+3GMjMzbduW3D6YmZmpzp07261Tsu/q8vHxka+vr1P7QPVRf2tRf2tRf2tRf2tRf2tRf2tRf2tdq/7O3EIoWdwgo3v37mrSpIn2799vt/zw4cNq3769IiMjlZKSYrvdUJJ27dqlJk2aKDQ0VP7+/urUqZMSExNt44WFhUpOTlZkZGStHQcAAAAAOLI0bHl7e2vs2LF65ZVX9L//+7/64Ycf9Oqrr+rLL7/UqFGjNGjQILVu3VpPPvmkDh48qB07dmjx4sUaPXq07d7J0aNHa82aNdqyZYvS0tL0xz/+Ubm5ufrNb35j5aEBAAAAaOQsvY1QksaPHy8fHx8tWbJEp06dUufOnbVs2TLddNNNkqSEhATNmTNH99xzj5o3b677779f48ePt21/zz336OLFi3rppZd0/vx59ejRQ2vWrFGrVq2sOiQAAAAAsD5sSdKoUaM0atSoa4516NBBq1evrnD7MWPGaMyYMWZMDQAAAACqxdLbCAEAAACgoSJsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsvD1qlTpxQSElLmv82bN0uSUlNTFR8fr/DwcMXGxuqNN96w2764uFhLly5V//79FR4erocffljHjh2z4lAAAAAAwMbd6gkcPHhQXl5e2rFjh1xcXGzLmzVrpnPnzmnUqFGKjY3VnDlztG/fPs2ZM0dNmjTR8OHDJUnLly/X+vXrtWDBAgUFBWnhwoUaO3astm3bJk9PT6sOCwAAAEAjZ3nYOnz4sDp27KiAgIAyY6+//ro8PDz07LPPyt3dXZ07d9bRo0e1cuVKDR8+XPn5+Vq9erUmT56sAQMGSJKWLFmi/v3766OPPtLQoUNr+WgAAAAA4ArLbyM8dOiQOnfufM2x5ORkRUVFyd39aiaMjo5Wenq6Tp8+rYMHD+ry5cuKiYmxjfv5+albt25KSkoyfe4AAAAAUJ46cWWrZcuWGjFihI4cOaIOHTroscce0y233KKMjAwFBwfbrV9yBezkyZPKyMiQJLVp06bMOiVj1ZWTk+PU9qiekrpTf2tQf2tRf2tRf2tRf2tRf2tRf2tVVH/DMOw+6lRVloatwsJCff/99+rSpYumT5+upk2b6v3339cjjzyiNWvWKDc3t8znrry8vCRJeXl5toJca50LFy44Nbf09HSntodzqL+1qL+1qL+1qL+1qL+1qL+1qL+1yqu/M30gLA1b7u7uSkxMlJubm7y9vSVJPXr00LfffqtVq1bJ29tb+fn5dtvk5eVJknx9fW3b5Ofn234uWcfHx8epuXXs2NHpfaDqcnJylJ6eTv0tQv2tRf2tRf2tRf2tRf2tRf2tVVH909LSnNq35bcRNmnSpMyyX/7yl/riiy8UFBSkzMxMu7GSx4GBgSosLLQta9++vd06ISEhTs3Lx8dHvr6+Tu0D1Uf9rUX9rUX9rUX9rUX9rUX9rUX9rXWt+jtzC6FkcYOMb7/9Vr1791ZiYqLd8gMHDqhLly6KjIzUnj17VFRUZBvbtWuXOnXqJH9/f4WGhqpp06Z222dlZSklJUWRkZG1dhwAgLpny+5Mu/8AAKhtloatzp076xe/+IWeffZZJScn67vvvtPzzz+vffv26bHHHtPw4cN16dIlzZgxQ2lpadq8ebPWrl2rcePGSbpy/2R8fLwWLVqkf/7znzp48KD+8Ic/KCgoSIMHD7by0AAAAAA0cpbeRujq6qoVK1boxRdf1JNPPqmsrCx169ZNa9assXUhTEhI0Lx58xQXF6fWrVtr6tSpiouLs+1j4sSJKiws1MyZM5Wbm6vIyEitWrVKHh4eVh0WAAAAAFj/ma3rrrtOzz//fLnjYWFh2rhxY7njbm5umjJliqZMmWLG9AAAAACgWiz/UmMAAAAAaIgIWwAAAABgAsIWAAAAAJjA8s9sAQBghrioAKunAABo5LiyBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJaP0OAAAA1DFbdmfaPebrLOonrmwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJ6EYIAAAAOMGxc2Bp1e0iSPfBhoErWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgNbvAAAAgAPHdu6lW7FXNAaUxpUtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwQbW6ET7wwAOaNWuWOnfuXGbs4MGDmjJlirZt2+b05AAAAICfU7o7YE11BqxoP3QfRGVVOmwlJyfLMAxJ0u7du5WUlKSzZ8+WWe/TTz/VsWPHam6GAAAAAFAPVTpsvfPOO3rvvffk4uIiFxcXzZkzp8w6JWFs6NChNTdDAAAAAKiHKh22Zs6cqeHDh8swDD344IN65pln1KVLF7t1XF1d5efnp1/+8pc1PlEAAAAAqE8qHbaaNWumqKgoSdIbb7yhbt26qWnTpqZNDAAAAADqs2o1yIiKitLZs2f16aefKisry3b7YGl33XWXs3MDAAAAgHqrWmHr3//+t5544gnl5uZeM2i5uLgQtgAAAAA0atUKWy+++KI6dOigadOmqW3btnJ15eu6AAAAUDWlW7ZLFbdUr6i9O63YUVdVK2wdOXJEy5YtU0xMTE3PBwAAAAAahGpdkmrTpo1ycnJqei4AAAAA0GBUK2w9+uijWrp0qdLT02t4OgAAAADQMFT6NsLY2Fi5uLjYHp88eVK//vWv1bJlS/n4+Nit6+Lioh07dtTcLAEAAACgnql02IqKirILWwAAAACA8lU6bC1YsMDMeQAAAKCecOwiWJrjlwLd7dApsKKughWh4yDqo2p1Izxx4kS5Y66urvL19ZWfn1+1JwUAAAAA9V21wpbj57eupXnz5nrggQc0fvz4ak0MAAAAAOqzaoWtBQsW6JlnnlFUVJSGDh0qf39/nTlzRh999JH+9a9/afz48bp8+bJWrFihFi1a6P7776/peQMAAABAnVatsPX+++/rjjvu0PPPP2+3/K677tKsWbN04MABW9B66623CFsAAAAAGp1qfc/W7t27NXTo0GuODR48WLt27ZIkRURE6NixY5Xe75EjRxQREaHNmzfblqWmpio+Pl7h4eGKjY3VG2+8YbdNcXGxli5dqv79+ys8PFwPP/xwlZ4TAAAAAMxQrbDVokULHTx48JpjBw8eVNOmTSVJ2dnZZb6DqzwFBQWaPHmysrOzbcvOnTunUaNGqX379tq0aZMmTJigRYsWadOmTbZ1li9frvXr12vu3LnasGGDiouLNXbsWOXn51fn0AAAAACgRlTrNsJhw4Zp6dKlcnd315AhQ9SqVSudOXNGH3/8sf7yl7/od7/7nS5cuKDXX39dvXr1qtQ+ly1bZgtpJd5++215eHjo2Weflbu7uzp37qyjR49q5cqVGj58uPLz87V69WpNnjxZAwYMkCQtWbJE/fv310cffVTu1TcAAAA4tnBvp66lHm2uoL27Yzv3qqCFOxqTaoWtJ598UmfOnNGCBQvsvn/L1dVVw4cP1x/+8Adt375dKSkpev311392f0lJSdq4caO2bt1qC02SlJycrKioKLm7X51mdHS0XnvtNZ0+fVonTpzQ5cuXFRMTYxv38/NTt27dlJSURNgCAAAAYJlqhS13d3c9//zzeuyxx5SYmKhz584pMDBQvXv3Vrt27SRJt9xyiz7//HN5enpWuK+srCxNnTpVM2fOVJs2bezGMjIyFBwcbLcsIODKX0NOnjypjIwMSSqzXUBAgG2sunJycpzaHtVTUnfqbw3qby3qby3qby3qXzdUtv6lP/YB53H+W6ui+huG8bNfeVWRaoWtEu3bt1f79u2vOda8efNK7WP27NmKiIjQsGHDyozl5uaWCWteXl6SpLy8PFtBrrXOhQsXKvX85UlPT3dqeziH+luL+luL+luL+luL+te2dnaP7OtvP1ZaamqqOdNp5Dj/rVVe/X/u4lFFKh22brvtNr3yyisKDQ392S81dnFx0Y4dO352n1u3blVycrK2bdt2zXFvb+8yjS7y8vIkSb6+vvL29pYk5efn234uWaeyjTnK07FjR6f3garLyclReno69bcI9bcW9bcW9bcW9bfGDwcu2T0uXf+jDmOlde3atdwxVB3nv7Uqqn9aWppT+6502IqKilKTJk1sPztzOa3Epk2bdObMGbvPaUnSrFmz9MEHHygoKEiZmfYfzix5HBgYqMLCQtuy0lfYMjMzFRIS4tTcfHx85Ovr69Q+UH3U31rU31rU31rU31rUv7bZByr7+pcftniNzMH5b61r1d/ZzFPpsFX6C4xLN8VwxqJFi5Sbm2u3bPDgwZo4caLuvPNOvffee9qwYYOKiork5uYmSdq1a5c6deokf39/NWvWTE2bNlViYqItbGVlZSklJUXx8fE1MkcAAIC6aEsF3QIrq6QzYHZ29n9vDbx6xcqZjoMArnDqM1vfffedvvzyS2VmZmrkyJE6duyYQkNDy7RwL09gYOA1l/v7+yswMFDDhw9XQkKCZsyYobFjx+rrr7/W2rVrNWfOHElX7p+Mj4/XokWL1KpVK91www1auHChgoKCNHjwYGcODQAAAACcUq2wVVxcrGeeeUabNm2ydej49a9/reXLl+uHH37QunXrFBQU5PTk/P39lZCQoHnz5ikuLk6tW7fW1KlTFRcXZ1tn4sSJKiws1MyZM5Wbm6vIyEitWrVKHh4eTj8/AAAAAFRXtcLW8uXLtW3bNj333HMaMGCA+vbtK0maMmWKJkyYoCVLlujPf/5ztSZ06NAhu8dhYWHauHFjueu7ublpypQpmjJlSrWeDwAAAADM4FqdjTZt2qSJEydq+PDhatGihW15165dNXHiRH355Zc1NT8AAAAAqJeqFbZOnz5dbsvPwMBAZWVlOTUpAAAAAKjvqhW2OnTooM8+++yaY7t371aHDh2cmhQAAAAA1HfV+szWgw8+qGeeeUYFBQUaOHCgXFxcdPToUSUmJmr16tWaPn16Tc8TAJzm2CY5robaGtdE++Wr2umHA5cUF1X/v2fFrHoD9V3p341iw36soq/0MRzWHX4Tv1NAXVetsPXb3/5WZ8+e1auvvqr169dLkiZNmiQPDw+NHTtW9913X41OEgAAAADqm2p/z9a4ceM0YsQI7d27V+fPn5efn5969epl1zADAAAAABqrSoetp59++mfX+cc//iFJcnFx0fz586s/KwAAAACo5yodthITE8ssO3nypK677royXyDsUtENxwAAAADQCFQ6bH3yySd2jwsLC9WjRw+tWLFC3bt3r/GJAQAAAEB9Vq3W7xJXrwAAAACgItVukAEA9U1Frccrat/uuJ3jug7dmO005j9L0eodDU1Fv/uObdlLq+jv07RvBxq2al/ZAgAAAACUj7AFAAAAACZwOmzx2S0AAAAAKKvSn9mKjY29ZrB69NFHr9n6fceOHc7PDgAAAADqqUqHraioKK5iAQAAAEAlVTpsLViwwMx5AIDpKuo4WJXtHJuO3V2q657jusWlVnb8e1Xph3FRAcrOzlZqaqq6du1arXkCqJx3dl39PXX8vXTsKvjb6Ku/30UOY7+hkyCAn0GDDAAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMUOnW7wBQH1XU7j2ugpbtpRU79nqv4Dl+ZlUATtiUaP976tiKvbTSHd0d27uXbudeFbR6B1BVXNkCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAAT0I0QQL1XUSfB0s3KHBqS2W1XujOhJG0uNebYjdDVYUeFxVd/duNPWMDPemeX/e9sge13qJ2+//qSpEu2sdK/fm4Ov3v3VLOrIADUFv5ZAAAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJaP0OoN4r3bZ9s0Mb+KIK2rKX7iLt2D4+r+jqz+4O7aZdHB4XF5d+UP66w6PKb1N99fnb6YcDlxQX5VvuukBdse7Lq783Xm72YwWlfhc8HcYc3X9zgLKzs5WamqquXbvK15fzH0DDwJUtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAd0IATRorqW6ATo0EbTrYrhxZ6bK4+7wZ6kio/zncFzXYdVyxUXZd2MDzLQp0aFrZ6kTtdjhpHUrdX67OvwSxfctv8MmAIArWwAAAABgCsIWAAAAAJiAsAUAAAAAJrA8bJ05c0ZTpkxRdHS0IiIi9Mgjj+i7776zjaempio+Pl7h4eGKjY3VG2+8Ybd9cXGxli5dqv79+ys8PFwPP/ywjh07VtuHAQAAAAB2LA9bEyZM0NGjR7Vy5Uq9++678vb21kMPPaScnBydO3dOo0aNUvv27bVp0yZNmDBBixYt0qZNm2zbL1++XOvXr9fcuXO1YcMGFRcXa+zYscrPz7fwqAAAAAA0dpZ2I7xw4YJuuOEGjRs3TsHBwZKk8ePH6//9v/+nb7/9Vjt37pSHh4eeffZZubu7q3PnzrZgNnz4cOXn52v16tWaPHmyBgwYIElasmSJ+vfvr48++khDhw618OgAAAAANGaWhq3mzZvrxRdftD0+e/as1q5dq6CgIHXp0kXLli1TVFSU3N2vTjM6OlqvvfaaTp8+rRMnTujy5cuKiYmxjfv5+albt25KSkoibNWiLbvt2wiXbqldG/t0XLcipfdT3e02V2E7w6GNsmNb5fLGXBxaLLuUs54k5RZd/dmxLbmX29WfLzlc8C007J+ksFiS2uuLnZfl6nLZbszd9eqO3RzmZjdv+yG750i/ZD/asenVDT1c7Sfu+BzZhS7lrlv6GEuvJ0nuLlfXveQwlvDvq69jjsNY6WNq5mn/fOfy7Nf1dS99HPbzziu6uu6r/3Jot118dey9LxOvDnxwUh//ifcvlOXYst1R6feNgiL7McevJSjtnmhauAOAGerM92z96U9/0ttvvy1PT0+9+uqr8vX1VUZGhu2KV4mAgCv/h3Dy5EllZGRIktq0aVNmnZKx6srJyXFq+8YuOzu7WtuV1P1a9a/uPmtqPzX1/EBlcL7Vvorefxq6unC+Neb61wXU31rU31oV1d8wDLk4/gW8CupM2HrwwQd177336s0339SECRO0fv165ebmytPT0249Ly8vSVJeXp6tINda58KFC07NJz093antG592do9SU1Od2tuV+ldln+0qGLNnvx/ztwOqw9nfIVRf3X7/N+e9py6db3W7/g0f9bcW9bdWefV3zBpVUWfCVpcuXSRJ8+bN0/79+7Vu3Tp5e3uXaXSRl5cnSfL19ZW3t7ckKT8/3/ZzyTo+Pj5Ozadjx45O76Mx+eHAJbvHXbt2rdZ+cnJylJ6ero4dO+qH7+zvgalon47PX5HS+6nudkersB1QHdX9HUL1lX7/qavv/+n/Mee9py6cb/Wh/g0Z9bcW9bdWRfVPS0tzat+Whq2zZ89q586d+tWvfmX7XJarq6u6dOmizMxMBQUFKTPT/v70kseBgYEqLCy0LWvfvr3dOiEhIU7NzcfHR76+vk7to3Gx/weAs7W7cqJXZZ+V/weI/X7M3w6oDt5/rFO33//Nee+pS8dbt+vf8FF/a1F/a12r/s7cQihZ3Pr99OnTmjRpknbu3GlbVlBQoJSUFHXu3FmRkZHas2ePioquXuHYtWuXOnXqJH9/f4WGhqpp06ZKTLz6wfKsrCylpKQoMjKyVo8FAAAAAEqz9MpWcHCwbrnlFj333HN67rnn1Lx5c7322mvKysrSQw89JC8vLyUkJGjGjBkaO3asvv76a61du1Zz5syRdOX+yfj4eC1atEitWrXSDTfcoIULFyooKEiDBw+28tAanZroPujMPqv7/NXd7m4TjrcuyM7OVmpqqrp27dpg/rJWuuNkgOy7Cl7pvnhFMw/7MQ83lauFl/26pf/mVd1z6uNjPaq1Heonx46mFXX0LM3VYdCM914AQM2x/DNbixcv1osvvqg//OEPunjxovr06aM333xT119/vSQpISFB8+bNU1xcnFq3bq2pU6cqLi7Otv3EiRNVWFiomTNnKjc3V5GRkVq1apU8PDysOiQAAAAAsD5sNWvWTLNnz9bs2bOvOR4WFqaNGzeWu72bm5umTJmiKVOmmDRDAAAAAKg6Sz+zBQAAAAANFWELAAAAAExA2AIAAAAAExC2AAAAAMAEljfIAABnbXFoo11aRa2xS7ffdrXv5l7r7f3d3emgWh85nntGOetJ9i3dG+rXRwAA7HFlCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEA3QgD1XkUdB0tz7BxXlzrCFRcXWz2FRu3qudFOXauwXWXPPQBA48SVLQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQOt3AI1GRW26HdvC13ZL74K8nFp9voaipl63uKgAZWdnKzU1VapS8/eaZ/W5CACoOVzZAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEtH4HAFnfXru4qMDS56+vqvK6lW6pXtF22w9cknSpWs9RE6w+FwEANYcrWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYAK6EQJoNEp3o5Psu75VNFYbjKLCWn2+xqii1/uqdmWW1NS5UdluiACAhoMrWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgNbvABqNwuLyx6xuxZ336Wv2C8Yvt2YiDVj57d4rVpVzo6LnqGg/tIUHgIaJK1sAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACuhECaDTc6vCfl7wGPGL1FBo8o4Kxu6MClJ2drdTUVP1Q1K7C/ZTuHOi4z7tLdRLc7NCZsKKOg3QgBICGqQ7/0wMAAAAA6i/CFgAAAACYgLAFAAAAACawPGydP39ezzzzjG655Rb17t1b9913n5KTk23jO3fu1N13361evXppyJAhev/99+22z8vL05w5cxQTE6OIiAg99dRTOnv2bG0fBgAAAADYsTxsTZo0SXv37tXixYu1adMmde3aVWPGjNH333+v7777TuPGjVP//v21efNm/fa3v9XUqVO1c+dO2/azZ8/WF198oWXLlun111/X999/r4kTJ1p4RAAAAABgcTfCo0eP6ssvv9T69et14403SpL+9Kc/6fPPP9e2bdt05swZhYSE6A9/+IMkqXPnzkpJSVFCQoJiYmJ06tQpbd26VStWrFCfPn0kSYsXL9aQIUO0d+9eRUREWHZsAAAAABo3S8NWy5YttXLlSvXs2dO2zMXFRS4uLsrKylJycrIGDRpkt010dLTmzZsnwzC0Z88e27ISnTp1UmBgoJKSkghbAOxkXHaxe1zZFt6Otji09K6Jtt0FSe86LAl3ep+wV/rVL66oD7wDx9e79Kb2Z5T9uo5jFe2zNNrAA0DDYWnY8vPz06233mq3bPv27Tp69Kj++Mc/asuWLQoKCrIbDwgIUE5Ojs6dO6dTp06pZcuW8vLyKrNORkaGU3PLyclxantUT0ndqb81qP9V2dnZpqxr5T5Rvuzs7Dpz3jfW1573H2tRf2tRf2tVVH/DMOTiUtGfzypWp77U+KuvvtLTTz+twYMHa8CAAcrNzZWnp6fdOiWP8/PzlZOTU2Zckry8vJSXl+fUXNLT053aHs6h/tZquPVvX+k1U1NTKxi1/9LbitetHjP2ifK/rLgu1bsuzcUKDff9p36g/tai/tYqr/7XyhuVVWfC1o4dOzR58mT17t1bixYtknQlNOXn59utV/LYx8dH3t7eZcalKx0KfXx8nJpPx44dnd4Hqi4nJ0fp6enU3yINvf6JiZcrvW7Xrl3LHfvhwKVKr1t5W0zYJ0pzfN1K69q1q+38t1pjfe0b+vtPXUf9rUX9rVVR/dPS0pzad50IW+vWrdO8efM0ZMgQ/fnPf7alxzZt2igz0/6+9szMTPn6+qpZs2YKCgrS+fPnlZ+fb5c4MzMzFRgY6NScfHx85Ovr69Q+UH3U31oNt/6VD1sVH7/9P9rNqFXDrL/Vyg9bdanedWkuVmi47z/1A/W3FvW31rXq78wthFIdaP2+fv16zZ07VyNGjNDixYvtQlOfPn20e/duu/V37dql3r17y9XVVTfeeKOKi4ttjTIk6ciRIzp16pQiIyNr7RgAAAAAwJGlV7aOHDmi+fPn63/+5380btw4nT592jbm7e2tkSNHKi4uTosWLVJcXJw+++wz/eMf/1BCQoIkKTAwUHfccYdmzpyp+fPny8fHR7NmzVJUVJTCw8MtOirUdW98cfVq6QP96PrV0JXu+tbcvpeOXUc6xz9cba5kVznH56huJzm/QY9WaztUXmHx1Z/dHP7UuCmx5DVsV+ZccGRU0I6woo6Hpffr+BQVnTc1cX4BAKxhadjavn27CgoK9PHHH+vjjz+2G4uLi9OCBQu0fPlyLVy4UK+//rratm2rhQsXKiYmxrbe3LlzNX/+fP3+97+XJN1yyy2aOXNmrR4HAAAAADiyNGw9+uijevTRiv+ae8stt+iWW24pd9zX11fPPfecnnvuuZqeHgAAAABUm+Wf2QIAAACAhoiwBQAAAAAmIGwBAAAAgAkIWwAAAABggjrxpcZAbaLde8NTUWvs0o+f/cdPdmNdW1ztzV1UrHJ5utk/rkrb7spq7uPt9D5QscJSrdiLi+zH3Ev96THPYczT4c+SpVu6l/mLZen27hW0hXc8Zyp7DgMA6heubAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAnoRgjAMhV1YKuKym7b1OEd71LB1Z9Ld5iTJF+Pqz8bDmOOXeZqgo/bz6+Dqil9fkn23QAdm0/mFF792dXh9S1yeP3tuhFWcC7UxnlTFTX1+wYAqDyubAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAlq/A7CMGe2nHdt9l36Okzn2vbdbeF3tzd3Ew25IHqX+FOXY3tuho3eN6Ohrxl4bN8fz6+1dV8+N0q3eJfv27t4ObfgLHfrEV9TuvfRQVVq9V/S7UNtfkQAAqDlc2QIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABLR+B9CgVNTeOrS5fQ9vr1Itvj0c/vQ0/KbabZPt703rd7MVG9f+WbJv2Z5bZD/W3LP8/VTUBt7xXHT8WoLKomU7ANRfXNkCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAAT0I0QaEQe2HTa7vEbw6+zaCbW8PWwf1y6A6FLBV3laoMbf/oynVup19jb4f/9iko1qvR0sx9z7BNZ+rWqqFOgY/fB0utWNAYAaDj4v3cAAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDrd6ARaWyt3h15Obb0LtXT+26LW2+7W9x6vjGwa69fbD/mXurccHV4LRwfO7aCL09F7dxp9Q4AjQNXtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwAR0IwTQaFjdcbAinm4/vw6cU7qpoFsFf2p0bAxJ50AAQHVxZQsAAAAATEDYAgAAAAATELYAAAAAwAR1Kmy99tprGjlypN2y1NRUxcfHKzw8XLGxsXrjjTfsxouLi7V06VL1799f4eHhevjhh3Xs2LHanDYAAAAAlFFnwtabb76pl156yW7ZuXPnNGrUKLVv316bNm3ShAkTtGjRIm3atMm2zvLly7V+/XrNnTtXGzZsUHFxscaOHav8/PxaPgIAAAAAuMryboSnTp3SrFmzlJiYqI4dO9qNvf322/Lw8NCzzz4rd3d3de7cWUePHtXKlSs1fPhw5efna/Xq1Zo8ebIGDBggSVqyZIn69++vjz76SEOHDq39AwIAAAAA1YGw9c0338jDw0N///vf9corr+jHH3+0jSUnJysqKkru7lenGR0drddee02nT5/WiRMndPnyZcXExNjG/fz81K1bNyUlJRG2ANQbbo79xmEqx68B2LI70/bzr3o0la+vb21PCQDQAFketmJjYxUbG3vNsYyMDAUHB9stCwi48n+QJ0+eVEZGhiSpTZs2ZdYpGauunJwcp7ZH9ZTUnfpbg/rXHdnZ2VZPoUGrqL6c/9bg/cda1N9a1N9aFdXfMAy5uFT/L6KWh62K5ObmytPT026Zl5eXJCkvL89WkGutc+HCBaeeOz093ant4Rzqby3qb4V2do9SU1MtmkdDdrXGZet7dYzz31rU31rU31rU31rl1d8xa1RFnQ5b3t7eZRpd5OXlSZJ8fX3l7e0tScrPz7f9XLKOj4+PU8/dsWNHp/eBqsvJyVF6ejr1twj1t076fy7ZPe7atatFM2m4fjhwtcaO9S09xvlvDd5/rEX9rUX9rVVR/dPS0pzad50OW0FBQcrMzLRbVvI4MDBQhYWFtmXt27e3WyckJMSp5/bx8eGefQtRf2tRfyvYhy3qb4arNS5b36tjnP/Wov7Wov7Wov7Wulb9nbmFUKpDrd+vJTIyUnv27FFRUZFt2a5du9SpUyf5+/srNDRUTZs2VWJiom08KytLKSkpioyMtGLKAAAAACCpjl/ZGj58uBISEjRjxgyNHTtWX3/9tdauXas5c+ZIunL/ZHx8vBYtWqRWrVrphhtu0MKFCxUUFKTBgwdbPHsAqLzhNwUoOztbqamp3EJokjiHDoSOYyX1l6g/AKBm1Omw5e/vr4SEBM2bN09xcXFq3bq1pk6dqri4ONs6EydOVGFhoWbOnKnc3FxFRkZq1apV8vDwsHDmAAAAABq7OhW2FixYUGZZWFiYNm7cWO42bm5umjJliqZMmWLm1AAAAACgSur0Z7YAAAAAoL4ibAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJGkTYKi4u1tKlS9W/f3+Fh4fr4Ycf1rFjx6yeFgAAAIBGrEGEreXLl2v9+vWaO3euNmzYoOLiYo0dO1b5+flWTw0AAABAI1Xvw1Z+fr5Wr16tiRMnasCAAQoNDdWSJUuUkZGhjz76yOrpAQAAAGik6n3YOnjwoC5fvqyYmBjbMj8/P3Xr1k1JSUkWzgwAAABAY+Zu9QSclZGRIUlq06aN3fKAgADbWFUUFBRIkr799lu5uLg4P0FUiWEYkqi/Vai/tai/tai/tai/tai/tai/tSqqf0FBgVOvSb0PWzk5OZIkT09Pu+VeXl66cOFClfdXUkxX13p/0a9ecnFxKfNaovZQf2tRf2tRf2tRf2tRf2tRf2tVVH8XF5fGHba8vb0lXfnsVsnPkpSXlycfH58q7y8iIqLG5gYAAACg8ar3l29Kbh/MzMy0W56ZmanAwEArpgQAAAAA9T9shYaGqmnTpkpMTLQty8rKUkpKiiIjIy2cGQAAAIDGrN7fRujp6an4+HgtWrRIrVq10g033KCFCxcqKChIgwcPtnp6AAAAABqpeh+2JGnixIkqLCzUzJkzlZubq8jISK1atUoeHh5WTw0AAABAI+VilPQ6BAAAAADUmHr/mS0AAAAAqIsIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLBVSnFxsZYuXar+/fsrPDxcDz/8sI4dO2b1tBqc1157TSNHjrRblpqaqvj4eIWHhys2NlZvvPGG3TivjXPOnz+vZ555Rrfccot69+6t++67T8nJybbxnTt36u6771avXr00ZMgQvf/++3bb5+Xlac6cOYqJiVFERISeeuopnT17trYPo946c+aMpkyZoujoaEVEROiRRx7Rd999Zxvn/K89R44cUUREhDZv3mxbRv3NderUKYWEhJT5r+Q1oP7m27p1q26//Xb17NlTd9xxhz788EPb2PHjxzVu3Dj17t1b/fr100svvaSioiK77d98803ddtttCgsL0/3336+UlJTaPoR6KTEx8ZrnfkhIiG677TZJ1N9shYWFevnllzVw4EBFRERoxIgR2rdvn228Vt5/DNgsW7bMuOmmm4xPP/3USE1NNUaPHm0MHjzYyMvLs3pqDca6deuM0NBQIz4+3rbs7Nmzxk033WQ8/fTTRlpamvHuu+8aPXv2NN59913bOrw2zhk1apQxdOhQIykpyfj++++NOXPmGGFhYcZ3331npKWlGT179jQWL15spKWlGQkJCUa3bt2M//u//7NtP336dGPQoEFGUlKSsX//fuOuu+4yRowYYeER1S/33nuv8dvf/tbYv3+/kZaWZjz++ONGv379jOzsbM7/WpSfn2/cfffdRnBwsLFp0ybDMHj/qQ3/+te/jJ49exqnTp0yMjMzbf/l5ORQ/1qwdetWo1u3bsa6deuMo0ePGsuXLzdCQ0ONr776ysjPzzcGDx5sPPLII8ahQ4eMjz/+2IiKijJefvll2/abN282wsLCjPfee8/49ttvjSlTphhRUVHGmTNnLDyq+iEvL8/unM/MzDQ++ugjIyQkxHj33Xepfy1YunSp0bdvX+Pzzz830tPTjRkzZhg33nijcerUqVp7/yFs/VdeXp4RERFhvPnmm7ZlFy5cMMLCwoxt27ZZOLOGISMjwxg3bpwRHh5uDBkyxC5srVixwujXr59RUFBgW/biiy8agwcPNgyD18ZZ6enpRnBwsJGcnGxbVlxcbAwaNMh46aWXjD/96U/Gb37zG7ttJk2aZIwePdowjCuvXWhoqPGvf/3LNv79998bwcHBxldffVU7B1GPnT9/3pg0aZJx6NAh27LU1FQjODjY2L9/P+d/LXrxxReNBx54wC5sUX/zrVy50hg2bNg1x6i/uYqLi42BAwcaCxYssFs+evRoY8WKFca2bduMHj16GOfPn7eNbdiwwejdu7ftH5ODBw82XnjhBdt4QUGBceuttxorVqyonYNoQC5fvmwMHDjQmD59umEYBvWvBXfeeafx/PPP2x5fvHjRCA4ONrZv315r7z/cRvhfBw8e1OXLlxUTE2Nb5ufnp27duikpKcnCmTUM33zzjTw8PPT3v/9dvXr1shtLTk5WVFSU3N3dbcuio6OVnp6u06dP89o4qWXLllq5cqV69uxpW+bi4iIXFxdlZWUpOTnZrrbSlfrv2bNHhmFoz549tmUlOnXqpMDAQOpfCc2bN9eLL76o4OBgSdLZs2e1du1aBQUFqUuXLpz/tSQpKUkbN27UggUL7JZTf/MdOnRInTt3vuYY9TfXkSNH9OOPP2rYsGF2y1etWqVx48YpOTlZ3bt3V/PmzW1j0dHRunTpklJTU3XmzBmlp6fb1d/d3V19+vSh/tWwYsUK5eTkaNq0aZJE/WuBv7+/Pv30Ux0/flxFRUXauHGjPD09FRoaWmvvP4St/8rIyJAktWnTxm55QECAbQzVFxsbq2XLlqldu3ZlxjIyMhQUFGS3LCAgQJJ08uRJXhsn+fn56dZbb5Wnp6dt2fbt23X06FH179+/3Prn5OTo3LlzOnXqlFq2bCkvL68y61D/qvnTn/6kmJgYvf/++5o3b558fX05/2tBVlaWpk6dqpkzZ5apI/U33+HDh3X27FmNGDFCN998s+677z79+9//lkT9zXbkyBFJUnZ2tsaMGaOYmBj99re/1SeffCKJ+temkj+0Pfroo2rRooUk6l8bZsyYIQ8PD912223q2bOnlixZoqVLl6p9+/a1Vn/C1n/l5ORIkt0/SCXJy8tLeXl5Vkyp0cjNzb1m3aUrjRl4bWrWV199paefflqDBw/WgAEDrln/ksf5+fnKyckpMy5R/+p48MEHtWnTJg0dOlQTJkzQN998w/lfC2bPnq2IiIgyf92XeP8xW2Fhob7//ntduHBBjz/+uFauXKnw8HA98sgj2rlzJ/U32aVLlyRJ06ZN09ChQ7V69Wr17dtX48ePp/61bP369WrWrJnuvfde2zLqb760tDQ1a9ZMr7zyijZu3Ki7775bkydPVmpqaq3V3/3nV2kcvL29JV35x2XJz9KVYvv4+Fg1rUbB29tb+fn5dstKTmJfX19emxq0Y8cOTZ48Wb1799aiRYskXXnTcKx/yWMfH59rvj4S9a+OLl26SJLmzZun/fv3a926dZz/Jtu6dauSk5O1bdu2a45Tf3O5u7srMTFRbm5utvr16NFD3377rVatWkX9Tebh4SFJGjNmjOLi4iRJXbt2VUpKitasWVOl+juuQ/2rZuvWrbrrrrvszmPqb66TJ0/qqaee0tq1a9WnTx9JUs+ePZWWlqZly5bV2vsPV7b+q+QSYWZmpt3yzMxMBQYGWjGlRiMoKOiadZekwMBAXpsasm7dOj3++OMaOHCgVqxYYfvrTZs2ba5ZW19fXzVr1kxBQUE6f/58mTck6l85Z8+e1fvvv6/CwkLbMldXV3Xp0kWZmZmc/ybbtGmTzpw5owEDBigiIkIRERGSpFmzZmns2LHUvxY0adLE7h8qkvTLX/5Sp06dov4mK6lRyWdGS3Tp0kXHjx+n/rXk4MGDOnbsWJmr69TfXPv371dBQYHdZ9YlqVevXjp69Git1Z+w9V+hoaFq2rSpEhMTbcuysrKUkpKiyMhIC2fW8EVGRmrPnj123yuxa9cuderUSf7+/rw2NWD9+vWaO3euRowYocWLF9tdEu/Tp492795tt/6uXbvUu3dvubq66sYbb1RxcbGtUYZ05XMAp06dov6VcPr0aU2aNEk7d+60LSsoKFBKSoo6d+7M+W+yRYsW6YMPPtDWrVtt/0nSxIkTNW/ePOpvsm+//Va9e/e2q58kHThwQF26dKH+JuvevbuaNGmi/fv32y0/fPiw2rdvr8jISKWkpNhuN5Su1L9JkyYKDQ2Vv7+/OnXqZFf/wsJCJScnU/8qSE5Otp3PpVF/c5V8HuvQoUN2yw8fPqyOHTvW3vuP800VG47FixcbUVFRxo4dO+x66efn51s9tQZl2rRpdq3fT58+bURGRhrTpk0zvv32W2PTpk1Gz549jc2bN9vW4bWpvu+//97o3r27MWHChDLf95GVlWUcPnzY6N69u7Fw4UIjLS3NWLVqVZnv2Zo0aZIRGxtr7Nq1y/Y9W6VfQ1Rs7NixxuDBg43du3cbhw4dMiZNmmRERkYaP/74I+e/BUq3fqf+5ioqKjKGDx9u3H777UZSUpKRlpZmzJ8/3+jRo4dx6NAh6l8LXnnlFSMiIsLYtm2b3fds7dq1y8jNzTUGDRpkjBkzxkhNTbV9z9OyZcts22/cuNEICwszNm/ebPuep5tuuonveaqCp59+2njooYfKLKf+5ioqKjLuu+8+Y8iQIcbOnTuNI0eOGEuWLDG6du1q7Nu3r9befwhbpRQWFhovvPCCER0dbYSHhxsPP/ywcezYMaun1eA4hi3DMIz9+/cb99xzj9GjRw9j4MCBxt/+9je7cV6b6nv11VeN4ODga/43bdo0wzAM47PPPjOGDh1q9OjRwxgyZIjx/vvv2+3j8uXLxowZM4w+ffoYffr0MSZNmmScPXvWisOpl7KysoxZs2YZffv2NcLCwozRo0cbhw8fto1z/teu0mHLMKi/2X766Sdj+vTpRt++fY2ePXsa9957r5GUlGQbp/7mW716tREbG2t0797duPPOO42PP/7YNpaenm6MGjXK6Nmzp9GvXz/jpZdeMoqKiuy2T0hIMG655RYjLCzMuP/++42UlJTaPoR6bezYscaTTz55zTHqb67z588bs2fPNgYMGGBEREQY9957r5GYmGgbr433HxfDMAznLtIBAAAAABzxmS0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAHACX1cJACgPYQsA0CA88cQTuummm8os/89//qOQkBD17t1bBQUFdmMHDhxQSEiIXnnlFYWEhGjz5s0VPkdsbKymT59ue/zOO+/oz3/+s+3x5s2bFRISouPHjzt5NACAhoCwBQBoEGJiYnT+/Hl9//33dss///xztWjRQpcvX9bevXvtxpKTkyVJd911lzZu3KgBAwZU6TlfffVVnT9/3plpAwAaMMIWAKBBiImJkSR99dVXdsu/+OILDRkyRNdff70+//xzu7GkpCQFBwfrhhtuUHh4uFq1alVr8wUANHyELQBAg9ChQwfdcMMNdmHr4sWL2r9/v26++WbFxMToiy++sNtmz5496tu3r44fP17mNsKDBw9q1KhRioiI0MCBA/X3v//dbtvY2Fj9+OOP2rJlS5lbB/fv36/f/e536tmzpwYMGKCEhASTjhoAUJcRtgAADUZ0dLRd2Nq5c6cMw1BMTIz69eun1NRUnT59WpKUlpamc+fOqW/fvmX2c+rUKcXHx+vixYtauHChnnjiCS1atEinTp2yrfOXv/xFrVu31q233qqNGzcqICDANjZ79mzdcccdWrlypSIiIrRw4UJ9+umnJh45AKAuImwBABqMmJgYHTlyRGfPnpV05fNaYWFh8vPz08033ywXFxfb1a2kpCR5enoqMjKyzH7Wrl2roqIirVy5UoMGDdJdd92lZcuWqbCw0LZOt27d5OnpqVatWik8PFyenp62sUmTJmnkyJGKiYnR/Pnz5eHhoV27dpl89ACAuoawBQBoMEo+t1XSCOOLL75Qv379JEktWrRQ9+7d9X//93+SrjTH6N27t7y9vcvsZ8+ePWU+w9WrVy9df/31lZpHnz59bD/7+PjouuuuU1ZWVvUOCgBQbxG2AAANxnXXXafg4GB99dVX+u6773TixAn179/fNt63b18lJiZKuvp5rWu5cOGCWrZsWWZ569atKzUPHx8fu8eurq58HxcANEKELQBAgxIdHa39+/dr586datGihXr27Gkb69evnzIyMrRr1y6dPHmy3LDVsmVL22e7SqPNOwCgKghbAIAG5eabb9Y333yjxMRExcTEyNX16v/VhYeHq0mTJlq/fr1atmypbt26XXMf0dHR2rt3r11DjLS0NB07dsxuvdL7BgDAEf8vAQBoUCIjI5Wfn69PP/3U9nmtEh4eHoqKitInn3xia5hxLQ8++KCaN2+uMWPGaPv27frggw/02GOPycPDw249Pz8/paSkaPfu3crNzTXtmAAA9RNhCwDQoDRt2lQ9e/ZUQUFBmbAlSf3791dBQYFuvvnmcvfRsmVLvfXWW2rbtq2mT5+u+fPna8SIEQoNDbVbb/To0Tp9+rTGjBmjAwcO1PixAADqNxeDT+wCAAAAQI3jyhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACf4/5p8qJgXjVHIAAAAASUVORK5CYII=\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2sAAAIdCAYAAACjueX4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAADMbUlEQVR4nOzdd1gU19fA8e/SpSgWsKEoNopdsWPvGrtGjTVR04zRJJruL5rXRKOJJiZGY01i1Bh7jSWxRgURO2AHRUUQRaSX3fePm6UIGoSFpZzP89xnl5nZmbsw7M6Ze++5Gp1Op0MIIYQQQgghRIFiYuwKCCGEEEIIIYTITII1IYQQQgghhCiAJFgTQgghhBBCiAJIgjUhhBBCCCGEKIAkWBNCCCGEEEKIAkiCNSGEEEIIIYQogCRYE0IIIYQQQogCyMzYFSguTp8+jU6nw9zc3NhVEUIIIYQQQhhRUlISGo2GRo0aPXM7aVnLJzqdLrUIYWg6nY7ExEQ5v0SekPNL5CU5v0RekvNL5KXcnF/ZjQukZS2fmJubk5iYSM2aNbG2tjZ2dUQRExsbS0BAgJxfIk/I+SXykpxfIi/J+SXyUm7Or/Pnz2drO2lZE0IIIYQQQogCSII1IYQQQgghhCiAJFgTQgghhBBCiAJIgjUhhBBCCCGEKIAkWBNCCCGEEEKIAkiyQRYwKSkpJCUlGbsaxY65uTmmpqbGroYQQgghhBCpJFgrIHQ6HaGhoURGRhq7KsWWvb09FSpUQKPRGLsqQgghhBBCSLBWUOgDNUdHR6ytrSVgyEc6nY7Y2FjCwsIAqFixopFrJIQQQgghhARrBUJKSkpqoFa2bFljV6dYKlGiBABhYWE4OjpKl0ghhBBCCGF0kmCkANCPUXvemc+FYel//zJmUAghhBBCFAQSrBUg0vXRuOT3L4QQQgghChIJ1oQQQgghhBCiAJJgTQghhBBCCCEKIEkwIlKdP3+eX375hZMnT/LgwQMcHR1p2bIlEyZMoEqVKtnez8iRIwH49ddf86qqQgghhBBCFHnSsiYA+O233xg6dCgRERG8++67LF26lAkTJuDj48OgQYMIDAw0dhWFEEIIIYQoVqRlTXDq1ClmzZrFSy+9xMcff5y6vHnz5nTu3Jl+/frx0UcfsWnTJiPWUgghhBBCiOJFgjXB8uXLsbOz45133sm0rkyZMnzwwQfcuHGD2NhYLC0tWbduHevWrSM4OJgyZcrQu3dv3nrrLSwtLbPcf0JCAsuWLWP79u3cvn2bihUrMmjQIMaNG4eJiWrcHTlyJOXLlycxMZHDhw/TqFEjVq5cmafvWwghhBBCiIJMgrViTqfTcfToUTp27Jg6MfSTevbsmfr8448/ZuvWrYwfP56mTZvi7+/PDz/8QEBAAMuWLcuU/l6n0/Haa69x5swZJk6ciKurK97e3ixYsIBbt27x+eefp267e/du+vTpw48//ohWq82bNyyEEEIIIUQhIcFaMffw4UMSEhJwcnL6z22vXr3Khg0bePfdd5kwYQIArVu3xtHRkWnTpnH48GHatWuX4TWHDx/m2LFjfPPNN/Tq1Sv1NVZWVnz77beMGjWKWrVqAWBubs6MGTOwsLAw8LsUQgghhBCi8JEEI8WcqakpACkpKf+5rY+PD0Bq0KXXq1cvTE1N8fb2zvI1ZmZmdO/ePcPyPn36ZNgngIuLiwRqQgghhBCi4Lp8GT7/HF58EdN16yA5OU8PJy1rxVypUqWwsbHhzp07T90mNjaWpKQkHj16BICDg0OG9WZmZpQuXZrHjx9neu2jR48oXbp0alCop99H+tfY2Njk+H0IIYQQQgiRJ4KD4fffYd06OH06dbHl+vXUK18e3noLJk6EUqUMfmhpWRO0adMGb29vEhISsly/fv16WrRokfpzeHh4hvVJSUk8fPiQ0qVLZ3ptqVKlePjwYaaWu7CwMIAsXyOEEEIIIUSB8NNP4OIC77+vAjUzM+jeHaZNQ+foiMW9e1h88gk4OaltkpIMengJ1gQvv/wykZGRLFiwINO68PBwVqxYQc2aNenSpQsAO3fuzLDNzp07SUlJoUmTJple36xZM5KTk/nzzz8zLN+2bRtAlq8RQgghhBDC6FavhtdeA60W2raFJUvg7l3YvRvmzCEuIICgTz9F6+YG0dHw1VcwbZpBqyDdIAUNGzbk7bffZsGCBVy7do1+/fpRunRprly5wvLly0lISGDBggXUqFGD/v3789133xEXF4enpycBAQF8//33NG/eHC8vr0z7btu2Lc2bN+eTTz7h3r17uLq64uPjw9KlS+nfvz81a9Y0wjsWQgghhBDiGTZvhjFjQKdTXRy/+w6eyHqOlRURffvi+P77WG/cCKNHw4IF0LIlDBlikGpIsCYAeP3113F3d+e3337jiy++4NGjR1SsWJH27dvz2muvUbFiRQBmzZqFs7MzGzduZOnSpTg6OjJq1CjeeOON1DnT0tNoNCxZsoTvvvuOVatW8eDBA5ycnHjnnXcYO3Zsfr9NIYQQQgghnm3vXhg6FFJSVMD27beZA7X0NBoYNQr8/WHOHHj5ZahbF9zdc10VjU6n0+V6L+I/nT9/nsTERNzc3LC2ts6wLj4+nhs3blC9enWsrKyMVENRmP8OsbGxBAQEZHl+CZFbcn6JvCTnl8hLcn6J53b0KHTtCnFxMGgQrF2rxqllIdP5lZysXnvgALi6go8P2Nll+drz588DUK9evWdWR8asCSGEEEIIIcSNG9CrlwrUevSA3357aqCWJTMzlTGyUiUIDIRXXlHdKHNBgjUhhBBCCCGEmDwZoqKgRQvYuBFyMv+voyP88YcK3P74Q41hywUJ1oQQQgghhBDF286dsG2bCrKWL4cSJXK+r1at4Jtv1PP334eQkBzvSoI1IYQQQgghRPEVHw+TJqnnkycbJDEIEyeCl5ead23+/BzvRoI1IYQQQgghRPE1dy5cv67Gmk2fbph9ajTw4Yfq+U8/wYMHOdqNBGtCCCGEEEKI4ikoCL74Qj3/+uunZm/Mke7doX59NWH2okU52oUEa0IIIYQQQojiafJk1Q2yQwd48UXD7lujUWPWQE2qHRf33LuQYE0IIYQQQghR/OzaBVu3qqQiCxc+e+LrnBoyBKpVg/BwWLnyuV8uwZoQQgghhBCieElOhrffVs/ffhs8PPLmOGZm8N576vncueq4z0GCNWFQI0eOpE6dOhlK3bp1ad++PTNnziQuB82/eps2baJOnToGrK0QQgghhCiW/vgDrl6FcuXgf//L22ONHauOExSkjvscJFgTBtejRw+OHj2aWnbu3Mn48eNZv349c+bMMXb1hBBCCCFEcabTwVdfqeeTJhk2qUhWrK3TpgaYM0cdP5skWBMGZ2VlhYODQ2pxdnbmpZde4oUXXmDXrl3Grp4QQgghhCjO9u+HM2dUEPXGG/lzzDffBBsbOHsW9uzJ9svM8rBKIrd0OoiNNd7xra0NOtDS0tISMzN1yiUmJvLtt9+ybds2oqOjqVWrFpMmTaJNmzap2+/bt4/vvvuOoKAg6tWrR6tWrQxWFyGEEEIIUUzpW9XGjYOyZfPnmGXKwIQJaoLsr7+Gb77J1sskWCuodDpo0waOHTNeHVq3hiNHch2wJScnc/ToUbZu3crQoUMB+PDDD7l27Rrz5s2jfPnyHDhwgNdee43vv/+e9u3b4+fnx1tvvcXEiRPp1asXvr6+fP7554Z4V0IIIYQQorg6dUq1rJmawpQp+XvsSZNUsPb335CSourwHyRYK8jyIn1oPti+fTt70jXvxsfHU6lSJV555RVee+01goOD2bFjB1u2bMHNzQ2AsWPHEhgYyPLly2nfvj2rV6+mcePGTJw4EYDq1atz+fJlfvnlF6O8JyGEEEIIUQTMnaseX3xRpdTPT9WqQfPm4O0NMTFQsuR/vkSCtYJKo1GtWoWwG2THjh1577330Ol0nDt3jlmzZtGqVStee+01zMzM8Pf3B2D48OEZXpeUlETJf0/ay5cv07p16wzrGzVqJMGaEEIIIYTImevX07IxTptmnDoMGSLBWpGh0aiBiIWMjY0Nzs7OAFSrVg1HR0fGjh2Lqakpn332Gbp/M+D89ttv2Dzx/kxMVM4bjUaDVqvNsM7c3Dwfai+EEEIIIYqkb74BrRa6dYMGDYxTh0GD4N13IT4+W5tLNkiR51q0aMHYsWNZu3Ythw8fplatWgCEh4fj7OycWjZt2sSmTZsAcHV15fTp0xn2c+HChXyvuxBCCCGEKALCw2HFCvXcWK1qAFWrQosW2U7fL8GayBdvv/021apV47PPPqNSpUp06NCB//3vf/z999/cunWLpUuXsmTJEqpWrQrAyy+/TGBgIHPmzOHGjRts27aN1atXG/ldCCGEEEKIQumHHyAuDpo0gQ4djFuXIUOyvanRgzWtVst3332Hl5cXDRs2ZPz48dy6deup2z98+JB3330XT09PmjVrxowZM4iLi8uwze7du+nZsyf169enX79+HD9+/KnHHjduHAsXLsy07ty5c7z00kvUr1+fdu3a8d1332Xqlieyz9LSks8//5w7d+4wf/585s+fT9euXZk+fTo9e/Zky5YtzJo1i/79+wPg5ubG0qVL8fb2pk+fPqxatYrXXnvNyO9CCCGEEEIUOklJsHixej51qvGT+A0alO1NjT5mbdGiRaxZs4bZs2dToUIF5s6dy7hx49i+fTsWFhaZtp80aRJxcXGsWrWKqKgoPv74Y2JjY5kzZw4AJ06cYOrUqUybNo3WrVuzYcMGJkyYwJYtW6hRo0bqfhITE5k+fTpHjhyhwRN9Vm/cuMGoUaPo06cPs2bN4tKlS3z44YeUKFGC8ePH5+0vpJD79ddfn7quWbNmBAYGpv780Ucf8dFHHz11+5YtW6Z2i9ST378QQgghhHgu27fDvXtQvjwMGGDs2kCVKvBvwr3/YtSWtcTERFasWMGkSZNo3749rq6uzJ8/n9DQUPbu3Ztp+9OnT+Pj48OcOXPw8PCgZcuWzJw5k61bt3Lv3j0Ali5dSufOnRk1ahQ1atTg/fffx8PDg59//jl1P35+fgwYMABfX9/U7IPpLVmyhJo1azJjxgyqVatGt27dGDNmDH5+fnn3yxBCCCGEEEIY3rJl6nHMGCgoCeuymUTQqMFaYGAgMTExtGzZMnVZyZIlcXd35+TJk5m29/X1xcHBIUMLWbNmzdBoNJw6dQqtVoufn1+G/QE0b948w/4OHTqEl5cXW7Zswc7OLtNxjh49Su/evdGkayKdNGkSP/74Y67erxBCCCGEECIf3bwJf/6pno8bZ9y6pGdrm63NjNoNMjQ0FICKFStmWO7o6Ji6Lr179+5l2tbCwgJ7e3vu3r1LVFQUsbGxVKhQ4Zn7m/KM2cqjo6MJDw/Hzs6Ojz76iMOHD1OyZEn69evHK6+8gmk2Zhp/lifH1wEkJCSg1WpJSUkhJSUlV/sXOZeSkoJWqyUuLq7QjU/Un1dZnV9C5JacXyIvyfkl8pKcX8J8yRLMdTpS2rYloVIlg85hnJvzS2diQnZGzhk1WNO/sSfHpllaWvLo0aMst89qHJulpSUJCQnE/ztfQVb7S0hIyFadoqOjAZgzZw6jRo1i6dKlBAQEMGvWLGJjY5k8eXK29vM0QUFBWS43MzPLdh1F3khISCA5OZnr168buyo59rTzSwhDkPNL5CU5v0RekvOrmEpJod7y5QAEd+3Kw4CAPDlMTs+vrOKaJxk1WLOysgLU2DX9c1AXzSVKlMhy+8TExEzLExISsLa2xtLSMnV/T67Pan9ZMTNTv5JWrVoxceJEQGUmfPDgAT/88ANvv/12hu6Rz6tatWqZ6pKQkMCdO3ewtLTM8HsQ+c/MzIyqVaumnkuFRVxcHEFBQVmeX0LklpxfIi/J+SXykpxfxZvJnj1Y3LuHrkwZKrz+OhUMfJ2dm/Pr6tWr2drOqMGavktjWFhY6vxa+p/r1KmTafsKFSqwf//+DMsSExOJjIzE0dERe3t7rK2tCQsLy7BNWFgY5cuXz1adSpcujaWlJbVr186wvFatWsTGxvLgwQPKli2brX1lpUSJElhbW2dYZmJigomJCaamprnuZilyztTUFBMTE0qUKFFog+aszi8hDEXOL5GX5PwSeUnOr2Lq3yzlmpEjsS5TJs8Ok5PzK7uNP0ZNMOLq6oqtrS3e3t6py6KiovD398fT0zPT9p6enoSGhhIcHJy6zMfHB4AmTZqg0Who3Lhx6jI9b29vmjZtmq06mZqa0rhxY86ePZth+aVLlyhZsiT29vbZfXtCCCGEEEIIYwgNVSn7oWAlFnlORg3WLCwsGDFiBPPmzeOvv/4iMDCQKVOmUKFCBbp27UpKSgrh4eGpY9EaNGhA48aNmTJlCufOnePEiRNMnz6dfv36pbacjR07lp07d7Jy5UquXbvGV199RUBAAKNHj852vV5//XWOHDnCwoULuXnzJrt27eKnn35i9OjR0vIlhBBCCCFEQbdqFSQnQ4sWULeusWuTY0YN1kClxB80aBCffPIJw4YNw9TUlOXLl2Nubs7du3dp06YNu3btAlRz4ffff4+TkxOjR49m8uTJtG3bls8++yx1f23atOGLL75g7dq19O/fnxMnTrB48eIM6f7/S/PmzVmyZAkHDhygZ8+ezJ07lwkTJvDGG28Y+u0LIYQQQgghDEmnS5tbbfx449Yll4w6Zg1Ut8OpU6cyderUTOucnJy4dOlShmVly5blu+++e+Y++/XrR79+/bJ1/L///jvL5V5eXnh5eWVrH0IIIYQQQogC4uBBuHYN7OzgxReNXZtcMXqwJoomnU7H5s2b2bx5M1euXCE6OpqKFSvSvn17JkyYgIODg7GrKIQQQgghiqIVK9TjsGFgY2PcuuSS0btBiqJHq9Xy5ptvMnv2bDp06MCvv/7K3r17+eSTTzh//jwDBw4kIiLC2NUUQgghhBBFTUwMbN6sno8ZY9SqGIK0rAmDW7VqFYcOHWL9+vV4eHikLq9UqRLNmzenV69eLF++nGnTphmxlkIIIYQQosjZulUFbC4uKrlIISfBWgGm0+mITYo12vGtza2fewJwnU7H6tWr6dOnT4ZATc/KyopffvkFBwcHQkJC6NSpE++88w6//PILVlZWbN26FZ1Ox1dffcW+fftISkrCw8ODqVOnUq9evdT9HDhwgIULF3L16lXKly9Pr169eOONN1Jngq9Tpw6zZs1ix44d+Pn5UbJkSYYOHZo60bkQQgghhCiCVq9Wjy+9BM95HVsQSbBWQOl0OtqsbMOxW8eMVofWVVpzZOyR5wrYQkJCuH37Nq1atXrqNpUrV87w8+bNm/n555+Ji4vDxsaGYcOGYWVlxZIlS7C1tWXr1q0MGzaM9evX4+7uzuHDh5k8eTIffvghrVq14ubNm3z++efcuHGDb7/9NnW/c+bM4ZNPPuHzzz9n586dzJ8/n+bNm2c5h58QQgghhCjkwsJg7171/KWXjFsXA5FgrQDTUPjuBty/fx+AMk/MEv/aa69lmPy8UqVKLFmyBIDhw4dTs2ZNAI4fP86ZM2c4ceJE6gTk77zzDn5+fvzyyy/Mnj2bxYsXM2TIEIYOHQpA1apVmTFjBqNHjyYkJAQnJydAZQXt27dv6vGXL1+On5+fBGtCCCGEEEXR779DSgp4ekKdOnl2mL+u/8VCn4VExEQQ8TgC7TEtscmxVLSryKKei2hSqYnBjiXBWgGl0Wg4MvZIoesGWbp0aQAePXqUYfmMGTNSJzf/9ddfM0yZ4OzsnPr84sWL6HQ6OnTokOH1iYmJJCQkAODv78+5c+fYsGFD6nqdTgfAtWvXUoO1J+fWs7OzIykp6bnejxBCCCGEKCTSd4HMAzqdjgUnFvDevvfQ6rSZ1t+KukWblW34qfdPjGww0iDHlGCtANNoNNhYFK50o1WqVMHBwQFvb2969uyZurx8+fKpz0uVKpXhNVZWVqnPtVottra2bNq0KdO+9ePRtFot48aNo3///pm2ST8lgH779PRBnRBCCCGEKEKuXAEfHzA1hX97XxlSQnICr+18jVVnVgEwsv5Iujh34UHoA+q41KG0bWk+P/w5O6/sZNSWUZy6e4q5XeZibmqeq+NK6n5hUKampowaNYotW7YQGBiY5TZ379596utr165NdHQ0SUlJODs7p5alS5fy119/AVCrVi1u3LiRYX1oaChfffUVMTExefK+hBBCCCFEAfbbb+qxSxdI10hgCPei79Hxl46sOrMKE40J87vN5+d+PzPQdSBtyrehbdW2NHdqzrZh2/i07acAfOv9LV1XdyU8JjxXx5ZgTRjcuHHj6NChA8OHD2fx4sUEBgYSEhLC33//zcsvv8zGjRtp8ZRUql5eXri5uTFlyhROnDhBcHAwX375JZs2bUrt1jh+/Hj27NnD999/z40bNzh+/Dgffvghjx8/lsm2hRBCCCGKG50uz7pAXntwjaZLm3Ls1jHsrezZ/dJuJreYnOVQIRONCTM7zGTTkE3YWthyMOggrVa0IiYx540J0g1SGJyJiQkLFixg9+7dbNy4kV9++YWoqCjKlStH06ZNWb16NZ6enoSEhGR6rampKStWrGDu3LlMnjyZuLg4atSowffff0/Lli0B6N69O/Pnz2fJkiUsXrwYe3t7OnbsyHvvvZffb1UIIYQQQhibjw9cuwbW1tCvn8F2m6JNYdSWUYREhVCnbB22DdtG7bK1//N1/d36413Om66/duXqg6t8ceQLZnWalaM6SLAm8kyPHj3o0aPHU9c7OTlx6dKlTMvLlCnDl19+mat9Z7Xf9ElNhBBCCCFEEaFvVevfH2xtDbbb77y/49itY9hZ2LF35F6qlqqa7de6O7jzfc/v6f97f+Ydn8eYhmOoVbbWc9dBukEKIYQQQgghCqekJFi3Tj03YBfIKxFX+OjvjwD4uuvXzxWo6fWt05fuNbuTmJLIpD8n5SjRnQRrQgghhBBCiMJp3z64fx8cHFRyEQPQ6rS8vO1l4pPj6ezSmXGNx+VoPxqNhu+6f4eFqQV/Xv2TrZe2Pvc+JFgTQgghhBBCFE76VrUXXwQzw4zw+t7ne47ePIqthS3LXlj23PMOp1erbC3ea6nyKkz+c/Jzz6EswZoQQgghhBCi8ImPhy1b1PMXXzTILq8+uMoH+z8AYG6XuTjbO+d6nx95fUSVklUIfhTM7KOzn+u1EqwJIYQQQgghCp8//4THj8HJCVq1yvXutDotr2x7hbjkODpW78iEJhMMUEmwsbBhfrf5AHz1z1dce3At26+VYE0IIYQQQghR+Oi7QA4ZAia5D2s2BWzicPBhbMxtWPbCMkw0hguVBrgNoItLFxJSEnhvX/anm5JgTQghhBBCCFG4xMTA9u3quQG6QOp0OmYdUXOhvdvyXaqXrp7ldmFh8M474O4OAwZY8sMPldi82ZRr10Crffr+NRoNC7ovAGBr4FaStcnZqpfMsyaEEEIIIYQoXHbuhNhYqF4dPD1zvbtdV3ZxJvQMNuY2TGo+KdP6hw9h3jz49lsVJwIEBJgCFVm5Uv1cpQps3Pj06rg7uNO+WnsOBh3kceJjSluV/s96ScuaEEIIIYQQonD5/Xf1OGQI5CJbI2RsVXu96euUtS6bui4xEWbNUjHhF1+oQK1pU9UDc/78RPr1C6dx4xQsLeHWLejUCQ4ffvqxxjceD8DjhMfZqpu0rAkhhBBCCCEKj8ePYdcu9dwAXSAPBh3keMhxLE0teaflO6nLtVoYMwbWrlU/160Ln38Offuq+DA2Nhkvr5u4udmQkmJNnz5w8CB07w6bNqnHJw1wG0CZEmWy3Q1SWtaEQXXs2JE6deqklrp169KtWzeWLVuWus3IkSP54IMPjFhLIYQQQghRaG3bptL2164NDRvmenf6VrVXGr1CRbuKqcunT1eBmpkZrFwJZ89Cv35ZN+TZ2an4sVcviIuDPn1Ul8gnWZlZMbL+yGzXTYI1YXAvv/wyR48e5ejRo+zevZtJkybxww8/8Ntvvxm7akIIIYQQorBLPxF2LrtAeod489eNvzAzMWNa62mpy5cvV90fAZYsUS1s/5VwskQJ1aI2ZAgkJanHX37JvJ2+K2R2SDfIAkynU+MmjcXaOmfnv7W1NQ4ODqk/V6lSBW9vbzZu3MhLL71kwBoKIYQQQohi5eFD2LNHPTdAF0h9q9qI+iNSJ8DeuxdefVWt/+QTePnl7O/PwgLWrAFbW1ixAl55RSUccXNL28bD0YOQqyHZ2p+0rBVQOh20aaP+0MYqXl6qHoZgZWWV5XJvb2/q1KlDSEjIU5fpdDqWLl1Kp06daNCgAX379mXbtm2GqZgQQgghhCg8tmxRzVYeHqrkwtnQs2y/vB0NGj5s8yEA58/DoEGQkgLDh8PMmc+/X1NTWLpUdYlMTobJkzNfU9tZ2mVrXxKsFWC5bNUtMM6dO8eOHTsYPHhwjl4/f/581q5dy6effsr27dsZNWoUn332mXSrFEIIIYQobvRZIA3QqvbF0S8AGOIxhNpla/PggQqwHj+Gtm1Vy1hOr8dNTGDBAtXStncv7NiRcb2tuW229iPdIAsojQaOHCmc3SCXLFnCihUrAEhKSiIpKYkGDRrwwgsvPPe+YmNjWbVqFd988w3t27cHoGrVqty+fZvly5dLt0ohhBBCiOLi/n3Yv189z2WwduvRLTb4bwDgI6+PANXl8dYtqFULNm8GS8tcHYKaNWHKFJgzR02k3bVr2j412bzIlmCtANNowMbG2LV4fkOHDmXkSJXlJjk5meDgYObPn89LL73EH3/88Vz7unr1KgkJCbz77ruYpBvVmZycTGJiIvHx8U/tYimEEEIIIYqQjRtV/8RGjVQmyFxYcXoFWp2W9tXaU798fc6cUYlEQHVhLFMm99UF+Phj+PlnuHpVTag9bdp/vyY9CdaEwZUqVQpnZ+fUn2vUqEGpUqUYPnw4x44d+8/Xp6SkpD7X/dvBd8GCBbi4uGTa1sLCwgA1FkIIIYQQBZ6BukCmaFNYfno5oDIz6nTw1ltqXrUXX4R27XJb0TR2djB7tsom+fnnMGoUVKiQ/dfLmDWRL/RBl1arzbDc3NwcgOjo6NRlQUFBqc9dXFwwMzPjzp07ODs7p5ZDhw6xfPnyDK1tQgghhBCiiAoNhUOH1PMhQ3K1qz3X9nAr6hZlSpRhgNsA1qyBo0fVEKB58wxQ1yeMHAnNmkF0NHz44fO9Vq50hcHFxsYSHh5OeHg4YWFh+Pr68sUXX+Do6EjLli0zbFu7dm2sra356aefuHnzJkeOHGHlypWp6+3s7Bg6dCjffvstW7du5datW2zYsIG5c+fi6OiY329NCCGEEEIYw4YNqumrWTOoXj1Xu/rp1E8AjG4wmqQ4K6ZOVcs//hicnHJb0cxMTOC779TzVavg5Mnsv1a6QQqDW7FiRWqCERMTE+zt7WnatCnz5s2jRIkSGba1tbVl7ty5zJs3j549e+Lq6sr777/Pm2++mbrNhx9+SOnSpfn2228JCwujYsWKTJo0iXHjxuXr+xJCCCGEEEZioC6Qdx7fYcdllZpxfOPxfP453L0LNWrAu+/mtpJP17y56gL5yy8wdSosXJi910mwJgzq77///s9tfv311ww/d+7cmc6dO2dYdunSpdTnZmZmTJw4kYkTJxqmkkIIIYQQovAICVH9FAFyOBWU3srTK0nRpdCmahtMHrixYIFavmBB7rM//pdZs+C331RvzqQk+Hc00DNJN0ghhBBCCCFEwbV+vXps0waqVMnxbrQ6LctOLwNUq9rkySpo6tkTevc2QD3/g5MT6GeyiorK3mskWBNCCCGEEEIUXAbqArn/+n6CIoOwt7Kn6uPB/Pmnat3St67lh1dfVY/pcus9kwRrQgghhBBCiILpxg3w8VFZOgYNytWu9IlFRtQbwfy5Ko/CyJFqEuz80rUrVKumpovLDgnWhBBCCCGEEAWTvgtku3bPN0HZE+5F32Prpa0AdLSfwLZtoNGQmgkyv5iYwPjxz7F93lVFPC/9XGTCOOT3L4QQQghRwBioC+SqM6tI1ibTwqkFW5bUA6B/f3B1zW0Fn9/LL6tAMTskWCsA9BNDx8bGGrkmxZv+92+endQ8QgghhBAib12+DKdPg6kpDByY493odDpWnlHz+A5wHs+aNWr5Bx8YopLPr0IFNQF3dkjq/gLA1NQUe3t7wsLCALC2tkaT3XBb5JpOpyM2NpawsDDs7e0xNTU1dpWEEEIIIYS+Va1zZyhXLse78bvrx6WIS5QwK8G1bYNJToZOncDT00D1zIGSJbO3ndGDNa1Wy/fff88ff/zB48eP8fT0ZPr06VR5SlrOhw8f8n//938cPnwYjUZDr169mDZtWobJlnfv3s3ChQsJCQnBxcWF999/n5YtW2Z57AkTJtCgQQPeeuutLI+XmJjIwIED8fDwYPbs2YZ501mo8G8fXH3AJvKfvb196t9BCCGEEEIYmYG6QP52/jcAulXrwy+z7ADjtarppQtdnsnowdqiRYtYs2YNs2fPpkKFCsydO5dx48axfft2LCwsMm0/adIk4uLiWLVqFVFRUXz88cfExsYyZ84cAE6cOMHUqVOZNm0arVu3ZsOGDUyYMIEtW7ZQo0aN1P0kJiYyffp0jhw5QoMGDZ5av6+++orLly/j4eFh+DefjkajoWLFijg6OpKUlJSnxxKZmZubS4uaEEIIIURBcf48XLyocuv365fj3aRoU1h3YR0AFpeGExcHTZuqlrXCwKjBWmJiIitWrOC9996jffv2AMyfPx8vLy/27t1L7ydmpzt9+jQ+Pj7s2rUrNfCaOXMm48aN45133qF8+fIsXbqUzp07M2rUKADef/99Tp8+zc8//8zMmTMB8PPzY/r06cTHx1PyGW2QR44cYffu3dTKx3yepqamEjQIIYQQQojibZ0KsOjRA0qXzvFuDgYd5G70XUpblWHPV90B1apWWEYcGTXBSGBgIDExMRm6KJYsWRJ3d3dOnjyZaXtfX18cHBwytJA1a9YMjUbDqVOn0Gq1+Pn5Zery2Lx58wz7O3ToEF5eXmzZsgU7O7ss6/bgwQM+/PBDPv/8c0rn4gQRQgghhBBCPAedLi1YGzYsV7vSd4GskzyYRw8sqF07Vw11+c6oLWuhoaEAVKxYMcNyR0fH1HXp3bt3L9O2FhYW2Nvbc/fuXaKiooiNjc007ujJ/U2ZMuU/6/bxxx/ToUMHOnbsyMqVK7P9nv5LXFycwfYlhJ7+vJLzS+QFOb9EXpLzS+QlOb8KJ5OTJ7G6fh2dtTVxnTpBDjOmxyfHs9F/IwDXtgwFYPLkBBISsjkj9X/Izfml0+mylVDQqMGa/o09OTbN0tKSR48eZbl9VuPYLC0tSUhIID4+/qn7S0hIyHa91q1bx7Vr1/j666+z/ZrsCgoKMvg+hdCT80vkJTm/RF6S80vkJTm/ChenJUuwAh56eXHj5s0c7+evu38RlRiFvaYi4afaUqpUMg0aXCQgwLBz6+b0/MoqrnmSUYM1KysrQI1d0z8HSEhIyJDdMf32iYmJmZYnJCRgbW2NpaVl6v6eXJ/V/rJy/fp15s6dy/Lly7HO7gQIz6FatWrZrosQ2RUXF0dQUJCcXyJPyPkl8pKcXyIvyflVCKWkUOLvvwGwGTcONze3HO9q5iWVr8L+1ggidSaMGZNCw4aGmwU7N+fX1atXs7WdUYM1fZfGsLAwqlatmro8LCyMOnXqZNq+QoUK7N+/P8OyxMREIiMjcXR0xN7eHmtr60zp78PCwihfvny26rRr1y5iYmIYO3Zs6rL4+Hj8/PzYs2cPp0+fzvb7y0qJEiXyJAgUAuT8EnlLzi+Rl+T8EnlJzq9C5O+/4d49KF0ayz59IButT1mJjI/kz+t/AhC0fQQAb75pjrW1ucGqqpeT8yu7cyobNcGIq6srtra2eHt7py6LiorC398fzyxmqfP09CQ0NJTg4ODUZT4+PgA0adIEjUZD48aNU5fpeXt707Rp02zVacSIEezZs4ctW7aklrp169KxY0e2bNmSg3cphBBCCCGEyJa1a9XjwIE5DtQANvpvJDElEQdtXbhXny5dIB8TvBuMUVvWLCwsGDFiBPPmzaNMmTJUrlyZuXPnUqFCBbp27UpKSgoPHjzAzs4OKysrGjRoQOPGjZkyZQqfffYZsbGxTJ8+nX79+qW2nI0dO5YJEybg7u5O27Zt2bhxIwEBAcyaNStbdbK3t8fe3j7DMisrK2xsbHB2djb0r0AIIYQQQggBkJgIG1VCkNxmgVxzYQ0Asd7DAXj99VztzmiMPin2pEmTSE5O5pNPPiE+Ph5PT0+WL1+Oubk5ISEhdOrUiS+//JIBAwag0Wj4/vvvmTFjBqNHj8bS0pLu3bvz4Ycfpu6vTZs2fPHFFyxatIj58+dTs2ZNFi9enCHdvxBFgVYLDx/Co0cQEaHB39+asDATtFpITs68vaUllCihirW1KqVLQ6lSYGLUNnYhhBBCCGDPHnVxU7EitGuX493cjrrNgRsHAIg5MZxKleCFFwxVyfxl9GDN1NSUqVOnMnXq1EzrnJycuHTpUoZlZcuW5bvvvnvmPvv160e/bE6g8Pe/Axif5ddff83WvoQwlKgouHoVbt5U5dYt9XjnDty/r8qDBypgU0oAORuAa2ICZcqo4uAAlSuDk5MqlSuDszPUrKnWF5YJJIUQQghRCOm7QA4ZAqamOd7N7xd/R4eOkpFtiHrkzPjJYGb0qCdnCmm1hSga7t+Hs2fh3DkIDIRLl1TJYprBp7KxAWtrHebmiZQqZY61tUmmLt46HSQkQFxcWomOVtOWaLVpAeDly08/jr296utdsya4ukLdulCvHri45OrzVAghhBACYmJg61b1PJddIH+/+DsAUf8Mw9QUxo/PbeWMR4I1IfLJvXvg7Q0+PnD6NJw5o1rKnsbREapVgypVoGpV9Vi5slperpwqZcqosbexsXEEBATg5ub2XNmIEhJUC11EhCphYXD7NoSEpJWgILUsMhJOnlQlvRIlwN0dGjWCpk2hSRMVxP07k4YQQgghxH/bvl3dRXZxgWbNcryboMggfG77oNGZoPMfyAsvqOunwkqCNSHygFYLFy/CwYNw9KgK0tIlMc2gRg2oXx88PKBOHahdW5Un8tzkCUtL1S3831k0nio2Fq5dU10zr1wBf3+4cEG9x7g4OHVKlWXL1Pbm5uo9tW4NbduCl5cKMoUQQgghsrRGJQRh6NBcjbvY4L8BAJNb7UiJKV9oE4voSbAmhAHodCqAOXBABWiHDqluhelpNODmBs2bqxaohg1VC5SdnTFq/HysrVVd69XLuDwlBa5fV904/fzA11cFbRERaQGcfohp7dppgZuXl2o1lDFwQgghhCA8HHbvVs+HD8/Vrv7w/wOAlHODqVEDOnfObeWMS4I1IXJAp4OAABWYHTiggrPw8IzbWFtDmzYqQGnRQgVopUoZpbp5xtRUjWOrVUtNhwLqdxMcrFoTjx6Fw4fh/Hk1Hu7y5bTWNycnFbS1bw/du6uunkIIIYQohn7/XaWybtxYdTXKIX0XSHQmEDCACdMLf8ZrCdaEyKbHj+Gvv9SNn927VYbG9EqUUN3+OnRQAUjTprmay7HQ0mhUq1m1avDii2rZw4fwzz9w5IgK3nx91Xi4tWvTEj+5u6ugrXt3FcRZWRnrHQghhBAiX/3yi3ocNSpXu9F3gSSoHabx5XO7uwJBgjUhnkLferZrlwrOjhyBpKS09VZWKjhr314FaJ6exTM4y47SpaF3b1VAjYE7cUIFbvv2qef+/qp8841qlezQIS14q1nTuPUXQgghRB4JCFDZy0xNc50Fcv3F9erJxcH06AEVKhigfkYmwZoQ6URHw99/pwVoN29mXF+jBvTsCT16qCCtRAmjVLPQs7aGjh1V+ewz1fK2fz/8+acqd+7Azp2qgArWXngB+vVTAbJMFSCyQ6fTERkfSWh0KPdj7xMRF8H92Pvcj71PZHwk0YnRPE58THRiNNGJ0cQnx5OYkkhSShJJ2iSSUpLQaDRo0GCiMUktVmZWlDAvoR7NSmBtbk1Jy5KUsixFKatSlLIsRVnrslSwrZBabC1sjf3rEEKIgkk/n3GPHrnKRhYUGcTJOydBq7pAjvnAQPUzMgnWRLGm06n5zdK3niUmpq23tFQtPD16qFKrlvHqWpSVLg2DB6ui06kxbvrA7ehRlYVy/nxVHBygTx/o3x86dZLuksWZVqfldtRtrj+8nlpuRN4gJCqE249vc+fxHWKTYo1dTQBszG1SA7fytuWpYKOeV7OvRo0yNahRugaONo5oJOuOEKI40Wph9Wr13FBdIIPbUdaqPC+8kMu6FRASrIliR996ph979mRKfReXjK1nzzFtmTAAjUal/a9fH6ZNU2MF9+2DLVtgxw6VyGX5clVsbdXfql8/9VjUErgIJSkliUsRl7gYdpGA+wGqhAdwOeIyCSkJ//l6eyt7ylmXo5x1OcqWKEs563LYW9ljZ2GHnaUddhZ22FrYYmVmhYWpBeam5pibmGNuag6ooFCn06HVaUnWJpOQkkBcUhzxyfHEJccRkxhDVEIUjxIeqRL/iIi4CEKjQwmNDiU6MZqYpBiuPbzGtYfXnlpPWwtbXEq7UKO0Ct70QVytsrWoWqoqJppCPkpeCCGedOiQSgJQqhS5ja7Sd4EcPrzoDE2RYE0UefqxZ/rgLKvWs/btM7aeyc3tgsPODgYMUCUpSY1z27xZBW+3b8P69aqYm6v0vEOGqOAtP+apE4YXkxjD6dDT+N3140zoGc6EnuFi+EUSUxKz3N7cxJxq9tVwKe2CS2kXqtlXo0rJKlQuWZnKdpWpZFeJEubG7a8cnRjNveh7qcGbvtx5fIfrkde59uAaIVEhRCdGc+7eOc7dO5dpH7YWttR1rEs9x3qqlK9HXce6lLMuZ4R3JIQQBqJPLPLii7nqKvNkF8ixPxmofgWABGuiSIqOTsvc+OefWbee6YOz9u3BxsYo1RTPydxcdX3s1AkWLlRZJTdvViUwMC0gf/VV6NZNffb36VM45rIrjrQ6Lf7h/hy7dQyf2z6cvHOSC2EX0Oq0mbYtaVmSuo51cSvnpoqDG67lXHEu5YypScEexGhrYYttGVtqlKnx1G3ik+MJigzi2gPV+pb6+O/z6MRoToSc4ETIiQyvq2BbITWAa1yxMZ6VPalZpqa0wgkhCr7YWNjwb9fFkSNztas/Lqq51QhuR/0a5WnYMHdVK0gkWBNFwpOtZ4cPZ8zcKK1nRY9GozJwenrCF1+oYG3DBjVVy4ULsH27KlZWqovkiy9Cr14SmBtTsjaZ03dPc+TmEQ4HH+bIzSM8iHuQabtKdpVoWqkpDcs3pGEFVarZVyvS47mszKxwLeeKaznXTOuSUpK4HHGZ82HnuRB2gfNh5zl/7zw3Im+kttLtu74vdXt7K3uaVmpKs0rNaFa5GZ6VPalkVyk/344QQvy3LVvU3fXq1VX2sFzQT4TNxcGMHVu0rvEkWBOFVmioGnu2f79qRXsyc6O+9axnTxl7Vhy4usInn6hy8aIK2n7/XU3EvWmTKtbWqkv8sGHq3Cgq/dkLqvjkeHxu+6QGZsduHSM6MTrDNtbm1rRwakGLyi3wrOyJZyVPKpesbKQaF0zmpuZ4OHrg4ZhxotjoxGguhl3kQtgFzt07h+9dX/zu+hEZH8n+6/vZf31/6raV7SrjWdmTZpWa4eXshWclTyzNLPP7rQghRJr0c6vlIrpK3wXS9MoAXnrJQPUrICRYE4XG48dqHKo+OLtwIeN6aT0Teh4eMHMmzJgBZ8+mBW43bqQ9L1NGtbaNGAEtW8q5Ygg6nY7zYefZe20ve6/t5XDw4UwJQOyt7PGq6kVb57Z4VfWiccXGqYk8xPOxtbCluVNzmjs1T12WlJLExfCL+Nz2ydC19Pbj29wOvM2WwC0AWJpa0sKpBW2d29LWuS0tnFrI9AJCiPxz547KHgYG7ALZlhc6lMfBIZd1K2AkWBMFVmKimixZH5x5e0NKStp6jQYaNVLjlzp3hjZtpPVMZKTRQMOGqnzxhRrjtm4drF0Ld+/Cjz+q4uICL72kSp06xq514RIaHcr+6/tTA7R7MfcyrK9gW0EFBFVVUODh6CHjqfKQual5atfRCU0mAGlJW3xu+3Ds1jGO3DxCWEwYh4IPcSj4EACmGlOaVGqS+nfycvbC3sreiO9ECFGk/fabStvfurWaxDYX1uuDtYtDGPOJAepWwEiwJgoMrRbOnUsLzg4fVmNP06tZMy0469ABypY1Tl1F4ZN+jNtXX8GBA2pql40b4fp1+PxzVTw9VWvb0KG5mpuzyEpMSeRI8BH2XNvD3mt7OXvvbIb11ubWdKjWga41utK1RlfqlK1TpMeaFQY2Fja0qdqGNlXb8E7Ld9DpdFyOuJzaPfVw8GGCHwWntsbNOz4PE40JzSo3o6uL+js2q9xMWkCFEIah08GyZer56NG52lVQZBC+d1UXyLJhA+jZ0wD1K2AkWBNGdf++agX/80/YswfuZbwpj6NjWnDWqRM4OxunnqJoMTVV51TnzrBoEWzdqgK3PXvg5ElV3nlHZZQcMQL69i3erbZhMWFsv7WdWZdnsT9oP48TH2dY36Rik9TgrKVTSxkLVcBpNBrqlKtDnXJ1GN9kPADBkcGpgduh4ENcjricmn1y5uGZlLQsScfqHVODt2dlthRCiGc6fFgNKLe1VXdGcyFtIuy2jBxQHvMieE9JgjWRr1JSwMdHBWd//qkuinW6tPU2NmrcmT44q1tXxhKJvGVtrRKODBsGYWFqPNvq1eo83bVLFVtbNc/biBHQsaMK9ooynU7HmdAz7Li8gx1XdnDy9kl0pP2jOto40qNmD7rX7E6n6p1wsCliAwSKIWd7Z5ztnRlRfwQANx/dZN+1fey9vpf91/fzIO4BWwK3pI55cyntQleXrvSq3YtO1TsZfS47IUQhsnSpehw2LNdz6/x+/t9gzX8QIxfnsl4FlEanS3+pLPLK+fPnSUxMxM3NDetidos+MhK2bYOdO1Ur2sOHGdfXrw/du6ukIK1aSYa+nIiNjSUgIKBYnl955fJlFbStXq0Sk+g5OanEVaNHQ+3axqufocUkxrD/+n52XtnJzis7ufP4Tob1rqVc6e/en/4e/WlSqYmMOytGUrQp+N31Y9/1fey9tpd/bv1DsjY5db21uTVda3SlT+0+9KrdC0eb5+s/LJ9fIi/J+VXAPHgAlSpBQoK6K+rpmeNd3Xx0E+cFzqDTUHv7HQJ9K+T7Df7cnF/nz58HoF69es/cTlrWRJ6IilJzXP3+u+palpiYts7eHrp2VQFat27qf1aIgqZ27bSMksePw6+/qvM5JEQlK/niC3VzYfRolVWyVClj1/j5BUUGsePyDnZe2cmBGwcyZG60Mbehs0tnetfuTQenDkTeipSLnWLK1MRUTatQ2ZOPvD7iccJjDgUfYveV3Wy/vJ1bUbdSW900aGhZpSV9avehT50+uJZzlTGLQog0v/6qArWGDaFp01ztKq0LpBcvD8n/QC2/SLAmDEang4MHYfFiNQYoIV3Gbnd31Y2sRw9o1gzM5MwThYRGo4KyVq1g/nx1E+Lnn9Xk68eOqfL229C/P4wZo7rvFtRuksnaZI7dOsbOyzvZcWUH/uH+GdZXs69G71q96V27N+2qtcPKzApQdw4jiTRCjUVBZGdpR+/a6jz5vuf3nAk9w7ZL29h2eRt+d/04dusYx24d44O/PqBmmZr0rdOXIR5D8KzkKYGbEMWZTpfWBXL8+FyPc1l9+t8skP6DeenzXNatAJNLZpFrDx6oi9fFi1XXMb3atVWLw4svqnmvhCjsrKxg8GBV7t5VmYdXrVKTcK9dq0rlymndJAvCNAARsRH8efVPdlzZwZ9X/yQyPjJ1nanGlFZVWqVeeLuVc5OLafFcNBoNjSo2olHFRvyv/f8IiQph+6XtbLu8jb9v/M3VB1f5+vjXfH38a5xLOTPEYwhDPIbQpGITOdeEKG6OH1dfmCVKkNuZq289usXp8BOg09C6zECcnAxUxwJIgjWRYzdvwpdfwsqVaa1otrZqbsPx41ULt3wXi6KqYkV47z149104dUoFbWvWwO3b6v/iyy+hRQvV2vbii6r7b37Q6XRcCLuQ2r3xeMhxtDpt6voyJcrQo2YPetfuTbca3ShdonT+VEwUC04lnXjd83Ve93ydxwmP2XNtD5sCNrHt0jaCHwUz99hc5h6bS3X76qmBW52SBeCuhhAi7+lb1QwwduAPfRfIm20Y92LFXFasYJMEI/mkKCUYCQlRF6JLl0JSklrWsCG8/rpBEvuIHJAB1AVDQgLs2KECt9270yZxt7RM6ybZubPhu0nGJcXx942/2XllJzsu7+BW1K0M6+uXr0+vWr3oXbs3zSs3x9Tk+Sog55fIrdikWHZf2c16//XsuLyD2KS0STRd7F1oV64dr7d5HU/nnCcbECIr8vlVQERGqiQFcXFq/EDLlrnaXf1vW3E+8jjm+74jYvdbRrv2lAQjokAJD1eTBi9ZkpYwpEMH+Owz8PKSVjQhLC1h4EBVQkPTukleuADr1qlSqZJqfR49GtzccnYcnU5HwP0A9l7by55rezgUdIi45LjU9SXMStDJpRO9avWiZ62eVC1V1TBvUIgcsja3ZqD7QAa6DyQmMYZdV3ax3n89Oy/v5Hrkda5HXmfl1ZU0qtCIkfVHMrzecMrbljd2tYUQhrJmjQrUPDxUt5NcuPXoFucjj4NOQy+XgUW+kUCCNfGfdDqVvOeddyAiQi1r21ZlyWvf3qhVE6LAqlBBdZF85x04fVoFbb/9BnfuwJw5qjRvntZNsvR/9EaMiI3grxt/sefqHvZe30tIVEiG9VVLVaV3rd70qt2LDtU6yLxXosCysbBhsMdgBnsMJjoxmk0XNrHSZyX/hP/D6dDTnA49zdR9U+lWsxuj6o+iT50+cj4LUZjpdPDTT+q5ARKL/H5+o3pyszWvDi/6KcUlWBPPdP06vPaamh8N1Jxo33yjJgaWljQh/ptGA40bqzJ3rppvcNUqNdm2t7cqkydD374qcOvSRWVLTUxJxDvEm33X97Hn2p5ME1NbmVnRzrkdXWt0pVuNbrg7uEvCBlHo2FrYMsh1EB46DxyrObL9+nZ+OfsL3re92XVlF7uu7KKkZUkGuw9mVINRtKnaRub4E6KwOXkSzp5V3U9Gjsz17pafUFkg7W4NpnPnXO+uwJNgTWQpJUWlKZ8+XbVaW1nB//6nWgrMzY1dOyEKJ0tLNYXFgAFw757qFbJyJZw/D+s3JLH++Ens6h2kTJMD3LP4h/iUuAyvr+tYl241utG1Rle8qnpJa4MoUsqWKMsbnm/whucbXI64zOpzq/n13K8ERQax/PRylp9eTjX7aoxtOJaXG72MU8kinP5NiKLk22/V45AhUKZMrnYVEhVCYMwxAIbWH1gspoIqBm9RPK/ISBg+XCVIANWKtmQJ1Kxp1GoJUaSUdUim1eBTxDc9gO35g/iGHSVJE8Nj4DFACpglONLAriNjvLrRv34XKpesbNxKC5FPapetzcwOM/ms/Wf8c/Mffjn7C+v91xMUGcT/Dv6PGYdm0L1md8Y1Gkfv2r0xN5W7iEIUSLdvw/r16vnkybne3epT+i6QrXh9YvH4TpRgTWTg7w/9+sGVK6o1beFCeOUV6fIoRG49TniM921vjt06xj+3/uH4reM8TnyctoFGtSzUtmhP9IUO+O9sT3KoO6fQcM4cDvZRSUm6d5fWbVF8mGhM8HL2wsvZi+96fMfmwM0s9VvKwaCDqd0kHW0cGdNgDK80foXaZWsbu8pCiPR++AGSk1Wyg8aNc7275SdUyv4KDwbTsGGud1coSLAmUm3erCbzjY6GqlXVzwb4vxKi2NHpdNyIvMGxW8dSy/mw8xnmOwMobVWadtXa0aFaB9pXa09dx7qp43HCw1U3yZ9/VglKNm5UxdFRzSU6ZowaQypEcVHCvATD6w1neL3hXIm4worTK1h5ZiX3Yu7x1bGv+OrYV7R1bsu4RuMY5D5IugkLYWyxsaprFhikVe3O4ztcTfgHNDC2xaBi05AgwZpAp1Pp92fOVD936AC//w4ODkatlhCFxoO4B5y6cwrfO76cvHOS4yHHCY0OzbRdNftqtKrSilZOrWhdtTX1HOs9dc4zBwd4+21Vzp1TQdvq1RAWpsaTzp+v5jccM0Z1W079f9VqVV/mBw8gKgoeP1aP6Z+nf4yPVxMmJiaqx/TP/320SkrCLSkJK2tr1axnapq5mJmp5nhb22cXOzsoW1ZV2MFBDeQT4jnVKluLLzt/ycwOM9l1ZRdL/Zay++puDgcf5nDwYd7+823GNhzLa01fo1bZWsaurhDF06+/qu+i6tWhT59c7+6nIxtBo4NbLXnjs+IzZlWCtWJOp1NJQ+bPVz9Pnqwy1hWHAZtC5ERUQhR+d/3wveObGpxdf3g903bmJuY0rtiYVlVa0bpKa1pWaUklu5ylGK7vnszXk+8yp18IZ3eGcHpPGHfPhVPmTDgOk8O5OCWc6rbhlDcJxzI6Ao1+Nm4DMQHybCrZkiXTAjd9cXRUcx9UraqKs7MK8IrLbVSRbeam5vR17Utf176ERIWw6swqlvktI/hRMN+c+IZvTnxDF5cuvOH5Br1r98bMRL7chMgXWi0sWKCeT5qkburl0qqTKgtkrcTBOBWfWE2CteLsyUDtxx9Vmn4hhOrKGBodytl7Zzkbepaz987id9ePSxGXsty+RukaNK3UlCYVm9CySkuaVGySvW5YOp1KDXntGty8CSEhmUtoKGi1mAFN/i0Z98G/WUnSpFjbYlK6FBo7OxUQZfVoZwclSqjWMguLjI/pnscnJ3MzKIiqlSphZW6u0sU+WZKTISFB9aOOjlatdvrn6UtUFNy/r0pyclqr37Vrz/49WVunBW/6AK5qVZX5qE4dFcyJYs2ppBOftP2ED9t8yJ5re1h0chG7ruxi3/V97Lu+D6eSTrza5FXGNR5HBdsKxq6uEEXb3r0QGKi+Z15+Ode7uxN1l2DdUdDAa+0GGaCChYcEa8WUTgfvvZcWqC1ZAhMmGLdOQhhLUkoSgfcDUwOzM/fOcDb0LOGx4VluX7VUVZpWaopnJU+aVmpK44qNKVPiGemI4+Phxg01caG+XLuW9jwu7umv1TM3h8qVVSlfPkNLVEiCA7t9Hfj9bwf87zsQQVkSYy2p66K6Sb70kmqoyiltbCyPHR3RurmpoMkQdDrVXTMsTA3Q0xf9z3fuqOD15k0VrMbGqi/+wMCs91e2LNSurQK39KVGDelqWcyYmpjSs1ZPetbqyY2HN1hyagnLTy8nJCqETw98yoxDMxjgNoA3mr5BW+e2Mj+hEHlB36r2yivqBmEuffOn6gJpcrsF49+pkuv9FSYSrBVDOh1MnaomtwZYvFgCNVE8JKYkciXiCv7h/qrcV4+XIy6TmJKYaXsTjQm1y9amQfkGNCjfgIYVGtKkUhMcbRwz71zfQqYPKC5dSnseHKzWP42JSVprUZUq4OSUuTg4qO2y4ASMB8Ymqwnsf/4ZtmyBCxfUTZn331dZJEePhhdeUEPLjE6jgdKlValT59nbJiSoFsbg4LQA7uZNCAqCy5fh1i2IiIDjx1VJz8QEXFxUNpb69aFBA/VYrdpTf5+i6KheujqzO89mRvsZbPDfwCLfRRy7dYz1F9ez/uJ63B3ceaPpG4xsMJKSlrm/oBRCoFKL79mjPmMnTTLILtee/QMsoKHFYOzsDLLLQkOCtWLoww/h66/V88WL4dVXjVsfIQwtPjmeS/cvZQrKrkRcIUWX9XiukpYlqV++fobAzMPRA2vzJ1qSdDoVKJw/r6KhgIC0oOzRo6dXytZWtfLUqKGCBxeXtOdVq6ouh7lkZgY9eqjy8KGa2mbVKjhxAnbuVKV0aRg6VLW4eXoWkmFglpZpv7usxMTA1asqQH6yPH6s1l29Cps2pb3Gzg7q1UsL3vSBnI1N/rwnka8szSx5qf5LvFT/Jc6EnuHHkz+y+vxq/MP9mbh7Iu/vf58R9Ufwhucb1C8vaVaFyBX9JNh9+6rkIrkU/OAud8yPADC5a/HqAgmg0emedbtXGMr58+dJTEzEzc0Na0N1I8qBn39WF2kgY9SKktjYWAICAox+fuW3mMQYAu8HZgrKrj+8nilNvl5Jy5K4O7jjXs4ddwd33BzccHdwx7mUc+buUBERKiDTB2b6x6iorCuk0agvJlfXjKVOHdUyZqTI6NIl9b//66+qgUrP1VW1tg0fruLFpym055dOp7pQ+vurlJpnz6ri768yXT7JxATc3FQUqy/160s3yjxmrPPrUfwjfj33K4tOLiLgfkDq8tZVWvOm55sMdB+IhWnub6II4yq0n1+FVViY6iUSHw+HD4OXV653+eqyH/jp9kTM7zUn9rsTBSoJXm7Or/PnzwNQr169Z25XgN6uyGs+PmmtaNOnS6AmCo+ohCgCwgMyBWVBkUFPfU1pq9J4OHqkBmX6UsmuUuagTKtVLS9nzqhJzU6fVhf1d+9mvXMzMxWA1asH7u7qAt/VVSW7KBB9DDOqUwe++AI+/xwOHFCtbZs2qcbADz9UpV07GDECBg0Ce3tj19hANBqoWFGVTp3Sliclqe6TZ89mDOLu3oWLF1VZtUpta26uArb0AZy7u0EymwnjKmVVionNJvKm55scCj7EopOL2By4mX9u/cM/t/7BcY8j4xuP59Umr1KlVPEaIyNEjs2bpwI1T09o08Ygu9x06Q+whZalBhWoQC2/SMtaPjF2y9rdu9C0qRqz37evulCT4RpFR1G5c/gg7kGWQVlIVMhTX+No45ihpUxfHG0cs04ckJCgWlb0QdmZM+pC/fHjzNuCaimrW1cFZvrH2rUN0m3RmKKi4I8/1NxtBw+mLbe0hN69VeDWo4f6uaicX//pzh3w9YWTJ9MeIyIyb2dnBy1aQKtWqjRvDqVK5X99i4iCdH7deXyHpaeWsuTUEu5Gq5s1JhoT+tbpyxueb9CpeidJSFLIFKTzq8gLD1fjgWNjYccO6NUr17sMDAnFbVkl0OjY2eUGPVtVy/U+DSk/WtYKRLCm1Wr5/vvv+eOPP3j8+DGenp5Mnz6dKlWyvpP18OFD/u///o/Dhw+j0Wjo1asX06ZNo0SJtDTZu3fvZuHChYSEhODi4sL7779Py5Ytszz2hAkTaNCgAW+99VaG5StWrOCPP/7g3r17VK5cmTFjxjB48OAcvUdjBmsJCWqi6+PHVQPAiRMGScwjCpDC9mV0P/Y+F8MuZgrKsppIWq+SXaVMQZmbgxvlrMs9/UBRUWmtZfpHf3/VsvIkKyvVgtKwITRqpB49PCgOI5lv3oS1a1U3yYsX05aXLg0vvgiDBsVTqtRF3N0Lx/llMDqdSmKSPnjz9VVTEKSn0ahAXh+8tWqlxtfJRX22FMTPr6SUJLZe2soPJ3/gYNDB1OV1ytbh9aavM7rhaOyt7I1WP5F9BfH8KrLefx+++kq1Dvj4GOQzcPj8RayNepMSDzyJ/dbHAJU0rGLTDXLRokWsWbOG2bNnU6FCBebOncu4cePYvn07FlncvZ40aRJxcXGsWrWKqKgoPv74Y2JjY5kzZw4AJ06cYOrUqUybNo3WrVuzYcMGJkyYwJYtW6iRboB6YmIi06dP58iRIzRo0CDDMZYsWcKKFSuYMWMGdevW5fjx43z22WeYm5vTr1+/PP19GJJOB2+9pQK1UqVUhjgJ1ER+iYiN4GL4xdTA7GL4RS6GXyQsJuypr6laqmqWQdl/XhjFxKhgzNc3rVzKek40SpdWAZk+KGvUSPUVLI79K1Dj1d5/H6ZNU70CV6+GNWtUQ9PixbB4sRWVK9dlxAgTxoxRPT6LBf0YxOrVYcgQtSwlRY1bPHYsrVy/rsYznj+v5kEBNUYxffDWpIma004UCuam5gxyH8Qg90FcDLvIj74/8vPZn7kUcYnJeybz0d8fMaKeSkjSoEKD/96hEEVdeDh8/716/r//Gexm1a6gDVAGOpTPWWNJUWD0lrXExERatGjBe++9x/DhwwGIiorCy8uLWbNm0bt37wzbnz59mqFDh7Jr167UwOvo0aOMGzeOQ4cOUb58eV555RXs7OxYoJ/jARg6dCi1a9dm5syZAPj5+TF9+nTi4+N59OgRo0aNytCy1rZtW4YNG8brr7+euuyjjz4iODiY33777bnfp7Fa1pYuVWn5NRrYtUul7xZFj7HvHD6Ie8DFMBWIpQZlYRe5F3Pvqa+pZl8NDwcP3B3cUx9dy7liZ5mNlqz4eNV1MX1g5u+vxp49qWrVjEFZo0YqPb60ejxTSorqHrl6NWzYoCM6Ou331bSp6iY5dKia8q3YCw1Vd8T0wZuvb+YEJubmKmBr3VqN42jdWgV0wuifX9n1OOFxakKSi+FpTdCSkKRgKyznV6H3wQcwZ476nDt50iDfscfO36X1xsqg0XHsxeu0dM19ZklDKxYta4GBgcTExGTooliyZEnc3d05efJkpmDN19cXBweHDC1kzZo1Q6PRcOrUKbp3746fnx8ffPBBhtc1b96cvXv3pv586NAhvLy8ePPNN+nTp0+GbbVaLXPmzKH6E+lGTUxMiHpaFrgC6Pp1mDxZPf/iCwnURO5FJURx/t55LoRdyNBS9qzui86lnPFw9MDDwSM1KHNzcMPWwjZ7B01MVC0Z+qDs5En1c3Jy5m0rV1aRhL40aSIXxDlkaqpycnTqBHPnxrF0aSiHDzuzb59p6p/i3XehSxcVuPXrV4yz3leoAP37qwKq77mfX1rw9s8/ag6+EydU0c+dUqdOWuDWpo1KUCM3EQosO0s73vB8g9ebvs7h4MP8cPIHSUgiBGRsVfvsM4N9jn32xzow1WH/uGWBDNTyi9GDtdBQdZFXsWLFDMsdHR1T16V37969TNtaWFhgb2/P3bt3iYqKIjY2lgoVKjxzf1OmTHlqnUxMTDKNb7tz5w47d+5k6NCh2XtjTxEXF5er12eXVgtjxlgSG2tK27YpTJyYQGxsvhxaGIH+vDLU+aXVaQmKDOJ8+HkuhF/gfNh5zoefJ+hR0FNfU6VkFdzKuuFa1hW3cm64l3OnTtk62Flk0VKWDLHJWZyQycloAgMx8fNLK+fPo8kizbquXDm0TZqgbdxYlUaN0D3x2QAgJ37uaTRxdO36kAkTShEdXYKNG81Yt86UkydN+fNP+PNPsLHR0bt3CoMHJ9Opk7aw51/JvQYNVHn9ddDp0AQFYXL8OCbHj2N6/DgmAQFpc8EtXw6AzsGBlFat0LZogbZVK7QNGqgWuSLO0J9f+cHT0ZNVvVbxZbsvWXl2JSvOreBu9F1mHZnFl0e/pFeNXkxoNIEOzh0kIYmRFcbzq7Axnz0b85gYUho1IqFDB4N876akwMEHa8ABelcbQmwB/S7Pzfml0+my9flg9GBN/+aeHJtmaWnJoywmmI2Li8tyHJulpSUJCQnEx8c/dX8JCQk5quP9+/cZP348ZcuWzdAtMieCgoJy9frsWr/egSNHqmJllcI77/hz6VIWcwqJIicn51dMcgxXo65y5fEVrkSpcjXqKrEpWX8wOlo5UsOuBi52LrjYulDDrgbV7apjY/ZEs0okhEQ+PYsjWi2WN29i4++Ptb+/erx0CZMs/k+TS5Yk1s2NGHf31Mek8uUz3r2LjFRF5Bn9+dWunSo3b1qye3cZdu8uQ0iIFb//bsbvv5thZ5dMhw6RdO36gKZNHxfXoYCZ6bvhvvEGpo8eYXvuHLZnzmBz9iw2Fy9iEh6O2datsHUrAFpLS6Lr1SO6YUNiGjQgul49tLbZbJEuhPLr+9HQ+pfpzwttX+Bg6EH+CP6DUxGn2H51O9uvbqeqTVUGOw+md5Xe2JkX/WRFBVlhPb8KOtPISOr9+CMAN0aO5FFgoEH2u+2f+yQ5+ILWlKF16xIQEPDfLzKinJ5fWcU0TzL6V6jVv3MSJSYmpj4HSEhIyJDdMf32iVncZU9ISMDa2hrLfycvfXKbp+3vv1y/fp0JEyaQkpLCL7/8QslcZueoVq1ajurxPG7c0PD99+p3OWtWCl261PiPV4jCLi4ujqCgoP88v8Jiwjh97zRn7p3hzL0znA87z41HN7Lc1tLUErdybtR1qEs9h3rUdahLXYe6z86++Czh4Zj4+mJ68iQmJ09icuoUmixuyOjs7NA2aqRK48ZomzRBV60aZhoNpQBJkJ7/nnZ+ublBt24wf76Wkyfj+eMPUzZtMiU01Ixt28qxbVs5ypXT0b9/MgMHptC6tVamDEmvRYvUp/Hx8ZicPo3JsWOYnDiB6YkTmDx4QElfX0r6+gKgMzFBV7duhtY3XeXKxqq9wWT386ugq+dRj7d4i4D7ASw9s5Q1F9dwM+YmX/t/zY9XfuRFtxcZ33A8DcpLQpL8VFTOr4LKfPp0TOPi0DZsSKUJE6hkoJbk0StngwM4JXamQ7NWBtlnXsjN+XX16tVsbWf0YE3fpTEsLIyqVaumLg8LC6NOnTqZtq9QoQL79+/PsCwxMZHIyEgcHR2xt7fH2tqasLCM2ebCwsIo/5wj4U+dOsXrr79O+fLlWbZs2XO/PislSpTI0wGuWi1MnKhaoNu3h8mTLTAxKe79kYqP9OdXWEwYp+6c4tTdf8udU9yKupXl6yrZVaJB+QbUL18/9bFOuTqYmeTwIyI+Xo3Z8fZW6Xu9veFGFkGhlRU0bqwmz2zaFDw90dSqhamJCTLlcMHzrM+v9u1V+e47OHoU1q2DDRvg/n0NS5eas3SpOZUqqaSKL76opiaT3mHpWFunDRIE9WEeGKh+mf/8A0ePorl+Hc25c5icO6fSdAI4O2cc9+bhUWgn0czr78f80qRqE5pUbcLcbnNZfW41P5z8gYvhF1l5biUrz62kaaWmjG88nqF1h1LSUtIz55eicn4VKCEh8G+rmslnn2FtoIHLkZE6/E3XATCu2YhC8XfLyfmV3S7SRg/WXF1dsbW1xdvbOzVYi4qKwt/fnxEjRmTa3tPTk3nz5hEcHIyzszMAPj5q3oUmTZqg0Who3LgxPj4+GeZE8/b2pmnTptmu17lz5xg3bhzu7u78+OOPuW5Ryy8//qgyuFlbq2EQhfQ7WzynmMQY/CL82O29G78wP3zv+GYZmGnQULtsbZpUakKTik1oWKEh9cvXz3lrGaiLyitXVECmL2fPZp0AxM1NXaXrS926xWJMTnFiaprWTXLhQvj7bxW4bd6spgJYsECVatVU4DZ0qErUKYHbE0xMwN1dlQkT1LI7d1Tg9m/wxpkzEBysij5Lsb29mipAH7w1baq+EES+s7O043XP13mt6WscDj7MIt9FbA7YjO8dX3zv+DJlzxSGegxlXONxtHBqIWPbROEzbZpqHWjTBp5I1pcbc3/zRVfmCprkEkzp0ddg+y2sjB6sWVhYMGLECObNm0eZMmWoXLkyc+fOpUKFCnTt2pWUlBQePHiAnZ0dVlZWNGjQgMaNGzNlyhQ+++wzYmNjmT59Ov369Utt+Ro7diwTJkzA3d2dtm3bsnHjRgICApg1a1a26pScnMx7771H2bJlmT17NgkJCYSHhwNgampKmTJl8uz3kRs3bqi5kkBlT3VxMW59RN7Q6XRceXCFEyEnUsu5e+dI0aVk2O7JwKxppaY0rNAw93dy79/PGJj5+GQ9VszRMWNg5umpJvsTxYaZGXTtqsqPP8LevfD772pIVlCQmjv1q6+gVi0YOFCVJk0kcHuqSpVg8GBVQE3O7e2tArejR9X0AZGRap6WXbvUNqam6qZIs2bq/7BZMxUAmkrbdX7RaDS0q9aOdtXaERYTxq9nf2XZ6WUE3g9kxZkVrDizAg8HD8Y1HseI+iNyd/NMiPxy9CisXas+sL/91qAf3Ct910A1qG/Zl5JWMtbT6POsAaSkpPDNN9+wadMm4uPj8fT0ZPr06Tg5ORESEkKnTp348ssvGTBgAAARERHMmDGDI0eOYGlpSffu3fnwww9Tx6sBbNmyhUWLFhEaGkrNmjWZOnVqpgyPeh07dqR///6p86z5+fkxbNiwLLetXLkyf//993O/x/yYZ23AAHX3ul07dTdbWtWKhoTkBE7eOcnh4MMcvXkU79vePIh7kGk7B0sHWju3prVza5pVbkajCo2yN2fZs+h0qtVM3xXrn3+ynmha350xfXDm7CxX3UWEoecpio1VscTvv8OOHarXrF7VquqzbMAA1UAkMcVzSE5Ws5rrg7d//lGtcU+ysVFRcfoAzohzDxbHebB0Oh3/3PqHZX7LWH9xPXHJ/yZbM7Wgv2t/xjceT4fqHTDRyBd5bhXH8yvPpaSozw0/Pxg3Tk3qayD+ASl4LHcCu1BWddvG6BYvGGzfeSE/5lkrEMFacZDXwdqhQ2q8iKmp+q52dzf4IUQ+iU2K5UTICQ4FHeLwzcOcCDlBfHJ8hm0sTS1pWqkpLZxa0MKpBQ3KNiAqJCr355d+fih9N6tjx9T8KU+qUydjYFa/vnRnLMLy8mLn8WPYuRM2bVIBXExM2rry5dX8bQMGQIcOcorlyO3bqvVbP3bU11f90p9UvnzG4K1JE8inXiTF/WL6Ufwj1pxfw7LTy/C765e6vLp9dV5p9ApjGo6hcsnCn0jGWIr7+ZUnli9XQVrJkuqGrqOjwXY97OP9rLPognlyGaI/u1vgJ5qXYK0IyctgTatV362nTsFrr6WO9RSFRExiDEduHuFQ0CEOBR/C944vSdqkDNs42jjS1rktXlW9aFWlFfXL18/wAZbjD4sHD1TXKf1deB8fFbClZ2mpujDqkxi0bAlly+bmLYtCJr8uduLiVFfJTZtg27aMvWvt7aF3b1W6d5cetTmWkqJax/XBm4+PusOX1RhTZ+e06Qb0pXJlg7fAycV0Gr+7fizzW8Zv538jKiEKABONCb1q9eLlRi/Ts1bPAn/xWtDI+WVgjx5B7doQFgZffw3vvGOwXaekQMmRLxNbZyVdSr/K3kmLDbbvvCLBWhGSl8Ha6tUwciTY2cHVqwa9wSHygFan5fTd0+y9tpd91/fxz61/SEzJONWEU0kn2jm3o61zW9o6t6VO2TrPHHye7Q+L8HCVgebgQdUce/Fi5m3Klk0LzFq3VnfY03UxFsWPMS52EhPVabpxI2zZoq4L9MzMoG1beOEFFbzVrJkvVSq64uJUspL02VuvX89623LlMgZv9eurQYe5aPaUi+nMYpNi2eC/gaV+Szl682jqcgdrB16q9xJjG42lfvn6Rqxh4SHnl4G9954K0urUUTd6sjFPWHZt3x1Pn8PlwSqKfcMP0blWW4PtO69IsFaE5FWwFhur/l9CQuDLL+GDDwy2a2FANx/dZN+1fey9vpe/rv9FRFxEhvXOpZzpWL1jaoBWzb7ac2UGe+qHRUSECsoOHoQDB+DChcwvrl07LXNc69bqZxlrJtIx9sVOSorqkbttmxrj9uScq66uaYFbq1bIJNyGEBmpArjTp9NKQID6YzzJwkL9EerVU8lM6tVTJZvj4Ix9fhV0gfcDWXF6Bb+e+5XQ6NDU5Y0rNmZMgzEMrzecstbS2+Fp5PwyoEuX1P94cjLs3q26ORhQ6/EbOeY0CNuUKjyaEVQoxmzmR7AmX2mF3Pz5KlCrWhUmTzZ2bYReYkoiR4KPsP3ydv68+ieXIjIm5bCzsKNj9Y50rdGVLi5dqFmmpmHSNj9+DH/9pTLMHDig7no9eT+mbl01AKh9exWgSVOsKOBMTcHLS5W5c1UPgu3bVeB2+LAK3gID1brSpaFLF1W6dlWfjSIH7O3TJs/Ti4tTN3z0wduZM+rn6Gj1WXPuXMZ9lCypPm88PNS0Ha6u6rFqVcmA9Rxcy7nyVZev+KLTF+y5uoeVZ1ay7dI2/O764XfXj/f2vUefOn0Y23AsXWt0zfn8mEI8i1YLr7+uArVevQweqIWHw/GY1QAMrDOsUARq+UVa1vJJXrSshYaq3ifR0WqKneHDDbJbkUP3Y++z68oudlzewZ5re1LHG4Aac9C8cvPU4KxZ5WaYmxogW4JWC6dPk7hjBwnbtmF77hyaJ8eeuLmp4KxDB5Uq1MEh98cVxUpBvjMdGQl79qjAbdcuNQwzvTp10gK39u1Vd3FhQFqtmuftwgU4fz7tMTAw63FwACVKqBb8fwO4BBcXrpmbU61zZ6zLSdr67Lgfe58159ew6swqToeeTl1e0bYiI+uPZEzDMbg5uBmxhgVHQf78KlQWLIApU9S8jWfPGrz/+Wdzw5jxuDKYJnPutXPUK//s1qaCQrpBFiF5Eay9+ir89JPK/XDihNyozG86nQ7/cH+2X97Ojss7OB5yHK1Om7q+vE15etXqRa/avehYvSP2VvaGOfCdOyoLw969sG+fmvcsPRcXdXWqbz37d/5BIXKqsFzsJCer4Vb79ql/Dx+fjL32zMxUfpyuXaFTJzUc04DDLUR6iYlw+bIK3Pz905o/L19W656mYkV1EVizJtSokfHR3j7fql+YnA09y8ozK/nt/G/cj037PmheuTljG45laN2hlLIqvhl5CsvnV4Hm76+m50lIgEWLVAubAel04Nj3G+43eZdq5p7c+MjHoPvPSxKsFSGGDtYCAlTvEq0WjhxRvdlE3tPqtHiHeLPBfwObAzdzI/JGhvUNyjfghdov8EKdF2haqalhmvFTUlTGxu3bVdPBk+PO7OxIbteOOx4eOIwYQYm6dXN/TCHSKawXO5GRqjewPni7di3j+hIloEWLtC6WLVqAra1Rqlp8JCerGdEDA9UXWWAgKf7+6AICMHv06NmvLVMm6yDOxUXdlCrmdywTUxLZeXknK8+sZNeVXaTo1J0KKzMrBrgNYEyDMXSs3hFTk+I1eWFh/fwqMJKS1F2uU6dU18dduww+rv3vv3V02lgXHP35tvNiJrV+1aD7z0sSrBUhhg7WRo5UWSD79lWZ0kTeSdGm8M+tf9jgv4FNAZu4/fh26jpLU0s6uXSid63e9K7dmyqlqhjmoFFRqm+XPkCLSJeQRKOBpk1V80C3btCiBbFJSfJlJPJMUbnYuX5dBW779qm8O082SpuaqpvHXl7qBlibNtJrOD+knl/ly2N9966Kqq9eVUX/PDT02TsxN1cJTapWzVicndVjlSpqMvBi4l70PVafW83KMyu5GJ6W9bdKySqMbjCa0Q1HU7NM8UijWlQ+v4xm+nT4/HM1IPjCBahUyeCH6DLGm/3VW2CqsyLig9BC1RIswVoRYshg7fp11d0/JUXNb9qkiYEqKVIla5M5GHSQjf4b2RS4ibCYtLzhdhZ2vFDnBQa6DaRbjW7YWBjoAuDGDRWcbdumsiYkpZtrrXRp6NFDpbvr0kWlz05HvoxEXiqK55dOpxp3jhxJK8HBmberUUN9xjZtqh4bN5beeIaWrfMrOlp9+aUP4PSPt26pbib/pWzZjIFclSpq3riKFdUFaMWKalBjEcqGq9Pp8L3jy6ozq1hzYQ2R8ZGp67yqejG24VgGuQ/CzrLoDuYsip9f+cbbW2WJTkmBdevgxRcNfoiwMKg4/lW0jX+il9MIdrzyq8GPkZckG6TI0ldfqf+bbt0kUDOkxJRE/rr+Fxv8N7D10tYM6fXtrezp59qPgW4D6eLSBUszA8w7ptOp8RwbN6ry5JxntWurfOQvvKA+LCUfuRAGo9Go/BZubjBhglp261Za4Hb4sBqmce2aKuvXp722Vq2MAVyjRjJJd56ztVVzutXPYm6x5GQ1lvfmzcwlOFiVx49VD4WICJXJ8mlsbDIGb5UqqS6Wjo6qmVVfHB3VtgU8sNNoNHhW9sSzsidfd/uarYFbWXV2FXuv7eXIzSMcuXmEt3a/xSD3QYxtOBYvZy/JwieUmBjVjSslBYYNy5NADWDpqli0HmsBeLfjy3lyjMJOrv4KmTt3YOVK9fyjj4xbl6IgLimOvdf2sjFgI9subeNRQtqYiXLW5ejv2p+BbgPpUL0DFqYGyESg06l+3xs2qADt6tW0dfr85PoJo2rXzv3xhBDZVqWKyqqrz6z74AH4+akeDKdOqcegILhyRZV169Je6+SkAj9397Ti5qYac0QeMzNLay17mkePsg7m7t5V5c4d1f08JiatC+Z/sbLKGMCVKaN6Qdjbq8cni729Kra2Rrn5ZmVmxYt1X+TFui9yO+o2v5z9hZVnVnLlwRV+PvszP5/9GZfSLqqbZIPRONs753sdRQGh08H48eqDrnJl+OGHPDmMVgvf7d8IrR/jYOpCu2rt8uQ4hZ0Ea4XM11+rRFpt2kDbgj+xe4EUkxjD7qu72eC/gZ1XdhKdGJ26roJtBQa4DmCQ+yC8nL0MM1+NVqvSdW7YAJs2ZexrZWmpBuwOHKgCtNKlc388IYRBlCkDnTurohcRkRa46R9v3lTzXYaEqPFw6Tk6pgVutWpBtWppRf7d81GpUmmTdT9NTExa4KZ/vHNH9dMKD097DA9Xc87Fx6vm2Fu3nr8+VlYqaLOzU49PPi9RQm3zvMXSUpUnnz8RHFYuWZkPvT7kgzYfcDzkOCtPr+T3i79z/eF1/nfwf3x28DM6Vu/ImIZjGOA2AGtz6T5YrMyYAWvXqvNm9eo8+7A6eBDCKi8H4LUWY6VV9ykkWCtEIiJg8WL1XFrVnk9UQhQ7Lu9gY8BGdl/ZTVxyXOq6KiWrMNBtIAPdB9KqSivDfFjodKqv99q1Kki7cydtnbW1mlBy4EDo2VMmfhKiEClbVuX26do1bVlkpEps6O+fVgIC1H2ZsDBVDh7MvK9SpTIGb9WqqXwYFSuqnnfly6uPC5FPbGzSpg34LzExGYO38HB4+PDpJTJSPSYkqNfHx6vyZJabvGJikmUwp7G0pJWVFa0sLVls3pS7yQ+5HnubWwnhxJr/xT3Lv1hgPY6a1RrRpE4HXJwboilVSk14ri9ly8qJWpSsWaOCNVAXne3b59mh5q24CrUOgU7DeM/ReXacwk6CtULku+8gNlYNcDfwxPFF0sO4h2y7tI0NARvYe20viSlpc/u4lHZhoNtABrkPwrOSJxpDjTu4eFEFaGvXqsHwenZ20KePCtC6dZMvNiGKEHt7ldm6ZcuMy6Oj0zLU+/urj4SgIFXCwlTPvLNnVXkaO7u0wK1ChbTnDg5pverS97ArXVpdi4s8ZmMD1aur8jzi41WgFx2txtFFR2f9XB/MPaskJDx7efpJBrVadQERG/vUqpkCTv+WjBKAE/+Wp7C1TTs5HR3Tnqc/eatWVWMATYvX1AGFyrFj8PK/48amToVXXsmzQ4WFwZ57q6AWtCrf1XDZtIsgCdYKiagoFayBalUr4GOajebO4ztsDdzK5sDNHAg6QLI2OXVdnbJ1GOQ+iIFuA2lYoaHhArTgYDV4Zc0aOHcubbmNjZpbYdgwlcFRrqCEKFZsbVUSkqZNM6+LjVUfHfrgLShIJYS9eRPu3VOZ6uPj1XX748fZG0KlZ2WVcXiUtbUqNjZpz5/8+cnn+l546XvjpX9ezKc0yzn9LzA/BjMmJ6vATV/0gVz651kt0z+PjUUXFcWdO5cIvnWeyHvB2MRrKZkA9okaHJItsYlLQZOUlBZoPjmZ4ZPMzNQAT2dnFejWqpVWataUiQ6N6cYN6NdP/f379YPZs/P0cMtXpKCtvwqAyW3zLigsCiRYKyQWL1a9KFxdoX9/Y9emYLkccZnNAZvZHLgZ79veGdbVdazLILdBDHIfhLuDu+ECtPBw+OMPFaD980/acnNz1ew5fLhKFFKM5vURQmSftXVaNsqs6HQqSAsNTQve7t1Lex4Rob4T9L3rIiNVS51Op66zQ0P/e2qy3LCwyDqIy+p5VstsbNKGaFlYmBARYUtCggZHx7ThW9bWcmMyV8zMVMnF95AGqPxviUqI4pezv/C9z/dcirgExIMO+lfuxFvOQ2hXwhWTsHB1koaFpZ2w9+6pMYC3bqVNih4UpCY7fJKTE3h4qFK3btqj9EbJWxER6polPFylt129Ok/vyCQlwddb90L329iYlKFPnT55dqyiQIK1QiA+Hr75Rj3/8EO5o6nT6Th19xSbAzaz5dIW/MP9M6xv4dSC/q796efaj9plDZhR8fFjNQP5mjUqi4C+i4lGA+3aqQBt4ECVlUAIIXJBo0kbEpTdxLBareqFkT6I0/d8i4lJe/7kz1mt0+fP0D/Gx6vrbL3ERFWiogzxbq2AOpmWmpiobp1lyqSVJ38uU0ZNO6nvIuroKLOc5JWSliWZ2Gwib3i+wf7r+1nos5Cdl3ey+c5fbL7zFy6lXXjT803G9hxL6RJZJKRISVFBm346hevX01KrXrmixu/pM/Xs2ZP2OlNTFbTpm6k9PVWiGOmtYhh37qhBuBcvqm6q27fn+Y3mzZshoppKwjC60QjDTIdUhMlHWiHwxx/qxpSTk+pRVxxFJ0bz1/W/2HllJ7uu7OL249up68xMzOhYvSP96vSjr2tfKtlVMtyBExJg924VoG3frq5Y9Jo2TZt7pHJlwx1TCCFywMQkrftjXkhOTgvc0gdxWT1/1vq4uIzDth49SiEiIomkJAuio02IjlYthFpt2tRo2aXRpAVv+qIfMlWliup9V7WqWlbcb3zmlInGhK41utK1RleuP7zOopOLWH56OdcfXufdve/y6YFPGdtwLO+0fAeX0i5pLzQ1VRcyTk5q7tAnPXyoBnleuKAChwsX1FykYWFqiMG5c7BihdrW3FzNuZc+gKtbV8bDPa/r11W62xs31HXM3r35cj0z56fr0GY7AJNavJHnxyvsJFgrBBYtUo+vvaY+n4qLKxFX2HVlFzuv7ORQ8KEMCUKsza3pUbMH/V3706t2L+yt7A134JQUlbptzRo1F9qjtLnXqF1btaANGybzoAkhihUzs7TM8oYUG5tAQEAAbm5uWFtbp+bC0LcSPniQsTx8mPY8IkI1yISGqmv6lJS05Iznzz/9mBYWKnirWjUtgKtaVWXkrFVLxRMSzP03l9IuzOs6jxntZ/Db+d9Y6LOQC2EX+OHkD/zo+yOD3AcxtdVUmlbKYuDmk0qXzpypR6dTLT++vnDypHr09U2bQ+PUKViyRG1bqpSa16hdOzW3UePGxeui6XlduKBa1O7ehRo1YP9+9Q+Qx3x8wM/0B9DoaO/UjTrlMreqi4wkWCvg/PzUFF3m5jBunLFrk7cSkhM4HHw4tfXsyoMrGdZXt69Or1q96FW7F+2c21HCvIThDp4+1f769RkHe1SuDEOHqiCtUSMZRCGEEHnIxCQtKKz0HB0lUlLUNbx+XF/6oh8yFRwMt2+rLpzXrj09H4aVlbp+TZ//Ql8qVZKvgSfZWNgwockExjcez4GgA8w9Npc/r/7J+ovrWX9xPR2qdeAjr4/oVL3T840d12jUd3DlyiphF6jv6+DgjMGbj4+6sbpzpyqgxrm1aoVZq1bYOjmphCYy9k3x9oYePdSdj3r1VLfTihXz5dDzvouGxmputaltJ+XLMQs7CdYKOP2k8YMHq24bRU1IVAi7r+xm55Wd7L++n5ikmNR1ZiZmtHVuS8+aPelVuxd1ytYxXIIQUB/458+rTI7r1qluAHplysCgQSpA8/KSW6xCCFHAmZqqMWuOjs+e+zo5WQVsN2+qa/70j9evqxIfr3riXbyY+fXW1irZV/r8Fx4eqmWuuAdxGo2GjtU70rF6R87dO8e8Y/NYe2EtB4IOcCDoAC2cWvCJ1yf0rNUz59/nGk3axISDB6tlyclw5gwcPqzKkSOq6XX/fiz276cOoJs4UbXadeyoSrNmqom1ONHp4Mcf4d131UneooUKbvNprP3t27Dxymqo9YgqNjXpXlPmocoOjU6n0xm7EsXB+fPnSUxMTO3mkR0PHqibSfHxKuFgq1Z5XMl8oNVpOXn7JNsvb2fH5R2cvZdxgqEKthVSg7POLp0paVnS8JW4di1tLjT/dMlJ0qfa79q1UH2Ix8bGZuhGJIQhyfkl8lJBO7+Sk1Xwlj73hb4EBWWcviw9W9uMiQzr1oWGDdWceMXZrUe3mHdsHj/5/UR8shr33ahCIz5p+wn9XPthosmDm6FarYq0Dx8m+cABdAcPYv7k4Edra3UzVh+8NWpUtMe8hYWpOdT0LY89e8Lvv+frdAkffazjy0ce4BDAt92/ZVLzwt+ylpvPr/P/9tWu96y7S0iwlm9yEqx9/TW89576sPfzK7x37B4nPGbvtb3suLKDXVd2ERYTlrpOg4bmTs3pVasXPWv1pGGFhnnzwX37tureuHat6jqhZ2GhPrCGDYPevQttF4mCdrEjihY5v0ReKkznV2Ki6oTh75+WA+PiRbh0SaUjz4qTk4oDGjVSw6gaNVLj5Qrrd3pO3Yu+x9fHv2bRyUWpvWgaVmjIzPYz6V27t2F7zqQTGxtLgL8/7mZmlPD2hr//VuX+/YwblioF7dunBW8eHkXnj/TnnzBmjOojbGkJX30FEyfma6+h2Fio0Ho/j/t1wcrElnvTbufNDfl8lh/BmnSDLKC0WtVSDfDmm4Xv8+L6w+vsuLyDHZd3cDDoIEnatG+xkpYl6V6zO71q9aJHzR442OTRbceICNiwQQVohw+r5n9QH06dOqkArX//vEudJoQQokixsIA6dVRJP+dpUpJqeUsfwJ07p5bps9Fv3562fdmyaQFc06aqR56zc+H7rn8e5W3L81WXr3i/9fssOLGAb72/5UzoGfqs60Ozys34vMPndHHpkjdBm0aDrnZtdff71VfTWt70gdvBg2rM29atqoDqT6sP3Dp2BBeXwvcHunULZsyA5WqMGB4e6proP4KDvPDbb/DYdSEArzQeUyQCtfwiLWv55Hlb1nbvVg0+9vaqUaiA32wEVID2+4XfWXdxHefuncuwrmaZmrxQ+wV61+5Nm6ptsDDNoy6GoaFqLrRNm+DAgYwTA7VurQK0QYOK3ADAwnRnWhQ+cn6JvFSUz6+oKDh7Fk6fVsXPT7XKpf9q0nN0hObNVWnWTGWjL8r3EiNiI5h7bC4LfRYSmxQLQFvntsztMpdmlZsZ7DjZOr+Sk9UfSB+8HTmi5phIr2rVtMCtQwfVZFpQhYbCl1/C4sWqORhg0iSYPVvNTJ/PdDqo3fw6V3vWBI2OwDcDi0wWSGlZK8b0iUXGji3YgVpodChrz69l3cV1+Nz2SV1uqjHFy9mL3rV607t277z9p7xxQ82wuGkTHDuW1oIG6i6afi40Z+e8q4MQQgjxhJIl1bAoL6+0ZfrkJX5+qpw8qQK6sDDV+pa+Bc7VNS2Aa91aNYwUlWFVZa3LMrvzbKa0mMKcf+aw6OQiDgcfpvmy5gytO5QvOn5B9dLV86cyZmYqOvb0hPffV3Os+vikBW/Hj6sMNKtWqQJq+h598Na+fcEYnHjrFnz/PSxcmBZstm0Ls2apaQ2MZM8euFpapevv7Ny9yARq+UVa1vLJ87Ss3bihUgbrdHD5skoVXJDodDoOBB1gse9iNgduJlmrbhGaaEzoWL0jQz2G0t+tP2VK5GF2IX9/FZxt2qTuhqXXvDkMGKD6qBS0X14eKcp3poXxyfkl8pKcX+q6+vRpFR94e6uSPkGxXqlSKtlYmzaqeHoapaEkT4REhfDpgU/5+czP6NBhYWrBpGaT+MjrI0qXKJ3j/Rrk/IqNVZne9MGbr6/qSple/foqKtdP1O3mlj+R9b17asjHunVw9Gja8ubN4f/+Tw37MGL3TZ0OWrWP5kQrJ7B6xK7hu+hRq4fR6mNo0rJWTP34ozq5u3UrWLFGVEIUy/yWseTUEi5HXE5d3rxyc0bWH8kg90GUt82j7oWJiepDaMcOlcnoctrxMTFRk2AOGAD9+hXsrglCCCHEE0qUUEFY+qzPYWFpwduJE6o8eqSGSezerbYxN1dxgT54a91ajYcrjJxKOrGy70rebv427+19j79u/MW84/NYcWYF09tO53XP1/NuCMV/sbaGLl1UAfWHOHw4LXg7dy6tpH9No0ZqfJirqwre3NzUNUpOgyedTg2A1E8I/s8/cOhQWuCo0aiAcdo0NZamAIyxO3gQTiQuA6tHuJSqRbea3YxdpUJHgrUCJjExrYX9jTeMWpVUj+If8a33t8w/MZ/I+EgA7CzsGFF/BK82eZUGFRrkzYHv3VPfSDt2wN698Phx2jpzc/WhOWAA9OlTMLofCCGEEAbi6KiSFPfurX5OTlaxwNGjqhw5ooYmHT+uyty5arsGDdKGVbVtq1rjCpOGFRqyb+Q+/rz6J1P3TeVi+EUm75nMQp+FzO48m4FuA/Msc2S2lSoFL7ygCkB4uIpKvL1Vq9upUxAdrYKpf/7J+FprazUvU8WKqlSqBOXKqew15uZpJSFBZazUl7Awlb0mPDxzfZo3h6FD1bxzlSvn+dt/Hv/7vzhoPQeAD7ym5k3G7yJOgrUCZvdu9X9YoYK6KWJMkfGRLDixgAUnFvAo4REAruVcmdJiCsPqDsPO0s6wB9RqVT+QnTtVgJY+xT6ob66ePaFXLzUPWknJJCSEEKJ4MDNTqf8bN1a5InQ61VUyffAWGKjGv509C/Pnq44nTZqkBW9t2qgpRQs6jUZDj1o96FKjC6vOrOLTA59y7eE1Bv8xmJZOLVnQfYFBk5DkmoODCpT0k3RrtaoHkK8vBASklatXVZdK/cR9OWFqqgYvNmmiSo8eKlNlAXTkCByJXg52oVS2qcrohqONXaVCSYK1Aubnn9XjSy+pD2ZjSNGmsNh3MR///XFqkObu4M70ttMZ5D4IUxMD9sF+/Bj271cB2q5dcPduxvWNG6vbir16qb4e+TgniBBCCFFQaTTqGt3FBUaNUsvu3VMNPH//rRIiX7mi7nuePAlz5qgGm2bNVMeU7t3V12pBTlhiZmLGuMbjGFp3KPOOzWPusbkcDzlOi2UtGN94PF90+oKy1gWw36eJier66OqacXlSkppZ/c4ddb1z9656HhGh1iUnq8ekJHUR6OCgSrlyqtSsqcbGFZKBijP+LwHazAbgk/YfGq8bayEnwVoBEhGhGpQARhvp5oPfXT9e2/EaJ++oVq26jnWZ3nY6A90HGq7p+tYt2LZNlYMH09LKgrrl16WLCtB69FDdA4QQQgjxn8qXV8mPX3xR/RwSooI2/dCqmzfTeuZ99hmUKaO+crt1U6WgfuXaWtjyWfvPmNBkAh/+9SG/nP2Fn/x+YkPABr7s9CXjGo8rHN3rzM1VMoKClJAgj5w4AX89WAElb1PR2omxDccau0qFlgRrBcjatepmin48an6KSohi+oHpLPRZiFanpaRlSb7s9CWvNnk19y1pOp3qZ71li5ps8tSpjOtdXNJaz9q1A0vL3B1PCCGEEDg5wciRqui7Tf71lxoGvm8fPHgAv/+uCqhrj+7dVeDWpk3B+zquZFeJn/v9zLhG43hz15ucDzvPqzteZZnfMn7o+QOelT2NXUXxrxn/lwheXwLwcbsPsDQrYCdTISLBWgGi7wI5Zkz+HvdEyAmG/DGEW1G3ABhWdxjfdPuGCrYVcr7T5GR1604foKXPQazRQMuW0LevSg5Sp06ByFgkhBBCFFXpu02OH6++pn184M8/VfH1hfPnVZk7V3V06dZNfVX36lWwskx6OXvh96ofP/j8wPSD0zl55yTNlzVnQpMJzOo4q2B2jSxGTp2CP0NXgectHEtU5JXGrxi7SoVaIWgzLh4uXlQflGZmag7n/KDT6fje53varmzLrahb1Chdg70j9rJm4JqcBWparerWOG6c6ovRvj0sWKACNUtL1Xq2bJnqo/3PPyq1rKurBGpCCCFEPjMzU1MFzJypgrawMFizRg3DKF8eYmLUVKb6n9u3V0lLrl0zds0VMxMz3m7xNpcmXmJk/ZHo0LHk1BLqfF+HZX7L0Oq0/70TkSdm/l8SeH0BwEdt38fKzMrINSrcJFgrIPStar165U8W+ujEaF7a9BJv7X6LJG0Sg9wHcfrV03Sp0eX5dxYYCB9/DNWrq3RTy5ervhVlyqhRz5s2qQF527fDK6+oT30hhBBCFBjlyqmbxatWqXuqJ0/CJ5+ofBYpKWo6r3feUTku6tZVX/s+Ppnnhs5vFWwr8Ev/Xzg05hB1HesSERfB+O3jabm8JWdDzxq3csWQjw9sC/4F7IMpZ1WeCU0mGLtKhZ4EawVAcjKsXq2e50dikUv3L9F8WXPWXliLmYkZ87vNZ/2g9c+Xij85GTZsUJO4uLnBF1+okcslS6qA7K+/VFqqn3+G/v0LR65gIYQQQqDRqEyRn3+upgG4fl11lOnQQWWPvHhRfe03bw7OzvDuu+oiXaczXp3bOrfFb4If87vNx87CDp/bPjT5qQnTD08nPiXeeBUrRnQ6mPxuYmqr2odtp1HCvHBkrizIJFgrAPbvV3exypZVLWt5yfeOLy2Xt8Q/3J+KthU5MPoAk1tMzv4Ek/fvw+zZqhVt8GA1iYapqar4unVqhs5ly9SkLsaae0AIIYQQBlO9Orz9tsooGRambjAPHgy2tirj5DffqMCtRg344AM1ZaoxAjdzU3Mmt5hM4MRABroNJEWXwtfeXzP00FAOBB/I/woVMxs2wPGU76HMdcpZOfJqk1eNXaUiQYK1AkDfBXLYMDWBfV755+Y/dPqlEw/jH9K8cnP8XvWjTdU22XtxWBhMmQJVqsCHH6pPZwcH+PRT1aK2Y4fKFVxI5v4QQgghxPMrU0bNBbt+PYSHw+bNMHQoWFurIepz5qgpUuvUUZcIFy7kfx0r2VViw5ANbHlxC5VsKxESG0Lv9b0Zs2UMEbER+V+hYiA+Ht773z1oNwOA2V2+wMZCelUZggRrRvbokUqYCHnbBfLAjQN0W92NqIQo2jq3Zd/IfdlLIhIZqT5tXVxUH4j4ePUp/PPPKkibObPgTswihBBCiDxjZQX9+qmph8LDVQA3cKBafuUK/N//qekA6taFr75S8z/np76ufTn18imGVBuCBg0/n/0Z1x9c+e3cb+iM2WezCFq4EG7W+gisomhcviljG8m8aoYiwZqRrV+v4h93d2jSJG+O8efVP+m5picxSTF0cenC7pd2//f4tIQEdXvMxUV92sbEqA7se/aotJWjRqlPYyGEEEIUe9bWqmvkhg2qM85vv6nZeSws1Bi3999XnXN69ky79skPJS1LMq3uNP4a/hceDh7cj73PiM0j6PFbD248vPHfOxD/KSwMZizzgcYrAPi+13eFY5LyQsLov0mtVst3332Hl5cXDRs2ZPz48dy6deup2z98+JB3330XT09PmjVrxowZM4iLi8uwze7du+nZsyf169enX79+HD9+/KnHHjduHAsXLsy0Lrv7yK01a9TjqFF5k8F+x+Ud9Fnbh/jkeF6o/QLbhm3D2tz62S86dkzNzP3BB/DwIXh4qIyOPj7Qtauk2hdCCCHEU9nZwfDhaprVe/dg6VI1ybZWC7t3q1ETFSvCG2/kX2IS/fCP/+vwf1iaWrLn2h48Fnkw79g8krXJeV+BIux/n2mJaTsJgJH1R9GySksj16hoMXqwtmjRItasWcPnn3/OunXrUgOoxMTELLefNGkSwcHBrFq1im+//ZZDhw7x2Wefpa4/ceIEU6dOZejQoWzevJmWLVsyYcIErj0xMUhiYiIfffQRR44cyXSM7O4jt0JDVSpcUP29Dc3vrh8vbniRJG0Sg90Hs2HIhmfPdfH4MUycqD5RAwLA0VF1dzx7VmV0lCBNCCGEEM/B3l5Nv3rkCFy+rFL+OzmpURY//qgSk3h4qG6Sd+/mbV0sTC34uO3HnHv9HO2rtScuOY6p+6bSbGkz/O765e3Bi6iLF2HJ8V/ByZsSprbM6Tzb2FUqcowarCUmJrJixQomTZpE+/btcXV1Zf78+YSGhrJ3795M258+fRofHx/mzJmDh4cHLVu2ZObMmWzdupV79+4BsHTpUjp37syoUaOoUaMG77//Ph4eHvysz+IB+Pn5MWDAAHx9fSlZsmSm42RnH4awYYO6m9SihUp9a0i3o27zwtoXiE2KpWuNrqwZuAYL02dkL9m1S/XF/OEHVamXX1YB26hRKtujEEIIIUQu1KqlRlYEBcG+fSpRiZWVutzQd5McNEjN/pOXrW21y9bm71F/s7zPckpbleZ06Gk8l3ry3t73iEmMybsDFzE6HUyaGoWu8/sAzOgwnYp2FY1cq6LHqLnVAwMDiYmJoWXLtObSkiVL4u7uzsmTJ+ndu3eG7X19fXFwcKBGjRqpy5o1a4ZGo+HUqVN0794dPz8/Pvjggwyva968eYbg79ChQ3h5efHmm2/Sp0+fDNtqtdps7SOn0nfZXLfOEjClX79EYmMN1wQfkxhD73W9ufP4Dm5l3VjVaxWJ8YkkkkVrZUoK5p99hvk33wCgrV6dxIUL0XbooNbHxhqsXiLv6M+rJ7sEC2EIcn6JvCTnV/HUqpUqc+fC5s2m/PKLGd7epmzcCBs3Qq1aWl55JZmXXkqmTJmcH+dZ59fQOkPp4NSBaX9PY0PgBr4+/jV/XPyDb7t+S9fqXXN+0GJi9WpT/k6ZCbb3qGpTk/H1xxNbzK4bc/P5pdPpsjV1llGDtdDQUAAqVswYhTs6OqauS+/evXuZtrWwsMDe3p67d+8SFRVFbGwsFSpkzHL45P6mTJny1Dpldx85FRQUBEBYmDnHjtUDoG7dQAICknK9bwCtTsv7p97nzL0z2FvYM7vBbO5cv8MdMqdgMo2MxOXjj7H29gbg3tCh3J44EZ3+NpcodPTnlxB5Qc4vkZfk/Cq+mjdX5epVKzZscGDXrrJcuWLKBx9Y8L//mdG16wMGDgzHwyM2xyMynnV+fVDzA9rYtWH2hdncjLpJ/w396VqpK+96vEtZy7I5O2ARFxZmzuRvHsCL8wF4x30i1y4bdrhQYZLTzy+LbMzZZdRgTR+FPllRS0tLHj16lOX2Wb0pS0tLEhISiP83tVBW+0tISMhWnQyxj2epVq0aJUqU4MABM3Q6DS1apNChQ81c71dv+uHpHAg9gIWpBRsGbqClU9aDPDVnzmD5yiuYBAejK1GCxEWLsBsyBFeD1UTkp7i4OIKCglLPLyEMSc4vkZfk/BJ6bm7wwgvw+HECv/9uxtKlZly4YML27eXYvr0cDRtqGTcuiSFDUrDJ5hRe2T2/3NzcGNZqGJ8f/ZxFfovYe2cvPhE+/F+7/2N0/dGS3TAdnQ7e/18ccT1eABMtQ92GMb79eGNXyyhy8/l19erVbG1n1GDN6t/U74mJianPARISErJ8w1ZWVlkmHklISMDa2hpLS8vU/T25Pru/QEPs41lKlCiBtbV16txqQ4eaYm39H9kZs2nt+bV87f01AMv7LKdT7U5P2XCtGpMWHw8uLmg2b8ayfn2D1EEYl/78EiIvyPkl8pKcX0LP2homTYK33oITJ1QikvXr4cwZEyZOtOTTT+HVV+HNN1WykuzIzvllbW3Nwt4LGdN4DBN2TMDvrh8T905kXeA6fur9E24ObgZ4d4XfqlU6/ioxFuxvUsXGhZ/6LsHasnj/7+bk8ys7XSAhhwlG9Mk8ckvfpTEsLCzD8rCwMMqXL59p+woVKmTaNjExkcjISBwdHbG3t8fa2jrb+8uKIfbxX0JC4J9/VHLFQYMMsktuPrrJ6ztfB+DDNh8yov6IrDf86SeVTzc+Hrp3h5MnQQI1IYQQQhQwGg20bAm//KKunebOVdO/PnwIs2dDtWowbJhK/29ITSo1wXucN990/QYbcxuO3jxKg8UN+N+B/xGfnE8TxBVQt2/DGz/9DHXXY4IZG4at/e+5e0Wu5ChY69ChA+PGjWPXrl1PTbGfHa6urtja2uL975gpUGPG/P398fT0zLS9p6cnoaGhBAcHpy7z+fc/tEmTJmg0Gho3bpy6TM/b25umTZtmq06G2Md/2bBBPbZpA5Ur535/Wp2W0VtG8yjhES2cWjCzw8ysN1y4UN2KAnU7ascOcjVqVwghhBAiH5QrB++9p9L/b9kC7dpBSgqsW6fGu7VqpVrfkg2Ur83MxIwpLadw8Y2L9KrViyRtEjMPz6TB4gYcDDpomIMUMjodjJh0hbgOEwGY2X4mzSo3M3Ktir4cBWtffvklWq2W9957jzZt2jBjxgzOnz//3PuxsLBgxIgRzJs3j7/++ovAwECmTJlChQoV6Nq1KykpKYSHh6eOI2vQoAGNGzdmypQpnDt3jhMnTjB9+nT69euX2uo1duxYdu7cycqVK7l27RpfffUVAQEBjB49Otv1MsQ+nmX9evU4ZIhBdsc3x7/hYNBBbMxt+LX/r5iZZNG7dd481acA1KfdwoWSkl8IIYQQhYqpKfTtCwcPgp8fjB4NFhZw/LiabNvFRbXAPXxomOM52zuzfdh21g9aTwXbClyOuEyHnzvw8taXCY8JN8xBConlqxI5WHY4WMTg6dCeD7ymGbtKxUKOgrW+ffuyYsUKDhw4wMsvv8yJEycYPHgwvXv3ZsWKFdy/fz/b+5o0aRKDBg3ik08+YdiwYZiamrJ8+XLMzc25e/cubdq0YdeuXYBq9fr+++9xcnJi9OjRTJ48mbZt22aYFLtNmzZ88cUXrF27lv79+3PixAkWL16cId3/fzHEPp7m1i0Nx4+rpv2BA3O9O87dO8fHf38MwPxu86lZJotkJbNmwdSp6vknn6iZJ2WCayGEEEIUYo0awapVEBwM06eDgwPcugXTpqmxbG+9Bdev5/56R6PRMNhjMAFvBvBak9cAWHlmJbW/r82PJ38kRZuS62MUdKdO6Xht03tQ2ZcSlGbTiF8xNZGb/vlBo9MZZtrBixcvMnv2bHx9fTE1NU3tKtmgQQND7L7QO3/+PImJiezdW4+PPrKgXTt1Vyg34pPj8VzqyYWwC/Sp04ctL27JPFjxiy/gYxXM8fnnKlgTRU5sbCwBAQG4ubnJAH1hcHJ+ibwk55cwlPh4lUNt/nzQd/jSaHS0bx/JJ5+UoGNHq2fvIJuO3zrOG7ve4EzoGQAaV2zMDz1/oIVTC4Psv6AJC4PaL3/JI8+PANgwaBMDPfobuVYFQ24+v/S9EuvVq/fM7XKdh9TX15dPP/2UV155hVOnTtG6dWs++OAD4uLiGDZsGKtWrcrtIYqUTZvUXQhDdIH8+K+PuRB2AUcbR5a+sDRzoLZmTVqg9tVXEqgJIYQQosiysoKxY+HsWdi3T+VR0+k0HDhQmk6drGjZUuUNyO24tpZVWnJy/EkW9lhIKctS+N31o+Xylry89WXuPr5rmDdTQCQmQutJS1MDtVle30igls9yFKwFBwfz3Xff0blzZ0aOHMnx48cZOXIkf/31F8uWLWPEiBEsW7aMnj178uOPPxq6zoVWcjL4+ppiYpL7LpDHbh3jmxPfACpNv6ON4xMbHFOfWKDGqOm7QQohhBBCFGEaDXTuDLt3w8mTcfTpcx8LCx0nTsDgwVC7Nnz7LTx+nPNjmJmYMbHZRC6/dZkxDccAqmtkrYW1mHV4FnFJcYZ5M0b2wrSNXK2jun5OcPuQjzpOMXKNip8cBWvdunVj+fLlNGjQgBUrVrB//37efPPN1FT8ei4uLlSpUsUgFS0K4uLUr7tdO8jNLAAp2hTe3PUmAGMbjqV37d4ZN7h+Hfr1U7dD+vVT+W2FEEIIIYoZd3cd06cHExAQxyefQNmycOMGTJ4MVarA+++raQFyytHGkZV9V3Ls5WM0r9ycmKQYPjnwCa4/uLLuwjoMNNrIKKZ89zd77YaDiZZu5cazePAsY1epWMpRsPbpp59y9OhRvv76a1q2bPnU7d544w026PPUC+LjVRfI3LaqLfVbypnQM9hb2TOn85yMKyMjoXdvCA+Hxo1h9WrJ+iiEEEKIYq1CBTV0/+ZNNcl2rVrw6JEaJVK9OowcCWfO5Hz/Lau05Ngrx/htwG84lXTi5qObDNs4jObLmrPv2r5CF7R9s/EwC0L7glkiHiYD2Pn6j9mexFkYVo6CtT179mSaNFovMDCQF154IVeVKqoSE9VJ3qdPzvcRERuRmv1xZvuZONg4pK1MSlLt+wEBagK37dvBxiY3VRZCCCGEKDKsreG11yAwELZuhbZt1TCV1atVdsmOHWHnTtBqn3/fJhoThtcbzqWJl5jZfiY25jacvHOSrqu70vGXjhy/ddzwb8jAdDodb/38I++e7QSW0TjGdODkB79J5kcjymJCrqz5+vqm3hXw8fHh5MmTPHjwINN2Bw4c4NatW4arYRGi00GjRilUqZLzE/7TA5/yIO4B9Rzr8brn6xlXfvQR7N+vArQdO6BSpVzWWAghhBCi6DExUTfP+/QBX1/4+mv44w84cEAVV1d45x3V4mb1nEkkrc2t+bTdp0xoMoEvj37Jj74/cjDoIK1WtKJ37d582vbTAjmZdEJyAn2XvMWe+0vBFCo9GML5/1tBCXPDZNEUOZPtYO2PP/5g69ataDQaNBoNM2bMyLSNPpjr3bt3pnVC6d07Bf6/vXsPi7LO/z/+GlBOKqKuOP48ZOEBNZBQMMrTmplr2lJZq+tpLcXUIs08pfH1kJppomjmIc1qNXcrD5VZbrVrVgKKbrIrnvBcAhoiKjAozO+PWaYQlBEY5zafj+uaK/zcn3nzufHt5Mv7pPKFtT2n92hZ0jJJ0qI/LCr+8Osvv7Q9+FqS3ntPCgmp2EIBAABuA+3a2W75P2eOFBcnLV9uO/IWFWW7qfaoUdKIEZK/f9m1fq1e9Xpa0GOBXoh4QTO2zdDb/35bnx78VJ8e/FRdmnTR+PvGq0fTHoY4vfD0hdP6/dLHdSBnh2Q1qXXabCUtHC9PT9ev7Xbn8HPWLly4oJSUFFmtVg0ePFgxMTFq2rT4A5jd3Nzk6+urZs2aGaLxjCQ5OVlHjkj16zdVeLj3Db/farWq49sd9d3J7/Sn1n/Suj7rftl49qwUHCydPi0NHy4tXVqJK8etgOcUwZnoLzgT/QVnKk9/ZWdLb71lu2PkiRO2MU9PadAg29G2wMDyreXgzwc1+9vZWrN3jS4XXpYkBfkH6cX7XtSTrZ+UV5WbfwSr0FqotclrFf3JeJ27clrKq6nOZ9bpH2/2UNWqN305t5yb8Zy1cj0UOzExUa1bt1Y1rodyWHJysk6csKpLl6aqVu3G/2f0171/1cANA+VT1UcHnj2ghr4NbRusVunRR20nXgcGSklJthOycVvhLztwJvoLzkR/wZkq0l9Xrtiey/b667ZTJYs8/LA0Zozt+rbyHJs4lX1KC+IXaFnSMl3MvyhJ8vPyU/+g/nr6nqd1T/17brxoOXx99GuN2zpOu9N22wbOtNQfczfpw2XNVMXhc+9ubzcjrDn8W7Fx40Z17txZtWrV0k8//aSffvrpuvMjIyMdLX3b8PIqLNcf6pzLORr/j/GSpMkdJ/8S1CRpxQpbUKta1fYQbP5HBwAAUGFVqkh9+0p/+pP07be20Pbxx7YbkGzeLLVoYTuhafBgqXZtx+s29G2oed3naUqnKXpz55tamrRUJ86f0Bs739AbO9/QPeZ7NKjNIPVu3lsBtQMqdZ+sVqv+nfZvTfnnFH126DPboKWGtH2Snmo1WsuXe3MTcYNx+MhaYGCg/v73vys4OFiBZRz/NZlMSklJqZQF/lYkJyfrwoXLCgkJvOHkPe/7eRr3j3Fq4tdEKaNSfjlMvn+/7fb8ubm269XGjnXCynEr4F+m4Uz0F5yJ/oIzVXZ/HTxoOz3y3Xeli7aDYvLykp58Uho2TLr//hs/2lZQWKCvjn6llXtWauP+jcovyLdva1GnhR5u9rAebv6w7mt0X7lOlSwKaB/u+1AfpXykAz8f+N83riLtekbeiTF68/W6Gjz4hkvf9gx1ZO2rr75S3bp17V/jxnl43PgzNi7mX9Sc72zPUovpFPPLH9L8fOnPf7YFtQcftB2PBwAAgNM0by698Yb06qu2E5refFP64QdbeHv3XSkgwHZt26BBUpMmjtV0d3NX94Du6h7QXWdzzmpt8lpt2L9B3574Vgd+PqADPx/Q/Pj5cje5q3md5gqqF6Qg/yDd7X+3fufzO3lX8ZZPVR95V/WWSSYdP39cR88d1dEs2+vbE9/qyLkjv3w/q4cK/hsp/XOGghs019++Lf91eHA+h8NagwYNSv26yJUrV3Tx4kX5+flVysJ+i8pzCuTixMU6m3NWAbUCNLDNwF82zJsn7dkj1akjrV5tuwctAAAAnK5GDdspkFFRUmKitGyZ9Pe/S6mp0v/9n+3VubPUr58UGSnVq+dY3d/5/E7R7aMV3T5a5/POa2vqVm0+tFmfH/5c6ZfSlXI2RSlnU/T3//79htbrXcVbdxX+Qcc299Glfz8sWXw1YoTt1E7vG7/vHW6icl0+eOXKFS1dulR33HGHevfurYSEBEVHRys7O1vh4eGKi4tTzZo1K3utt51sS7bmfj9XkvR/nf/vl1v1Hz0qzZhh+3rBAp6nBgAA4AImk9S+ve21aJG0fr30zjvS119L27bZXiNGSB06SI8/Lj32mNSokWO1a3rV1BOtn9ATrZ+Q1WrVTxd+UnJGspLTk7U3Y69SzqToQv4F5VzOUe7lXOVczlGBtUCNfBvpzlp36k6/O3WH7106uaelNs7vpv+etN0YsFUr22MKeNLWraFcYS0uLk4rV67USy+9JEl65ZVX5Ofnp1GjRuntt9/W66+/runTp1fqQm9HcQlxyszNVIs6LdQvqN8vG55/XsrLk7p0kfr3d9n6AAAAYFOtmu0h2gMH2m75//770kcfSTt3Stu3216jR9vCUteu0gMP2I6+1apVdm2TyaQGvg3UwLeBejTtcd25V67YHuz9wQdS7Hrp559t402aSNOm2f7qyE1Ebh3lCmubN2/WCy+8oP79+ys1NVWHDh3Sq6++qsjISPn5+em1114jrFVQVl6WXt/xuqSrjqp9/LH0ySe2WxQtWVK+cysBAADgNI0bSxMm2F4nTkgbNtiC27ffSvv22V6LF9uuYmnTRrrnHtt/27SxPTrXkQBXJDdXSkmR/vMfW/0NG2yP4C1Sv77t4d5Dh9qeF4dbS7nCWkZGhtq0aSNJ+te//iU3Nzd16tRJkmQ2m3XhwoXKW+FtakH8AmXlZalV3VZ6svWTtsFLl6TnnrN9/eKLUsuWrlsgAAAAytS4se2kqOeflzIzpX/9S/rqK9vrwAHbLQj27Cn+nrp1bde5+fvbXnXr2o6G5eXZXhaLdOGC7f2pqVJhYfH3/+53ttMun3jCdvSO56bdusr1W+fv769Tp06pXbt2+vrrr9WyZUvV/t8DJvbs2SOz2Vypi7zdZOZmKjY+VpI0tfNUubv971j1K6/Y/nnmjjukl1924QoBAABwo2rXtl239thjtl//+KO0Y4e0d6/trpI//CAdPy6dOWN7OapOHSkoyHZUrndv25UyBLTfhnL9Nvbq1UuzZ8/WJ598oqSkJMXExEiSZs6cqffff1/PPPNMpS7ydjN/x3xlW7IV5B+kx1s9bhvct892B0hJiovj4dcAAAC3uAYNpD59bK8iWVm2f5vPyCj+slptz3Qrenl72x4VcPfdtqNvXBnz21SusDZ69Gj5+Pho586dGjt2rP785z9Lsj3c7amnntKIESMqdZG3kwuWC1qUuEiSNLXLVLmZ3Gx/OkeNsl0x2ru39MgjLl4lAAAAnMHPz/YCpHKGNZPJpOHDh2v48OHFxtetW1cpi7qdrdyzUtmWbLWo00KRgZG2wU8/tZ3g7OUlLVzoyuUBAAAAuEnKfTbrhQsXFB8fr5ycHFmt1hLbIyMjK7Ku29KVwitamGALY2PuHWM7qlZQIP3vEQkaPVq6807XLRAAAADATVOusLZ9+3ZFR0crNze31O0mk4mwVg4b92/UsaxjquNdRwPbDLQNrl1ruxern580frxL1wcAAADg5ilXWHv99dd11113adKkSapXr57c3Nwqe123paLnqo0MGymfqj62+7L+7+YtmjDhxh66AQAAAOCWVq6wlpqaqiVLlqhdu3aVvZ7b1o6TOxR/Kl4e7h4aGTbSNrh8uXTsmO1phtHRLl0fAAAAgJurXIfE/t//+3+6ePFiZa/ltjY/fr4kaUDQAJmrm6WLF6UZM2wbY2K4VT8AAABwmylXWBs+fLjeeOMNnTp1qrLXc1s6eu6o1qeslySNiRhjG1ywwPY0xIAA6emnXbc4AAAAAC5RrtMgP/nkE6Wnp+vBBx9U7dq15eXlVWy7yWTSl19+WSkLvB0sTFioQmuhugd0193+d0tnz0pz59o2vvKKVLWqaxcIAAAA4KYrV1gzm80ym82VvZbbUlZellbuWSlJGhsx1jb46qtSdrYUEiI9+aTrFgcAAADAZcoV1mbPnl3Z67htvbX7LV3Mv6i7/e/Wg3c9aDv1cckS28ZZsyTutAkAAADclsr9UGzJdlfI7777ThkZGRo4cKBOnjypwMBAVa9evbLW95tWaC3U0l1LJUmj24+WyWSS4uKk3FypXTupRw8XrxAAAACAq5QrrBUWFiomJkYfffSRrFarTCaT/vCHP2jJkiU6ceKE/vrXv3KapAO+Pvq1Us+lytfTV33v7itduCAtXmzbOHGiZDK5doEAAAAAXKZc59gtWbJEn3zyiV555RV99913slqtkqRx48apsLBQsbGxlbrI36rlScslSQODB6qaRzXbc9WysqQWLaRHH3Xt4gAAAAC4VLnC2kcffaTo6Gg9/vjj8vPzs4+3bNlS0dHR+u677yprfb9Z6RfTtWH/BklSVNsoyWKR5tuetabx47lWDQAAALjNlSsRnD17Vi1btix1W7169ZSdnV2hRd0OVv97ta4UXtG9De9VcL1g6b33pJ9+kho0kAYMcPXyAAAAALhYucLaHXfcoW3btpW6LTExUXfccUeFFvVbV2gt1PLdtlMgo0KjpIIC6bXXbBvHjpU8PFy4OgAAAABGUK4bjAwePFgxMTG6fPmyfv/738tkMun48eNKSEjQqlWrNHHixMpe52/K10e/1pFzR1TTs6b+dPefpPXrpUOHpNq1pWHDXL08AAAAAAZQrrD2xBNPKDMzU2+++abWrl0rSXrhhRdUtWpVDR06VP369avURf7WLEtaJkkaEDxAPlW8paLn1j33nMRjDwAAAACoAs9ZGzZsmHr37q3ExERVqVJFNWrUUJs2bYrdcAQlpV9K18b9GyVJw9sOl/7xD2nPHsnHR3r2WdcuDgAAAIBh3HBY+/TTT7Vu3Tr98MMPunLliiTJy8tLoaGh6tevn7p161bpi/wtee8/79lvLBJUL0iaN9a2Ydgw6Xe/c+3iAAAAABiGwzcYKSgo0OjRo/Xiiy/q5MmTevjhh/X000/rqaeeUteuXXXw4EE999xzN3y9WmFhoeLi4tSxY0eFhIRo2LBhOnny5DXnnzt3TmPHjlVYWJjCw8M1bdo05ebmFpuzZcsW9ezZU8HBwYqMjNSOHTtuuMbmzZvVq1cvtWnTRj179tTGjRtvaL9KY7VatfqH1ZL+d2OR/fttR9ZMJun55ytcHwAAAMBvh8NH1tauXautW7dq8uTJGjBggEwmU7HtBQUFWrdunWbNmqV27dqpT58+DtVdsmSJ1q5dq1dffVVms1lz587V0KFD9cknn8ijlLsiRkdHKzc3V6tXr1Z2drYmT56snJwczZkzR5IUHx+vcePGafz48br//vv14YcfKioqShs3blRAQIDDNcaPH6+XX35Z999/v7755htNmjRJtWrVUufOnR39kZVgKbTo6Pmjv9xY5IUJtg29e0t33lnuugAAAAB+exw+srZx40b17dtXAwcOLBHUJMnd3V39+/fXk08+qQ0bNjhUMz8/X6tWrVJ0dLS6dOmiwMBAxcbGKi0tTVu3bi0xf8+ePUpMTNScOXPUunVrRUREaPr06dq0aZPS09MlSStWrFC3bt00aNAgBQQEaMKECWrdurXeeecdh2t89dVXatGihfr27atGjRqpf//+CgwM1Pbt2x39cZUq50qOJOnPQX+WT+4VafVq2wauVQMAAABwFYfD2tGjR9WpU6cy53Xs2FEHDx50qOb+/ft16dIlRURE2Md8fX3VqlUr7dy5s8T8Xbt2qW7duvYjZJIUHh4uk8mkpKQkFRYWavfu3cXqSVL79u3t9cqqIUl16tTRoUOHFB8fL6vVqoSEBKWmpio4ONih/bqW3ALbqZZ/CfmL9M470sWLUmCgxHV+AAAAAK7i8GmQubm5qlmzZpnzatWqpUuXLjlUMy0tTZJUv379YuP+/v72bb+Wnp5eYq6Hh4f8/Px0+vRpZWdnKycnR2az+Zr1yqohSQMHDtTevXs1ePBgubu7q6CgQM8884weeeQRh/brWqxWqwL8AtTat6UKFw2Qm6T8qChduep6OeBGFV1zefW1l0BloL/gTPQXnIn+gjNVpL+sVmupZytezeGwZrVa5e7uXuY8Nzc3Wa1Wh2oW7djV16Z5enrq/Pnzpc4v7To2T09PWSwW5eXlXbOexWJxqIYknT59WufOnVNMTIxCQ0MVHx+v2NhYNWrUyOFr8a6le73u+vHdd9X80CEVVKum/7Ztq8KUlArVBIocO3bM1UvAbxj9BWeiv+BM9Becqbz9VVomuVq5n7NWGby8vCTZrl0r+lqSLBaLvL29S52fn59fYtxiscjHx0eenp72eldvL6pXVg1Jeu6559SrVy/1799fktSyZUudP39ec+fO1WOPPSY3N4fPHi0hqn2UAka9JEkqHDRILdq1K3ctoEhubq6OHTumJk2alPpnB6gI+gvORH/BmegvOFNF+uvw4cMOzbuhsDZ16lRVr179unMuXrzocL2i0xEzMjLUuHFj+3hGRoZatGhRYr7ZbNaXX35ZbCw/P19ZWVny9/eXn5+ffHx8lJGRUWxORkaG6tWr51CNzMxMHTlyREFBQcXmhISE6M0331RWVpZq167t8D7+mqe7p1rkVJX7559LkqqOHq2q/wuIQGXw9va2/6MDUNnoLzgT/QVnor/gTOXpL0dOgZRu4AYjYWFhqlatmqxW63Vf1apVUzsHjxYFBgaqevXqSkhIsI9lZ2dr3759CgsLK3UNaWlpOn78uH0sMTFRktS2bVuZTCaFhobax4okJCTY11RWjZo1a8rb21sHDhwoVuPAgQPy9fUtd1CTJJ8qPqqybJlktUoPPSQ1b17uWgAAAAB+2xw+svbee+9V+jf38PDQgAEDNG/ePNWuXVsNGjTQ3LlzZTab1b17dxUUFCgzM1M1atSQl5eX2rRpo9DQUI0ZM0ZTp05VTk6OYmJiFBkZaT9yNmTIEEVFRalVq1bq1KmTPvroI6WkpGjmzJmS5FCNQYMG6c0331TdunXVtm1bJSUladmyZRo1alSF9tfbzUtVin6Ozz1XoVoAAAAAfttces2aZHtA9ZUrVzRlyhTl5eUpLCxMK1euVNWqVXXq1Ck98MADmj17th577DGZTCYtXrxY06ZN0+DBg+Xp6akePXpo0qRJ9nodOnTQrFmztGTJEsXGxqpp06ZaunSp/Vb9jtR4/vnnVatWLS1btkynT59Ww4YNNW7cOPXt27dC+1olN0+mrCwpIED6wx8qVAsAAADAb5vJ6uitG1EhycnJsp46peCePaXXXpPGjXP1kvAbkpOTo5SUFLVs2ZJz8lHp6C84E/0FZ6K/4EwV6a/k5GRJKnGfjKuV/7aGuGGm/HxZq1SRBg929VIAAAAAGBxh7SYr6NVL8vd39TIAAAAAGBxh7Sa7wlE1AAAAAA5w+Q1GbifWKlVU2KmTq5cBAAAA4BbAkbWbqNDHR3J3d/UyAAAAANwCCGs3UQF3IQIAAADgIMLazVSFs04BAAAAOIawBgAAAAAGRFgDAAAAAAMirAEAAACAARHWAAAAAMCACGsAAAAAYECENQAAAAAwIMIaAAAAABgQYQ0AAAAADIiwBgAAAAAGRFgDAAAAAAMirAEAAACAARHWAAAAAMCACGsAAAAAYECENQAAAAAwIMIaAAAAABgQYQ0AAAAADIiwBgAAAAAGRFgDAAAAAAMirAEAAACAARHWAAAAAMCACGsAAAAAYECENQAAAAAwIMIaAAAAABgQYQ0AAAAADIiwBgAAAAAGRFgDAAAAAAMirAEAAACAARHWAAAAAMCACGsAAAAAYECENQAAAAAwIMIaAAAAABgQYQ0AAAAADIiwBgAAAAAGRFgDAAAAAANyeVgrLCxUXFycOnbsqJCQEA0bNkwnT5685vxz585p7NixCgsLU3h4uKZNm6bc3Nxic7Zs2aKePXsqODhYkZGR2rFjxw3X2Lt3r/r376/g4GB17txZcXFxKiwsrLwdBwAAAIDrcHlYW7JkidauXasZM2Zo3bp1Kiws1NChQ5Wfn1/q/OjoaB0/flyrV6/WwoULtW3bNk2dOtW+PT4+XuPGjVPfvn21YcMGRUREKCoqSqmpqQ7XOHr0qAYNGqSAgAB9/PHHeumll7R69WqtXLnSWT8GAAAAACjGpWEtPz9fq1atUnR0tLp06aLAwEDFxsYqLS1NW7duLTF/z549SkxM1Jw5c9S6dWtFRERo+vTp2rRpk9LT0yVJK1asULdu3exha8KECWrdurXeeecdh2ssW7ZMTZs21bRp09SkSRM99NBD+stf/qLdu3ffvB8OAAAAgNuaS8Pa/v37denSJUVERNjHfH191apVK+3cubPE/F27dqlu3boKCAiwj4WHh8tkMikpKUmFhYXavXt3sXqS1L59e3u9smpI0rfffqtevXrJZDLZ50RHR+vNN9+snB0HAAAAgDJUceU3T0tLkyTVr1+/2Li/v79926+lp6eXmOvh4SE/Pz+dPn1a2dnZysnJkdlsvma9smpcvHhRZ86cUY0aNfTSSy/pm2++ka+vryIjI/X000/L3d29Qvt89bVxQGUo6iv6C85Af8GZ6C84E/0FZ6pIf1mt1mIHhq7FpWGtaMc8PDyKjXt6eur8+fOlzr96btF8i8WivLy8a9azWCwO1bh48aIkac6cORo0aJBWrFihlJQUzZw5Uzk5ORo9evSN7+ivHDt2rELvB66H/oIz0V9wJvoLzkR/wZnK21+lZZKruTSseXl5SbJdu1b0tSRZLBZ5e3uXOr+0G49YLBb5+PjI09PTXu/q7UX1yqpRpYrtR3Lffffp2WeflSS1bNlSmZmZeuONN/T88887lIKvpUmTJqXuG1ARubm5OnbsGP0Fp6C/4Ez0F5yJ/oIzVaS/Dh8+7NA8l4a1otMRMzIy1LhxY/t4RkaGWrRoUWK+2WzWl19+WWwsPz9fWVlZ8vf3l5+fn3x8fJSRkVFsTkZGhurVq+dQjVq1asnT01PNmzcvNqdZs2bKyclRZmam6tSpU+599vb2lo+PT7nfD1wP/QVnor/gTPQXnIn+gjOVp78cPfjj0huMBAYGqnr16kpISLCPZWdna9++fQoLCysxPywsTGlpaTp+/Lh9LDExUZLUtm1bmUwmhYaG2seKJCQkqF27dg7VcHd3V2hoqH744YdiNQ4cOCBfX1/5+flVbKcBAAAAwAEuDWseHh4aMGCA5s2bp6+++kr79+/XmDFjZDab1b17dxUUFOjMmTP2a9HatGmj0NBQjRkzRnv37lV8fLxiYmIUGRlpP3I2ZMgQbd68WW+//bZSU1P12muvKSUlRYMHD3a4xogRI7R9+3YtWrRIJ06c0Geffably5dr8ODBFb7BCAAAAAA4wuUPxY6OjlafPn00ZcoU9evXT+7u7lq5cqWqVq2q06dPq0OHDvrss88k2Q4XLl68WA0bNtTgwYM1evRoderUqdgDrTt06KBZs2bp/fff16OPPqr4+HgtXbrUfqt+R2q0b99ey5Yt0z//+U/17NlTc+fOVVRUlEaOHHkzfzQAAAAAbmMmq9VqdfUibgfJycnKz89Xy5YtOWcalS4nJ0cpKSn0F5yC/oIz0V9wJvoLzlSR/kpOTpYkBQUFXXeey4+sAQAAAABKIqwBAAAAgAER1gAAAADAgAhrAAAAAGBAhDUAAAAAMCDCGgAAAAAYEGENAAAAAAyIsAYAAAAABkRYAwAAAAADIqwBAAAAgAER1gAAAADAgAhrAAAAAGBAhDUAAAAAMCDCGgAAAAAYEGENAAAAAAyIsAYAAAAABkRYAwAAAAADIqwBAAAAgAER1gAAAADAgAhrAAAAAGBAhDUAAAAAMCDCGgAAAAAYEGENAAAAAAyIsAYAAAAABkRYAwAAAAADIqwBAAAAgAER1gAAAADAgAhrAAAAAGBAhDUAAAAAMCDCGgAAAAAYEGENAAAAAAyIsAYAAAAABkRYAwAAAAADIqwBAAAAgAER1gAAAADAgAhrAAAAAGBAhDUAAAAAMCDCGgAAAAAYEGENAAAAAAyIsAYAAAAABkRYAwAAAAADcnlYKywsVFxcnDp27KiQkBANGzZMJ0+evOb8c+fOaezYsQoLC1N4eLimTZum3NzcYnO2bNminj17Kjg4WJGRkdqxY8cN1yiSn5+v3r17a+LEiRXfWQAAAABwkMvD2pIlS7R27VrNmDFD69atU2FhoYYOHar8/PxS50dHR+v48eNavXq1Fi5cqG3btmnq1Kn27fHx8Ro3bpz69u2rDRs2KCIiQlFRUUpNTXW4xq+99tprOnjwYGXuMgAAAACUyaVhLT8/X6tWrVJ0dLS6dOmiwMBAxcbGKi0tTVu3bi0xf8+ePUpMTNScOXPUunVrRUREaPr06dq0aZPS09MlSStWrFC3bt00aNAgBQQEaMKECWrdurXeeecdh2sU2b59u7Zs2aJmzZo5/4cBAAAAAL/i0rC2f/9+Xbp0SREREfYxX19ftWrVSjt37iwxf9euXapbt64CAgLsY+Hh4TKZTEpKSlJhYaF2795drJ4ktW/f3l6vrBpFMjMzNWnSJM2YMUO1atWqtH0GAAAAAEdUceU3T0tLkyTVr1+/2Li/v79926+lp6eXmOvh4SE/Pz+dPn1a2dnZysnJkdlsvma9smoUmTx5sn7/+9+ra9euevvtt8u/k1e51rVxQEUU9RX9BWegv+BM9Becif6CM1Wkv6xWq0wmU5nzXBrWinbMw8Oj2Linp6fOnz9f6vyr5xbNt1gsysvLu2Y9i8XiUA1JWrdunVJTU/X666+XY6+u79ixY5VeEyhCf8GZ6C84E/0FZ6K/4Ezl7a/SMsnVXBrWvLy8JNmuXSv6WpIsFou8vb1LnV/ajUcsFot8fHzk6elpr3f19qJ6ZdU4cuSI5s6dq5UrV8rHx6f8O3cNTZo0KXXfgIrIzc3VsWPH6C84Bf0FZ6K/4Ez0F5ypIv11+PBhh+a5NKwVnY6YkZGhxo0b28czMjLUokWLEvPNZrO+/PLLYmP5+fnKysqSv7+//Pz85OPjo4yMjGJzMjIyVK9ePYdqfPbZZ7p06ZKGDBli356Xl6fdu3friy++0J49eyq0z97e3k4JgYBEf8G56C84E/0FZ6K/4Ezl6S9HToGUXHyDkcDAQFWvXl0JCQn2sezsbO3bt09hYWEl5oeFhSktLU3Hjx+3jyUmJkqS2rZtK5PJpNDQUPtYkYSEBLVr186hGgMGDNAXX3yhjRs32l933323unbtqo0bN1bavgMAAADA9bj0yJqHh4cGDBigefPmqXbt2mrQoIHmzp0rs9ms7t27q6CgQJmZmapRo4a8vLzUpk0bhYaGasyYMZo6dapycnIUExOjyMhI+5GzIUOGKCoqSq1atVKnTp300UcfKSUlRTNnzpQkh2r4+fkVW6eXl5eqVaumO+6446b+fAAAAADcvlz+UOzo6Gj16dNHU6ZMUb9+/eTu7q6VK1eqatWqOn36tDp06KDPPvtMku1w4eLFi9WwYUMNHjxYo0ePVqdOnYo90LpDhw6aNWuW3n//fT366KOKj4/X0qVL7bfqd6QGAAAAALiayWq1Wl29iNtBcnKy8vPz1bJlS86ZRqXLyclRSkoK/QWnoL/gTPQXnIn+gjNVpL+Sk5MlSUFBQded5/IjawAAAACAkghrAAAAAGBAhDUAAAAAMCDCGgAAAAAYEGENAAAAAAyIsAYAAAAABkRYAwAAAAADIqwBAAAAgAER1gAAAADAgAhrAAAAAGBAhDUAAAAAMCDCGgAAAAAYEGENAAAAAAyIsAYAAAAABkRYAwAAAAADIqwBAAAAgAER1gAAAADAgAhrAAAAAGBAhDUAAAAAMCDCGgAAAAAYEGENAAAAAAyIsAYAAAAABkRYAwAAAAADIqwBAAAAgAER1gAAAADAgAhrAAAAAGBAhDUAAAAAMCDCGgAAAAAYEGENAAAAAAyIsAYAAAAABkRYAwAAAAADIqwBAAAAgAER1gAAAADAgAhrAAAAAGBAhDUAAAAAMCDCGgAAAAAYEGENAAAAAAyIsAYAAAAABkRYAwAAAAADIqwBAAAAgAER1gAAAADAgAwR1goLCxUXF6eOHTsqJCREw4YN08mTJ685/9y5cxo7dqzCwsIUHh6uadOmKTc3t9icLVu2qGfPngoODlZkZKR27NhxQzUKCwv11ltv6aGHHlJISIgefvhhffDBB5W74wAAAABwDYYIa0uWLNHatWs1Y8YMrVu3ToWFhRo6dKjy8/NLnR8dHa3jx49r9erVWrhwobZt26apU6fat8fHx2vcuHHq27evNmzYoIiICEVFRSk1NdXhGsuWLdOyZcv0/PPP6+OPP9agQYM0depUbdy40Uk/BQAAAAD4hcvDWn5+vlatWqXo6Gh16dJFgYGBio2NVVpamrZu3Vpi/p49e5SYmKg5c+aodevWioiI0PTp07Vp0yalp6dLklasWKFu3bpp0KBBCggI0IQJE9S6dWu98847Dtd4//339dRTT6lnz55q3Lix/vSnP+mPf/wjR9cAAAAA3BRVXL2A/fv369KlS4qIiLCP+fr6qlWrVtq5c6d69epVbP6uXbtUt25dBQQE2MfCw8NlMpmUlJSkHj16aPfu3Zo4cWKx97Vv394e/hypMWfOHN15553Fari5uSk7O7tC+3v16ZpAZSjqK/oLzkB/wZnoLzgT/QVnqkh/Wa1WmUymMue5PKylpaVJkurXr19s3N/f377t19LT00vM9fDwkJ+fn06fPq3s7Gzl5OTIbDZfs15ZNdzc3IqFR0n66aeftHnzZvXt27d8O/o/x44dq9D7geuhv+BM9Becif6CM9FfcKby9peHh0eZc1we1oqS6NWL9fT01Pnz50udX9qOeXp6ymKxKC8v75r1LBaLQzWudvbsWQ0bNkx16tTRiBEjHNyz0jVp0kTe3t4VqgFcLTc3V8eOHaO/4BT0F5yJ/oIz0V9wpor01+HDhx2a5/Kw5uXlJcl27VrR15JksVhK3WkvL69SbzxisVjk4+MjT09Pe72rtxfVK6vGrx05ckRRUVEqKCjQu+++K19f3xvcw+K8vb1LfA+gstBfcCb6C85Ef8GZ6C84U3n6y5FTICUD3GCk6HTEjIyMYuMZGRmqV69eiflms7nE3Pz8fGVlZcnf319+fn7y8fG5br2yahRJSkpS37595e3trXXr1qlRo0bl31EAAAAAuAEuD2uBgYGqXr26EhIS7GPZ2dnat2+fwsLCSswPCwtTWlqajh8/bh9LTEyUJLVt21Ymk0mhoaH2sSIJCQlq166dQzUkae/evRo6dKiaNWumNWvWlBocAQAAAMBZXH4apIeHhwYMGKB58+apdu3aatCggebOnSuz2azu3buroKBAmZmZqlGjhry8vNSmTRuFhoZqzJgxmjp1qnJychQTE6PIyEh7oBoyZIiioqLUqlUrderUSR999JFSUlI0c+ZMSSqzxpUrV/Tiiy+qTp06evXVV2WxWHTmzBlJkru7u2rXru2ynxcAAACA24PLw5pke0D1lStXNGXKFOXl5SksLEwrV65U1apVderUKT3wwAOaPXu2HnvsMZlMJi1evFjTpk3T4MGD5enpqR49emjSpEn2eh06dNCsWbO0ZMkSxcbGqmnTplq6dKn9Vv1l1di7d6/9qFu3bt2KrbVBgwb6+uuvb9JPBgAAAMDtymS1Wq2uXsTtIDk5Wfn5+WrZsiUXuKLS5eTkKCUlhf6CU9BfcCb6C85Ef8GZKtJfycnJkqSgoKDrznP5NWsAAAAAgJIIawAAAABgQIQ1AAAAADAgwhoAAAAAGBBhDQAAAAAMiLAGAAAAAAZEWAMAAAAAAyKsAQAAAIABEdYAAAAAwIAIawAAAABgQIQ1AAAAADAgwhoAAAAAGBBhDQAAAAAMiLAGAAAAAAZEWAMAAAAAAyKsAQAAAIABEdYAAAAAwIAIawAAAABgQIQ1AAAAADAgwhoAAAAAGBBhDQAAAAAMiLAGAAAAAAZEWAMAAAAAAyKsAQAAAIABEdYAAAAAwIAIawAAAABgQIQ1AAAAADAgwhoAAAAAGBBhDQAAAAAMiLAGAAAAAAZEWAMAAAAAAyKsAQAAAIABEdYAAAAAwIAIawAAAABgQIQ1AAAAADAgwhoAAAAAGBBhDQAAAAAMiLAGAAAAAAZEWAMAAAAAAyKsAQAAAIABEdYAAAAAwIBcHtYKCwsVFxenjh07KiQkRMOGDdPJkyevOf/cuXMaO3aswsLCFB4ermnTpik3N7fYnC1btqhnz54KDg5WZGSkduzYUek1AAAAAMCZXB7WlixZorVr12rGjBlat26dCgsLNXToUOXn55c6Pzo6WsePH9fq1au1cOFCbdu2TVOnTrVvj4+P17hx49S3b19t2LBBERERioqKUmpqaqXWAAAAAABncmlYy8/P16pVqxQdHa0uXbooMDBQsbGxSktL09atW0vM37NnjxITEzVnzhy1bt1aERERmj59ujZt2qT09HRJ0ooVK9StWzcNGjRIAQEBmjBhglq3bq133nmn0moAAAAAgLNVceU3379/vy5duqSIiAj7mK+vr1q1aqWdO3eqV69exebv2rVLdevWVUBAgH0sPDxcJpNJSUlJ6tGjh3bv3q2JEycWe1/79u3t4a8yapTH5cuXJUmHDh2SyWQqdx2gNFarVRL9Beegv+BM9Becif6CM1Wkvy5fvuzQe1wa1tLS0iRJ9evXLzbu7+9v3/Zr6enpJeZ6eHjIz89Pp0+fVnZ2tnJycmQ2m69ZrzJqlEfRb4abm8vPPMVvkMlkkoeHh6uXgd8o+gvORH/BmegvOFNF+stkMhk/rBXd1OPqnfT09NT58+dLnV/aD8TT01MWi0V5eXnXrGexWCqtRnncc8895X4vAAAAgNuPSw/zeHl5SVKJm4lYLBZ5e3uXOr+0G49YLBb5+PjI09OzzHqVUQMAAAAAnM2lYa3odMSMjIxi4xkZGapXr16J+WazucTc/Px8ZWVlyd/fX35+fvLx8bluvcqoAQAAAADO5tKwFhgYqOrVqyshIcE+lp2drX379iksLKzE/LCwMKWlpen48eP2scTERElS27ZtZTKZFBoaah8rkpCQoHbt2lVaDQAAAABwNpeGNQ8PDw0YMEDz5s3TV199pf3792vMmDEym83q3r27CgoKdObMGft1ZG3atFFoaKjGjBmjvXv3Kj4+XjExMYqMjLQf9RoyZIg2b96st99+W6mpqXrttdeUkpKiwYMHV1oNAAAAAHA2k7XonpMuUlBQoPnz52v9+vXKy8tTWFiYYmJi1LBhQ506dUoPPPCAZs+erccee0yS9PPPP2vatGnavn27PD091aNHD02aNMl+rZkkbdy4UUuWLFFaWpqaNm2qcePGFXs8QGXUAAAAAABncnlYAwAAAACUxEO/AAAAAMCACGsAAAAAYECENQAAAAAwIMIaAAAAABgQYQ0AAAAADIiwBgAAAAAGRFhzssLCQsXFxaljx44KCQnRsGHDdPLkSVcvC7eo9PR0tWjRosRr/fr1kqSUlBQNGDBAISEh6tq1q959910Xrxi3imXLlmngwIHFxsrqJz7f4KjS+mvKlCklPsu6du1q305/4VqysrIUExOjTp06KTQ0VP369dOuXbvs23fs2KHHHntMbdq0UY8ePbR58+Zi77dYLJo2bZoiIiJ0zz33aOzYscrMzLzZuwGDKqu/hgwZUuKz69efb5XeX1Y41aJFi6zt27e3/vOf/7SmpKRYn3rqKWv37t2tFovF1UvDLehf//qXNSgoyJqenm7NyMiwv3Jzc62ZmZnW9u3bWydNmmQ9fPiw9cMPP7QGBQVZP/zwQ1cvGwb317/+1RoYGGgdMGCAfcyRfuLzDY4orb+sVqu1T58+1vnz5xf7LPv555/t2+kvXMuQIUOsvXr1su7cudN65MgR67Rp06zBwcHW1NRU6+HDh61BQUHW+fPnWw8fPmx96623rK1atbJ+//339vdPnDjR2q1bN+vOnTutP/zwgzUyMtLav39/F+4RjOR6/WW1Wq0RERHWtWvXFvvsOnfunP39ld1fhDUnslgs1nvuuce6Zs0a+9j58+etwcHB1k8++cSFK8Otavny5dbevXuXum3p0qXWDh06WC9fvmwfe/31163du3e/WcvDLSYtLc06fPhwa0hIiLVHjx7F/jJdVj/x+YayXK+/CgsLrSEhIdatW7eW+l76C9dy7Ngxa/Pmza27du2yjxUWFlq7detmXbBggfXll1+29unTp9h7XnjhBetTTz1ltVptfRkYGGj917/+Zd9+5MgRa/Pmza27d+++OTsBwyqrv86ePWtt3ry59b///W+p73dGf3EapBPt379fly5dUkREhH3M19dXrVq10s6dO124MtyqDhw4oICAgFK37dq1S+Hh4apSpYp97N5779WxY8d09uzZm7VE3EL++9//qmrVqvr444/Vpk2bYtvK6ic+31CW6/XXiRMnlJOTo7vuuqvU99JfuJZatWpp+fLlCgoKso+ZTCaZTCZlZ2dr165dxfpGsn12JSUlyWq1KikpyT5W5M4771S9evXoLZTZXwcOHJDJZNKdd95Z6vud0V+ENSdKS0uTJNWvX7/YuL+/v30bcCMOHjyozMxM9e/fX/fdd5/69eunb775RpKt38xmc7H5/v7+kqTTp0/f9LXC+Lp27apFixapUaNGJbaV1U98vqEs1+uvgwcPSpLee+89de3aVd26ddP06dN14cIFSfz/E9fm6+urzp07y8PDwz72xRdf6Pjx4+rYseM1P7tyc3N17tw5paenq1atWvL09Cwxh95CWf118OBB1ahRQ9OnT1enTp3Uo0cPLViwQPn5+ZLklP4irDlRbm6uJBX7DZckT09PWSwWVywJt7ArV67oyJEjOn/+vJ577jktX75cISEhioqK0o4dO5SXl1dqr0mi33DDyuonPt9QEQcPHpSbm5v8/f21dOlSTZw4Ud9++61GjhypwsJC+gsO2717tyZNmqTu3burS5cupX52Ff06Pz9fubm5JbZL9BZKd3V/HTx4UBaLRcHBwXrrrbc0YsQIffDBB5oyZYokOaW/qpQ9BeXl5eUlyfbhUPS1ZPuLjre3t6uWhVtUlSpVlJCQIHd3d3s/3X333Tp06JBWrlwpLy8v+7/sFCn6YPDx8bnp68Wtrax+4vMNFTFixAj9+c9/Vq1atSRJzZs3V926dfXkk08qOTmZ/oJDvvzyS7344osKDQ3VvHnzJNn+Unz1Z1fRr729vUv9bJPoLZRUWn9Nnz5dEyZMUM2aNSXZPruqVq2qMWPGaPz48U7pL46sOVHR6RsZGRnFxjMyMlSvXj1XLAm3uGrVqhX7i4skNWvWTOnp6TKbzaX2miT6DTesrH7i8w0V4ebmZg9qRZo1aybJdgok/YWy/PWvf9Vzzz2n3//+91q6dKn9yH/9+vVL7RsfHx/VqFFDZrNZWVlZJf5CTW/h167VX1WqVLEHtSK//uxyRn8R1pwoMDBQ1atXV0JCgn0sOztb+/btU1hYmAtXhlvRoUOHFBoaWqyfJOk///mPmjZtqrCwMCUlJamgoMC+LT4+Xnfeeafq1Klzs5eLW1xZ/cTnGypi/Pjx+stf/lJsLDk5WZLUtGlT+gvXtXbtWs2YMUP9+/fX/Pnzi5121q5dOyUmJhabHx8fr9DQULm5ualt27YqLCy03whCko4ePar09HR6C5Ku318DBw7UpEmTis1PTk5W1apV1aRJE6f0F2HNiTw8PDRgwADNmzdPX331lfbv368xY8bIbDare/furl4ebjEBAQG66667NH36dO3atUupqamaPXu2/v3vf2vEiBF6/PHHdfHiRU2ePFmHDx/W+vXrtXr1ag0fPtzVS8ctqKx+4vMNFfHQQw9px44dWrx4sU6cOKFt27bppZdeUq9evRQQEEB/4ZqOHj2qWbNm6cEHH9Tw4cN19uxZnTlzRmfOnNGFCxc0cOBA7d27V/PmzVNqaqpWrVqlzz//XEOHDpVkOzPg4Ycf1pQpU5SQkKC9e/fqhRdeUHh4uEJCQly7c3C5svrroYce0qZNm/T+++/r5MmT+uyzz/Taa6/p6aefVvXq1Z3SXyar1Wqt3N3ErxUUFGj+/Plav3698vLyFBYWppiYGDVs2NDVS8Mt6OzZs3r99de1fft2ZWdnq1WrVnrxxRfVrl07SdLevXs1c+ZM7du3T3Xr1tVTTz2lAQMGuHjVuBVMnDhRP/74o9577z37WFn9xOcbHFVaf23ZskXLly/XkSNHVKNGDfXu3VujR4+2n25Ef6E0S5cuVWxsbKnbHn30Ub366qv65ptvNHfuXB07dkwNGzbUc889p549e9rn5eTkaNasWfriiy8kSZ06ddKUKVNKnJqL248j/bVmzRqtWbNGJ0+etF9rGxUVJTc32zGwyu4vwhoAAAAAGBCnQQIAAACAARHWAAAAAMCACGsAAAAAYECENQAAAAAwIMIaAAAAABgQYQ0AAAAADIiwBgAAAAAGRFgDAMAgjPToUyOtBQBuV4Q1AMAtITk5WePGjVOXLl0UHBysbt266eWXX9bJkydvuNbAgQM1cOBAJ6xSOnXqlFq0aKH169ff0PuSkpIUFRXllDWVZf369WrRooVOnTolSTp06JD69evnkrUAAH5BWAMAGN6aNWvUt29f/fzzzxo7dqxWrFihqKgoJSYmqk+fPtq/f7+rl1hhH3zwgVJTU13yvbt06aK//e1v8vf3lyR9/vnn2rNnj0vWAgD4RRVXLwAAgOtJSkrSzJkz1b9/f02ePNk+3r59e3Xr1k2RkZF66aWXbvhIFn5Ru3Zt1a5d29XLAABchSNrAABDW7lypWrUqKEXXnihxLbatWtr4sSJeuCBB5STkyNJKigo0Jo1a9S7d28FBwerS5cumjdvniwWyzW/h8Vi0RtvvKEePXooKChI3bt31/Lly1VYWGifM3DgQL344ouKjo5WSEiIhgwZ4vA+tGjRQmvWrNHkyZMVHh6ue+65R88//7zOnj0rSZo4caI2bNigH3/8sdgplBaLRa+99po6d+6su+++W71799Znn31WrHbXrl0VFxenOXPm6L777lNwcLCefvppHTt2zD4nMzNTY8eO1f3336+goCD98Y9/1MaNG+3bf30a5KJFi7R48WL7uhctWqTo6Gh16tSp2M9DkiZPnqyHHnrI4Z8DAODGcGQNAGBYVqtV3377rbp27Spvb+9S5/Ts2bPYr2NiYrRp0yYNGzZM7dq10759+/TGG28oJSVFb731lkwmU4nv8cwzz+jf//63nn32WQUGBiohIUELFizQyZMnNWPGDPvcLVu26JFHHtGbb75ZIriUJTY2Vg8++KDmz5+vkydPavbs2XJ3d9f8+fM1cuRIZWZmat++fVq8eLEaN24sq9WqUaNGaffu3YqOjlZAQID+8Y9/aMyYMcrPz1dkZKS99rvvvqu2bdtq9uzZOn/+vGbOnKkJEybob3/7myRp3Lhx+vnnnzVt2jRVr15dmzZt0oQJE2Q2m3XvvfcWW+cTTzyhtLQ0ffjhh/rb3/4ms9msgwcP6osvvlBCQoIiIiIkSXl5efr88881bNiwG/o5AAAcR1gDABjWuXPnZLFY1LBhQ4fmHz58WB9++KHGjh1rv1nH/fffL39/f40fP17ffPONOnfuXOw933zzjb7//nvNnz9fDz/8sP09Xl5eWrhwoQYNGqRmzZpJkqpWrapp06bJw8PjhvelefPmmj17tv3Xe/fu1eeffy5Jaty4sWrXri0PDw+FhIRIkr777jtt375dsbGx9kDasWNH5ebmat68eerVq5eqVLH9b9zX11dLliyRu7u7JOnEiRNatGiRzp07p1q1aikxMVGjRo1St27dJEnh4eHy8/MrdT/MZrPMZrMk2dfi7+8vs9msjRs32sPaP/7xD+Xk5BQLjQCAysVpkAAAwyoKHwUFBQ7NT0xMlCR76Cry8MMPy93dXQkJCaW+p0qVKurRo0ex8UceeaRYTUm66667yhXUpF+CTxGz2azc3Nxrzt+xY4dMJpM6d+6sK1eu2F9du3bVmTNndOjQIfvcoKAg+8+qqLYke/327dvbT2f84IMPdPbsWU2YMEGhoaEOrd3NzU2PPvqotm7daq+5YcMG3XffffbvBQCofBxZAwAYVs2aNVWtWjX99NNP15yTk5Ojy5cvq2bNmjp//rwkqW7dusXmVKlSRbVq1dKFCxdKvP/8+fOqVatWsbDz6xq/fk+1atXKvS9Xn8bp5uZ23WeZZWVlyWq1XjNQZWRkqGXLltesLcl+qmZsbKyWLl2qLVu26IsvvpCbm5vuu+8+TZ8+XQ0aNHBo/Y8//riWLl2qrVu36t5779WOHTs0b948h94LACgfwhoAwNA6dOighIQEWSwWeXp6ltj+97//XXPmzNGHH36omjVrSpLOnDlTLIRcvnzZfkrg1WrWrKlz586poKCgWGDLyMiQpFLfczPUqFFDPj4+evfdd0vdfscdd9xQrXHjxmncuHE6cuSIvvrqKy1ZskTTpk3T8uXLHarRqFEjhYeHa8uWLcrKylL16tXtp1UCAJyD0yABAIb21FNPKSsrSwsWLCix7cyZM1q1apWaNm2q1q1bKzw8XJK0efPmYvM2b96sgoICtW3btkSN8PBwXblyxX79WJGPP/5Ykkp9jzMUHQ379bpycnJktVoVFBRkfx08eFBvvPGGrly54lDdH3/8UZ07d7bv31133aVhw4bpvvvuu+YRy6vXUqRPnz76/vvv9emnn6pnz56lhmcAQOXhyBoAwNBCQkL0/PPPa8GCBUpNTVVkZKRq1aqlQ4cOaeXKlbJYLPYg17RpUz366KOKi4tTbm6uwsLClJKSosWLF6t9+/bq2LFjifqdOnVS+/btNWXKFKWnpyswMFCJiYlasWKFHn30UTVt2vSm7Kevr6/Onj2rbdu2qWXLlurcubPCwsI0cuRIjRw5UgEBAdq7d6/i4uLUsWNHh5+L1qBBA5nNZr3yyiu6ePGiGjdurP/85z/atm2bhg8ffs21SNKnn36qNm3aqFGjRpKkhx56SDNmzNDevXv18ssvV86OAwCuibAGADC8ESNGqFWrVlqzZo1mzZql8+fPq379+urSpYueeeYZ1a9f3z535syZuuOOO/TRRx9pxYoV8vf316BBgzRy5MhSjxiZTCYtW7ZMcXFxWr16tTIzM9WwYUO98MILN/QstYp67LHHtG3bNo0aNUrR0dGKiorS8uXLtXDhQi1btkw///yz6tWrpyFDhmjUqFE3VHvx4sWaP3++Fi5cqHPnzql+/fp69tln7XfMvFr37t21adMmTZw4UX369NHUqVMlSZ6enrr33nt15MgRBQcHV3SXAQBlMFmvd3UzAADA/+Tl5alz584aOXKkBg8e7OrlAMBvHkfWAADAdf3444/asGGDvv/+e5lMJj3++OOuXhIA3BYIawAA4Lrc3Nz03nvvqVq1aoqNjVX16tVdvSQAuC1wGiQAAAAAGBC37gcAAAAAAyKsAQAAAIABEdYAAAAAwIAIawAAAABgQIQ1AAAAADAgwhoAAAAAGBBhDQAAAAAMiLAGAAAAAAb0/wG/V2rbE8DHHAAAAABJRU5ErkJggg==\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2MAAAIdCAYAAACwbqUMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7TklEQVR4nO3deXxU9b3/8feZNQkEwpIQBBTZF9kFxbqXq9aicqm3VxRFLWqllYqKS1Vaba1aXFrF5Vql1oVqXepSbfWntm6VVVQsO8hOEpasZPbz/f0xyUhIgCyTzPZ6Ph6ImTlz5jvJl5nzzud7PscyxhgBAAAAANqUI9EDAAAAAIBMRBgDAAAAgAQgjAEAAABAAhDGAAAAACABCGMAAAAAkACEMQAAAABIAMIYAAAAACSAK9EDSAfLly+XMUZutzvRQwEAAACQQKFQSJZladSoUYfdlspYHBhjYn+AeDPGKBgMMr/QKphfaE3ML7Qm5hdaU0vmV1NyAZWxOHC73QoGg+rXr59ycnISPRykmerqaq1atYr5hVbB/EJrYn6hNTG/0JpaMr9WrFjR6G2pjAEAAABAAhDGAAAAACABCGMAAAAAkACEMQAAAABIAMIYAAAAACQA3RQBAACADBGJRBQKhRI9jKQXCARifzsc39av3G63nE5n3J6HMAYAAACkOWOMioqKVFZWluihpATbtuVyubRjx446YUyS8vLyVFhYKMuyWvw8hDEAAAAgzdUGsYKCAuXk5MQlSKSzSCSiQCAgr9cbq4QZY1RdXa2SkhJJUvfu3Vv8PIQxAAAAII1FIpFYEOvSpUuih5MSIpGIJCkrK6vOssTs7GxJUklJiQoKClq8ZJEGHgAAAEAaqz1HLCcnJ8EjSQ+138d4nHtHGAMAAAAyAEsT4yOe30fCGAAAAAAkAGEMAAAAQEoyxiR6CC1CGAMAAACQdB5++GENHDgw9vXFF1+siy++OPb1Sy+9pHvvvTcRQ4sbuikCAAAASHq/+MUv6nz92GOPady4cQkaTXwQxgAAAAAkvX79+iV6CHHHMkUAAAAAcff1119r2rRpGjNmjEaNGqVLL71UX3zxhSTp5ptv1sUXX6yXX35Zp512mkaNGqVp06Zp9erVB93f/ssUTz/9dG3fvl1//etfNXDgQG3btq0tXlLcEcYAAAAAxFVVVZWmT5+uTp066eGHH9aDDz4on8+nH/3oR6qsrJQkrVq1Sg8++KB++tOfau7cuSotLdXUqVNVUlJy2P3PmzdP+fn5OuWUU/Tiiy+qoKCgtV9Sq2CZIgAAAIC4Wr9+vUpLS3XJJZdo9OjRkqQ+ffroxRdf1L59+yRJlZWVevzxx3XsscdKkoYPH64JEybomWee0Q033HDI/Q8ZMkQej0edO3fWyJEjW/W1tCbCGAAAAIC46t+/vzp37qwf//jHOuuss3TSSSfpO9/5jmbPnh3bpmfPnrEgJkkFBQUaNWqUlixZkoghJwTLFAEAAFqozGdrb3Uk0cMAkka7du30/PPP65RTTtHf//53/fSnP9X48eM1Z84cBYNBSVK3bt3qPa5Lly4qKytr49EmDpUxAACAFjDG6MN1flWHjCYOzVZuFr/rBqTossS5c+cqEonoq6++0uuvv64///nPOvLIIyVJpaWl9R6ze/dudenSpa2HmjC8WwAAALRASZWtcr+RJH24PqCIbRI8IiDx/vGPf+j444/Xrl275HQ6NWrUKP3yl79Uhw4dtGPHDknSpk2btGHDhthjiouLtXz5co0fP75Rz+FwpH6USf1XAAAAkEBrS0Jq77V0Ul+vyny2vtgeSvSQgIQbPXq0bNvWT37yE7333nv67LPPNGfOHFVWVuqMM86QFK0q//jHP9bbb7+td955R9OnT1fHjh1j7esPp0OHDlq5cqUWL14sv9/fmi+n1RDGAAAAmskfMtq8N6KjuzjVOcehPl2c2rQnnOhhAQlXUFCgJ598Urm5ubr11lt11VVX6T//+Y8efvhhHX/88ZKkI444Qpdffrl+85vf6Oc//7l69+6tF154QXl5eY16jssvv1y7d+/Wj370I3399det+GpaD+eMAQAANNPG3dHg1btz9JCqczuH1u+OKBA28rqsRA4NSLjhw4frqaeeOuQ2U6ZM0ZQpUxq875prrtE111wT+/rZZ5+tc//EiRM1ceLElg80gaiMAQAANNPm0rC6d3DEgldedvTQam+1nchhAUgRhDEAAIBmMMaozGerU863h1O5XktOh7R3H2EMwOGxTBEAAKAZqkNGoYjUYb9W9pZlqWOWpdLqiCR34gYHJLl77rkn0UNIClTGAAAAmqGsZilih6y654blZTu0h2WKABqBMAYAANAM5T4jpyW189QPYxU+ozDXGwNwGIQxAACAZijz2crNsmRZB4SxHIeMvq2cAcDBEMYAAACaocxn1zlfrFbHLEuW6KgI4PAIYwAAAE1kjFG53653vpgkOR2WcrMswhiAw6KbIgAAQBNVB+t3UtxfXraD9vZICVUBW4Fw25/f6HVZau+lLkQYAwAAaKIyX8OdFGu191oqqYy05ZCAJqsK2Hp9hU+RBPzewOmQzhuW3eRAtmPHDi1fvlzf//73m/W8ixYt0iWXXKL3339fPXv2bNY+4okwBgAA0ERlB+mkWCvHbckfliK2kdPR8DZAogXCRhFbGnekW7kHqfK2hkq/rcVbQgqEjdp7m/bYm266ST169Gh2GBs1apQ++eQTde7cuVmPjzfCGAAAQBMdrJNireyakFYdNMo9SPUMSBa5WQ51ysmMJYMej0f5+fmJHkYMYQwAAKCJyg/SSbFWtnv/MNZWowLS28UXX6zFixdLUuzvM888Ux9++KH27Nmjhx9+WAMHDtTcuXP14Ycfau/everQoYO++93v6tZbb1V2dna9ZYqnn366LrroIn3xxRf65JNP5PF4dM4552j27Nlt8poyIwIDAADE0b6gOegSRenbMLYvyIWfgXh5+OGHNWrUKH3ve9/Tyy+/LEl67rnndNttt+nJJ5/UyJEjdfPNN2vlypWaN2+e3nnnHd1yyy167bXX9OKLLx50v7///e81duxYvfHGG7rxxhv13HPP6a233mqT10RlDAAAoAkitpEvZJRziDDmdlpyO6XqIB0VgXjJy8uT2+1WVlZW7JyvU045RSeccEJsm+985zsaO3asBg4cKEnq2bOnnnvuOa1du/ag+z3xxBN1ySWXSJJ69eqlZ599Vp9//rnOPPPMVnw1UYQxAACAJvCFotWu2urXwWS7LSpjQCs76qij6nx94YUX6oMPPtBf//pXbdq0SevXr9e2bdvUp0+fg+6jb9++db7Ozc1VKBRqlfEeiGWKAAAATVAbsBoTxqpDhDGgNWVlfXtSpm3buuqqq/TrX/9aLpdLZ599tv7v//5Po0ePPuQ+PB5Paw/zoKiMAQAANEF1TRg71DJFKdrevtxPGAPayqpVq/TRRx/pL3/5i0aMGCFJCoVC2rJli3r16pXg0TWMMAYAANAE+4K23I7oeWGHku2xtLOCCz8D8dSuXTtt375dRUVF9e7r2rWrXC6X/v73v6tz584qKyvT448/rl27dikYDCZgtIdHGAMAAGiC6qCJXUfsULK58DNSRKW/bRvNtOT5LrjgAt10000699xzlZ2dXee+bt266Z577tHDDz+s559/Xvn5+Tr11FN16aWX6oMPPmjpsFsFYQwAAKAJ9gXNYc8Xk/a71ljIKNdLGEPy8bosOR3S4i1t06xif05H9Pmb6tRTT9WiRYsOev8555yjc845p97tt9xyiyTpuOOO05o1a2K3NxTSnn32WUUiEfn9/iaPr6kIYwAAAE1QHTDqkHX4g8jac8qqg0a53tYeFdB07b0OnTcsW4Fw25/b6HVZau+llyBhDAAAoAn2BW1163D4Q6hYZYz29khi7b0OteeXBQlDHAUAAGikiG3kDx++rb307YWf93HhZwAHQRgDAABopNrrhh2urX2tbLdFZQzAQRHGAAAAGqk60LgLPtcijAE4FMIYAABAI+2rveBzI8NYjtvSvgBhDMnBGOZiPMTz+0gYAwAAaKTqoC23U3Id5oLPtbLclvaFOGcMieV2uyVJ1dXVCR5Jeqj9PtZ+X1uCbooAAACNtC9oGl0Vk6JhLBCO/ibdsrjWGBLD6XQqLy9PJSUlkqScnBzm42FEIhEFAgFJ0e+fFP13XF1drZKSEuXl5cVubwnCGAAAQCNVN/KCz7W8LkvGSKGI5OGoCwlUWFgoSbFAhkOzbVvhcFgul0sOR93FhHl5ebHvZ0vxtgAAANBI+4K2OmY3/iwPT80vzv1hI4+LSgQSx7Isde/eXQUFBQqFQokeTtLz+XzauHGjjjzySGVnZ8dud7vdcamI1Up4GLNtW/PmzdNLL72kyspKjR07VnPmzFGvXr0a3L60tFS//vWv9dFHH8myLH3/+9/XjTfeGPsm2bat+fPn66WXXlJxcbF69OihSy+9VP/zP/8T28e2bdv0q1/9SkuWLFFOTo7OP/98XXPNNXH9xgIAgPRTHTIq7NC0ypgkBUJGymqtUQGN53Q6OeZtBNuOnuvp9XqVldV6/3gTHsYeffRRLViwQPfcc48KCws1d+5cTZ8+XW+++aY8Hk+97WfOnCmfz6enn35aFRUVuvXWW1VdXa17771XkvR///d/mj9/vu644w4dc8wx+uyzz/TLX/5SbrdbkyZNUigU0o9+9CP17t1bL7zwgrZs2aJbb71VDodDM2fObOuXDwAAUoQxRoGQlNWECldtGPOH6WIHoL6EdlMMBoOaP3++Zs6cqVNPPVWDBg3Sgw8+qKKiIr377rv1tl++fLkWL16se++9V0OHDtX48eN155136vXXX1dxcbEk6c9//rMuv/xynX322TryyCP1v//7vzrvvPP00ksvSZLeeecd7dixQ7/97W81YMAATZgwQdddd53+9Kc/KRgMtunrBwAAqSMQloy+DViNUXueGGEMQEMSWhlbvXq19u3bp/Hjx8du69Chg4YMGaIlS5Zo4sSJdbZfunSp8vPz1bdv39ht48aNk2VZWrZsmc466yzde++9Ovroo+s8zuFwqKKiIraPoUOHqmPHjrH7jz/+eFVVVWnVqlUaMWJEs1+Pz+dr9mOBg6mdV8wvtAbmF1pTus2vcn9NoLKDaspLcjukyuqgqqs5Tyee0m1+Ibm0ZH41pXtqQsNYUVGRJKl79+51bi8oKIjdt7/i4uJ623o8HuXl5Wnnzp1yOBx1gp0k7dixQ2+99ZYuuOCC2HMe2P2koKBAkrRz584WhbFNmzY1+7HA4TC/0JqYX2hN6TK/qkyOpCO1c+sm7bHCjX+gfaR2llTK7N7VamPLZOkyv5Ccmju/GjrdqiEJDWO1SfPAwXq9XpWXlze4fUMvzOv1xq4DsL/du3friiuuUJcuXXT11VdLkvx+vzp06FDv8ZIa3EdT9O7du063FSAefD6fNm3axPxCq2B+oTWl2/zaUma0eZs0sF9vuZpwoseuzVL7rC4a3LNr6w0uA6Xb/EJyacn8Wr9+faO3TWgYq+1MEgwG63QpCQQCDb7orKysBs/rCgQCysnJqXPbxo0bdeWVVyoSieiZZ56JBbCG9lEbwg7cR1NlZ2e3eB/AwTC/0JqYX2hN6TK/7IqQnI6gcts17cAs2xNQ2FjKyaGdYmtIl/mF5NSc+dWUC2ontIFH7ZLDAy8+V1JSom7dutXbvrCwsN62wWBQZWVlsaWGkrRs2TJdcMEFys7O1gsvvFCnTX5D+6j9uqHnBAAAkCR/yDSpk2Itj8uigQeABiU0jA0aNEjt27fXokWLYrdVVFRo5cqVGjt2bL3tx44dq6KiIm3evDl22+LFiyVJY8aMkSR99dVXmj59uvr376/nn3++XsAaO3asVq5cqaqqqthtCxcuVLt27TRo0KC4vj4AAJA+fCEjbzPWFHldlvwhwhiA+hIaxjwej6ZOnar77rtP77//vlavXq1Zs2apsLBQZ5xxhiKRiHbt2iW/3y9JGjFihEaPHq1Zs2bpq6++0sKFCzVnzhxNmjRJ3bp1Uzgc1g033KAuXbronnvuUSAQ0K5du7Rr1y7t3btXkjRhwgTl5+fr2muv1erVq/Xee+/pgQce0OWXX97oE+0AAEDm8YdMk9ra1/K6pACVMQANSPhFn2fOnKlwOKzbbrtNfr9fY8eO1VNPPSW3261t27bpu9/9ru6++25NnjxZlmVp3rx5uuOOOzRt2jR5vV6dddZZuuWWWyRFq2K1VbMJEybUeZ4ePXrogw8+kNfr1ZNPPqk77rhDP/zhD9WxY0ddeOGFmjFjRpu/dgAAkDp8IaOO2c0JY5bCthSxjZyOpj8eQPpKeBhzOp2aPXu2Zs+eXe++nj17as2aNXVu69Klix566KEG9zV69Oh62zfkqKOO0vz585s3YAAAkJH8IaOC3KYvKvLUVNP8YaN2HsIYgG8ldJkiAABAKjDGyB9uXgOP2qWNnDcG4ECEMQAAgMMIRSTbSFnuZoQxZ/RvzhsDcCDCGAAAwGH4aqpaze2mKEn+UDxHBCAdEMYAAAAOwx8LY02vjDkdktOiMgagPsIYAADAYfhqglRzzhmzLCt6rTHCGIADEMYAAAAOwx8ycliS29m8x3tcUoAGHgAOQBgDAAA4DF/NBZ8tq3mt6amMAWgIYQwAAOAw/CHTrOYdtbwui9b2AOohjAEAAByGL9S8a4zV8rho4AGgPsIYAADAYfhDRt5mXGOsltfJMkUA9RHGAAAADsMfbmllzFIwLBlDIAPwLcIYAADAYbT0nDGPUzKSQpG4DQlAGiCMAQAAHELYNgrbzbvgcy23M/rYYITKGIBvEcYAAAAOobbxhqeFyxT33xcASIQxAACAQ6q9WHNLKmOemotFB1mmCGA/hDEAAIBD8Iejf3udzd9HbJkilTEA+yGMAQAAHEJclinGKmOEMQDfIowBAAAcgj9k5LAkVwuOmizLktshBcPxGxeA1EcYAwAAOIRA2MjrsmRZza+MSZLbZbFMEUAdhDEAAIBDCIRNbJlhS3icUoBligD2QxgDAAA4BH9NZayl3E4qYwDqIowBAAAcQiBkWtS8o5bbSTdFAHURxgAAAA4hWhlr+X48TksBrjMGYD+EMQAAgEMIhKNBqqVYpgjgQIQxAACAgzDGxLoptpTHyXXGANRFGAMAADiIkC3ZRvFZpuiyFAxHAx4ASIQxAACAgwqEosEpXg08jKSw3eJdAUgThDEAAICDCNSc4xWfZYrRfXDeGIBahDEAAICD8NeGsTg18JCkIB0VAdQgjAEAABxEbWXME5fW9nX3CQCEMQAAgIMIhCSXQ3I64rBM0VVbGSOMAYgijAEAAByEP2zi0rxDijbwkDhnDMC3CGMAAAAHEQgbeZ3x2ZfDsuRySMFwfPYHIPURxgAAAA4inpUxKdrEI8AyRQA1CGMAAAAHEQiZuLS1r+VxskwRwLcIYwAAAAfhDxt549BJsZbbadHAA0AMYQwAAOAgAnFephitjMVtdwBSHGEMAACgAcYYBcPxueBzLbfLYpkigBjCGAAAQAOCEclIca+M0cADQC3CGAAAQAMCNRUsT5xa20s154xRGQNQgzAGAADQgFgYi2tlzIpW3AyBDABhDAAAoEG1YSyu54w5JdtIETtuuwSQwghjAAAADfi2Mha/fbprgh3t7QFIhDEAAIAGBcKS0yE5HfGtjElSKBK3XQJIYYQxAACABgTCJq5LFKVvK2MhKmMARBgDAABoUPSCz/Hdp7vmyCtIZQyACGMAAAANCoSNPFTGALQiwhgAAEADAiET17b20rfnjNHAA4BEGAMAAGhQtDIW331aliWXQwqF47tfAKmJMAYAANCAQDi+F3yu5XZaVMYASCKMAQAANCgQiX83RSm6VJFzxgBIhDEAAIB6wrZRxI7vBZ9ruR0W3RQBSCKMAQAA1BMIRytXrbFM0UVlDEANwhgAAMABYmGsVZYpWgqGCWMACGMAAAD1BGq6HXpbY5mik4s+A4gijAEAABygtStjLFMEIBHGAAAA6gmEjSx9e5HmeHI7uOgzgCjCGAAAwAECYSOPK3qR5niLVsbivlsAKYgwBgAAcIBAyLTKEkUpWm2zjRSxqY4BmY4wBgAAcIBAuHXa2kvRyphEEw8AhDEAAIB6AmEjTyucLyZJrpqjL5p4ACCMAQAAHCB6zlgrV8a41hiQ8QhjAAAAB4hWxlrvnDFJNPEAQBgDAAA4UCBsWuWCz9L+54xRGQMyHWEMAABgP7YxCkZa54LP0v6VMcIYkOkIYwAAAPsJhqN/t9Y5Yw7LktNBN0UAhDEAAIA6ahtrtFY3RUlyOywqYwAIYwAAAPsL1IQxbytVxqToUkW6KQIgjAEAAOynNoy11jJFKRrG6KYIgDAGAACwn0BbLFN0WnRTBEAYAwAA2F8gLLkcktPRmpUxwhgAwhgAAEAdrXnB51puB8sUARDGAAAA6giEjTytdMHnWi4qYwBEGAMAAKijTSpjTilEN0Ug4xHGAAAA9uMPm1btpChFzxljmSIAwhgAAMB+AmEjbysvU3Q7pIiRIjbVMSCTEcYAAAD2EwyrDZYpRvdPdQzIbIQxAACA/QQibbFMMfp3iCYeQEYjjAEAANQI20YRu3Uv+CxFuylKhDEg0xHGAAAAagRqOhy2emWs5giMZYpAZiOMAQAA1IiFsTY7Z4zKGJDJCGMAAAA1AuHo363dTdFVswwySGUMyGiEMQAAgBptVRlzWpIlKURreyCjEcYAAABqBMJGlr7tdthaLMuS28kyRSDTEcYAAABqBMJGHlc0LLU2l9OigQeQ4QhjAAAANQIh0+pLFGu5HVTGgExHGAMAAKgRCLd+W/taVMYAEMYAAABqBMKm1S/4XIvKGADCGAAAQI3oOWNtVxkLEsaAjEYYAwAAqBGItOE5Y06xTBHIcAkPY7Zt66GHHtJJJ52kkSNH6oorrtDWrVsPun1paamuv/56jR07VuPGjdMdd9whn8/X4LbLli3T4MGD693+xhtvaODAgfX+bNu2LW6vCwAApJ5g2LT6BZ9ruRwWyxSBDNdGbzcH9+ijj2rBggW65557VFhYqLlz52r69Ol688035fF46m0/c+ZM+Xw+Pf3006qoqNCtt96q6upq3XvvvXW2W7ZsmWbMmCHbtuvtY82aNRo3bpweeOCBOrd37tw5vi8OAACkDGOMguHWv+BzLSpjABJaGQsGg5o/f75mzpypU089VYMGDdKDDz6ooqIivfvuu/W2X758uRYvXqx7771XQ4cO1fjx43XnnXfq9ddfV3FxsSQpHA7r7rvv1rRp09SjR48Gn3ft2rUaOHCg8vPz6/xxOtvojF0AAJB0ghHJqO26KbqpjAEZL6FhbPXq1dq3b5/Gjx8fu61Dhw4aMmSIlixZUm/7pUuXKj8/X3379o3dNm7cOFmWpWXLlkmSqqurtWTJEj355JOaOnVqg8+7Zs2aOvsAAAAIhKPBqK26KbqcUtiWbEMgAzJVQpcpFhUVSZK6d+9e5/aCgoLYffsrLi6ut63H41FeXp527twpKRrmXn31VUmK/b2/8vJyFRcXa+nSpVqwYIFKS0s1fPhwzZ49W0cffXSLXs/Bzl0DWqJ2XjG/0BqYX2hNqTa/yqtrQlEkqLYYsqlZolhRVd1mSyPTSarNL6SWlswvY4wsq3H/phMaxmpf3IHnhnm9XpWXlze4fUPnkXm9XgUCgUY957p16yRFv0l33323/H6/HnvsMV144YV688031bVr16a+jJhNmzY1+7HA4TC/0JqYX2hNqTK/Kk17ST21bfM3clmtfzLXPpMtqYdWrVkvjxVu9edLV6kyv5Camju/GsosDUloGMvKypIUPXes9v8lKRAIKDs7u8Htg8FgvdsDgYBycnIa9ZzHHnusPvvsM3Xq1CmWWOfNm6dTTz1Vr776qq688srmvBRJUu/evRscN9ASPp9PmzZtYn6hVTC/0JpSbX5tKjXasl0a2P9oOdqgUFXqk7ZvkXr36aeOWVTGmirV5hdSS0vm1/r16xu9bULDWO2Sw5KSEh155JGx20tKSjRw4MB62xcWFuq9996rc1swGFRZWZkKCgoa/bwHdk3Mzs5Wz549Y01Amis7O7vRoRBoKuYXWhPzC60pVeaXKQ/J7QiqXU7bHNiHLFtSQE53lnJyaCLWXKkyv5CamjO/GrtEUUpwA49Bgwapffv2WrRoUey2iooKrVy5UmPHjq23/dixY1VUVKTNmzfHblu8eLEkacyYMY16zhdffFHHHXecqqurY7dVVVVp06ZN6tevX3NfCgAASHH+sGmzTopS9DpjkuioCGSwhIYxj8ejqVOn6r777tP777+v1atXa9asWSosLNQZZ5yhSCSiXbt2ye/3S5JGjBih0aNHa9asWfrqq6+0cOFCzZkzR5MmTVK3bt0a9Zwnn3yybNvWjTfeqHXr1mnFihW65ppr1LlzZ02ePLk1Xy4AAEhigbCRpw3XDLlrimFcawzIXAkNY1L0Is7nn3++brvtNk2ZMkVOp1NPPfWU3G63du7cqRNPPFFvv/22pGjJb968eerZs6emTZuma6+9VieffLJ++ctfNvr5unfvrqefflrV1dWaMmWKLr30UuXm5uqZZ56R1+ttpVcJAACSXSBs5G3DroaumqMwKmNA5kroOWOS5HQ6NXv2bM2ePbvefT179tSaNWvq3NalSxc99NBDjdr35MmTG6x2DR06VPPnz2/egAEAQFoKhIyy3G0XxizLkstBZQzIZAmvjAEAACQDf9jI28a/pnY7LQWpjAEZizAGAACgmnPG2vjiyy4nyxSBTEYYAwAAGc8Yo2BY8rZhN0VJcjukkN2mTwkgiRDGAABAxgtGJCO1aWt7SXI5LSpjQAYjjAEAgIwXCEcDUZufM+aQQmHCGJCpCGMAACDjBULRQNTW54y5nRbdFIEMRhgDAAAZzx+rjLXxMkWHFLSpjAGZijAGAAAyXu0yRU8CWttTGQMyF2EMAABkvEBYcjslh0VrewBthzAGAAAynj8B1xiTJLcjWhkzhkAGZCLCGAAAyHiBsGnzTopStBonSWGuNQZkJMIYAADIeIGwafNrjEnR64xJLFUEMhVhDAAAZLxAyMibgGWKrpojMZp4AJmJMAYAADKeP2zavJOiFO2mKFEZAzIVYQwAAGS8RC1TdFMZAzIaYQwAAGQ0Y4yCYSVmmSKVMSCjEcYAAEBGC0YkI8mb0MoYYQzIRIQxAACQ0QKhaBBKxDljDoclhyWFaG0PZCTCGAAAyGj+cE0YS8AyRSl6rTEqY0BmIowBAICMVhvGstyJCWMuh6UgDTyAjEQYAwAAGc1fu0zRmZjnpzIGZC7CGAAAyGj+sJHXJVlW4ipjYcIYkJEIYwAAIKMFQiYhnRRruZ1imSKQoQhjAAAgo/kSHMZcDotlikCGIowBAICMFl2mmNjKGGEMyEyEMQAAkNGiyxQT9/wup6UQyxSBjEQYAwAAGc0fVmIrYw4qY0CmIowBAICMZYxRIMHLFF1OSyE7YU8PIIEIYwAAIGOFIpJtEl8Zi9iSbVMdAzINYQwAAGSs2gs+J/qcMUlUx4AMRBgDAAAZyx+uDWOJ7aYocd4YkIkIYwAAIGN9WxlL7HXGJNFREchAhDEAAJCx/GEjS5LHmbgxUBkDMhdhDAAAZCx/2MjjkiwrGSpjhDEg0xDGAABAxvKHEtvWXtq/MpbQYQBIAMIYAADIWMkQxlw1R2NUxoDMQxgDAAAZy5/gCz5L0SWSLgeVMSATEcYAAEDGilbGEj0Kye20FKQyBmQcwhgAAMhYgXBi29rXcjmksE0YAzINYQwAAGQkY0xSLFOUJJdTCrJMEcg4zQpjxcXF8R4HAABAmwpGJGOSozLmdlg08AAyULPC2Gmnnabp06fr7bffVjAYjPeYAAAAWl0gFA0/yXDOmMtJAw8gEzUrjN19992ybVs33HCDTjzxRN1xxx1asWJFvMcGAADQanzh2jBGZQxAYjTrd0HnnXeezjvvPBUXF+uvf/2rXn/9df35z39Wv379NHnyZJ177rnq2rVrvMcKAAAQN/6aylhWEoQxl1MK+QljQKZpUQOPbt266cc//rH+/ve/65VXXlGnTp00d+5cnXrqqbrmmmv05ZdfxmucAAAAceULGTksye1M9Eiire1ZpghknhZ3U1y6dKluv/12/ehHP9KyZcv0ne98RzfffLN8Pp+mTJmip59+Og7DBAAAiC9fyCjLZcmykqAy5hDLFIEM1Kxlips3b9brr7+uN954Q9u3b1ePHj108cUXa/LkyerevbskaerUqbrhhhv02GOP6dJLL43nmAEAAFrMFzLyuhM9iii301LIjrbbT4ZwCKBtNCuMnXnmmfJ6vZowYYJ+9atfafz48Q1u16dPH23atKkl4wMAIKF8IaPiiohKqiKqChgFwkaWpGy3pdwshwpyHSrIdcrj5AA61fhrKmPJwOWIttmPGClJhgSgDTQrjN1+++0699xzlZube8jtZsyYoRkzZjRrYAAAJFJxZUSri0LaUhaRMVJ7r6Vcr6UctyWjmpBWGdLXOyWHJfXq5FT/fJe6d3BS2UgR1UGjjtnJ8bNy14T5UCQazABkhmaFsXfeeUfHH398g2Fs9erVmj17tt58880WDw4AgLZW4be1dEtQ28oiys2yNOIIt3rkOZXtrn/QbozRvqDR9vKINu+N6L01AXXOsTT8CI96dSKUJTt/yKhbbnIkn9oAFoqYBucagPTU6DC2dOlSGRM9sXTx4sVasmSJ9u7dW2+7f/7zn9q6dWv8RggAQBswxmhtSVhLtgTldVk67ii3euYdOlBZlqX2XksDCxwakO/Sripbq4rD+tf6gApyHRp7pEdd2iVBqz7UY4yRP2yUlSTB59vKGE08gEzS6DD20ksv6fXXX5dlRbsO3XHHHfW2qQ1rEydOjN8IAQBoZaGI0acbA9pSGlHfrk4NO8Itl6NpB+mWZakg16mCXKeKKiL6cntIb//Hr8GFbo3s4ZaLc8qSSiAs2SY5rjEmRa8zJon29kCGaXQYu+222/SDH/xAxhhNmzZNc+bMUb9+/eps43A41KFDB/Xv3z/uAwUAoDX4QkYfrPGr3G9rfG+PeuS1vJJV2MGpglyH1paEtbIopK2lYZ3Y16v89lTJkkXtBZ+Tppuig8oYkIkaHcZyc3M1btw4SdIzzzyjoUOHql27dq02MAAAWltVwNa7q/0KR4xO6edVp5z4nT/ksCwN6uZWj45OLdkS1D9W+jWih1vHHOGWg3PJEs5XE8aSpTLmpjIGZKRGh7HXXntNp5xyijp16qQdO3Zox44dh9x+0qRJLR0bAACtpjoYDWLGSKf196qdt3UaOeRmOXRqf69WFYX15faQiiojOrlvVtKcq5Spki2MOSzJkhSkMgZklEaHsZtvvll/+ctf1KlTJ918882H3NayLMIYACBp+UNG76z2y7alU/p5Wi2I1XJYloZ2d6tre4cWbw7qb1/7dGp/r7qybDFhfCEjl0NJcy6fZVlyO1mmCGSaRoex999/X/n5+bH/BwAgFUVso3+u9SsYNq1aEWtIt1ynJgzI0mebAvrHKr9OONqrPl2bdZUZtJAvlDydFGu5nBbLFIEM0+hPgB49ejT4/7XC4bCqqqqUl5cXl4EBABBvxkS7Ju6ttnVKP6/at2EQq5XtsXRKP68+3xbSJxsDqvDbGtHDzTXJ2pg/ZCfNEsVabgeVMSDTNOtTKBwOa968ebELOy9atEjf+c53NH78eE2bNk3l5eVxHSQAAPHw9c6QNu2NaNxRHnVul7iL/Todlo7t5dYx3V36akdIn24MKmJzEN6WqpOwMuamMgZknGZ9Ej300EN67LHHVFFRIUn69a9/rby8PN1yyy3asmWL7r///rgOEgCAltpZHtEX20Ia3M0Vl/b1LWXVdFscd5Rbm/aG9a91foUJZG3GHzLKSrIVoi7OGQMyTrPC2FtvvaXrrrtOF110kTZs2KB169bp6quv1iWXXKJZs2bpgw8+iPc4AQBotuqgrY82+JWf69CQwuQ6Aj+yk0snHO1RUYWt99f4ORhvI76QkTfZKmMOi26KQIZpVhgrKSnRiBEjJEn/+te/5HA4dPLJJ0uSCgsLVVlZGb8RAgDQAsYYfbIxIMuydNxRnqQ8N6uwg1Mn9vVozz5bH6yNXvcMrce2jQLh5GlrXyvaTTHRowDQlpoVxgoKCrRt2zZJ0gcffKDBgwerc+fOkqTly5ersLAwfiMEAKAFVhWHVVRha+yRbnmT7OB7f/nt9wtkLFlsVf5wzTXGkqwyFu2myM8dyCTNCmMTJ07U3XffrR/96EdatmyZfvCDH0iS7rrrLj388MM655xz4jpIAACao7Ta1udbg+qf71S33MSfJ3Y4Xds59Z0+Hu2qtPXx+oBsw4F5a6gOJtcFn2vRTRHIPM0KY9dee60uv/xyWZal66+/XhdeeKEkacWKFbr88st19dVXx3WQAAA0lW2M/v1NQO29lo7p7k70cBotv71Tx/X2aFtZREs2B2UIZHHnDyVnGOM6Y0DmadZZzJZl6aqrrtJVV11V5/YXXnghLoMCAKClVheFtWefrdP6e+R0JNdB9+Ec0dGpUb3c+nxrSLleh4akUJhMBdUhI0tSVpJ9W90OKWKiFyZPtTkLoHma3VKqsrJSCxcuVHV1dYO/tZs0aVJLxgUAQLNV+m0t3x5Uv65OdWmX/MsTG9Kni0v7AkbLtgaVl2PpiI7J1QUyle0LRq8xlmzNXNzO6HhCEcmZuMvgAWhDzXpn//jjjzVz5kz5fL4G77csizAGAEiYxZsD8jpTa3liQ47p7lKZz9ZH6wP6/lCHcrM4Qo+H6qBRdhJODVfN7w1CtlGWkisoAmgdzQpj999/v/r06aNbbrlF3bp1k8PBhwMAIDlsKw1re7mt8b09cjlT+4C2th3/B+sC+nC9X98bks3ytTjYF7SVnWSdFKXodcYkmngAmaRZYWzDhg169NFHdeyxx8Z7PAAANFvENlq8JahuuQ4d0TE9flHocUUD2T/XBfT51qDGHuVN9JBSXnXQqCA3+eZHrDJGEw8gYzTrneiII45QVVVVvMcCAECL/KcopOqg0cge7qQ7H6glOuU4NOwIt1YVh7WtNJzo4aS86qBRTjJWxpxUxoBM06wwdtVVV+mRRx6JXfgZAIBE8wVtfb0jpL5dXWl5blW/rk4VdnDo398EFAhzsN5cwYhR2FaSLlOM/k1lDMgczVqm+Oabb6q4uFj/9V//pc6dOysrK6vO/ZZl6b333ovLAAEAaIwvt4fksKTB3dKz66BlWRrTy6N3V/u1eHNAJ/XNOvyDUE/tBZ+TMYw5Y2GMsA1kimZ9YhUWFqqwsDDeYwEAoFnKqm2t2xXW8CPc8iTZhXzjKdttaWQPt5ZsCemozmEd2Sk9g2drqg7akpIzjFmWJbczWr0DkBma9S5+9913x3scAAA02+fbgsrxWOrbNTWvKdYUR3ZyamtZRIs3BdW9gzN2nhEaZ18SV8akaEdFlikCmaNFi+o3bNigZ555Rvfdd5+Ki4u1dOlSGnsAANrUrqqItpVFNLS7S44MaPtuWZZG9XArEDb6cnsw0cNJOdVBoyyXknauuJwsUwQySbMqY7Zta86cOXrllVdkjJFlWfre976nRx99VFu2bNFzzz3HMkYAQJtYvi2oDlmWeuWlf1WsVjuvQ4MLXfrPzrD6dnWrU076NSxpLdELPidnEJOojAGZplnv3o8++qjefPNN/frXv9ann34qY6K/wZk9e7Zs29aDDz4Y10ECANCQnRURFVXYGlqYXq3sG2NAvku5WZYWbQrEPodxeMl6wedaVMaAzNKsMPbKK69o5syZ+sEPfqC8vLzY7YMHD9bMmTP16aefxmt8AAA0yBijL7YF1SnbSpsLPDeFw2FpRA+3SqpsbS6llNJY1UGjbE/yhjG306KBB5BBmvXptXv3bg0ePLjB+7p166aKiooWDQoAgMMpqrS1q8rWkAysitXqlutU9w4OLdsSVMTmAL4xkn+ZItcZAzJJs8LYUUcdpQ8//LDB+xYvXqyjjjqqRYMCAOBwvtoeVF62pcIOmVcV29/wI9yqDhqtLAoleihJLxwxCkaSt5OiJLmcFssUgQzSrAYe06ZN05w5cxQKhXTaaafJsixt3rxZixYt0vz583XzzTfHe5wAAMQUVURUXGnrhKM9GVsVq5Wb5VDffKdW7Aipf75bWUkcNBKtOpTcbe0lye2kMgZkkmaFsf/5n//R3r179dhjj2nBggWSpOuuu05ut1vTp0/XlClT4jpIAAD299WOoDpmWeqe4VWxWoO7ubV5T0QrdgQ19ihvooeTtKprrzGWxOeMuRxUxoBM0qwwJklXXHGFzjnnHC1evFgul0u5ubkaMWJEnYYeAADE2+6qaAfF447K3HPFDuR1WRpQ4NKq4rAGF7rV3ktIbci+oC0p+StjYVuyjZGD+Q2kvSaHsb/97W964YUX9OWXXyocDkuSsrKyNHr0aE2ZMkUTJkyI+yABAKj1n50htfNY6plB1xVrjP75Lq3fHdaX20P6Th+qYw2pCkQv+OxK0gs+S9FuipIUjkieZv/KHECqaPQ/80gkouuvv17/+Mc/1K1bN33/+99X165dZYxRUVGRFi9erGuuuUbnnXee7rnnntYcMwAgQ5X7om3cR/ekKnYgl9PS4G5ufbk9pGO6u9Uxm+rYgaoCRjlJvERRklw1P7ZQxMjjSu6xAmi5RoexBQsW6N1339Wtt96qqVOn1vsQjEQieuGFF/Sb3/xGxx57rM4///y4DxYAkNn+UxRSlsvSUZ2pijXk6C5OrSkJ68vtQZ3cLyvRw0k6lX5b7ZJ8Cae7ZmrTxAPIDI1+R3rttdd0wQUX6OKLL27wt5FOp1MXXXSRfvjDH+qvf/1rXAcJAEB10NbG3WH1y3fKmcTLzBLJ6bA0uNClTXsjKq22Ez2cpFMVMGqX9JWx6Pho4gFkhkaHsW+++UYnn3zyYbc76aSTtHbt2hYNCgCAA60pDsthSX26cCLNofTu7FQ7j6UvtwcTPZSkErGNqkPJH8ZqK2NBwhiQERodxnw+nzp27HjY7Tp16qR9+/a1aFAAAOwvFDFaUxLS0V2cnEdzGA7L0uBuLm0ppTq2v6pANNwkfxiLji/IMkUgIzQ6jBlj5HQefo2+w+GQMfw2BwAQP+t3hRWKSP3yqYo1xpFUx+qpCkSDaTtvcoex/Rt4AEh/CT+L1bZtPfTQQzrppJM0cuRIXXHFFdq6detBty8tLdX111+vsWPHaty4cbrjjjvk8/ka3HbZsmUaPHhwi/YBAEgs2xitLAqpZ55T7TwJ/9hKCQ7L0iCqY3VUBowsSTlJfI0xSbIsS24HDTyATNGkXzH+8pe/VPv27Q+5TVVVVZMG8Oijj2rBggW65557VFhYqLlz52r69Ol688035fF46m0/c+ZM+Xw+Pf3006qoqNCtt96q6upq3XvvvXW2W7ZsmWbMmCHbrv8h1Nh9AAASb2tpRPuCRsf1pirWFEd1dmp1cVhf7QjqFDorqipgK8djpcQlEdxOi3PGgAzR6F8xjh07Vu3atZMx5pB/2rVrp2OPPbZR+wwGg5o/f75mzpypU089VYMGDdKDDz6ooqIivfvuu/W2X758uRYvXqx7771XQ4cO1fjx43XnnXfq9ddfV3FxsSQpHA7r7rvv1rRp09SjR49m7QMAkDxWFoXUtZ1DnXOoijVFbXVs896IyqiORTspJvkSxVouJ8sUgUzR6F8zPvvss3F/8tWrV2vfvn0aP3587LYOHTpoyJAhWrJkiSZOnFhn+6VLlyo/P199+/aN3TZu3DhZlqVly5bp7LPPVnV1tZYsWaInn3xSO3bs0C233NLkfQAAksPuqoh2Vdka37v+Sgkc3lGdnFpVFK2OZfp1xyoDtjqlyIWw3U5LwXCiRwGgLSR0zUdRUZEkqXv37nVuLygoiN23v+Li4nrbejwe5eXlaefOnZKiYe7VV1+VpNjfTd1Hc3HeGVpD7bxifqE1JPv8WrHdKMctdfIElaRDTHp9Oklfl0Q0sHSfctu4MpQs88sYo0q/1C0nkvCxNIZDkj9oq7qaE8cOJVnmF9JTS+aXMabRS6ITGsZqX9yB54Z5vV6Vl5c3uH1D55F5vV4FAoFGP2dL93EwmzZtatHjgUNhfqE1JeP8ChmXttp9lW/t1vr19T8T0Di2kVw6SgvXV6uno2W/dGyuRM+vsHEobA9Q+Z6dWrc3+S+/47e7aZ8cWrXq4A3N8K1Ezy+kt+bOr4byRkMSGsaysqJLJoLBYOz/JSkQCCg7O7vB7YPB+m16A4GAcnJyGv2cLd3HwfTu3bvBcQMt4fP5tGnTJuYXWkUyz68VRUauvdLovvlyOfITPZyU5imVVpV0VK8+HdW+DatjyTK/9vqM1myQ+hzZXXkpsFrTXyRVBKTB/ep3hMa3kmV+IT21ZH6tX7++0dsmNIzVLhcsKSnRkUceGbu9pKREAwcOrLd9YWGh3nvvvTq3BYNBlZWVqaCgoFHPGY99HEx2dnaLAx1wMMwvtKZkm1/hiNE3pdU6uotTue04X6ylBnqNNu71a32pSyf08bb58yd6fpX4w5IC6pKblRIXDc/yhrTXH0mqf5PJLNHzC+mtOfOrKV1bE3om66BBg9S+fXstWrQodltFRYVWrlypsWPH1tt+7NixKioq0ubNm2O3LV68WJI0ZsyYRj1nPPYBAGhdG/fUXOS5K+3s48HpsDSgwK0Ne8KqDGReZ8VKvy23U3I7Ez2SxnHTTRHIGAkNYx6PR1OnTtV9992n999/X6tXr9asWbNUWFioM844Q5FIRLt27ZLf75ckjRgxQqNHj9asWbP01VdfaeHChZozZ44mTZqkbt26Neo547EPAEDrMcZoVVFI3Ts61M6bGt3vUkGfrk55nNLXO0KJHkqbK/fZ6uB1pMQ1xiTJ7bAUikT/LQBIbwn/lJs5c6bOP/983XbbbZoyZYqcTqeeeuopud1u7dy5UyeeeKLefvttSdGS37x589SzZ09NmzZN1157rU4++WT98pe/bPTzxWMfAIDWs7MionK/Uf98qmLx5HJYGlDg0vrdYVVlWHWszGcrNys1gpgUrYzZRqI4BqS/hH/SOZ1OzZ49W7Nnz653X8+ePbVmzZo6t3Xp0kUPPfRQo/Y9efJkTZ48ud7tTdkHAKBtrSoKKS/bUtd2Cf99Ydrp28WltSVhfbUjpBOObvtzxxLBGKNyv1HPvFQKY9GxhsJGLk/qjBtA0/FJBwBIGuU+W9vLbfXLd6XMkrJU4nJaGljg0obdYVX6M6M6ti9oFLGl3KzUOeSpPbctyGXGgLSXOu9MAIC0t7o4JK9L6pWXIp0WUlCfri55nNJXGXLuWJkvGjo7pNQyxZrKGOsUgbRHGAMAJIVA2GjD7rD6dHHJ6UidA+dU43JYGtTNrY27w6rIgOpYuc/I5ZBy3Kkzp9w1R2dUxoD0RxgDACSFdbtCso3Ul3b2ra5PF6ey3Ja+2BZM9FBaXbnPVq7XSqllr1TGgMxBGAMAJJxtjFYXh9WrUzQkoHU5HZaGFLq0aW9Ee/ald/kl2kkxtQ53XLFzxghjQLpLrXcnAEBa2rI3ouog7ezb0lGdncr1WlqextWxaCdFO6XOF5Mkh2XJ5ZBC6Z2TAYgwBgBIAiuLQspv71BeNh9LbcVhWRra3a0d5bZ2lqfnUb8vZBSKSB1SrDImRZcqBsNUxoB0l3rvTgCAtLKrKqLd+2yqYgnQo6NDnXMcWrolINuk34F/mS/6mlKtMiZFlypyzhiQ/ghjAICEWlkUUnuvpe4d+Ehqa5ZlaUQPt0p9Rht2hRM9nLgr99lyWFK7FLxwsttBN0UgE/DJBwBImMqArS17I+rPRZ4Tpks7h3p1cmr5tmDaNYzYW22rY1ZqdVKs5XZaVMaADEAYAwAkzOqikNzOaDMJJM6w7i6FbOnLNGvmsbsqok45qXmo43ZaaReOAdSXmu9QAICUFwwbrdsVVp+uLrm4yHNC5XgcGtLNpdXF4bRpdR8MG5X7jTqnahijmyKQEVLzHQoAkPLWlnCR52TSv8Cl3CxLCzcF06KZx55qW5LUuV1qHuq4qIwBGSE136EAACktYhutKg7ryE5OZXOR56TgsCyN7unWnn22VhenfjOP3VURuRxSrjc155fbKYVobQ+kPcIYAKDNfbMnLF/IaEABVbFk0rW9U/26OrV8a1BlPjvRw2mRPftsdcpxpGTzDqm2gUeiRwGgtRHGAABtyhij/xSF1L2DIyUvxpvuhh3hVo7H0icbArLt1K3M7K6yU7Z5hxStjEVMtIoMIH2l7rsUACAlbS+PqNxHVSxZOR2Wxh7lUWm1rc9TtLtiddBWdSh1m3dIkrumqQ3VMSC9pe67FAAgJX29I6QuOQ51TdHGCpmgc45Dw49wa2VRWJv2pN75Y7v31TTvyEnNJYpStDImiSYeQJrjkxAA0GaKKyMqqbI1sBsXeU52/fKd6pXn1L+/Cai0OrXOH9tdZSvLpZRuDuN21lbGCGNAOiOMAQDazNc7guqQZal7Bz5+kp1lWRrTy632XkvvrfGrKpA6gWxHeUT57Z0pHfhrK2MsUwTSG5+GAIA2UVpta3u5rYEFVMVShctp6cQ+Xjks6f+t9ssXSv4qjS9ktLfaVmGKB/7ayhjLFIH0ltrvVACAlLFiR1A5Hku9OjkTPRQ0QZbb0sl9PQpFpH+s9CV9hWxHefQct265qT3P3DVHaEGuNQakNcIYAKDVlftsbdob0cAClxxUxVJOO69Dp/b3yDbS31f6tWdf8q6d21EeUV62pawUPl9MkhwOS06HFEzebzWAOCCMAQBa3dc7Q8pyW+rdObWrFZmsvdeh0/p7leWKBrK1JSEZk1xVG9sY7SiPqLBDeswzj9OiMgakOcIYAKBVVQVsbdwd1sB8l5yO1K5WZLost6VT+3vVu7NTCzcF9a91Ae1LomWLe/fZCoSlwtz0OLxxO+mmCKS79Hi3AgAkrRU7QvK4pKO7pEe1ItM5HZZG9/Lo+N4e7aqK6PUVPq3YEUyK0LC9PCK3U+qcJtewczstBVLvMm8AmsCV6AEAANJXVcDW+t1hHdPdJZeTqlg66ZnnVLfcLP1nZ0hfbg9pZVFIQ7u7NSDfLY+r7X/Wxhht3B1W9w7OtDkv0e2kmyKQ7ghjAIBWs2JHSB6n1LcLHzfpyO20NLKnR/0LbK0uCuuLbSF9tT2kvl1dGtjNLU8bjqWowlZlwGh0r/SpwHqclvycMwakNT4dAQCtoipga8PusIYWUhVLd+08Do050qMh3Y027A7rmz1hrSkJq2uOlGXnyrZbP1Cs3RVSbpalrmmyRFGKVsYq/IQxIJ0RxgAArWLFjpDcTqlvVz5qMkW229Ix3d0a0s2l7eURrSsJaZvpoV1rpYEFQQ0scCnbE/+w5AsZbS2NaFh3d1pdUNzttGhtD6Q5PiEBAHFX6edcsUzmcFjq1cmlrlkhfb12s9T+KP2nKKSvd4bUL9+lod3dyvXGL5Rt2BWSJB2VZpdO8Di56DOQ7ghjAIC4+2pHSF6qYpDktULq300a0TNLG/aEtX5XWOtKwuqX79LwI9xq18JQ5g8Zfb0zpCM7ORPSOKQ1uZ2Wwnb0+mnp0pQEQF18SgIA4qrCF72u2PAebrm4rhhqeFyWBndzq3++Sxt3h7W6OKwNu8MaXOjWsO7N78D4+bagjKRjurvjO+Ak4KmpKgfDUlb6vTwAIowBAOLsi+1BZbkt9eG6YmiAy2FpQIFbR3dxaW1JWKuLQ1q/K6QRPTwakO+SowkBvqQyovW7whrV060sd/oFf3fNP6FQxKTl6wNAGAMAxNHe6og27Y1odC+3nFTFcAhup6Wh3d3q08Wl/xSFtHhzUKuLQxrV06MjOzkP24ij0m/r4w0BdcpJ3+Dvrq2Mca0xIG0RxgCgDeytjmhtSVg7yyPql+/S4ML0XMK3fGtQ7b2WeqdZIwW0nmyPpWOP9KhfV1tf7Qzpw/UBdc5x6Jgj3Doyz9lgpazMZ+v/rfbL6ZDG9/akVQfF/Xlq/hkFwokdB4DWQxgDgFa2aW9YH60PKMtlqWt7h77YFtLakrAmDMxSx+z0uSbSrsqItpfbOu4oN80G0GR5OQ6d3NerksqIVhZF/83kuC317ORUt1ynPE4pbEub94a1uTSiDl5LJ/X1pvXyvdrKWIjKGJC2CGMA0Ip8IaNFmwLq0dGh43p75LAsVfptffpNUB9t8OvsIdlpsZzPGKNl24LqmGWpZx5VMTRfQa5TBblOlflsfbMnWk1eW/Jtaai919LwI9zq3dkZCyvpqvacMdrbA+mLMAYArcQYo4XfBCRJo3t5YtWi3CyHjjvKo3+uC+jzrUGNPcqbyGHGxfbyiEoqbX2nT/ouGUPbyst2aFRPjyQpEDaK2EZOhyWPUxkzxyzLktspBaiMAWkrfdbHAECS2V4e0dayiEb19Mh7QNvuTjkOHdPdrVXFYRVVRBI0wvgwxmj51qC6tnOoMJePFcSf12Upx+OQ12VlTBCr5XZaCnHOGJC2+NQEgFaytiSsTtkHX7bXP9+pTtmWvtgWlDGp+5vvb/ZEVOozOuYIV8YdKAOtze2kmyKQzghjANAKqoO2tpdF1LvLwVeDW5alwYVulVTZKqq023B08ROxjZZvC6p7B4e6tuNcMSDePE6LMAakMcIYALSCjXvCclhSr8M0s+jewaFO2Za+3J6a1bE1JWFVB42GHeFO9FCAtOR2SkGWKQJpizAGAHFmjNH6XWEdkeeUx3XoZXux6lilreIUq44Fw0YrdgTVu7NTHbL4OAFag9tp0U0RSGN8egJAnO2qslXhNzq6kRc+7t7BoQ5ZllYVhVp5ZPH19c6QwhFpSHeqYkBr8XDOGJDWCGMAEGdbSyPKckn57Rv3FmtZlvp2dWlbWUT7gqlRHdsXsLWqKKT+BS5lp/FFd4FEczstWtsDaYwwBgBxtqMirIJcZ5M6Cx7ZySmnQ1pXkhonh3yxPSSXUxpYwOUqgdZEa3sgvRHGACCOfCGj0mqjbk283pbbaemozk6t3RWSbSf3b8H3Vke0YXdYQwrdcjupigGtyeOUIibauRRA+iGMAUAc7SyPXsC5W27T27z36eKSPyRtKU3ui0Av2xJUe6+lo7vQyh5obbW/8Agm99sCgGYijAFAHO2siKhjlqWsZpxH1THboS7tHFq3K3kbeWwvC2tnha1h3d1ycIFnoNW5a37nQUdFID0RxgAgTowx2lEeaVZVrFbvzk7trLBVFUi+Rh62MVq6Naiu7Rw6oiMfH0Bb8MQqY4QxIB3xaQoAcVLuM/KFjAqaeL7Y/nrmOeVySBt3J98Z+xt2hVXuMxrew92k5iQAmi+2TJHKGJCWCGMAECc7KyJyWI1vad8Qt9NSzzyn1u8Oy5jkOfgKRYyWbwuqVyenOufw0QG0FU/tMkXOGQPSEp+oABAnu6oi6pTjkNPRsqpR785OVQWMiiuTZ6ni1ztCCkWkYd1pZQ+0JadDsiQFqIwBaYkwBgBxsnufrc45LV++16WdQ+29VtI08qgK2PpPzQWeczx8bABtybIseVwsUwTSFZ+qABAH/pBRVcDEZQmfZVnq3dmpLXsjSXEA9vnWoDxOS4O4wDOQEB6nRWUMSFOEMQCIg91V0RM64nU+1VGdXbKNtGlvYht5FFdGtGlvRMd0d8nFBZ6BhPC4LM4ZA9IUYQwA4mDXPltel5TjiU9gyXZb6tbBofW7EhfGbGO0ZHNAnbItHdWZCzwDieJxcs4YkK4IYwAQB7urIuqc44hry/ejO7u0e5+tsurENPLYsDusvdVGI3vSyh5IJJYpAumLMAYALWSMqWneEd+31O4dHPK6lJBGHsGw0edbgzqyk1Nd2lEVAxLJ4yKMAemKMAYALVThNwpFpM7t4vuW6nBYOqqzSxt2hxW22/ZA7IvtQUVsadgR7jZ9XgD1sUwRSF+EMQBooXg379hfny5OBSPS5jZs5LG3OqI1xWENKXQp283yRCDRPC5LwbCS6kLwAOKDMAYALbR7n632XkvuVug22N7rUEGuQ2uL2yaMGWO0aFNQuVmW+uXTyh5IBh6nZCSF6KgIpB3CGAC0UGm1rbzs1ns77dvFpV37bO2tbv0jsfW7wtpVZWtkD7ccNO0AkoLHFf23GIhQGQPSDWEMAFrAGKNSn62O2a0XXLp3dCjLbWlNK1fHfCGjZVuDOqqzUwW5NO0AkoWnpuqeDBeBBxBfhDEAaIF9wWjzjrys1ns7dViW+nZ1asPusHyh1jsYW7olIEkaTtMOIKl4alYM08QDSD+EMQBogb011wDr2IrLFKXoUkWHJa0uap029zsqjL7ZE9HwHm55XSxPBJJJbWUskLhrwANoJYQxAGiB0mpbHqeU3crFJI/L0tFdXFpTElIozueNhI1Dy3ZIhR0cOqoTyxOBZONySA6LyhiQjghjANACpdW2OmY7ZLVBs4v++S6FItK6kvj+erzIdJNtS2N6etrkdQBoGsuy5HFyzhiQjghjANACe6tbt3nH/nI8lo7q7NSKncG4HZRtKTMqNx01pEDK9hDEgGTlcVlUxoA0RBgDgGYKRYyqAqZVm3ccaGihW+GItGJny88dq/Db+nyHlKtK9egQh8EBaDUep8U5Y0AaIowBQDOVtlHzjv1leywNKHBpVVFIVQG72fsJ20YfrffL65S6WSVidSKQ3NxOzhkD0hFhDACaqbTaliWpQ1bbJpmBBS55nJaWbgnKmKYfnBlj9OnGgMp9RqOOkBwWB3hAsvO6LM4ZA9IQYQwAmqnUZys3y5LT0bZhzOW0NLKnW1tKI1q3q+nrlpZvC2nz3ojGHeVRx6xWGCCAuHM7Lfnj3EkVQOIRxgCgmcp8tjq04fli++uZ51SfLk4t2RyMLZc8HGOMVuwI6uudIQ0/wqUeebSxB1KF10U3RSAdEcYAoBmMMSr32W2+RHF/I3q41d5r6Z/r/KrwHzqQGWP0+daQlm8LaUihS/3zXW00SgDx4HFaCobVrKXJAJIXYQwAmsEflgJhJawyJklOh6UTjvZIkv6x0qfdVZEGt6sM2Pp/q/36T1FII3q4NaTQzfXEgBTjcVkykkIN/zMHkKL41SgANEO5L1qJSmRlTJLaeR06rb9Xn24M6O8r/Tqys1P9urrkrbkm0ZbSiL7ZE5bHaemkvh51y2VpIpCKPDX/dANhI4+LX6YA6YIwBgDNUOaz5bCk9t7EHxR5XZZO6efVpr0RrS0Ja/PeQOy+dh5L/fJdGljgktuZ+LECaB5Pzb/fQNgoN8FjARA/hDEAaIZyn632XkuOJFnu53RY6tvVpT5dnKoKGoUjktMh5XotliQCacBTc8TGtcaA9EIYA4BmSGQnxUOxLEu5SVCtAxBftZWxIOeMAWkl+Y4kACAFlCW4kyKAzOJ0SA6LyhiQbghjANBE/pBJeCdFAJnFsix5XZb8IcIYkE44kgCAJipLkk6KADKLx0VlDEg3hDEAaKJyny1LUnsPYQxA26EyBqQfwhgANFGZz1b7LEsOB2EMQNvxuiz5qYwBaYUwBgBNVO631YGOhQDamNcpKmNAmiGMAUATVfiMcmneAaCNed1UxoB0w9EEADRBKGJUHTJcywtAm/O6LAXCkm0IZEC6IIwBQBOU13RSpDIGoK1luaK/BAqEEzwQAHHD0QQANEG5v6atPZUxAG3M44r+HeC8MSBtJDyM2bathx56SCeddJJGjhypK664Qlu3bj3o9qWlpbr++us1duxYjRs3TnfccYd8Pl+dbf7+97/r7LPP1vDhwzVp0iR99tlnde5/4403NHDgwHp/tm3b1iqvEUD6qPAZZbstuZyEMQBty1tTGeO8MSB9JDyMPfroo1qwYIF+9atf6YUXXpBt25o+fbqCwWCD28+cOVObN2/W008/rd///vf68MMP9ctf/jJ2/8KFCzV79mxdcMEF+utf/6rx48fryiuv1IYNG2LbrFmzRuPGjdMnn3xS50/37t1b++UCSHHlfpvzxQAkRO0yRToqAukjoWEsGAxq/vz5mjlzpk499VQNGjRIDz74oIqKivTuu+/W23758uVavHix7r33Xg0dOlTjx4/XnXfeqddff13FxcWSpD/84Q+aMGGCLrnkEvXt21c33XSThg4dqj/96U+x/axdu1YDBw5Ufn5+nT9Op7PNXjuA1FTus5WbRRgD0PZcDslhURkD0okrkU++evVq7du3T+PHj4/d1qFDBw0ZMkRLlizRxIkT62y/dOlS5efnq2/fvrHbxo0bJ8uytGzZMp111ln6/PPPdfPNN9d53HHHHVcn3K1Zs0ann3563F/PgcslgXionVfMr8SzjVGFX+rZIZI2Pw+/31/nbyCemF/x53FKldVBVVeHEj2UhOPzEa2pJfPLGCPLatwvbhMaxoqKiiSp3vLAgoKC2H37Ky4urretx+NRXl6edu7cqYqKClVXV6uwsPCg+ysvL1dxcbGWLl2qBQsWqLS0VMOHD9fs2bN19NFHt+j1bNq0qUWPBw6F+ZV4AeOWUV+V79qudbvT68N/61bOmUXrYX7Fj7F7qmi3T469xYkeStLg8xGtqbnzy+PxNGq7hIax2qR54GC9Xq/Ky8sb3L6hF+b1ehUIBGK/eWtof4FAQJK0bt06SdHEevfdd8vv9+uxxx7ThRdeqDfffFNdu3Zt9uvp3bu3srOzm/14oCE+n0+bNm1ifiWBHRVG67dIA/v0UFZC3z3jx+/3a+vWberVq6eysrISPRykGeZX/O3dKnldWRp8ZOdEDyXh+HxEa2rJ/Fq/fn2jt03o4UTtG3MwGKzzJh0IBBp80VlZWQ029ggEAsrJyZHX643t78D7a/d37LHH6rPPPlOnTp1i5cN58+bp1FNP1auvvqorr7yy2a8nOztbOTk5zX48cCjMr8TzlwflcoSU1z6r0csPUkVWVhYHM2g1zK/4yfEG5Q8b5eTw/azF5yNaU3PmV1OOERLawKN2yWFJSUmd20tKStStW7d62xcWFtbbNhgMqqysTAUFBcrLy1NOTs5h99e5c+c636Ts7Gz17Nkz1gQEABpS7jPKzbLSLogBSB0eF9cZA9JJQsPYoEGD1L59ey1atCh2W0VFhVauXKmxY8fW237s2LEqKirS5s2bY7ctXrxYkjRmzBhZlqXRo0fHbqu1aNEiHXvssZKkF198Uccdd5yqq6tj91dVVWnTpk3q169fXF8fgPRS4bOV6034FUEAZLAsl0U3RSCNJPSowuPxaOrUqbrvvvv0/vvva/Xq1Zo1a5YKCwt1xhlnKBKJaNeuXbFzwUaMGKHRo0dr1qxZ+uqrr7Rw4ULNmTNHkyZNilW+LrvsMr311lv64x//qA0bNui3v/2tVq1apWnTpkmSTj75ZNm2rRtvvFHr1q3TihUrdM0116hz586aPHlywr4XAJKbMSZ6jTHa2gNIIK/LUiAc7e4KIPUl/Fe8M2fO1Pnnn6/bbrtNU6ZMkdPp1FNPPSW3262dO3fqxBNP1Ntvvy0puv5y3rx56tmzp6ZNm6Zrr71WJ598cp2LPp944on6zW9+oz//+c/67//+by1cuFCPP/54rB1+9+7d9fTTT6u6ulpTpkzRpZdeqtzcXD3zzDOxc84A4ECBsBSMiMoYgITy1lz4ORBO8EAAxEXC+4E5nU7Nnj1bs2fPrndfz549tWbNmjq3denSRQ899NAh9zlp0iRNmjTpoPcPHTpU8+fPb9Z4AWSmcr8tScr1UhkDkDjemiM3f8go2837EZDq+BUvADRChc+WJak9YQxAAtVWxjhvDEgPhDEAaIRyv60cjyWngzAGIHFiYYyOikBaIIwBQCOU+2jeASDxXA7JYUkBKmNAWiCMAUAjVPgNzTsAJJxlWfK6LPmojAFpgSMLADiMiG1UFTBUxgAkhSyXCGNAmiCMAcBhVAaMjOikCCA5ZLkt+YKEMSAdEMYA4DDKfbVt7XnLBJB42W5L1SE70cMAEAccWQDAYVT4bXmc317fBwASKcvNOWNAuiCMAcBhlPuM2nstWRbLFAEkXpbbkj8k2YZABqQ6whgAHEa532aJIoCkkc21xoC0wdEFAByCMYZrjAFIKlnu6PtRNU08gJRHGAOAQ/CFjMK21CGLt0sAySG7Joxx3hiQ+ji6AIBDKPdFD3Zoaw8gWXhdkiXCGJAOCGMAcAjlflsOS2pHGAOQJCzLUpbbYpkikAYIYwBwCOU+W+29lhx0UgSQRLJcUjWVMSDlEcYA4BCinRQJYgCSS5bbko/KGJDyCGMAcAjlPqNcmncASDLZbkvVITvRwwDQQhxhAMBBBCNGvpBRBypjAJJMltuigQeQBghjAHAQFb7ob52pjAFINtluS/6QZBsCGZDKOMIAgIMo99eEMSpjAJJMliv6vuSnOgakNMIYABxEuc8ox23J5SSMAUguWTUXfqa9PZDaCGMAcBDlPlu5WQQxAMknuyaMcd4YkNoIYwBwEGW0tQeQpLwuyRJhDEh1hDEAaEDENqryG3WgeQeAJGRZlrLcFssUgRTHUQYANKDCb2QkdWCZIoAkleXmnDEg1RHGAKABZTVt7amMAUhWOW5LVUEu/AykMo4yAKABZT5b2W5LHheVMQDJKcfj0L4AlTEglRHGAKABZXRSBJDk2nks7QsaGS78DKQswhgANKCs2uZ8MQBJLcdjyTZ0VARSGWEMAA4QsY2qAkYdOV8MQBLL8UR/YcRSRSB1caQBAAco99l0UgSQ9NrVhLEqOioCKYswBgAHKPNFD2zopAggmbmdltxOaV+AjopAquJIAwAOUNtJ0e2kMgYgueV4LCpjQAojjAHAAcp8NO8AkBrauS1VURkDUhZhDAAOQBgDkCpyPBYNPIAURhgDgP2EInRSBJA6apcpcq0xIDVxtAEA+ymrji736ZjN2yOA5NfO41DElgLhRI8EQHNwtAEA+yn12bJEW3sAqaH2WmOcNwakJsIYAOxnb7Wt3CxLTgdhDEDyi134mY6KQEoijAHAfkqrbZYoAkgZHqfkcogmHkCK4ogDAGoYY1RabSuPJYoAUoRlWTVNPFimCKQiwhgA1KgKGIVtmncASC05HkuVfsIYkIo44gCAGqV0UgSQgnK9DpX7WaYIpCKOOACgxt5qW16XlOVK9EgAoPFys6IXfo7YBDIg1RDGAKBGqc9WxyyHLItzxgCkjlyvJSOpkiYeQMohjAFADTopAkhFud7o+1a5j/PGgFTDUQcASAqEjaoCRnnZVMUApBavS3I7pQqaeAAphzAGAJL27IsexHTO4W0RQGqxLEu5XkvlPpYpAqmGow4AkLRnX0Ruh9TeS2UMQOrJ9TqojAEpiDAGAIpWxvJyaN4BIDXlZlkq99syhuoYkEoIYwAgafc+W51YogggReV6HQpFJH840SMB0BQceQDIeL6QUXXQcL4YgJSVmxWt6tNREUgtHHkAyHh7qiKSpE50UgSQotp5LFmioyKQaghjADLe7n22vC4px0MYA5CanA5L7bwWlTEgxRDGAGS8Pfsi6pRN8w4AqS3XG23iASB1EMYAZDRjDM07AKSFjtkO7d1HR0UglXD0ASCjVQaMAmEu9gwg9XXKdsgfjjYlApAaOPoAkNFKKqPNO7q04+0QQGrrlBNdar1nH0sVgVTB0QeAjFZcaatjliWPi/PFAKS2bLclr4swBqQSwhiAjFZSGVHX9rwVAkh9lmUpL9uhvdWEMSBVcAQCIGP5grYqA0ZdWaIIIE3kZTuojAEphCMQABmruCp6wNK1vTPBIwGA+OiU45AvZOQLEsiAVEAYA5CxSiojauexlO3mfDEA6aFTdk0TD5YqAimBMAYgYxVzvhiANJPjseRxSntZqgikBI5CAGSkYNiotJrzxQCkl9omHpw3BqQGjkIAZKSdFdHrixXk8jYIIL10budQSVVExnDxZyDZcRQCICNtL4soN8tSOw9vgwDSS0F7hwJhqdRHdQxIdhyFAMg4xhhtL4+oMJcuigDST5d2DjktqaiCMAYkO8IYgIxT5jPyhYwKO/AWCCD9OB2WurRzaGd5ONFDAXAYHIkAyDjby8JyOkTzDgBpKz/XoeJKW7bNeWNAMuNIBEDG2V4eUUF7h5wOri8GID0VtHcqbHO9MSDZEcYAZJRgxKikylY3zhcDkMY65VhyOb7tHAsgORHGAGSUbaURGSN178jbH4D05bAs5bd3aGc5YQxIZhyNAMgo3+wJqUs7By3tAaS9wg5OlVTa8oc4bwxIVhyNAMgY/pDRjgpbvfJYoggg/fWsea/bXEpXRSBZEcYAZIwtpWHJfHuAAgDpzOuyVJDr0Dd7CGNAsiKMAcgY3+wJKz/XoSw3XRQBZIZenaJLFfcF6aoIJCPCGICMsC9oq7jS1pFUxQBkkB4dnXJY0uY9NPIAkhFhDEBGWFsSlssh9SCMAcggbqelwg4ObdwTkjE08gCSDWEMQNqL2EZrS0Lq3dkpt5MligAyy9FdXNpbHb3GIoDkQhgDkPY27gkrEJb65rsSPRQAaHOFuQ51zLL09Y5goocC4ACEMQBpzRijVUUhde/gUK6XtzwAmceyLA3s5tL2clt7qzl3DEgmHJkASGs7yiMq8xn1oyoGIIP1zHMqx2Pp6x2hRA8FwH4IYwDSlm2Mlm0Nqms7hwra83YHIHM5LEsDC1zatDeiXVVUx4BkwdEJgLS1fldYZT6j4T3csiwadwDIbEd3capTjqV/bwwoYtNZEUgGhDEAaSkYMfpiW1BHdnKqcw5vdQDgsCyN6eVRhd9oBcsVgaTAEQqAtLRkc1AhWzqmO+eKAUCtvGyHBnZzacXOkHaUs1wRSDTCGIC0s2F3SBt2hzWqp1s5Ht7mAGB/QwpdKmjv0L/W+bVnH4EMSCSOUgCklTKfrUWbgjqqk1O9O1MVA4ADOSxL43t7lOu19P4aAhmQSIQxAGmjzGfr3VU+tfNYGtXTnejhAEDScjktfaePV9keS/9Y6dfG3eFEDwnISIQxAGlh776I3l3lk9dl6eR+XrmcdE8EgEPJcls6tZ9XPfOc+mRjQB+s9avSbyd6WEBGSXgYs21bDz30kE466SSNHDlSV1xxhbZu3XrQ7UtLS3X99ddr7NixGjdunO644w75fL462/z973/X2WefreHDh2vSpEn67LPPmrwPAKnBGKOVRSG9vdKvLHc0iHldBDEAaAynw9KxR7p13FFu7dln6/UVPn2yIaDdVREZQ/t7oLUl/ISKRx99VAsWLNA999yjwsJCzZ07V9OnT9ebb74pj8dTb/uZM2fK5/Pp6aefVkVFhW699VZVV1fr3nvvlSQtXLhQs2fP1o033qjvfOc7evnll3XllVfqtddeU9++fRu1DwDJzxij7eURfbk9pD37bPXPd+qY7m45HQQxAGgKy7LUq5NL3Ts6tWF3WBt2R7RxT1jtvZaO7ORUYQen8ts7+UUX0AoSGsaCwaDmz5+vG264Qaeeeqok6cEHH9RJJ52kd999VxMnTqyz/fLly7V48WK9/fbbsWB15513avr06bruuuvUrVs3/eEPf9CECRN0ySWXSJJuuukmLV++XH/605905513NmofAJKTbYxKq21tLY1o096wKvxGXdo5dEo/j/LbOxM9PABIaS6HpYEFbg3Id6m40tb28og27o5oZVH0fLL2Xkt52Q51yHIo12upnddSjttSttuS123JYRHWgKZKaBhbvXq19u3bp/Hjx8du69Chg4YMGaIlS5bUC2NLly5Vfn5+LERJ0rhx42RZlpYtW6azzjpLn3/+uW6++eY6jzvuuOP07rvvNmofZ599dpNfRygUvXDiunXrZPFGhDirXSaSKfPLGMk2kqn5f7PfbfZ+K2aOcEhHeiRHWCrdKpUmasApzhgjl8La8s36jJhfaFvMr9SWKynXKRlHzXtwRLIrpXCltNdIext4jGVJVkP/H/tP3fvrPPaALw42Y2pvN8bIGGnt2gM+Hxsx1ZiNOJyWHH+FQqFGPyahYayoqEiS1L179zq3FxQUxO7bX3Fxcb1tPR6P8vLytHPnTlVUVKi6ulqFhYUH3d/h9tEctd9shyPhp+AhDVmW1eCS3XTlC5k6oetgInb0D1rKkuRWiEZqaBXMr0xT+0u06Bet/WzNn18OS8rxEMlwcC05/rIsKzXCWG3TjANfqNfrVXl5eYPbN/RN8Xq9CgQC8vv9B91fIBBo1D6aY9SoUc16HAAAAIDMldBSTlZWlqTouWP7CwQCys7ObnD7A7et3T4nJ0der/ew+zvcPgAAAACgLSQ0jNUuFywpKalze0lJSYONNAoLC+ttGwwGVVZWpoKCAuXl5SknJ+eQ+zvcPgAAAACgLSQ0jA0aNEjt27fXokWLYrdVVFRo5cqVGjt2bL3tx44dq6KiIm3evDl22+LFiyVJY8aMkWVZGj16dOy2WosWLdKxxx7bqH0AAAAAQFtIaBjzeDyaOnWq7rvvPr3//vtavXq1Zs2apcLCQp1xxhmKRCLatWtX7FywESNGaPTo0Zo1a5a++uorLVy4UHPmzNGkSZNila/LLrtMb731lv74xz9qw4YN+u1vf6tVq1Zp2rRpjd4HAAAAALQ2yyT48uqRSEQPPPCAXn31Vfn9fo0dO1Zz5sxRz549tW3bNn33u9/V3XffrcmTJ0uS9uzZozvuuEMff/yxvF6vzjrrLN1yyy2x88Uk6bXXXtOjjz6qoqIi9evXT7Nnz67TPr8x+wAAAACA1pTwMAYAAAAAmYgLYwEAAABAAhDGAAAAACABCGMAAAAAkACEMQAAAABIAMIYAAAAACQAYQwAAAAAEoAw1gK2beuhhx7SSSedpJEjR+qKK67Q1q1bEz0spKji4mINHDiw3p9XX31VkrRq1SpNnTpVI0eO1Omnn65nnnkmwSNGqvi///s/XXzxxXVuO9x84v0NjdXQ/LrtttvqvZedfvrpsfuZXziUsrIyzZkzRyeffLJGjx6tKVOmaOnSpbH7P/vsM02ePFkjRozQWWedpbfeeqvO4wOBgO644w6NHz9eo0aN0vXXX6+9e/e29ctAkjrc/LrsssvqvX/t/x4X9/ll0GwPP/ywOe6448w///lPs2rVKnP55ZebM844wwQCgUQPDSnoX//6lxk2bJgpLi42JSUlsT8+n8/s3bvXHHfcceaWW24x69evNy+//LIZNmyYefnllxM9bCS55557zgwaNMhMnTo1dltj5hPvb2iMhuaXMcacf/755oEHHqjzXrZnz57Y/cwvHMpll11mJk6caJYsWWI2btxo7rjjDjN8+HCzYcMGs379ejNs2DDzwAMPmPXr15snn3zSDBkyxPz73/+OPf7mm282EyZMMEuWLDFffvmlmTRpkrnooosS+IqQTA41v4wxZvz48WbBggV13r9KS0tjj4/3/CKMNVMgEDCjRo0yzz//fOy28vJyM3z4cPPmm28mcGRIVU888YQ555xzGrzv8ccfNyeeeKIJhUKx2+6//35zxhlntNXwkGKKiorMVVddZUaOHGnOOuusOgfLh5tPvL/hcA41v2zbNiNHjjTvvvtug49lfuFQNm3aZAYMGGCWLl0au822bTNhwgTzu9/9ztx+++3m/PPPr/OY6667zlx++eXGmOjcHDRokPnXv/4Vu3/jxo1mwIAB5vPPP2+bF4Gkdbj5tXv3bjNgwADzn//8p8HHt8b8YpliM61evVr79u3T+PHjY7d16NBBQ4YM0ZIlSxI4MqSqNWvWqG/fvg3et3TpUo0bN04ulyt22/HHH69NmzZp9+7dbTVEpJD//Oc/crvdeuONNzRixIg69x1uPvH+hsM51PzasmWLqqur1adPnwYfy/zCoXTq1ElPPPGEhg0bFrvNsixZlqWKigotXbq0ztyRou9fy5YtkzFGy5Yti91W6+ijj1a3bt2YXzjs/FqzZo0sy9LRRx/d4ONbY34RxpqpqKhIktS9e/c6txcUFMTuA5pi7dq12rt3ry666CKdcMIJmjJlij766CNJ0flWWFhYZ/uCggJJ0s6dO9t8rEh+p59+uh5++GH16tWr3n2Hm0+8v+FwDjW/1q5dK0l69tlndfrpp2vChAm68847VVlZKYnPTxxahw4ddMopp8jj8cRue+edd7R582addNJJB33/8vl8Ki0tVXFxsTp16iSv11tvG+YXDje/1q5dq9zcXN155506+eSTddZZZ+l3v/udgsGgJLXK/CKMNZPP55OkOj9MSfJ6vQoEAokYElJYOBzWxo0bVV5ermuuuUZPPPGERo4cqSuvvFKfffaZ/H5/g3NNEvMNTXa4+cT7G1pi7dq1cjgcKigo0OOPP66bb75Zn3zyiWbMmCHbtplfaJLPP/9ct9xyi8444wydeuqpDb5/1X4dDAbl8/nq3S8xv9CwA+fX2rVrFQgENHz4cD355JO6+uqr9dJLL+m2226TpFaZX67Db4KGZGVlSYr+w6/9fyl6IJOdnZ2oYSFFuVwuLVq0SE6nMzafjjnmGK1bt05PPfWUsrKyYr+VqVX7jz4nJ6fNx4vUdrj5xPsbWuLqq6/WhRdeqE6dOkmSBgwYoPz8fP3whz/UihUrmF9otPfee0833HCDRo8erfvuu09S9KD3wPev2q+zs7MbfH+TmF+or6H5deedd+qmm25Sx44dJUXfv9xut2bNmqUbb7yxVeYXlbFmql1eUVJSUuf2kpISdevWLRFDQopr165dnQMTSerfv7+Ki4tVWFjY4FyTxHxDkx1uPvH+hpZwOByxIFarf//+kqJLFJlfaIznnntO11xzjU477TQ9/vjjsep99+7dG5w7OTk5ys3NVWFhocrKyuodMDO/sL+DzS+XyxULYrX2f/9qjflFGGumQYMGqX379lq0aFHstoqKCq1cuVJjx45N4MiQitatW6fRo0fXmU+S9PXXX6tfv34aO3asli1bpkgkErtv4cKFOvroo9WlS5e2Hi5S3OHmE+9vaIkbb7xRl156aZ3bVqxYIUnq168f8wuHtWDBAv3qV7/SRRddpAceeKDOsrBjjz1WixcvrrP9woULNXr0aDkcDo0ZM0a2bccaLUjSN998o+LiYuYXJB16fl188cW65ZZb6my/YsUKud1u9e7du1XmF2GsmTwej6ZOnar77rtP77//vlavXq1Zs2apsLBQZ5xxRqKHhxTTt29f9enTR3feeaeWLl2qDRs26O6779YXX3yhq6++Wj/4wQ9UVVWlW2+9VevXr9err76qp59+WldddVWih44UdLj5xPsbWuLMM8/UZ599pnnz5mnLli368MMP9fOf/1wTJ05U3759mV84pG+++Ua/+c1v9F//9V+66qqrtHv3bu3atUu7du1SZWWlLr74Yn311Ve67777tGHDBs2fP1//+Mc/NH36dEnR6v73v/993XbbbVq0aJG++uorXXfddRo3bpxGjhyZ2BeHhDvc/DrzzDP1+uuv689//rO2bt2qt99+W7/97W/1ox/9SO3bt2+V+WUZY0x8X2bmiEQieuCBB/Tqq6/K7/dr7NixmjNnjnr27JnooSEF7d69W/fff78+/vhjVVRUaMiQIbrhhht07LHHSpK++uor3XXXXVq5cqXy8/N1+eWXa+rUqQkeNVLBzTffrO3bt+vZZ5+N3Xa4+cT7Gxqrofn197//XU888YQ2btyo3NxcnXPOObr22mtjS4GYXziYxx9/XA8++GCD9/33f/+37rnnHn300UeaO3euNm3apJ49e+qaa67R2WefHduuurpav/nNb/TOO+9Ikk4++WTddttt9ZbPIvM0Zn49//zzev7557V169bY+a5XXnmlHI5oDSve84swBgAAAAAJwDJFAAAAAEgAwhgAAAAAJABhDAAAAAASgDAGAAAAAAlAGAMAAACABCCMAQAAAEACEMYAAAAAIAEIYwAAtACX6wQANBdhDABSwPXXX6+BAwdq/vz5iR5Km1q0aJEGDhxY588xxxyj7373u/rtb38rn8932H3cfPPNOv3005v0vI15TEVFhW688UYtXbq0SftOdkVFRbrooos0bNgwjR8/vsHvce3PZdGiRQkYIQCkD1eiBwAAOLTKykq99957GjBggF588UVddtllsiwr0cNqU3PmzNHQoUMlST6fT6tXr9ZDDz2kXbt2ae7cuYd87IwZM3TJJZfEfUyrVq3S66+/rh/84Adx33ci/elPf9IXX3yhuXPnqlu3bsrOzk70kAAgbRHGACDJ/e1vf5Mk3XrrrZo2bZoWLlyo8ePHJ3hUbatfv34aOXJk7Ovx48ersrJSjz32mH7xi1+offv2B33skUce2QYjTB9lZWUqKCjQ2WefneihAEDaY5kiACS5V155RePHj9fxxx+vo446Si+88ELsvssvv1yTJ0+u95gZM2bo3HPPjX29dOlSTZ06VSNGjNC4ceN00003ae/evbH7X331VQ0ZMkQvvfSSvvOd72jcuHFav369IpGInnjiCU2cOFHDhw/XyJEjdcEFF2jhwoV1nu9f//qXJk+erOHDh+vMM8/U3/72N/3Xf/2XHn744dg2ZWVlmjNnjk444QQNGzZMP/zhD/XZZ581+/vSoUOHOl/XLp174YUXdNppp2n06NH69NNP6y05DIVCuu+++3TyySdr+PDh+tGPfqTXXntNAwcO1LZt2+rs89VXX9WZZ56pYcOG6dxzz9WHH34Ye67aatsll1yiiy++WJJ08cUX69Zbb9UTTzyhU089VcOGDdMFF1ygr776qs5+165dq6uuukqjR4/W6NGj9ZOf/ERbt26ts82f/vQnnXXWWRo2bJhOOukk/fKXv1RVVVXs/k8//VQ//OEPNWrUKI0dO1ZXX321NmzYcMjvWWVlpe6++25NmDBBw4YN08SJE/Xyyy/H7j/99NP16quvaseOHRo4cGCdn9+hbNu2TQMHDtQ//vEPzZgxQyNHjtQJJ5ygRx99VFVVVfr5z3+uMWPG6IQTTtDcuXPrnGe3bds23XjjjTrxxBM1dOhQjR8/XjfeeKNKS0tj2zT2Z3a4eW7bth588EGdfvrpOuaYY3T66afr/vvvVygUatTrBIB4I4wBQBJbt26dVqxYoUmTJkmSJk2apPfff1+7d++WJJ177rn6z3/+o82bN8ceU1FRoY8++kjnnXeeJGnJkiW69NJLlZWVpd/97nf6+c9/rsWLF+uSSy6R3++PPS4SiWj+/Pm66667dMstt6hv376677779Oijj+p///d/9eSTT+pXv/qVysrK9LOf/Sx2LtHChQs1Y8YMde/eXQ8//LAuuugi/eIXv9DOnTtj+w4EApo2bZref/99zZo1S/PmzVNhYaGmT5/eqEBm27bC4bDC4bB8Pp8+//xzPfPMM5o0aVK9qti8efN00003ac6cORo1alS9fc2ZM0d/+tOfNHXqVD3yyCPq2rWrbr/99nrb7dy5U0888YR+9rOf6eGHH5ZlWZo5c6b27NmjoUOHas6cObH9/eIXv4g97p133tH777+v2267TQ888IB2796ta665RpFIRJL0zTff6IILLtCePXt077336q677tLWrVs1ZcoU7dmzR1K0Gjp37lxddNFFeuqpp/STn/xEr7/+un71q19JkrZu3aoZM2bomGOO0WOPPaa77rpL33zzja688krZtt3g99Dv9+vCCy/Um2++qenTp+vRRx/VmDFjdOutt+rxxx+Pfe9OOeUU5efn68UXX9T//M//HPZns7/bbrtNAwYM0GOPPabx48fr97//vc4//3xlZWVp3rx5OuOMM/Tkk0/qH//4h6ToktNLLrlEGzZs0C9+8Qs99dRTuuSSS/TWW2/pwQcfbNLPrDHz/A9/+IP+/Oc/6yc/+Ynmz5+vKVOm6KmnntJjjz3WpNcJAHFjAABJ6+677zbjxo0zgUDAGGPMjh07zKBBg8xjjz1mjDFm3759ZuTIkWbevHmxx7z00ktm0KBBpqioyBhjzP/+7/+aiRMnmnA4HNtm48aNZvDgwea5554zxhjzyiuvmAEDBpjXXnutzvNfd9115umnn65z2zvvvGMGDBhgli9fbowx5sILLzTnnnuusW07ts3f/vY3M2DAAPPQQw8ZY4x58cUXzYABA8wXX3wR28a2bXPRRReZyZMnH/T1L1y40AwYMKDBP6effnrsNe6/7SOPPFJnHzfddJM57bTTjDHGbN682QwcONDMnz+/zjaXX365GTBggNm6dWvsMQMGDDDr16+PbfPvf//bDBgwwLz33nt1nm/hwoWxbaZOnWpGjBhhKisrY7f99a9/NQMGDDArVqyIfU9POOGEOtuUlpaaMWPGmHvuuccYY8ztt99uzjzzTBOJRGLbvP766+aZZ56p8/3d//V/+eWX5oEHHqiz3/09//zzZsCAAebzzz+vc/vPf/5zM2zYMFNaWlrv+3UwB772rVu3mgEDBphrr702ts2uXbvMgAEDzIUXXhi7zbZtM3r0aPPrX//aGGPMypUrzZQpU8yWLVvq7P+qq64yZ555pjGm8T+zxszzyy+/3Fx22WV19vPss8/Wm/cA0FaojAFAkgqFQnrjjTc0YcIE+f1+VVRUqF27dhozZoz+8pe/yLZt5eTkaMKECXr77bdjj3vrrbc0fvx4devWTT6fT19++aVOOeUUGWNi1aVevXqpb9+++vTTT+s85+DBg+t8ff/992vatGnau3evli5dqldeeUVvvPGGJCkYDCoYDGr58uU644wz6jQVOeuss+RyfXta8meffab8/HwNHTo0NoZIJKLTTjtNX3/9tcrLyw/5vbjjjjv08ssv6+WXX9aCBQt07733yuv16vzzz9eOHTsO+Rr2t2jRIhljdNZZZ9W5feLEifW27dSpk/r27Rv7umfPnpKiS/0OpV+/fnWqdd26dZOkOpXEcePGKSsrK/a9aN++vY499lj9+9//liQdf/zx+uabbzR58mTNmzdPK1as0DnnnBNbDjlixIjY67/rrrv08ccfa9CgQZo1a9ZBz59bvHixevToUa9aeO655yoQCOjLL7885OtqjP333bVrV0nS8OHDY7dZlqWOHTvGvoeDBw/WggUL1KNHD23atEkffvihnnrqKW3cuFHBYFBS435mjZ3nxx13nD799FNdeOGFevLJJ7V+/XpNnTo1VkUGgLZGAw8ASFL/+te/tGfPnlgIOdDHH3+sU045Reedd57eeOMNrV69Wl27dtWiRYv0m9/8RlJ0yaJt2/rDH/6gP/zhD/X24fV663ydk5NT5+sVK1bojjvu0IoVK5Sdna1+/frpiCOOkBS9vlZZWZkikYi6dOlS53FOp1N5eXmxr8vKyrRr165YR8QD7dq1Sx07djzo9+Loo4/WsGHDYl+PGTNG48aN04QJEzR//nzddtttB30N+6s9f+jA8R74dUP7qQ2bB1sGWOvA7oMOh6PO48rKyvT222/XCdC1OnfuLEk6++yzZdu2FixYoEcffVQPP/ywevTooRtuuEFnn322evbsqeeee05PPPGEXn75ZT3zzDPq0KGDLrzwQl177bUNdtssLy9Xfn5+vdtrQ1NFRcUhX1djNBQED/XzkKQ//vGPevzxx1VWVqauXbvqmGOOUXZ2diywNeZn1th5Pn36dLVr106vvPKK7rvvPs2dO1f9+/fXbbfdpuOPP75pLxYA4oAwBgBJ6pVXXlGvXr1011131bndGKOf/vSneuGFF3TKKado/Pjxys/P19///nfl5+fL6/XqjDPOkCS1a9dOlmXp0ksv1fe///16z3GotuVVVVWaPn26Bg4cqLfeekt9+vSRw+HQhx9+qHfeeUdS9IDY7XbHzmGrZdu2ysrKYl/n5uaqd+/euu+++xp8rtqqU1McccQR6ty5szZt2tTox9RWqXbv3h0LlZLqNHlobbm5uTrhhBN02WWX1btv/2rixIkTNXHiRFVWVuqTTz7RH/7wB82ePVtjxoxRt27dNHz4cM2bN0/BYFDLli3Tiy++qMcff1yDBg3S9773vXr77tixY51zC2vt2rVLUrQS2NbefPNN3XPPPZo9e7YmT54cC6M/+9nPtGLFCkmN+5k1dp47HA5ddNFFuuiii7Rnzx59+OGHevzxx3XNNdfo008/lcfjabXXCgANYZkiACShXbt26eOPP9b3v/99HXfccXX+HH/88TrrrLP04Ycfqri4WE6nU+ecc47++c9/6h//+IcmTJgQq0a0b99eQ4YM0caNGzVs2LDYn/79++vhhx8+5EV7N27cqLKyMl1yySXq169frMLz0UcfSYoGLqfTqdGjR+v999+v89gPPvhA4XA49vW4ceO0c+dOdenSpc44Pv30Uz355JNyOp1N/h5t27ZNe/fuVe/evRv9mDFjxsjpdOr//b//V+f2d999t8nP35wxS4p1qhw8eHDs+3DMMcfo6aefjo3r2muv1U9+8hNJ0fD2ve99TzNmzFA4HFZJSYmefvppnXbaaQoGg/J4PBo/fnysuceByzZrjR07Vtu3b9fy5cvr3P7GG2/I7XbXWU7YVpYtW6YOHTpo+vTpsSC2b98+LVu2LFZJbMzPrLHz/IILLtCvf/1rSdFfJEyePFkXXXSRKioq6nSqBIC2QmUMAJLQa6+9pnA43OBv+aVoV8WXXnpJf/nLX3TNNdfovPPO0/z58+VwOOot07ruuut05ZVX6vrrr9e5554b65r45ZdfasaMGQcdw9FHH6327dvr8ccfl8vlksvl0jvvvBNbMll7DtTMmTN18cUXa+bMmbFzuH7/+99L+nZp3+TJk/Xcc8/psssu049//GN1795d//73v/WHP/xBU6dOldvtPuT3Y/369bGlZsYY7dixQ4888oi8Xq+mTp3aiO9oVK9evfSDH/xADzzwgEKhkAYNGqT/9//+n/75z39K+nZJYWPk5uZKii4n7dixowYNGtSox82YMUMXXHCBrrrqKk2ZMkVer1cvvvii3nvvPT300EOSoueM/eIXv9C9996rk08+WRUVFZo3b5569+6tQYMGye1267777tNPfvITTZ06VU6nUy+88II8Ho9OO+20Bp938uTJWrBggX7yk59o5syZ6tmzpz744AO98sor+ulPf1rvUgFtYfjw4frzn/+se+65R6eddppKSkr01FNPaffu3bFlq439mTVmno8dO1bz589X165dNWrUKBUXF+uPf/yjxo0bFwuDANCWCGMAkIReffVV9e/fXwMGDGjw/jFjxqhnz5566aWXNGPGDA0aNEgDBgxQaWlpvQtCn3jiiXrqqac0b948zZw5U263W0OHDtUf//jHOhdSPlBubq4effRR/fa3v9XPfvYztWvXToMHD9Zzzz2nK664QkuXLtXpp5+uY489Vg8//LB+//vfa8aMGerRo4duv/12zZo1S+3atZMUPW/o+eef1/3336+5c+eqsrJSPXr00PXXX6/LL7/8sN+PO++8M/b/DodDeXl5GjlypObOndukypgk3X777crJydH8+fNVVVWl8ePH6+qrr9Yjjzxy2POb9te/f39NnDhRzz//vD7++OPYxbkPZ9CgQXr++ef14IMP6sYbb5QxRgMGDNAjjzyi7373u5KiFZxQKKQXXnhBCxYsUFZWlsaPH6/Zs2fL7XZr0KBBevzxx/XII4/ouuuuUyQS0THHHKP58+erT58+DT5vdna2nn32Wd1///36/e9/r6qqKvXp00d33XWXzj///Ea/7nj67//+b23btk2vvPKKFixYoG7duumUU07RhRdeqNtvv10bNmxQ3759G/Uza8w8/9nPfiaPx6NXXnlFjzzyiHJzc3X66afr+uuvT8jrBwDLmP2uvAgAQBO9//77KiwsrNOcY926dZo4caIeffTRWMBIBmVlZfroo4900kkn1TlH6t5779Wrr756yGWbSAx+ZgDSGZUxAECLfPLJJ3r77bd1ww036Oijj1ZxcbEee+wx9enTRyeeeGKih1dHdna27rrrLg0ePFjTpk1TTk6OvvjiCz333HO66qqrEj08NICfGYB0RmUMANAifr9fv//97/XOO++opKREeXl5Oumkk3T99dfH2qYnk1WrVul3v/udvvjiC/l8Ph155JG64IILdNFFFzXYEh6Jx88MQLoijAEAAABAAtDaHgAAAAASgDAGAAAAAAlAGAMAAACABCCMAQAAAEACEMYAAAAAIAEIYwAAAACQAIQxAAAAAEgAwhgAAAAAJMD/BwCQoFurSvRtAAAAAElFTkSuQmCC\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAuoCAYAAAAZ5xLXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxWZf7/8TciBCgupJUiiqEhBgKSuaeipriPK+GSkaaZuY25jEvivqUiakpiuGQ6liu5lZZm39SKFkSUFBWXyczEVO5E4P794c97YpREPXCzvJ6PB4/hPuc61/ncx2tmHm/Odc5lYzabzQIAAAAAAI+kmLULAAAAAACgMCBgAwAAAABgAAI2AAAAAAAGIGADAAAAAGAAAjYAAAAAAAYgYAMAAAAAYAACNgAAAAAABiBgAwAAAABggOLWLgCFx/fffy+z2Sw7OztrlwIAAAAAhrh165ZsbGzk7+9/37bcwYZhzGaz5QfIr8xms9LS0hinyPcYqygoGKsoKBireFgPknG4gw3D2NnZKS0tTdWqVZOTk5O1ywHuKTU1VQkJCYxT5HuMVRQUjFUUFIxVPKy4uLgct+UONgxnY2Nj7RKAbNnY2MjR0ZFxinyPsQoAQMHDHWwYyt7eXo6OjtYuA8iWo6Ojatasae0ygPtirOYus9nMHy8AAIYjYMNwh07+oWumDGuXAQDAPTk72qquRylrlwEAKIQI2DDcNVOGUlLTrV0GAAAAAOQpnsEGAAAAAMAA3MEGAAAAgAIqIyNDt27dsnYZBZadnZ1sbW0N64+ADQAAAAAFjNls1i+//KKUlBRrl1LglSlTRk899ZQhL78kYFtJ7969dfjw4XvuCw0N1ejRo/O4IgAAAAAFxZ1w/cQTT8jJyYmVER6C2WxWamqqfv31V0lShQoVHrlPArYVBQUFady4cXdtZ5krAAAAANnJyMiwhOvHH3/c2uUUaHey16+//qonnnjikaeLE7CtyMHBQeXLl7d2GQAAAAAKkDvPXDs5OVm5ksLhznW8devWIwds3iKeT129elXjx49X48aN9eyzz6p+/foaP368TCaTpc2ZM2f0+uuvKyAgQHXr1tWIESN0+fJly/6PP/5YQUFBqlWrloKCgrRy5UplZmZa9m/evFlt27aVj4+PGjdurGnTpiktLS1PvycAAACAh8O0cGMYeR25g51PjRkzRhcvXtSiRYv0+OOPKzY2Vv/6179UrVo19e3bV3/88Yd69uwpT09PrVy5UsWKFdPEiRM1bNgwrV69WuvXr9e8efM0ceJE1apVS0ePHtWUKVN08eJFjRo1SseOHdP48eM1d+5c1apVSydPntQ///lPlS1bVoMGDbL21wcAAABQBJnN5gL9hwMCthVt27ZNu3btyrItICBAy5cvV8OGDVWnTh15enpKkipVqqQ1a9YoMTFRkrR9+3bduHFD8+bNU+nSpSVJU6dO1SeffKK0tDQtWbJEr7/+utq2bStJcnNz0/Xr1xUWFqahQ4fq3LlzsrGxkaurqypWrKiKFSsqKipKJUuWzMMrAAAAAKCoiIiI0KJFi3T8+HFJt1/8LEmrV6+WJG3YsEEnT57UmDFjrFbjoyJgW1FgYKBGjhyZZZuDg4MkKSQkRHv37tWmTZt0+vRpnThxQufOndPTTz8tSUpMTJS7u7slXEtSjRo1VKNGDf3+++/65ZdfNG/ePIWHh1v2Z2Zm6ubNmzp37pwaN24sf39/de3aVZUqVVLDhg3VvHlzeXt758E3BwAAAFDUvf3221k+v/vuu3r++eetVI0xCNhWVKJECVWpUuWu7ZmZmRowYIB+/vlntWvXTm3atNGzzz6rCRMmWNoUL579P92d56zHjh2rBg0a3LW/QoUKsre316pVq3T06FEdOHBABw4c0MCBA9WpUyfNmDHDgG8HAAAAANmrVq2atUswHC85y4cSEhK0f/9+hYeHa+TIkerQoYMqV66s5ORkmc1mSbcH4+nTp3Xt2jXLcfHx8apfv75u3bolFxcXnT17VlWqVLH8xMfHa8GCBZKkffv2adGiRapZs6Zee+01rVq1SkOGDNH27dut8ZUBAAAA5HNHjhzRyy+/rICAAPn7+6tv37764YcfJN1+h1Tv3r310UcfqVmzZvL399fLL7+sY8eOZdtf7969LdPEAwMDdf78eW3atEmenp46d+5cXnwlwxGw86Fy5cqpePHi2rFjh86ePau4uDgNGzZMly5dsrzlu3379ipdurTeeustHTt2TEeOHNHbb7+tZ555RhUqVFD//v21evVqrVmzRsnJyfr00081adIkOTg4yN7eXnZ2dlq8eLGio6N19uxZHTlyRF988YX8/f2t/O0BAAAA5DfXr19Xv379VLZsWUVERGj+/PkymUx69dVXLTf9EhISNH/+fA0ePFhz5szRlStX1KtXL/3666/37X/RokUqX768mjRpovXr1+uJJ57I7a+UK5ging89+eSTmjlzpiIiIvTBBx+ofPnyatq0qfr27au9e/dKur0gelRUlGbMmKHg4GA5ODioadOmGj16tCQpNDRUjz32mFavXq2ZM2eqXLly6t69u4YMGSJJatCggaZNm6YVK1Zo/vz5cnBwUJMmTQr0CwUAAAAA5I4TJ07oypUr6tOnj2rXri1Jevrpp7V+/XrduHFDknTt2jUtXbpUzz33nCSpVq1aatGihVatWnXXu6f+V82aNWVvby8XFxf5+fnl6nfJTQRsK7nzprzstG/fXu3bt79r+9ixYy2/e3h4aPny5dn20bNnT/Xs2TPb/Z07d1bnzp1zUC0AAACAoqx69epycXHRwIED1bp1azVu3FgNGzbUW2+9ZWlTqVIlS7iWpCeeeEL+/v765ptvrFGyVTBFHAAAAADwt0qUKKEPPvhATZo00Y4dOzR48GDVr19fEydOtDzG+uSTT9513OOPP66UlJQ8rtZ6uIMNAAAAALivp59+WnPmzFFGRoZ++uknbdmyRR9++KEqV64sSbpy5cpdx/z22296/PHH87pUq+EONgAAAADgb+3cuVP16tXTpUuXZGtrK39/f02aNEmlSpXShQsXJEmnT5/WyZMnLcdcvHhR33//verXr5+jcxQrVvDjacH/BgAAAACAXFW7dm1lZmbqjTfe0Geffaavv/5aEydO1LVr1/Tiiy9KksxmswYOHKjt27dr165d6tevn0qXLm1Ziut+SpUqpaNHj+rw4cP6888/c/Pr5BqmiMNwzo621i4BAIBs8f9TAPDgnnjiCS1fvlzh4eEaN26cTCaTqlevroiICNWrV0+bN29WxYoVFRoaqunTp8tkMqlBgwZ69913VaZMmRyd486xr776qt5///0sL0wrKGzMZrPZ2kWgcIiLi5Mk+fj4WLkSAAD+ntlslo2NjbXLKBRSU1OVkJAgLy8vOTk5WbscIFuFaaz++eefOnXqlKpWrSoHBwdrlyNJGjNmjA4fPmxZVrggud/1fJCcwxRxGCotLU0mk8naZQDZMplMOnr0KOMU+R5jNXcRrgEAuYGADcMxKQL5mdlslslkYpwi32OsAgBQ8PAMNgAAAADgkcycOdPaJeQL3MEGAAAAAMAABGwYjufakJ/Z2NjI0dGRcYp8j7EKAEDBwxRxGMre3l6Ojo7WLgPIlqOjo2rWrGntMoD7YqzmLt4iDgDIDQRsGO7QyT90zZRh7TIAALgnZ0db1fUoZe0yAACFEAEbhrtmylBKarq1ywAAAACAPMUz2AAAAAAAGICADQAAAACwigsXLuiTTz556OMPHTokT09PnTt3zsCqHh4BGwAAAAAKCbPZXKDOO3r0aH355ZcPfV5/f38dOHBAFSpUeOg+jFQon8Hu3bu3Dh8+fM99oaGhGj16dB5XBAAAAAC5z8bGJs9fOmzNl0fa29urfPnyVjn3vRTKgC1JQUFBGjdu3F3bWUIKAAAAQGFWUF46/Ncbo3f+s1WrVtq3b58uX76siIgIeXp6as6cOdq3b59+//13lSpVSs2bN9e4cePk6OioQ4cOqU+fPtqzZ48qVaqkwMBA9ezZUz/88IMOHDgge3t7tW/fXmPGjFHx4rkffwttwHZwcMhXf8kAAAAAAPxXRESEBg4cqKeeekoTJ05U165dtWbNGi1btkzOzs7y9PTU0KFDdfHiRS1atEiPP/64YmNj9a9//UvVqlVT375979lveHi4Ro4cqVGjRunw4cMaN26cvL291alTp1z/TkXyGeyrV69q/Pjxaty4sZ599lnVr19f48ePl8lksrQ5c+aMXn/9dQUEBKhu3boaMWKELl++bNn/8ccfKygoSLVq1VJQUJBWrlypzMxMy/7Nmzerbdu28vHxUePGjTVt2jSlpaXluMa0tDTNmTNHjRs3lr+/v7p3764DBw5kabNhwwa1b99etWrVkp+fn0JCQhQXF2fZ/9NPPykkJET+/v6qU6eO3nzzTV24cEGS9MYbb6hPnz5Z+ktKSpKnp6d+/vnnHNcJAAAAAA+jTJkysrOzk4ODg1xcXCRJTZo0UYMGDeTj4yN7e3s1bNhQM2bMkK+vrypVqqQOHTqoZs2aSkxMzLbfRo0aqU+fPnJzc1OXLl1Uo0YNxcbG5sl3KpIBe8yYMTp69KgWLVqkXbt2aezYsdq8ebPWr18vSfrjjz/Us2dPpaWlaeXKlXr//feVnJysYcOGSZLWr1+v2bNna/Dgwfrkk080bNgwvffee5o7d64k6dixYxo/frzefPNN7dq1S9OnT9eWLVu0fPnyHNc4duxYffXVV5o7d642bdqkoKAgDRw4UF988YUk6dNPP9XkyZPVr18/7dixQ9HR0bp586bGjx8vScrIyNCAAQNUp04dbd26VdHR0bpw4YL+9a9/SZI6d+6sw4cP6z//+Y/lnJs3b5aPj4+qV6/+qJcYAAAAAB5YlSpVsnwOCQnR2bNnNXPmTA0cOFAtWrTQTz/9lOXm5v/y8PDI8tnZ2Vm3bt3KlXr/V6GdIr5t2zbt2rUry7aAgAAtX75cDRs2VJ06deTp6SlJqlSpktasWWP5K8j27dt148YNzZs3T6VLl5YkTZ06VZ988onS0tK0ZMkSvf7662rbtq0kyc3NTdevX1dYWJiGDh2qc+fOycbGRq6urqpYsaIqVqyoqKgolSxZMke1nzlzRjExMdq8ebO8vLwkSa+88oqOHTumqKgoNW3aVGXKlNG0adPUoUMHSZKrq6u6du2qyZMnS5KuX7+uK1eu6IknnpCrq6vc3Ny0YMECy134Jk2aqFy5ctq6dasGDBigzMxMbdmyRa+99tqjXHYAAAAAeGgODg6W3zMzMzVgwAD9/PPPateundq0aaNnn31WEyZM+Ns+7O3t79qWV29XL7QBOzAwUCNHjsyy7c4/VkhIiPbu3atNmzbp9OnTOnHihM6dO6enn35akpSYmCh3d3dLuJakGjVqqEaNGvr999/1yy+/aN68eQoPD7fsz8zM1M2bN3Xu3DnLtO6uXbuqUqVKatiwoZo3by5vb+8c1X706FFLnX9169YtlSp1++18derU0cmTJ7V48WIlJSXpzJkzOn78uOUvOaVLl1a/fv00ZcoULVy4UPXq1VOTJk0UFBQkSSpevLg6dOigLVu2aMCAATp48KB+//13tWvXLsfXGAAAAAByS0JCgvbv369///vf8vX1lXQ7EyUnJ8vNzc3K1d1boQ3YJUqUuGt6gZSzv4L83dvl7gTYsWPHqkGDBnftr1Chguzt7bVq1SodPXpUBw4c0IEDBzRw4EB16tRJM2bMuG/td/668sEHH6hEiRJZ9hUrdntW/7Zt2zRmzBi1b99etWvXVnBwsBITEy13sCVp5MiRCgkJ0b59+/T1119rypQpWr58uTZv3ix7e3t16dJFUVFROnLkiLZu3armzZtn+aMCAAAAAOSmEiVK6Pz58/rll1/u2leuXDkVL15cO3bskIuLi1JSUrR06VJdunTpgd5vlZeK3DPYd/4KcufNch06dFDlypWVnJxsCbbVqlXT6dOnde3aNctx8fHxql+/vm7duiUXFxedPXtWVapUsfzEx8drwYIFkqR9+/Zp0aJFqlmzpl577TWtWrVKQ4YM0fbt23NU451noC9dupTlHBs3btTGjRslSZGRkeratatmzpypnj17qk6dOjp79qyk2wE9KSlJb7/9th5//HG99NJLWrhwoZYvX66TJ0/q2LFjkm4/m+Dv768dO3Zoz5496ty5syHXGAAAAID1ODvaqoxT8Tz7cXa0feha79wo7NChgzIysq7d/eSTT2rmzJnau3ev2rRpo6FDh+rJJ59U3759deTIkUe9TLmi0N7Bzk5O/grSvn17LVmyRG+99ZaGDRum9PR0TZo0Sc8884wqVKig/v37a/78+apYsaJeeOEFHT9+XJMmTVLz5s1lb28vOzs7LV68WCVLllTz5s119epVffHFF/L3989RjdWrV1ezZs309ttva+LEiapevbp27typZcuWWe6AV6hQQbGxsYqPj5ezs7P27t2rNWvWSLr9BvKyZcvqk08+0Z9//qnXXntNxYoV06ZNm1S6dGnLVHhJ6tKli6ZOnapSpUqpYcOGBl9tAAAAAHnJbDarrkcpq5zXxsbmgY9r2rSpDh06lO3+9u3bq3379ndtHzt2rCSpbt26On78uGX73r1772q7evXqB67rYRW5O9g5+SuIo6OjoqKilJ6eruDgYPXr10/VqlWz3KEODQ3VmDFjtGbNGrVp00bTpk1T9+7dFRYWJklq0KCBpk2bpo8++kjt2rXTq6++qipVqmjevHk5rnP+/Pl68cUXNXHiRLVp00abN2/WtGnT9I9//EOSNGHCBJUrV069evVSt27d9Pnnn2v27NmSpLi4OJUtW1bvvfeezp8/r+7du+sf//iHzp07p/fffz/Ly9aCgoJkNpvVqVMn2do+/F+eAAAAAFjfw4Tcgnze/MbGnFevU0O+dPbsWb344ovasWOH3N3dH6mvO2twX7SppJTUdAOqAwDAeGWciquFd1lrl1FopKamKiEhQV5eXnJycrJ2OUC2CtNY/fPPP3Xq1ClVrVo1y1u38XDudz3v5BwfH5/79lXkpojjtv/85z/66aeftHbtWjVu3PiRwzUAAAAAFHUE7Dw2efJkbdq06W/bLF68+J5vKDfSlStXNGbMGLm7u2vRokW5ei4AAAAAKAoI2Hls8ODBevnll/+2zRNPPJHrddSsWVPff/99rp8HAAAAAIoKAnYec3FxkYuLi7XLAAAAAAAYjIANwz3KOngAAOQ2/n8KQGHB+6qNYeR1JGDDcNZYdw8AgAfxsOu1AkB+YGdnJ+n2m9EdHR2tXE3Bl5qaKum/1/VRELBhqLS0NJlMJv6LjnzLZDJZlmFgnCI/Y6zmLsI1gILM1tZWZcqU0a+//ipJcnJy4n/XHoLZbFZqaqp+/fVXlSlTRra2jz7DiYANwzFVBfmZ2WyWyWRinCLfY6wCAP7OU089JUmWkI2HV6ZMGcv1fFQEbAAAAAAoYGxsbFShQgU98cQTunXrlrXLKbDs7OwMuXN9BwEbAAAAAAooW1tbQwMiHk0xaxeAwofnP5Cf2djYyNHRkXEKAAAAw3EHG4ayt7fnZTzI1xwdHVWzZs08ORdvKQYAAChaCNgw3KGTf+iaKcPaZQBW5exoy5J1AAAARQwBG4a7ZspQSmq6tcsAAAAAgDzFM9gAAAAAABiAgA0AAAAAgAEI2AAAAAAAGICAfR+BgYGKiIiwdhmGiIiIUGBgoLXLAAAAAIBCiYANAAAAAIABCNgAAAAAABiAZboe0ccff6zly5fr/PnzcnV1VXBwsHr37q1ixW7/7eI///mP3nnnHX399de6ceOGAgIC9NZbb6lGjRqSpDFjxigtLU1lypTR5s2b9dhjj6ljx44aMWKE7O3tJUnffvutFi5cqCNHjigtLU1ubm4aOHCgOnbsaOkjNTVV169f1w8//KDXX39d/fv31/r167V8+XJdvHhRDRo0UKVKlbLUvm/fPoWHh+vkyZNycnJSkyZNNHbsWJUuXToPryAAAAAAFA7cwX4E69ev1+zZszV48GB98sknGjZsmN577z3NnTtXknT9+nW99NJLunjxot59912tW7dODg4O6tWrl86fP2/pZ/fu3fr111+1bt06TZ06VZs3b9a0adMkSRcvXtSrr74qHx8fbdq0SZs3b1atWrU0btw4/fbbb5Y+du3apQYNGujjjz9Wu3btFBMTo8mTJ6tv377asmWLateurQ8++MDS/vfff9fgwYPVpUsXbd++XYsWLdI333yj2bNn59HVAwAAAIDChTvYj2DJkiV6/fXX1bZtW0mSm5ubrl+/rrCwMA0dOlRbt27VlStXtHHjRrm4uEiS3nnnHbVo0UIffPCBRo0aJUkqVaqU5syZI0dHRz3zzDP69ddfNW3aNL311lu6efOm3nzzTb366quysbGRJL322mvavHmzTp8+rXLlykmSSpcurX79+llqW716tdq0aaOePXtajvnhhx907NgxSbeDe1pamipWrChXV1e5urpq6dKlysjIyJuLBwAAAACFDAH7If3+++/65ZdfNG/ePIWHh1u2Z2Zm6ubNmzp37pwSExPl7u5uCdeS5ODgoFq1aikxMdGyrVatWnJ0dLR89vf3161bt3Tq1Cn5+Pioc+fOWrVqlRITE5WcnGwJyX8Nw1WqVMlSX2JioiX4/7XfO8d6eXmpXbt2GjhwoMqXL6+GDRuqadOmatmypQFXBwAAAACKHgL2Q8rMzJQkjR07Vg0aNLhrf4UKFWQ2m7M9tnjx/156Ozu7e/Zta2urEydOKCQkRM8++6waNGigF198UWXLllW3bt2yHOPg4JBtjdmd55133tEbb7yh/fv36//+7//01ltvKSAgQCtXrszuawMAAAAAssEz2A/p8ccfl4uLi86ePasqVapYfuLj47VgwQJJkqenp06fPq3Lly9bjrt586aOHDmiatWqWbbFx8dnuRv9/fffy9HRUVWrVtW6dev0+OOP6/3331f//v3VpEkTy7PX2QV46fYd6tjY2Czb4uLiLL//+OOPmj59up5++mn17dtXkZGRmj59ug4ePJilXgAAAABAznAHOwfOnDmj/fv3Z9nm4OCg/v37a/78+apYsaJeeOEFHT9+XJMmTVLz5s1lb2+v9u3ba9myZRo2bJjeeust2dvba/HixUpNTVWPHj0sfZ0/f15hYWF6+eWXdfLkSS1cuFC9evWSo6OjnnrqKf3yyy/at2+fqlWrpvj4eE2dOlWSlJaWlm3Nr732ml5//XUtX75cLVq00Jdffqldu3bpiSeekCSVLFlSa9eulZ2dnbp3766bN29q+/btcnd3V9myZXPhKgIAAABA4UbAzoFt27Zp27ZtWba5urpq7969euyxx7R69WrNnDlT5cqVU/fu3TVkyBBJkrOzs9asWaOZM2eqb9++kqSAgAB9+OGHcnNzs/Tl5+enYsWKqWvXrnJ2dlafPn30+uuvS5L69OmjpKQkjRo1SmlpaXJ3d9eIESO0cOFCxcXF6YUXXrhnzU2bNtU777yjiIgIhYeHy8/PT6GhoYqJiZEkeXh4KCIiQosWLdLatWtVrFgx1atXT++9955liTEAAAAAQM7ZmP9unjFy3ZgxY3T+/HmtXr3a2qU8sjtT0C/aVFJKarqVqwGsq4xTcbXwZjYIHl5qaqoSEhLk5eUlJycna5cDZIuxioKCsYqHdSfn+Pj43LcttyoBAAAAADAAARsAAAAAAAPwDLaVzZw509olAAAAAAAMwB1sAAAAAAAMwB1sGM7Z0dbaJQBWx38PAAAAih4CNgxX16OUtUsA8gWz2SwbGxtrlwEAAIA8whRxGCotLU0mk8naZQDZMplMOnr0aJ6MU8I1AABA0ULAhuFYWh35mdlslslkYpwCAADAcARsAAAAAAAMQMAGAAAAAMAABGwYjudOkZ/Z2NjI0dGRcYp8j7GKgoKxioKCsYq8YGPmQUQYJC4uTpLk4+Nj5UoAAAAAFBT5feWVB8k5LNMFwx06+YeumTKsXQYAAACAfM7Z0bZQLfNLwIbhrpkylJKabu0yAAAAACBP8Qw2AAAAAAAGIGADAAAAAGAAAjYAAAAAAAYokgE7MDBQnp6eev/99++5f+LEifL09FRERESO+rty5Yo2bNjwSDWdO3dOnp6eOnToULZtxowZo969e0uSDh06JE9PT507d+6RzgsAAAAAMEaRDNiSZGdnp127dt21PT09Xbt3736g18TPnj1bW7duNbK8exo3blyOQz8AAAAAIG8V2YBdv359/fDDD/rll1+ybD948KCcnJxUoUKFHPeVV0uJOzs7q0yZMnlyLgAAAADAgymyAbtWrVqqWLGidu7cmWX79u3bFRQUlOUO9vfff68+ffooICBAdevW1dixY3XlyhVJt6dtb9q0SYcPH5anp6ckKSMjQ9HR0WrVqpV8fHzUqlUrffjhh5b+Dh06pJo1ayoyMlJ169ZV586dLSH9+++/V/v27eXt7a3OnTvr4MGDluP+OkX8f3377bfy9/fX/PnzLds+/vhjBQUFqVatWgoKCtLKlSuVmZlp2b9582a1bdtWPj4+aty4saZNm6a0tLSHvaQAAAAAUKQV2YAtSUFBQVkCdlpamj777DO1bdvWsu2nn35S7969Vb16df373/9WeHi4fvzxR7366qvKyMjQuHHjFBQUJH9/fx04cECSNHPmTC1ZskSDBw/Wtm3b1LNnT02bNk3R0dGWfjMyMrRv3z6tX79e06ZNswT6qKgovf7669qyZYtq1qypAQMG6OLFi3/7PX744Qe99tpreuWVVzR8+HBJ0vr16zV79mwNHjxYn3zyiYYNG6b33ntPc+fOlSQdO3ZM48eP15tvvqldu3Zp+vTp2rJli5YvX27ItQUAAACAoqbIB+wffvjBEmC/+uorubi4qGbNmpY2K1askKenpyZMmCAPDw/Vq1dP8+bNU3x8vA4cOCBnZ2c5ODjIzs5O5cuX1/Xr1/Xhhx9qyJAhat++vdzd3dWnTx+FhIQoMjIyy3Ty0NBQubu7y8vLy7LtzTffVJs2beTh4aFJkybp8ccf19q1a7P9DkeOHFG/fv306quvasiQIZbtS5Ys0euvv662bdvKzc1NrVq10vDhw7VmzRrdvHlT586dk42NjVxdXVWxYkU1btxYUVFRCgoKMvISAwAAAECRUaQDtre3t9zc3CwvO9u+fXuWu9eSlJiYqNq1a2fZVqNGDTk7O+v48eN39ZmUlKRbt24pICAgy/bnn39ely9f1uXLly3b3N3d7zr+r8cVL15cNWvW1M8//5ztd3jrrbd0/fp1ubq6Wrb9/vvv+uWXXzRv3jz5+/tbfiZPnmwJ140bN5a/v7+6du2q5s2ba+LEifr999/vWRMAAAAA4P6KW7sAa7szTbxHjx7as2fPXcttZfcCM7PZLDs7u3tuv5c7zz4XL/7fS/7YY4/d1c7W1jbL54yMjHu2u+ONN97Q1atXNWPGDDVs2FDly5e3nGvs2LFq0KDBXcdUqFBB9vb2WrVqlY4ePaoDBw7owIEDGjhwoDp16qQZM2Zkez4AAAAAwL0V6TvY0u2AHRsbq48//lhubm7y8PDIst/T01Pfffddlm3Hjh3T9evXLW3/+kI0Dw8P2dnZ3XXMt99+q/Lly6t06dJ/W8+RI0csv6elpenIkSOqXr16tu3btWunIUOGqGTJkpo0aZIk6fHHH5eLi4vOnj2rKlWqWH7i4+O1YMECSdK+ffu0aNEi1axZU6+99ppWrVqlIUOGaPv27X9bHwAAAADg3op8wPby8lKVKlX0zjvv3DU9XJJeeeUVHT9+XFOmTNHJkyd16NAhjRw5UjVr1lT9+vUlSU5OTvr111919uxZlSxZUj169NDChQsVExOjM2fO6IMPPtDatWsVGhp63/W133nnHX322Wc6ceKExowZo7S0NPXs2fNvj3F0dFRYWJg+++wzxcTEyMbGRv3799fq1au1Zs0aJScn69NPP9WkSZPk4OAge3t72dnZafHixYqOjtbZs2d15MgRffHFF/L393/4iwkAAAAARViRnyIu3b6L/e6776pNmzZ37fP19dXy5cu1YMECderUSSVLllSLFi30z3/+0zJFvFOnTvr000/Vrl077d69W2PHjlXZsmU1d+5c/fbbb3J3d9fEiRPVvXv3+9by5ptvau7cuTp37pxq1aql999/P0drXzdq1EgdO3bUlClTVL9+fYWGhuqxxx7T6tWrNXPmTJUrV07du3e3vAitQYMGmjZtmlasWKH58+fLwcFBTZo00ZgxYx7s4gEAAAAAJEk25uweGgYeUFxcnCTpok0lpaSmW7kaAAAAAPldGafiauFd1tpl/K07OcfHx+e+bYv8FHEAAAAAAIxAwAYAAAAAwAAEbAAAAAAADEDABgAAAADAALxFHIZzdrS1dgkAAAAACoDClh0I2DBcXY9S1i4BAAAAQAFhNptlY2Nj7TIMwRRxGCotLU0mk8naZQDZMplMOnr0KOMU+R5jFQUFYxUFBWM1/yos4VoiYCMXsLQ68jOz2SyTycQ4Rb7HWEVBwVhFQcFYRV4gYAMAAAAAYAACNgxXmKZ4AAAAAEBOEbBhKHt7ezk6Olq7DMMxlQgAAADA/fAWcRju0Mk/dM2UYe0yDOPsaMub0QEAAADcFwEbhrtmylBKarq1ywAAAACAPMUUcQAAAAAADEDABgAAAADAAARsAAAAAAAMQMAuwMaMGaPevXtLks6dOydPT08dOnTIylUBAAAAQNHES84KiQoVKujAgQMqXbq0tUsBAAAAgCKJgF1I2Nraqnz58tYuAwAAAACKLKaIZyMxMVEDBgxQnTp15O3trebNm2vFihWW/V9++aV69OghX19fvfDCC5o/f74yMm6v/Xzr1i2Fh4erWbNm8vX1VefOnfXVV19Zjj158qQGDhyounXrKiAgQEOGDNH58+ct+3v37q0JEyaoW7dueu6557R161aZzWYtWbJEL7zwgvz8/DR27FjdvHnTcsz/ThHPyMhQdHS0WrVqJR8fH7Vq1Uoffvihpf2hQ4dUs2ZN7du3T+3atZO3t7dat26tzz77LNeuKQAAAAAUZgTsezCZTAoNDVWZMmW0bt06xcTEqHXr1po1a5YSEhL0/fff67XXXlNAQIA2btyoqVOnat26dVqyZIkkadq0aVq3bp1Gjx6tbdu2qXHjxho4cKCSkpJ0/vx59ejRQ/b29lq5cqVWrFihS5cuqVevXrp+/bqlhg0bNqhPnz5au3atGjdurMjISC1fvlyjRo3Sxo0bVapUKW3fvj3b7zBz5kwtWbJEgwcP1rZt29SzZ09NmzZN0dHRljYZGRmaM2eOxo0bp5iYGD3zzDMaPXq0bty4kWvXFgAAAAAKK6aI34PJZFKfPn3Us2dPlShRQpI0ZMgQLV++XMePH9f+/fvl6+urUaNGSZI8PDw0efJkXb58WdevX9dHH32kCRMmqHXr1pKk4cOHy2w26/r16/r444/l5OSkuXPnyt7eXpK0cOFCNW/eXFu2bFHPnj0lSV5eXmrfvr0kyWw2a/Xq1erTp4/atWsnSRo7dmy2LzS7fv26PvzwQ40ZM8bSh7u7u86dO6fIyEi9/PLLlrbDhg1T/fr1JUmDBg3Srl27lJiYKH9/f0OvKQAAAAAUdgTse3BxcVFISIhiYmJ09OhRJScn69ixY5KkzMxMJSYmqmHDhlmOadWqlSQpLi5Ot27dkq+vb5b9I0aMkCRFRETI29vbEq4lqXz58qpataoSExMt26pUqWL5/cqVK7p06ZJ8fHyy9Onn56eTJ0/eVX9SUpJu3bqlgICALNuff/55rVy5UpcvX7Zse/rppy2/lyxZUtLtKe4AAAAAgAdDwL6HS5cuqUePHnJxcVFgYKAaNWokHx8fNWnSRJJUvHj2l83Ozu5v+zabzffcnpmZmeVYBwcHy+82Njb3PDa7Ov7uHP973F+D/v2OBwAAAABkj2ew7yEmJkYpKSn68MMPNWjQILVs2VJXr16VdDt8enh4KC4uLssxK1euVLdu3VSlShXZ2dndtb979+6Kjo6Wp6en4uLilJaWZtn322+/6cyZM/Lw8LhnPWXLllWFChX03XffZdl+5MiRe7b38PCQnZ3dXe2//fZblS9fnqW8AAAAACAXELDv4amnnpLJZNLOnTt14cIFHThwwDLFOy0tTf369dMPP/yg8PBwnT59Wvv27dOSJUvUtGlTOTo6qlevXgoPD9eePXuUnJysefPmKTExUS+88IJeeukl3bhxQ2+99ZaOHTumn376SUOHDlXZsmXVtm3bbGvq37+/PvjgA23YsEGnTp3SggUL9NNPP92zbcmSJdWjRw8tXLhQMTExOnPmjD744AOtXbtWoaGhljviAAAAAADjMEX8Hlq3bq34+HjNnDlT169fl6urq7p166Y9e/YoLi5OL730khYvXqyFCxfqvffe0xNPPKE+ffro9ddfl3T7eWtbW1u9/fbbunbtmmrUqKHIyEjL885r1qzRnDlzLG8Tb9iwoebMmaNSpUplW1PPnj2VmZmpd999V7/99psaN26srl276tSpU/dsP3bsWJUtW1Zz587Vb7/9Jnd3d02cOFHdu3c3/oIBAAAAAGRj5oFbGOTOtPiLNpWUkppu5WqMU8apuFp4l7V2GTBIamqqEhIS5OXlJScnJ2uXA2SLsYqCgrGKgoKxiod1J+f870un74Up4gAAAAAAGICADQAAAACAAQjYAAAAAAAYgIANAAAAAIABeIs4DOfsaGvtEgxV2L4PAAAAgNxBwIbh6npkv9xYQWU2m1k/HAAAAMDfYoo4DJWWliaTyWTtMgxHuAYAAABwPwRsGI6l1QEAAAAURQRsAAAAAAAMQMAGAAAAAMAABGwYjueVkZ/Z2NjI0dGRcYp8j7GKgoKxioKCsYq8YGPmgVkYJC4uTpLk4+Nj5UoAAAAAFDT5deWeB8k5LNMFwx06+YeumTKsXQYAAACAAsLZ0bZQLPdLwIbhrpkylJKabu0yAAAAACBP8Qw2AAAAAAAGIGADAAAAAGAAAjYAAAAAAAYgYBsgIiJCgYGBVu8DAAAAAGA9BGwDhIaG6qOPPrJ2GQAAAAAAK+It4gYoUaKESpQoYe0yAAAAAABWxB3sHEpMTNSAAQNUp04deXt7q3nz5lqxYoWkrNO7z507J09PTy1btkwNGzZU8+bNdf36dXl6euqDDz5Q9+7d5ePjo/bt22vPnj0Pdb475+zbt68iIyP1wgsvyMfHR7169dLJkyctba5du6YJEyaoXr16CggIUJ8+fSyLpEuSyWTSuHHj1LBhQ/n4+KhTp07avXu30ZcOAAAAAIoEAnYOmEwmhYaGqkyZMlq3bp1iYmLUunVrzZo1SwkJCfc8ZtOmTVq5cqUWLFigkiVLSpLmzp2rjh07asuWLWrSpIkGDx6s2NjYhz7ft99+q++++06RkZFau3atLl++rLCwMEmS2WxW//79dfbsWS1btkz//ve/5efnp5deeklHjx6VJIWHh+v48eOKjIzU9u3b9cILL2j48OE6d+6c0ZcQAAAAAAo9pojngMlkUp8+fdSzZ0/LVPAhQ4Zo+fLlOn78+D2PCQkJUbVq1bJs69y5s3r27ClJGjlypA4fPqw1a9aodu3aD3Q+Ly8vSVJ6erpmz56t0qVLS5KCg4M1Z84cSdLBgwf1ww8/6ODBgypTpowkacSIEYqNjdWqVas0c+ZMJScnq0SJEnJzc1OpUqU0dOhQ1alTx9IfAAAAACDnCNg54OLiopCQEMXExOjo0aNKTk7WsWPHJEmZmZn3PKZKlSp3batbt26Wz/7+/vrqq68e+nzlypXLEoadnZ1169YtSVJ8fLzMZrOaNWuWpe+0tDTdvHlTktS/f38NHDhQ9evXV61atdSwYUO1b99ezs7O970mAAAAAICsCNg5cOnSJfXo0UMuLi4KDAxUo0aN5OPjoyZNmmR7jIODw13bihfPerkzMjJUrNjds/Rzej57e/tsz5+ZmamSJUtq48aNd+27c5y/v7/27dunr776Sl9//bU2b96sd999V8uXL1f9+vWz7RsAAAAAcDcCdg7ExMQoJSVFu3btkp2dnSRZpoabzeYc9xMXF5dlrevvv/9ezz77bK6c75lnntH169d169atLFPVx48frxo1aqhXr15auHChAgIC1Lx5czVv3lxjx45V27ZttWvXLgI2AAAAADwgXnKWA0899ZRMJpN27typCxcu6MCBAxoxYoSk21Ouc2rlypXatm2bTp06pVmzZun48eN6+eWXc+V8jRs3lpeXl4YPH66DBw/qzJkzmjFjhjZu3CgPDw9J0tmzZ/X222/r66+/1vnz57Vr1y5duHBB/v7+Of5OAAAAAIDbuIOdA61bt1Z8fLxmzpyp69evy9XVVd26ddOePXsUFxenChUq5Kif4OBgRUdHKzExUTVq1FBUVJRq1KjxwOd76aWX7nsuW1tbrVixQnPmzNGwYcNkMpnk4eGhRYsWWe5Ov/3225o1a5beeustpaSkyNXVVSNHjlTHjh0f7AIBAAAAAGRjfpA5znhonp6emjFjhjp37mztUnLNnTW2L9pUUkpqupWrAQAAAFBQlHEqrhbeZa1dxj3dyTk+Pj73bcsUcQAAAAAADEDABgAAAADAADyDnUfuvAUcAAAAAFA4cQcbAAAAAAADcAcbhnN2tLV2CQAAAAAKkMKSIQjYMFxdj1LWLgEAAABAAWM2m2VjY2PtMh4JU8RhqLS0NJlMJmuXAWTLZDLp6NGjjFPke4xVFBSMVRQUjNX8r6CHa4mAjVzA0urIz8xms0wmE+MU+R5jFQUFYxUFBWMVeYGADQAAAACAAQjYAAAAAAAYgIANwxWGZycAAAAA4EERsGEoe3t7OTo6WruMv8VzNwAAAAByA8t0wXCHTv6ha6YMa5dxT86OtiwjBgAAACBXELBhuGumDKWkplu7DAAAAADIU0wRBwAAAADAAARsAAAAAAAMQMAGAAAAAMAABOwCbuPGjfL09LR2GQAAAABQ5BGwAQAAAAAwAAEbAAAAAAADELDzQGJiogYMGKA6derI29tbzZs314oVKyRJERER6tu3ryIjI/XCCy/Ix8dHvXr10smTJy3H37hxQ1OmTFGjRo3k7++vXr166ciRI1nOsXHjRrVo0UI+Pj7q3LmzfvzxR8u+P//8UwsWLFDz5s3l4+Ojjh07ateuXVmObdmypaZOnaqAgAANGjQol68IAAAAABQ+BOxcZjKZFBoaqjJlymjdunWKiYlR69atNWvWLCUkJEiSvv32W3333XeKjIzU2rVrdfnyZYWFhVn6GDZsmPbv368ZM2Zo8+bNcnNzU2hoqK5evWpp8+9//1vz5s3Txx9/LHt7ew0bNsyyb8SIEdq8ebMmTJigrVu3qkWLFho6dKg+++wzS5vk5GT9+uuv2rx5s4YPH577FwYAAAAACpni1i6gsDOZTOrTp4969uypEiVKSJKGDBmi5cuX6/jx45Kk9PR0zZ49W6VLl5YkBQcHa86cOZKkpKQk7d+/X1FRUWrUqJEkadKkSSpVqpSuXLliOc+0adPk4eEhSXr11Vc1ePBgXb58WSkpKdqzZ4+WLl2qpk2bSpLefPNNHTt2TEuXLlWLFi0sfQwaNEhubm65e0EAAAAAoJAiYOcyFxcXhYSEKCYmRkePHlVycrKOHTsmScrMzJQklStXzhKuJcnZ2Vm3bt2SdHt6uST5+flZ9j/22GMaO3asJCk2NlaS5O7ubtlfqlQpSbenht8J8QEBAVnqqlOnjubNm5dl21/7AAAAAAA8GAJ2Lrt06ZJ69OghFxcXBQYGqlGjRvLx8VGTJk0sbezt7bM9vnjxnP0T2dra3rXNbDZn295sNt/Vt4ODQ47OBQAAAAC4G89g57KYmBilpKToww8/1KBBg9SyZUvLs9N/F4DvuDPtOy4uzrItPT1dgYGB2rlz532Pv7NG9nfffZdl+7fffqtq1arl+HsAAAAAAP4eATuXPfXUUzKZTNq5c6cuXLigAwcOaMSIEZKktLS0+x5ftWpVvfjiiwoLC9PBgwd16tQpTZgwQTdv3tTzzz9/3+M9PDzUrFkzhYWF6YsvvtCpU6e0aNEi7dmzR6GhoY/8/QAAAAAAtzFFPJe1bt1a8fHxmjlzpq5fvy5XV1d169ZNe/bsUVxcnCpUqHDfPqZPn67Zs2dr6NChSktLk6+vr6KiouTi4pKjGubNm6d58+Zp3Lhx+uOPP/TMM88oIiJCLVu2fNSvBwAAAAD4/2zMOZmnDOTAnWnsF20qKSU13crV3FsZp+Jq4V3W2mXAilJTU5WQkCAvLy85OTlZuxwgW4xVFBSMVRQUjFU8rDs5x8fH575tmSIOAAAAAIABCNgAAAAAABiAgA0AAAAAgAEI2AAAAAAAGIC3iMNwzo621i4hW/m5NgAAAAAFGwEbhqvrUcraJfwts9ksGxsba5cBAAAAoJBhijgMlZaWJpPJZO0y/hbhGgAAAEBuIGDDcCytDgAAAKAoImADAAAAAGAAAjYAAAAAAAYgYMNwPOMMAAAAoCgiYMNQ9vb2cnR0tHYZf4tnxAEAAADkBpbpguEOnfxD10wZ1i7jnpwdbfP9MmIAAAAACiYCNgx3zZShlNR0a5cBAAAAAHmKKeIAAAAAABiAgA0AAAAAgAEI2AAAAAAAGICADYsLFy7ok08+sXYZAAAAAFAgEbBhMXr0aH355ZfWLgMAAAAACiQCNgAAAAAABmCZrkIkMTFR77zzjmJjY2UymfTkk0+qZ8+eCg0NVUREhL777js1aNBAa9as0ZUrV+Tr66uwsDB5eHiod+/eOnz4sCTp8OHD2rt3r5W/DQAAAAAULNzBLiRMJpNCQ0NVpkwZrVu3TjExMWrdurVmzZqlhIQESdK3336r7777TpGRkVq7dq0uX76ssLAwSVJERIT8/f0VFBSkjz76yJpfBQAAAAAKJAJ2IWEymdSnTx9NnDhRHh4ecnd315AhQyRJx48flySlp6dr9uzZqlGjhnx8fBQcHKzY2FhJUpkyZWRnZycHBwe5uLhY7XsAAAAAQEHFFPFCwsXFRSEhIYqJidHRo0eVnJysY8eOSZIyMzMlSeXKlVPp0qUtxzg7O+vWrVtWqRcAAAAAChsCdiFx6dIl9ejRQy4uLgoMDFSjRo3k4+OjJk2aWNrY29tbsUIAAAAAKNwI2IVETEyMUlJStGvXLtnZ2Un679Rws9lszdIAAAAAoEjgGexC4qmnnpLJZNLOnTt14cIFHThwQCNGjJAkpaWl5aiPEiVK6Pz58/rll19ys1QAAAAAKJS4g11ItG7dWvHx8Zo5c6auX78uV1dXdevWTXv27FFcXJwqVKhw3z6Cg4M1evRodejQQV9//bVsbW3zoHIAAAAAKBxszMwfhkHi4uIkSRdtKiklNd3K1dxbGafiauFd1tplwIpSU1OVkJAgLy8vOTk5WbscIFuMVRQUjFUUFIxVPKw7OcfHx+e+bZkiDgAAAACAAQjYAAAAAAAYgIANAAAAAIABCNgAAAAAABiAt4jDcM6O+fft4/m5NgAAAAAFGwEbhqvrUcraJfwts9ksGxsba5cBAAAAoJBhijgMlZaWJpPJZO0y/hbhGgAAAEBuIGDDcCytDgAAAKAoImADAAAAAGAAAjYAAAAAAAYgYMNwPOMMAAAAoCgiYMNQ9vb2cnR0tHYZD4znxgEAAAA8KpbpguEOnfxD10wZ1i4jx5wdbfP90mIAAAAA8j8CNgx3zZShlNR0a5cBAAAAAHmKKeIAAAAAABiAgA0AAAAAgAEI2AAAAAAAGICAbWWenp7auHGjtcuQJB06dEienp46d+6ctUsBAAAAgAKHgA0AAAAAgAEI2AAAAAAAGICAnQ8kJSUpODhY3t7eCgoK0o4dOyz7MjMztWzZMrVq1Ure3t6qXbu2+vXrp+TkZEsbT09PLVy4UM2aNVOjRo10+vRpBQYGatasWWrTpo3q1q2rw4cPy2w267333lPz5s3l6+urjh07auvWrdb4ygAAAABQ6LAOdj6wcuVKjRs3TjNmzNCWLVs0fPhwubm5ydvbW6tWrVJUVJRmzZqlZ555RsnJyZowYYJmzpypJUuWWPpYu3at3nvvPWVkZMjd3V2StGbNGi1btkzOzs7y9PTU/PnzFRMTo4kTJ+rpp5/WN998o0mTJunatWvq2bOnlb49AAAAABQOBOx8ICQkRMHBwZKkYcOG6eDBg4qOjtbcuXNVuXJlzZo1S82aNZMkubq6qnXr1tq5c2eWPjp27CgfH58s25o0aaIGDRpIklJTUxUdHa158+apadOmkqTKlSvr/PnzioqKImADAAAAwCMiYOcDAQEBWT77+vrq4MGDkqTAwED9+OOPCg8P16lTp3Tq1CmdOHFCTz75ZJZjqlSpcle/f9124sQJ3bx5U//85z9VrNh/nwxIT09XWlqa/vzzTyO/EgAAAAAUOQTsfOCvgVeSMjIyZG9vL0mKjIzU4sWL9Y9//EP169dX3759tWfPHn3yySdZjnFwcLir379uM5vNkqQFCxbo6aefvqvtnfMBAAAAAB4OLznLB+Lj47N8jo2NVfXq1SVJS5cu1RtvvKFJkyapR48e8vPz0+nTpy2BOaeefvppFS9eXBcuXFCVKlUsP/v27VNUVNRdIR8AAAAA8GC4g50PREdHq3LlyvL19dW6deuUmJiod955R5JUoUIFffXVVwoMDFSxYsW0ZcsW7d69W+XKlXugczg7Oys4OFjh4eEqWbKkateurUOHDmnOnDkaMGBAbnwtAAAAAChSCNj5wKBBg7R69WpNmDBB1apVU2RkpKpWrSpJmj17tiZPnqwuXbqoRIkS8vX1VVhYmCZNmqQLFy6oYsWKOT7P2LFjVbZsWYWHh+vXX39VhQoVNGTIEPXr1y+3vhoAAAAAFBk25gedawxkIy4uTpJ00aaSUlLTrVxNzpVxKq4W3mWtXQbySGpqqhISEuTl5SUnJydrlwNki7GKgoKxioKCsYqHdSfn/O+qTffCg7cAAAAAABiAgA0AAAAAgAEI2AAAAAAAGICADQAAAACAAXiLOAzn7Ghr7RIeSEGrFwAAAED+RMCG4ep6lLJ2CQ/MbDbLxsbG2mUAAAAAKMCYIg5DpaWlyWQyWbuMB0a4BgAAAPCoCNgwHEurAwAAACiKCNgAAAAAABiAgA0AAAAAgAEI2DAczzMDAAAAKIoI2DCUvb29HB0drV2GoXimHAAAAEBOsEwXDHfo5B+6ZsqwdhmGcHa0LZDLjgEAAADIewRsGO6aKUMpqenWLgMAAAAA8hRTxAEAAAAAMAABGwAAAAAAAxCwAQAAAAAwAAE7H/P09NTGjRutXQYAAAAAIAcI2AAAAAAAGICADQAAAACAAQjY+VxSUpKCg4Pl7e2toKAg7dixw7IvMzNTy5YtU6tWreTt7a3atWurX79+Sk5OtrTZt2+fOnfuLF9fX9WvX19jxozR1atXLfujoqLUokULeXt7KzAwUIsXL5bZbM7T7wgAAAAAhQEBO59buXKlOnXqpG3btqlVq1YaPny4jhw5IklatWqVoqKiNGbMGO3atUuLFy/W6dOnNXPmTEnS77//rsGDB6tLly7avn27Fi1apG+++UazZ8+WJO3du1fLli1TWFiYdu/erZEjR+rdd9/V1q1brfZ9AQAAAKCgKm7tAvD3QkJCFBwcLEkaNmyYDh48qOjoaM2dO1eVK1fWrFmz1KxZM0mSq6urWrdurZ07d0qSLl68qLS0NFWsWFGurq5ydXXV0qVLlZGRIUlKTk6Wvb29XF1dVbFiRVWsWFFPPPGEKlasaJ0vCwAAAAAFGAE7nwsICMjy2dfXVwcPHpQkBQYG6scff1R4eLhOnTqlU6dO6cSJE3ryySclSV5eXmrXrp0GDhyo8uXLq2HDhmratKlatmwpSerQoYM+/vhjtWrVStWqVVODBg3UqlUrAjYAAAAAPASmiOdzxYpl/SfKyMiQvb29JCkyMlJ9+vTRlStXVL9+fYWFhSk0NDRL+3feeUc7duxQv379dOXKFb311lt69dVXJUkuLi7asmWL1q5dq1atWunHH39Uz549tWjRorz5cgAAAABQiBCw87n4+Pgsn2NjY1W9enVJ0tKlS/XGG29o0qRJ6tGjh/z8/HT69GnLS8p+/PFHTZ8+XU8//bT69u2ryMhITZ8+XQcPHtTly5e1detWffjhhwoICNCQIUP073//W926ddP27dvz/HsCAAAAQEHHFPF8Ljo6WpUrV5avr6/WrVunxMREvfPOO5KkChUq6KuvvlJgYKCKFSumLVu2aPfu3SpXrpwkqWTJklq7dq3s7OzUvXt33bx5U9u3b5e7u7vKli2rmzdvatasWSpRooSee+45/fLLL/rmm2/03HPPWfMrAwAAAECBRMDO5wYNGqTVq1drwoQJqlatmiIjI1W1alVJ0uzZszV58mR16dJFJUqUkK+vr8LCwjRp0iRduHBBHh4eioiI0KJFi7R27VoVK1ZM9erV03vvvadixYqpW7duSklJ0ZIlS/Sf//xHpUuXVqtWrTRy5Egrf2sAAAAAKHhszCx6DIPExcVJki7aVFJKarqVqzFGGafiauFd1tplwECpqalKSEiQl5eXnJycrF0OkC3GKgoKxioKCsYqHtadnOPj43PftjyDDQAAAACAAQjYAAAAAAAYgIANAAAAAIABCNgAAAAAABiAt4jDcM6OttYuwTCF6bsAAAAAyF0EbBiurkcpa5dgKLPZLBsbG2uXAQAAACCfY4o4DJWWliaTyWTtMgxFuAYAAACQEwRsGI6l1QEAAAAURQRsAAAAAAAMQMAGAAAAAMAABGwYjmeWAQAAABRFBGwYyt7eXo6OjtYu44HwzDgAAAAAI7BMFwx36OQfumbKsHYZOeLsaFvolhUDAAAAYB0EbBjumilDKanp1i4DAAAAAPIUU8QBAAAAADAAARsAAAAAAAMQsAEAAAAAMAABOw94enpq48aN1i4DAAAAAJCLCNgAAAAAABiAgA0AAAAAgAEI2HkkKSlJwcHB8vb2VlBQkHbs2JFl/+eff67OnTurVq1aatmypRYsWKC0tDTL/sTERA0YMEB16tSRt7e3mjdvrhUrVkiSzp49qxo1amjfvn1Z+hw7dqxeeuklSVJaWprmzJmjxo0by9/fX927d9eBAwcsbTdu3KiWLVtq6tSpCggI0KBBg3LrUgAAAABAoUTAziMrV65Up06dtG3bNrVq1UrDhw/XkSNHJEn79+/XsGHD1L17d8XExOjtt9/Wjh079NZbb0mSTCaTQkNDVaZMGa1bt04xMTFq3bq1Zs2apYSEBLm5ualOnTqKiYmxnO/mzZvavXu3OnfuLOl22P7qq680d+5cbdq0SUFBQRo4cKC++OILyzHJycn69ddftXnzZg0fPjzvLg4AAAAAFAIE7DwSEhKi4OBgVa1aVcOGDZOfn5+io6MlSUuXLlX37t0VHBysypUrq1GjRgoLC9POnTt17tw5mUwm9enTRxMnTpSHh4fc3d01ZMgQSdLx48clSZ07d9Znn30mk8kkSdq7d68yMjIUFBSkM2fOKCYmRjNmzFDdunXl7u6uV155RW3btlVUVFSWOgcNGiQ3NzdVr1497y4OAAAAABQCxa1dQFEREBCQ5bOvr68OHjwoSTp69Kh++uknffTRR5b9ZrNZknTy5Ek1adJEISEhiomJ0dGjR5WcnKxjx45JkjIzMyVJrVq10uTJk7Vnzx61a9dOW7duVYsWLVSyZEl9+eWXkm6H/L+6deuWSpUqlWWbu7u7cV8aAAAAAIoQAnYeKVYs62SBjIwM2dvbS7odkvv166d//OMfdx1Xvnx5Xbp0ST169JCLi4sCAwPVqFEj+fj4qEmTJpZ2Tk5Oat26tbZt26ZGjRrpyy+/VGRkpKT/hvUPPvhAJUqU+Nu6HBwcHv3LAgAAAEARxBTxPBIfH5/lc2xsrGUadvXq1XXq1ClVqVLF8vPLL79o9uzZunHjhmJiYpSSkqIPP/xQgwYNUsuWLXX16lVJ/w3PktSlSxd99dVX2rx5s8qVK6d69epZ+pekS5cuZTnHxo0bWZ8bAAAAAAxCwM4j0dHR2rRpk5KSkjR9+nQlJiaqf//+kqT+/ftr165dWrRokU6dOqWvv/5aY8eO1bVr11S+fHk99dRTMplM2rlzpy5cuKADBw5oxIgRkpTlTePPPfecKlSooIULF6pjx46Wu9PVq1dXs2bN9Pbbb2vv3r06e/as3nvvPS1btkyVK1fO+4sBAAAAAIUQU8TzyKBBg7R69WpNmDBB1apVU2RkpKpWrSpJat26tebPn69ly5Zp6dKlKlOmjAIDAzVy5EjL/vj4eM2cOVPXr1+Xq6urunXrpj179iguLs6yFJck/eMf/1B4eLjl7eF3zJ8/X/Pnz9fEiRN19epVVa5cWdOmTbvntHQAAAAAwIOzMf91jjHwCOLi4iRJF20qKSU13crV5EwZp+Jq4V3W2mUgD6WmpiohIUFeXl5ycnKydjlAthirKCgYqygoGKt4WHdyjo+Pz33bMkUcAAAAAAADELABAAAAADAAARsAAAAAAAMQsAEAAAAAMABvEYfhnB1trV1CjhWkWgEAAADkbwRsGK6uRylrl/BAzGazbGxsrF0GAAAAgAKOKeIwVFpamkwmk7XLeCCEawAAAABGIGDDcCytDgAAAKAoImADAAAAAGAAAjYMx5RrAAAAAEURARuGsre3l6Ojo9XOz/R0AAAAANbCW8RhuEMn/9A1U0aen9fZ0bbAvcEcAAAAQOFBwIbhrpkylJKabu0yAAAAACBPMUUcAAAAAAADELABAAAAADAAARsAAAAAAAMQsAEAAAAAMAABOwc8PT21cePGbPdHREQoMDAwDyu6v/vVDAAAAAAwFgHbAKGhofroo4+sXQYAAAAAwIpYpssAJUqUUIkSJaxdBgAAAADAiriDnUNJSUkKDg6Wt7e3goKCtGPHDsu+v04RP3funDw9PbVr1y5169ZN3t7eCgwM1Pr167P0t3nzZnXo0EG1atVSYGCglixZooyMDMv+3377TaNGjVLdunUVEBCgAQMG6MyZM3ed7141/K/MzEwtW7ZMrVq1kre3t2rXrq1+/fopOTnZ0sbT01MLFy5Us2bN1KhRI50+ffqRrhcAAAAAFDUE7BxauXKlOnXqpG3btqlVq1YaPny4jhw5km37GTNmaODAgdqxY4eaNm2qSZMm6ezZs5Kk6OhoTZgwQT169NDWrVs1dOhQRUVFaebMmZKk9PR0hYaG6sSJE1qyZIn+/e9/KzMzU/369csSwnNq1apVioqK0pgxY7Rr1y4tXrxYp0+ftpzvjrVr12rhwoVatGiR3N3dH/g8AAAAAFCUMUU8h0JCQhQcHCxJGjZsmA4ePKjo6GjNnTv3nu379u2r5s2bS5KGDx+uDz74QD/++KMqVaqk9957T7169VLPnj0lSe7u7kpJSdGcOXM0ZMgQ/fDDDzp+/Lh27typqlWrSpKmTp2q6OhoXb169YFrr1y5smbNmqVmzZpJklxdXdW6dWvt3LkzS7uOHTvKx8fngfsHAAAAABCwcywgICDLZ19fXx08eDDb9h4eHpbfnZ2dJUm3bt3S77//rt9+++2u/p5//nndunVLSUlJSkxMVOnSpS3hWpKefPJJjR49+qFqDwwM1I8//qjw8HCdOnVKp06d0okTJ/Tkk09maVelSpWH6h8AAAAAwBTxHCtWLOulysjIkL29fbbt77XPbDbLbDbfs31mZqYkqXjx4ipe/MH/7pGenp7tvsjISPXp00dXrlxR/fr1FRYWptDQ0LvaOTg4PPB5AQAAAAC3EbBzKD4+Psvn2NhYVa9e/YH7KVeunMqVK6fvvvsuy/Zvv/1WdnZ2qly5sqpVq6arV69aXmomSb///rvq1q2rH374QXZ2drpx40aW4//a9n8tXbpUb7zxhiZNmqQePXrIz89Pp0+fzjbsAwAAAAAeHFPEcyg6OlqVK1eWr6+v1q1bp8TERL3zzjsP1derr76q+fPny83NTQ0bNtRPP/2kRYsWqUePHnJ2dlb9+vXl7e2t0aNH61//+pccHR01e/Zsubi46Nlnn9Wff/6plJQURUVFqVWrVjpw4ID279+vMmXK3PN8FSpU0FdffaXAwEAVK1ZMW7Zs0e7du1WuXLlHuCIAAAAAgL/iDnYODRo0SKtXr1aHDh10+PBhRUZGZnlG+kGEhoZq9OjRWrlypdq2bavw8HD1799f//rXvyTdno6+ZMkSPfXUU3rllVf00ksv6bHHHtPy5ctlZ2enevXq6c0339SKFSvUtm1bffXVVxoyZEi255s9e7b+/PNPdenSRb169VJiYqLCwsJ0+fJlXbhw4aG+AwAAAAAgKxsz84RhkLi4OEnSRZtKSknN/pnw3FLGqbhaeJfN8/OiYElNTVVCQoK8vLzk5ORk7XKAbDFWUVAwVlFQMFbxsO7knJysuMQdbAAAAAAADEDABgAAAADAAARsAAAAAAAMQMAGAAAAAMAALNMFwzk72hap8wIAAACARMBGLqjrUcpq5zabzbKxsbHa+QEAAAAUXUwRh6HS0tJkMpmsdn7CNQAAAABrIWDDcCytDgAAAKAoImADAAAAAGAAAjYMxzRtAAAAAEURARuGsre3l6Ojo7XLQB7ikQAAAADgNt4iDsMdOvmHrpkyrF0G8oCzo61V3xoPAAAA5CcEbBjumilDKanp1i4DAAAAAPIUU8QBAAAAADAAARsAAAAAAAMQsAEAAAAAMAABO494enpq48aN1i7jbx06dEienp46d+6ctUsBAAAAgAKHl5zBwt/fXwcOHJCLi4u1SwEAAACAAoeADQt7e3uVL1/e2mUAAAAAQIHEFPE8lJSUpODgYHl7eysoKEg7duzIsv+LL75Q9+7d5e/vr0aNGmnGjBn6888/Lfs9PT310UcfqW/fvqpVq5YaNWqkRYsWWfabTCaNGzdODRs2lI+Pjzp16qTdu3db9l+9elXjx49X48aN9eyzz6p+/foaP368TCaTJKaIAwAAAMCjIGDnoZUrV6pTp07atm2bWrVqpeHDh+vIkSOSpE8//VSvv/66mjZtqo0bNyosLEzbt2/XiBEjsvQxa9Ys/eMf/9Ann3yiXr16KSIiQt98840kKTw8XMePH1dkZKS2b9+uF154QcOHD7cE5jFjxujo0aNatGiRdu3apbFjx2rz5s1av3593l4IAAAAACiEmCKeh0JCQhQcHCxJGjZsmA4ePKjo6GjNnTtXkZGRatmypQYNGiRJqlq1qsxms9544w2dOHFC1apVkyR16tRJHTt2lCQNHDhQUVFRio2NVZ06dZScnKwSJUrIzc1NpUqV0tChQ1WnTh2VLl1aktSwYUPVqVNHnp6ekqRKlSppzZo1SkxMzOtLAQAAAACFDnew81BAQECWz76+vvr5558lSYmJiapdu3aW/c8//7xl3x0eHh5Z2jg7O+vWrVuSpP79++vYsWOqX7++XnrpJb377ruqXLmynJ2dJd0O+GfPntXMmTM1cOBAtWjRQj/99JMyMzON/aIAAAAAUAQRsPNQsWJZL3dGRobs7e0lSWaz+a72d4Jv8eL/nWhwp/1f3TnW399f+/bt08KFC/Xss89q8+bNatOmjb7++mtlZmZqwIABmjp1qooXL642bdpo2bJld4V6AAAAAMDDIWDnofj4+CyfY2NjVb16dUm3X2AWGxubZf+3334r6e671tlZuHChvvvuOzVv3lzjx4/Xrl275Obmpl27dikhIUH79+9XeHi4Ro4cqQ4dOqhy5cpKTk6+Z7gHAAAAADwYnsHOQ9HR0apcubJ8fX21bt06JSYm6p133pEk9evXT0OHDtWSJUsUFBSk06dPa8qUKWrWrFmOA/bZs2e1detWTZkyRZUrV9aPP/6oCxcuyN/fX+XKlVPx4sW1Y8cOubi4KCUlRUuXLtWlS5eUlpaWm18bAAAAAIoEAnYeGjRokFavXq0JEyaoWrVqioyMVNWqVSVJrVq10rx58/Tuu+9qyZIlcnFxUbt27TRkyJAc9//2229r1qxZeuutt5SSkiJXV1eNHDnS8lK0mTNnKiIiQh988IHKly+vpk2bqm/fvtq7d2+ufF8AAAAAKEpszMwPhkHi4uIkSRdtKiklNd3K1SAvlHEqrhbeZa1dxgNJTU1VQkKCvLy85OTkZO1ygGwxVlFQMFZRUDBW8bDu5BwfH5/7tuUZbAAAAAAADEDABgAAAADAAARsAAAAAAAMQMAGAAAAAMAAvEUchnN2tLV2Ccgj/FsDAAAA/0XAhuHqepSydgnIQ2azWTY2NtYuAwAAALA6pojDUGlpaTKZTNYuA3mIcA0AAADcRsCG4VhaHQAAAEBRRMAGAAAAAMAABGwAAAAAAAxAwIbheCYXAAAAQFFEwIah7O3t5ejoaO0yiiyefwcAAACsh2W6YLhDJ//QNVOGtcsocpwdbVkiDQAAALAiAjYMd82UoZTUdGuXAQAAAAB5iiniAAAAAAAYgIANAAAAAIABCNgAAAAAABiAgJ0PeXp6auPGjYb3GxgYqIiICMP7BQAAAADwkrMi5aOPPtJjjz1m7TIAAAAAoFAiYBchLi4u1i4BAAAAAAotpojnU0lJSQoODpa3t7eCgoK0Y8cOy76IiAj16tVLw4cPV+3atTVlyhRJ0oYNG9S+fXvVqlVLfn5+CgkJUVxcnOW4v04Rj4iIUN++fRUZGakXXnhBPj4+6tWrl06ePJm3XxQAAAAACgkCdj61cuVKderUSdu2bVOrVq00fPhwHTlyxLL/m2++Ubly5bRlyxb17t1bn376qSZPnqx+/fppx44dio6O1s2bNzV+/Phsz/Htt9/qu+++U2RkpNauXavLly8rLCwsL74eAAAAABQ6BOx8KiQkRMHBwapataqGDRsmPz8/RUdHZ2kzZMgQubm5yd3dXWXKlNG0adPUsWNHubq6ys/PT127dlViYmK250hPT9fs2bNVo0YN+fj4KDg4WLGxsbn8zQAAAACgcOIZ7HwqICAgy2dfX18dPHjQ8vnxxx+Xs7Oz5XOdOnV08uRJLV68WElJSTpz5oyOHz+uzMzMbM9Rrlw5lS5d2vLZ2dlZt27dMvBbAAAAAEDRwR3sfKpYsaz/NBkZGbK3t7d8dnBwyLJ/27Zt6tChg86ePavatWtr9OjRGjNmzN+e46/9AQAAAAAeDXew86n4+Hi1aNHC8jk2NlY1atTItn1kZKS6du2a5RnqPXv2SJLMZrNsbGxyr1gAAAAAAAE7v4qOjlblypXl6+urdevWKTExUe+880627StUqKDY2FjFx8fL2dlZe/fu1Zo1ayRJaWlprH8NAAAAALmMKeL51KBBg7R69Wp16NBBhw8fVmRkpKpWrZpt+wkTJqhcuXLq1auXunXrps8//1yzZ8+WpCxLdQEAAAAAcoeN2Ww2W7sIFA53gvxFm0pKSU23cjVFTxmn4mrhXdbaZeR7qampSkhIkJeXl5ycnKxdDpAtxioKCsYqCgrGKh7WnZzj4+Nz37bcwQYAAAAAwAAEbAAAAAAADEDABgAAAADAAARsAAAAAAAMwDJdMJyzo621SyiSuO4AAACAdRGwYbi6HqWsXUKRZTabZWNjY+0yAAAAgCKJKeIwVFpamkwmk7XLKLII1wAAAID1ELBhOJZWBwAAAFAUEbABAAAAADAAARsAAAAAAAMQsGE4ngMGAAAAUBQRsGEoe3t7OTo6WruM++I5cQAAAABGY5kuGO7QyT90zZRh7TKy5exoy1JiAAAAAAxHwIbhrpkylJKabu0yAAAAACBPMUUcAAAAAAADELABAAAAADAAARsAAAAAAAMU2IDt6empjRs3WuXcn3/+uU6cOGGVcwMAAAAA8qcCG7Ct5fz58xo4cKAuX75s7VIAAAAAAPkIAfsBsX4yAAAAAOBeCnTATkpKUnBwsLy9vRUUFKQdO3ZY9kVERKhXr14aPny4ateurSlTpkiSvv/+e/Xp00cBAQGqW7euxo4dqytXrliOCwwMVFRUlN588035+/urbt26mjp1qtLT03Xu3Dk1b95cktSnTx9FRERIkk6ePKmBAweqbt26CggI0JAhQ3T+/HlLn6dPn9arr76qgIAA+fv769VXX9Xx48ct+xMTEzVgwADVqVNH3t7eat68uVasWJHluwQGBmb57v+7zdPTUwsXLlSzZs3UqFEjnT59WoGBgZYa//r97mzLyMjQnDlz1KRJE3l7e6t169b68MMPH+4fAwAAAACKuAIdsFeuXKlOnTpp27ZtatWqlYYPH64jR45Y9n/zzTcqV66ctmzZot69e+unn35S7969Vb16df373/9WeHi4fvzxR7366qvKyMiwHBceHq46depo69atGjVqlNasWaOYmBhVqFBBGzZskHQ74IaGhur8+fPq0aOH7O3ttXLlSq1YsUKXLl1Sr169dP36dUnSiBEj9OSTT+rjjz/Whg0bVKxYMQ0ePFiSZDKZFBoaqjJlymjdunWKiYlR69atNWvWLCUkJDzQ9Vi7dq0WLlyoRYsWyd3dPUftd+7cqfnz52vXrl3q1auXJk2apG+//faBzgsAAAAAKOABOyQkRMHBwapataqGDRsmPz8/RUdHZ2kzZMgQubm5yd3dXStWrJCnp6cmTJggDw8P1atXT/PmzVN8fLwOHDhgOaZRo0bq06eP3Nzc1KVLF9WoUUOxsbGytbWVi4uLJKl06dIqUaKE1q5dKycnJ82dO1c1atSQr6+vFi5cqMuXL2vLli2SpOTkZLm4uMjV1VXVqlXT9OnTNXXqVGVmZspkMqlPnz6aOHGiPDw85O7uriFDhkhSlrvcOdGxY0f5+PjIz88vR+2Tk5Pl5OSkSpUqydXVVb169dL777+vqlWrPtB5AQAAAABScWsX8CgCAgKyfPb19dXBgwctnx9//HE5OztbPicmJqphw4ZZjqlRo4acnZ11/PhxNWnSRJLk4eGRpY2zs7Nu3bp1zxoSExPl7e0te3t7y7by5curatWqSkxMlCQNHz5c06dP19q1a/X888+rcePGateunYoVKyYXFxeFhIQoJiZGR48eVXJyso4dOyZJyszMfKDrUaVKlQdq37NnT3322Wdq0qSJvLy81LBhQ7Vt21aPP/74A/UDAAAAACjgd7CLFctafkZGRpag6+DgkGV/di8oM5vNsrOzs3z+ax85OfZeMjMzLX327NlT+/fv1/jx4+Xs7KyFCxeqbdu2+u2333Tp0iV16NBBGzZs0JNPPqmQkBBt2rTpnn3+VXp6+l3b/vf73u84d3d37d69W8uXL1e9evX0xRdfqFOnTjk6PwAAAAAgqwIdsOPj47N8jo2NVfXq1bNt7+npqe+++y7LtmPHjun69et33bXOjo2NzV19xsXFKS0tzbLtt99+05kzZ+Th4aHLly9r8uTJunXrljp37qw5c+Zo69atunTpkg4fPqyYmBilpKToww8/1KBBg9SyZUtdvXpV0n/Du52dnW7cuJHlvGfOnLlvrXZ2dpbnwCXp+vXrWZYXW7VqlXbv3q2GDRtq1KhR2rZtm+rXr6/t27fn6FoAAAAAAP6rQAfs6Ohobdq0SUlJSZo+fboSExPVv3//bNu/8sorOn78uKZMmaKTJ0/q0KFDGjlypGrWrKn69evn6JxOTk6Sbk8Nv3btml566SXduHFDb731lo4dO6affvpJQ4cOVdmyZdW2bVuVLl1aX3zxhcaPH6+EhASdPXtW69atk52dnby9vfXUU0/JZDJp586dunDhgg4cOKARI0ZIkiW0+/n5KSUlRVFRUTp37pzWrVun/fv337dWPz8/bd++XbGxsTpx4oT+9a9/ydbW1rL/999/1+TJk7Vnzx6dP39eX375pRISEuTv75+jawEAAAAA+K8C/Qz2oEGDtHr1ak2YMEHVqlVTZGTk376gy9fXV8uXL9eCBQvUqVMnlSxZUi1atNA///nPLFPE/07ZsmXVpUsXzZ49W2fOnNH48eO1Zs0azZkzx/I28YYNG2rOnDkqVaqUJOm9997TrFmz1LdvX5lMJnl5eSkyMlKVK1eWm5ub4uPjNXPmTF2/fl2urq7q1q2b9uzZo7i4OL300kuqV6+e3nzzTa1YsUILFy7UCy+8oCFDhmjVqlV/W+uIESOUkpKiV155Rc7OzgoNDdUff/xh2T948GDdunVLU6dO1aVLl1S+fHm99NJLGjBgQI6uBQAAAADgv2zM2T1EDDyguLg4SdJFm0pKSb37GfH8ooxTcbXwLmvtMmAlqampSkhIkJeXl2VGCpAfMVZRUDBWUVAwVvGw7uQcHx+f+7Yt0FPEAQAAAADILwjYAAAAAAAYgIANAAAAAIABCNgAAAAAABigQL9FHPmTs6Pt/RtZUX6vDwAAAEDBRMCG4ep6lLJ2CfdlNptlY2Nj7TIAAAAAFCJMEYeh0tLSZDKZrF3GfRGuAQAAABiNgA3DsbQ6AAAAgKKIgA0AAAAAgAEI2AAAAAAAGICADcPxfDMAAACAooiADUPZ29vL0dHR2mUUCjzLDgAAABQsLNMFwx06+YeumTKsXUaB5uxoWyCWOwMAAADwXwRsGO6aKUMpqenWLgMAAAAA8hRTxAEAAAAAMAABGwAAAAAAAxCwAQAAAAAwAAHbYJ6entq4cWOe9xsREaHAwMBcrwMAAAAAcG8EbAAAAAAADEDABgAAAADAAATsXJCUlKTg4GB5e3srKChIO3bssOz736nc99r2yy+/6PXXX5e/v79eeOEFbdu27a5zrF+/Xi1btlStWrU0cOBAXb169a42p06dUt++feXj46PGjRtr2bJlln2ZmZlatmyZWrVqJW9vb9WuXVv9+vVTcnKyEZcAAAAAAIocAnYuWLlypTp16qRt27apVatWGj58uI4cOZKjY9PT09WvXz9duXJFa9asUXh4uKKiorK0iYmJ0eTJk9W3b19t2bJFtWvX1gcffHBXX2vWrFGnTp20fft2vfTSS5o3b56+/vprSdKqVasUFRWlMWPGaNeuXVq8eLFOnz6tmTNnPvoFAAAAAIAiiICdC0JCQhQcHKyqVatq2LBh8vPzU3R0dI6O/frrr/Xzzz9r9uzZevbZZ+Xv768ZM2ZkabN69Wq1adNGPXv2VNWqVfXaa6+pWbNm96yjU6dOcnNz06BBg+Ts7GwJ+pUrV9asWbPUrFkzubq6qn79+mrdurUSExMf+fsDAAAAQFFU3NoFFEYBAQFZPvv6+urgwYM5OjYxMVGlS5dW5cqVLdu8vLzk4OCQpU3btm2zHOfv769jx45l2ebu7p7lc6lSpXTz5k1JUmBgoH788UeFh4fr1KlTOnXqlE6cOKEnn3wyR3UCAAAAALLiDnYuKFYs62XNyMiQvb19tu3T09Mtv9vY2CgzM/OuNsWLZ/1byP+2sbOzu+sYW1vbu7aZzWZJUmRkpPr06aMrV66ofv36CgsLU2hoaLY1AgAAAAD+HgE7F8THx2f5HBsbq+rVq0u6HYRv3LiRZf+ZM2csv3t5eenatWv6+eefLdtOnz6t69evZ2kTGxubpY+4uLgHqnHp0qV64403NGnSJPXo0UN+fn46ffq0JYADAAAAAB4MATsXREdHa9OmTUpKStL06dOVmJio/v37S5L8/PyUkpKiqKgonTt3TuvWrdP+/fstx9atW1e+vr4aNWqUfvjhB8XFxWnUqFFZ7oq/9tpr+vTTT7V8+XKdPn1aq1ev1q5dux6oxgoVKuirr77SiRMnlJSUpPnz52v37t1KS0sz5iIAAAAAQBFDwM4FgwYN0urVq9WhQwcdPnxYkZGRqlq1qiSpXr16evPNN7VixQq1bdtWX331lYYMGWI5tlixYlq2bJmefvpphYaGasCAAWrbtq1cXFwsbZo2bap33nlHH3/8sdq3b6/du3c/8PTu2bNn688//1SXLl3Uq1cvJSYmKiwsTJcvX9aFCxeMuRAAAAAAUITYmJkTDIPcmaZ+0aaSUlLT79Maf6eMU3G18C5r7TIKpdTUVCUkJMjLy0tOTk7WLgfIFmMVBQVjFQUFYxUP607O8fHxuW9b7mADAAAAAGAAAjYAAAAAAAYgYAMAAAAAYAACNgAAAAAABihu7QJQ+Dg72lq7hAKPawgAAAAUPARsGK6uRylrl1AomM1m2djYWLsMAAAAADnEFHEYKi0tTSaTydplFAqEawAAAKBgIWDDcCytDgAAAKAoImADAAAAAGAAAjYAAAAAAAYgYMNwPDsMAAAAoCgiYMNQ9vb2cnR0tHYZhRrPuAMAAAD5E8t0wXCHTv6ha6YMa5dRKDk72rIMGgAAAJBPEbBhuGumDKWkplu7DAAAAADIU0wRBwAAAADAAARsAAAAAAAMQMAGAAAAAMAABGwDeHp6auPGjY/Ux4ULF/TJJ59YPl+5ckUbNmx41NK0b98+BQYGysfHR6tWrVJgYKAiIiIeuV8AAAAAQFYE7Hxi9OjR+vLLLy2fZ8+era1btz5yvwsWLFDVqlW1Y8cOde7c+ZH7AwAAAADcGwE7nzJqreOrV6/K19dXlSpVUsmSJQ3pEwAAAABwNwK2QZKSkhQcHCxvb28FBQVpx44dln0REREKDAzM0v6v23r37q3Dhw9r06ZNCgwM1JgxY7Rp0yYdPnxYnp6ekm4H7vfee0/NmzeXr6+vOnbsmOUO96FDh1SzZk1FRkaqbt266ty5szw9PXX+/HktXrzY0s8dt27dUv369bVo0aIs29etW6dGjRopPZ1ltgAAAADgQbAOtkFWrlypcePGacaMGdqyZYuGDx8uNzc3eXt73/fYiIgIDRw4UE899ZQmTpwoOzs7/fnnn/rll18sz0vPnz9fMTExmjhxop5++ml98803mjRpkq5du6aePXtKkjIyMrRv3z6tX79eJpNJ5cqVU9euXdWmTRuFhoZmOaednZ06dOigrVu3avDgwZbtmzdvVocOHVS8OEMDAAAAAB4Ed7ANEhISouDgYFWtWlXDhg2Tn5+foqOjc3RsmTJlZGdnJwcHB7m4uMjZ2VkODg6ys7NT+fLllZqaqujoaP3rX/9S06ZNVblyZXXp0kV9+/ZVVFRUlr5CQ0Pl7u4uLy8vlS9fXra2tnJyclL58uXvOm+XLl105swZff/995KkU6dO6fvvv+dZbQAAAAB4CNymNEhAQECWz76+vjp48KAhfZ84cUI3b97UP//5TxUr9t+/iaSnpystLU1//vmnZZu7u3uO+33mmWfk4+OjzZs3y9/fX5s3b1atWrVUrVo1Q+oGAAAAgKKEgG2QvwZf6fZ0bXt7+2zbP8gzzndeeLZgwQI9/fTTd+3/63kee+yxHPcr3b6LPX/+fI0bN07btm1Tv379Huh4AAAAAMBtTBE3SHx8fJbPsbGxql69uqTbzzvfuHEjy/4zZ878bX82NjaW359++mkVL15cFy5cUJUqVSw/+/btU1RU1F3h/kG0a9dON2/e1Pvvv6/ffvtN7dq1e+i+AAAAAKAoI2AbJDo6Wps2bVJSUpKmT5+uxMRE9e/fX5Lk5+enlJQURUVF6dy5c1q3bp3279+f5fgSJUro/Pnz+uWXXyRJTk5O+vXXX3X27Fk5OzsrODhY4eHh2rJli86ePauPPvpIc+bM0RNPPPFIdTs7O6tly5ZasmSJmjdvrlKlSj1SfwAAAABQVBGwDTJo0CCtXr1aHTp00OHDhxUZGamqVatKkurVq6c333xTK1asUNu2bfXVV19pyJAhWY4PDg5WYmKiOnTooIyMDHXq1Ekmk0nt2rXTxYsXNXbsWPXp00fh4eEKCgrSsmXLNGTIEL3xxhuPXHvnzp31559/8nIzAAAAAHgENuY7D/iiyNq4caMiIiK0Z8+eR5puHhcXJ0m6aFNJKamso50byjgVVwvvstYuo0BLTU1VQkKCvLy85OTkZO1ygGwxVlFQMFZRUDBW8bDu5BwfH5/7tuUlZ0VYfHy8kpKStHDhQvXq1euRwjUAAAAAFHUkqiLshx9+0Pjx4+Xr66uXX37Z2uUAAAAAQIHGHewirGfPnurZs6e1ywAAAACAQoE72AAAAAAAGIA72DCcs6OttUsotLi2AAAAQP5FwIbh6nqwlnZuMpvNsrGxsXYZAAAAAP4HU8RhqLS0NJlMJmuXUagRrgEAAID8iYANw7G0OgAAAICiiIANAAAAAIABCNgAAAAAABiAgA3D8YwwAAAAgKKIgA1D2dvby9HR0dplPBKeIQcAAADwMFimC4Y7dPIPXTNlWLuMh+LsaMsyYwAAAAAeCgEbhrtmylBKarq1ywAAAACAPMUUcQAAAAAADEDABgAAAADAAARsAAAAAAAMQMAGAAAAAMAABGwAAAAAAAxAwAYAAAAAwAAE7Fxw48YNTZkyRY0aNZK/v7969eqlI0eOSJI2bNig9u3bq1atWvLz81NISIji4uIsxwYGBioyMlKvvfaafH19FRgYqM8++0yfffaZWrVqJT8/P7366qu6fPmy5ZiTJ0+qf//+8vf3V6NGjfTPf/5Tly5dsuzv3bu3JkyYoG7duum5557T1q1blZaWplmzZikwMFDe3t56/vnnNXToUP3+++95d6EAAAAAoBAhYOeCYcOGaf/+/ZoxY4Y2b94sNzc3hYaG6tNPP9XkyZPVr18/7dixQ9HR0bp586bGjx+f5fglS5aoTZs22rZtm2rUqKFRo0Zp6dKlmjNnjpYuXaq4uDi99957kqSLFy8qJCREVapU0UcffaSlS5fq+vXr6tGjh1JTUy19btiwQX369NHatWvVuHFjzZ49W7t379bMmTO1a9cuzZw5UwcPHtS7776bp9cKAAAAAAqL4tYuoLBJSkrS/v37FRUVpUaNGkmSJk2apFKlSql06dKaNm2aOnToIElydXVV165dNXny5Cx9NG3aVJ06dZIkde/eXXv27NHw4cNVq1YtSVKDBg30888/S5I+/PBDPfXUU1lC+oIFC1SvXj3t3LlTnTt3liR5eXmpffv2ljY+Pj5q3bq1nnvuOUstDRo0UGJiYi5cFQAAAAAo/AjYBrsTUP38/CzbHnvsMY0dO1bS7encixcvVlJSks6cOaPjx48rMzMzSx9VqlSx/O7o6ChJqly5smWbg4ODZYr40aNH9fPPP8vf3z9LHzdv3tTJkyfv2ackdezYUf/3f/+nuXPn6vTp00pKStKpU6csgRsAAAAA8GAI2AYrXjz7S7pt2zaNGTNG7du3V+3atRUcHKzExMS77mDfqw8bG5t79pmZmal69erp7bffvmufs7Oz5XcHB4cs+yZOnKhdu3apU6dOCgwM1BtvvKGoqChdvHjxb78fAAAAAODeCNgG8/DwkCTFxcWpfv36kqT09HS9+OKLcnBwUNeuXRUWFmZpv2fPHkmS2WzONkT/nerVq2v79u2qUKGC7O3tJUkpKSkaPXq0XnnlFdWrV++uY65cuaL169dr/vz5atOmjWV7UlKSnJycHrgGAAAAAAAvOTNc1apV9eKLLyosLEwHDx7UqVOnNGHCBN28eVOVKlVSbGys4uPjlZycrOjoaK1Zs0aSlJaW9lDnCwkJ0bVr1zRy5EgdO3ZMx44d0/DhwxUXF6dnnnnmnseULFlSzs7O2rNnj2Wa+oQJExQfH//QdQAAAABAUUfAzgXTp09XnTp1NHToUHXu3Fn/+c9/FBUVpQkTJqhcuXLq1auXunXrps8//1yzZ8+WpCxLdT0INzc3rVmzRjdu3NBLL72kXr16yc7OTqtWrZKLi8s9j7Gzs1N4eLgSExPVvn179evXTyaTSSNGjNCJEydkMpke+rsDAAAAQFFlYzabzdYuAoXDnT8SXLSppJTUdCtX83DKOBVXC++y1i4DuSg1NVUJCQny8vLikQjka4xVFBSMVRQUjFU8rDs5x8fH575tuYMNAAAAAIABCNgAAAAAABiAgA0AAAAAgAEI2AAAAAAAGIB1sGE4Z0dba5fw0Apy7QAAAACsi4ANw9X1KGXtEh6J2WyWjY2NtcsAAAAAUMAwRRyGSktLK/DraBOuAQAAADwMAjYMx9LqAAAAAIoiAjYAAAAAAAYgYAMAAAAAYAACNgzHM8wAAAAAiiICNgxlb28vR0dHa5dxXzwnDgAAAMBoLNMFwx06+YeumTKsXUa2nB1tC/xSYgAAAADyHwI2DHfNlKGU1HRrlwEAAAAAeYop4gAAAAAAGICADQAAAACAAQjYAAAAAAAYgIANAAAAAIABCNgAAAAAABiAgA0AAAAAgAEI2Lnkxo0bmjJliho1aiR/f3/16tVLR44ckSRt2LBB7du3V61ateTn56eQkBDFxcVZjg0MDFRUVJTefPNN+fv7q27dupo6darS028vfbVx40a1bNnS8p/e3t7q3LmzvvvuO0sff/75pxYsWKDmzZvLx8dHHTt21K5duyz7c9IHAAAAACDnCNi5ZNiwYdq/f79mzJihzZs3y83NTaGhofr00081efJk9evXTzt27FB0dLRu3ryp8ePHZzk+PDxcderU0datWzVq1CitWbNGMTExlv3/+c9/tG7dOs2ZM0ebNm2So6OjxowZI7PZLEkaMWKENm/erAkTJmjr1q1q0aKFhg4dqs8++yzHfQAAAAAAco6AnQuSkpK0f/9+vf3222rcuLGqVKmiSZMm6R//+IdKly6tadOmqWPHjnJ1dZWfn5+6du2qxMTELH00atRIffr0kZubm7p06aIaNWooNjbWsv/WrVsKCwuTn5+fqlevrldeeUXJycm6dOmSTp48qT179ujtt99W06ZNVbVqVb355ptq3ry5li5dmqM+AAAAAAAPpri1CyiM7oRlPz8/y7bHHntMY8eOlSSdPHlSixcvVlJSks6cOaPjx48rMzMzSx8eHh5ZPjs7O+vWrVvZtnF2dpZ0OzQfP35ckhQQEJClfZ06dTRv3rwc9QEAAAAAeDDcwc4FxYtn/3eLbdu2qUOHDjp79qxq166t0aNHa8yYMXe1s7e3v2vb/07dzkmb/933v7U9aB8AAAAAgHvjDnYuuHNXOC4uTvXr15ckpaen68UXX5SDg4O6du2qsLAwS/s9e/ZIuh1sbWxsHvn8np6ekqTvvvtOzZo1s2z/9ttvVa1atUfuHwAAAABwNwJ2LqhatapefPFFhYWFadKkSXryyScVGRmpmzdvqlq1aoqNjVV8fLycnZ21d+9erVmzRpKUlpamxx577JHP7+HhoWbNmiksLEw2NjaqUqWKPvnkE+3Zs0cLFix45P4BAAAAAHdjingumT59uurUqaOhQ4eqc+fO+s9//qOoqChNmDBB5cqVU69evdStWzd9/vnnmj17tiRlWarrUc2bN08tWrTQuHHj1KFDB33++eeKiIhQ69atDTsHAAAAAOC/bMw8cAuD3PkDwUWbSkpJTbdyNdkr41RcLbzLWrsMWElqaqoSEhLk5eUlJycna5cDZIuxioKCsYqCgrGKh3Un5/j4+Ny3LXewAQAAAAAwAAEbAAAAAAADELABAAAAADAAARsAAAAAAAOwTBcM5+xoa+0S/lZ+rw8AAABAwUTAhuHqepSydgn3ZTabZWNjY+0yAAAAABQiTBGHodLS0mQymaxdxn0RrgEAAAAYjYANw7G0OgAAAICiiIANAAAAAIABCNgwHNOvAQAAABRFBGwYyt7eXo6OjtYuA7mIRwAAAACAe+Mt4jDcoZN/6Jopw9plIBc4O9oWiLfEAwAAANZAwIbhrpkylJKabu0yAAAAACBPMUUcAAAAAAADELABAAAAADAAARsAAAAAAAMQsAEAAAAAMAABu5CIiIhQYGBgtvvPnTsnT09PHTp0KA+rAgAAAICig4BdSISGhuqjjz6ydhkAAAAAUGSxTFchUaJECZUoUcLaZQAAAABAkcUd7Id048YNTZkyRY0aNZK/v7969eqlI0eOSJI2bNig9u3bq1atWvLz81NISIji4uIsxwYGBmrWrFlq06aN6tatq8OHD+fonFFRUWrRooW8vb0VGBioxYsXy2w2S7p7inhiYqL69OkjPz8/tWzZUl9//fVd/X388ccKCgpSrVq1FBQUpJUrVyozM/NRLgsAAAAAFFncwX5Iw4YN0+nTpzVjxgxVrlxZS5cuVWhoqKZNm6bJkydr6tSpeu6553Tp0iVNmTJF48eP15YtWyzHr1mzRsuWLZOzs7M8PT3ve769e/dq2bJlmj9/vqpWraoffvhBo0aNUqVKldSxY8csba9du6a+ffvK399fGzZs0K+//qoJEyZkabN+/XrNmzdPEydOVK1atXT06FFNmTJFFy9e1KhRo4y5SAD+H3v3HldVlf9//E0oAgneK0ZRCRUwuUmGJFriJa95y0xFx0hLzVTUHKkoSROVMpU0NfE2Wo7VSa0cu9jFaNIyb4ggiXg3U0dHEOQInN8f/TxfSVHArUfg9Xw8egxn77XX/qw9+5+3e+21AQAAUIEQsEvhwIED2rx5sxISEhQaGipJmjx5slxdXVWtWjW98cYbevzxxyVJdevW1RNPPKHXX3+9UB+PPPKIHn744WKf8/Dhw3JwcFDdunX1t7/9TX/72990zz336G9/+9tVbT///HPl5ORo+vTpcnFxUePGjfXSSy/p+eeft7aZP3++RowYoa5du0qS3N3dlZWVpZiYGI0ZM0ZVqlQp8XUBAAAAgIqMgF0KaWlpkqSAgADrtipVqigqKkqSlJ6ernnz5unAgQM6dOiQ9u3bd9XU6wYNGpTonI8//rg+/vhjPfbYY2rUqJEefvhhPfbYY9cM2GlpaWrYsKFcXFys2wIDA61///e//9Xvv/+uWbNmac6cOdbtBQUFys3N1dGjR+Xp6Vmi+gAAAACgoiNgl0KlSkVftk8//VSTJk1S9+7d1bx5cz311FNKS0u76gm2o6Njic5Zs2ZNrVu3Tjt27NCPP/6oxMRErVixQi+88IJGjRpVqK2dnd1Vgf7Kmi/vi4qKuuZTdDc3txLVBgAAAABgkbNSufx098qFy/Ly8hQWFqZ3331XTzzxhKZPn66BAweqRYsWOnLkiCRZFyQrjfXr1+uDDz5QUFCQRo8erTVr1qhv377asGHDVW29vb118OBB/fe//7Vuu7wAmyTVqlVLNWvW1JEjR9SgQQPrf8nJyZo9e3apawQAAACAioyAXQoeHh7q2LGjYmJitGXLFmVkZCg6Olq5ubmqV6+etm/fruTkZB0+fFjLli3TypUrJUlms7nU58zNzdWMGTO0du1aHT16VNu2bdMvv/xSaOr3ZV27dlWtWrU0fvx4paam6ueff9Ybb7xh3W9nZ6dhw4bpn//8p1auXKnDhw/rq6++0uTJk+Xo6CgHB4dS1wkAAAAAFRVTxEtp2rRpmjlzpsaMGSOz2Sx/f38lJCTo7rvv1quvvqrw8HA5ODjI29tbM2fOVGRkpJKSkvTggw+W6nx9+/bVuXPnNH/+fJ04cULVqlXTY489pgkTJlzV1tnZWcuXL9eUKVPUv39/VatWTaNHj7a+Iy5JERERqlKliv75z39q+vTpql27tp588kmNHj261NcEAAAAACoyO8vNzFsGrnB5yvxJu3o6l51n42pwK1R3rqT2zWrYuoybkp2drZSUFPn4+MjZ2dnW5QBF4l5FWcG9irKCexWldTnn+Pr63rAtU8QBAAAAADAAU8TvAA8++KDy8/OL3F+rVi19/fXXt7EiAAAAAEBJEbDvACaT6borjNvb29/GagAAAAAApUHAvgPUr1/f1iUAAAAAAG4SARuGc3HiiXt5xf+3AAAAQNEI2DBcsKerrUvALWSxWGRnZ2frMgAAAIA7DquIw1Bms1k5OTm2LgO3EOEaAAAAuDYCNgzHp9UBAAAAVEQEbAAAAAAADEDAhuGYQgwAAACgIiJgw1AODg5ycnKydRklxrR2AAAAADeLVcRhuK3p55WZk2/rMorNxcmelc8BAAAA3DQCNgyXmZOvc9l5ti4DAAAAAG4rpogDAAAAAGAAAjYAAAAAAAYgYAMAAAAAYAACNgAAAAAABiBgl1JYWJji4+MlSfHx8QoLC7Pu8/Lykslkuq31fP/99woLC5Ovr69WrFhxW88NAAAAAGAV8VL76KOPVKVKlWvuS0xMlIuLy22tZ/bs2fLw8NCKFStUvXr123puAAAAAAABu9Rq1qxZ5L46dercxkr+9L///U9t27ZVvXr1bvu5AQAAAAAVfIr4hQsXNGXKFIWGhiowMFDh4eHas2ePJGn79u0aOHCg/Pz89OijjyomJkZZWVnWY6+cIv5XV04RnzRpkiZNmqQZM2YoJCRE/v7+eu6553Ty5Elr+8OHD2vYsGEKDAxU69attXTpUnXo0KHY08y9vLx07NgxzZs3T15eXpKk48ePKzIyUiEhIXrggQfUpk0bxcXFqaCgQJJkMpms5+jQoYOaNWum3r1769dffy35hQQAAAAAVOyAPXbsWG3evFmxsbFau3at3N3dFRERoZ9//llPP/20WrdurfXr1+vNN99UcnKyIiIiZLFYSnyezz77TOfOndPKlSv13nvvKTk5WbNnz5Yk5eTkaMiQISooKNAHH3ygt99+WyaTSUeOHCl2/4mJibrvvvsUERGhxMRESdKIESOUmZmppUuXauPGjYqIiNDixYv1zTffWI87ceKEVq9erbi4OH3yySdycnLSpEmTSjVGAAAAAKjoKuwU8QMHDmjz5s1KSEhQaGioJGny5MlydXXV6tWr1apVKw0fPlyS1LBhQ7311ltq3769fv75ZwUHB5foXC4uLnr99ddVuXJleXp6qkuXLvr+++8lSRs2bNB///tfmUwm67vTcXFx6tGjR7H7r1Onjuzt7eXs7Kw6dero4sWL6tGjhzp37iw3NzdJ0pAhQ/Tee+9p3759at++vSTp0qVLiomJkY+PjyTp6aef1vPPP69Tp07pnnvuKdEYAQAAAKCiq7ABOy0tTZIUEBBg3ValShVFRUWpa9euOnTokAIDA686Lj09vcQBu379+qpcubL1t4uLiy5duiRJ2rt3rzw8PAotTObt7X1Ti6Q5OjoqPDxcGzdu1O7du3Xo0CHt27dPp0+ftk4Rv8zT07NQXZKstQEAAAAAiq/CBuxKlYoeekFBgbp37259gn2l6y1uVhQHB4ci99nb218Vem9Wdna2wsPDdfHiRXXq1Em9evWSn5+fBg4cWKzamCIOAAAAACVXYQP25Se3SUlJCgkJkSTl5eWpY8eOOnbsmKpWraoGDRpY26enpysuLk7jxo0z9BNc3t7eWrNmjc6dO2d9ip2enq7MzMxS95mYmKjk5GT9+OOPql27tiTp3LlzOnPmDOEZAAAAAG6RCrvImYeHhzp27KiYmBht2bJFGRkZio6OVm5urlatWqW9e/cqJiZG6enp2rFjh8aPH6+DBw+qYcOGhtbRrVs31ahRQxMmTFBqaqp27typF198UZJkZ2dXqj7vu+8+SdL69et17Ngxbdu2TSNHjtSlS5dkNpsNqx0AAAAA8H8qbMCWpGnTpqlFixYaM2aMevfurRMnTighIUEPPvigFi9erJSUFPXq1UsjRoyQh4eHli1bdt3p3qXh4OCgxYsX69KlS3ryySf1wgsvqE+fPpJU6L3tkvDz81NUVJRWrFihzp07KyoqSi1atFC3bt2UlJRkZPkAAAAAgP/PzsKcYZs6evSoDh48aF3JXJJOnjypNm3aaNWqVXrwwQdtWF3JXA7vJ+3q6Vx2no2rKb7qzpXUvlkNW5eB2yQ7O1spKSny8fGRs7OzrcsBisS9irKCexVlBfcqSutyzvH19b1h2wr9BPtOkJubq2effVYJCQk6cuSI9u7dq+joaDVs2FD+/v62Lg8AAAAAUEwVdpGzO4Wnp6dmzZqlBQsWaO7cuXJ0dFRISIiWLl2qypUr6/HHH9eRI0eu28fWrVsNn7oOAAAAACgZAvYdoFOnTurUqdM19y1YsOCG36Uu7bvaAAAAAADjELDvcH/7299sXUKJuTjZ27qEEilr9QIAAAC4MxGwYbhgT1dbl1BiFoul1J9FAwAAAACJRc5gMLPZrJycHFuXUWKEawAAAAA3i4ANw/HlNwAAAAAVEQEbAAAAAAADELABAAAAADAAARuG431mAAAAABURARuGcnBwkJOTk63LuOV4zxwAAADAX/GZLhhua/p5Zebk27qMW8bFyb5MfooMAAAAwK1FwIbhMnPydS47z9ZlAAAAAMBtxRRxAAAAAAAMQMAGAAAAAMAABGwAAAAAAAxAwL4FwsLCFB8fL0kymUzy8vIq9rElbQ8AAAAAuDMQsAEAAAAAMAABGwAAAAAAAxCwi3DhwgVNmTJFoaGhCgwMVHh4uPbs2SNJ2r59uwYOHCg/Pz89+uijiomJUVZWVrH6DQsL0/z58/XMM8/Iz89PHTp00IcffnhVO5PJpPbt28vX11e9e/fWrl27rPsuXryo2bNnq127dvL19VWPHj30xRdfFDq2Q4cO1v9t1qyZevfurV9//dXaxmw2Ky4uTq1bt1ZgYKCefPJJJSYmlvZyAQAAAECFR8AuwtixY7V582bFxsZq7dq1cnd3V0REhH7++Wc9/fTTat26tdavX68333xTycnJioiIkMViKVbf8+fPV2BgoNauXauBAwfq1Vdf1YYNGwq1WbNmjWbNmqWPP/5YDg4OGjt2rHXfuHHjtHbtWkVHR2v9+vVq3769xowZo6+//tra5sSJE1q9erXi4uL0ySefyMnJSZMmTbLWGBUVpR9//FFvvvmmPvnkE3Xu3FnDhw/Xd999d9PXDgAAAAAqokq2LuBOdODAAW3evFkJCQkKDQ2VJE2ePFmurq5avXq1WrVqpeHDh0uSGjZsqLfeekvt27fXzz//rODg4Bv2HxoaqlGjRkmS7r//fu3atUvLly9Xly5drG3eeOMNeXp6SpKeeeYZjRo1SmfOnNG5c+e0adMmLViwQI8++qgk6YUXXlBqaqoWLFig9u3bS5IuXbqkmJgY+fj4SJKefvppPf/88zp16pRycnL02Wefae3atYX2p6amKiEhwdovAAAAAKD4CNjXkJaWJkkKCAiwbqtSpYqioqLUtWtXHTp0SIGBgVcdl56eXqyA/dc2gYGBVz05btiwofVvV1dXSX9ODd+3b58kKSgoqFD7Fi1aaNasWYW2XQ7okuTi4iLpz+C9d+9eSdKAAQMKtb906ZL1XAAAAACAkiFgX0OlSkVfloKCAnXv3t36BPtKNWvWLFX/BQUFuuuuwrP17e3trzruelPQLRbLVf06ODhcs93lflatWqW777670P6/1gEAAAAAKB7S1DVcfvKblJRk3ZaXl6ewsDAdOHBA+/fvV4MGDaz/5eXlKTY2VidOnChW/1f2K/25aFrTpk2Ldezlb2RfuWCZJG3btk2NGjUqVh+NGzeWJJ06darQOEwmk0wmU7H6AAAAAAAURsC+Bg8PD3Xs2FExMTHasmWLMjIyFB0drdzcXK1atUp79+5VTEyM0tPTtWPHDo0fP14HDx4sNK37ej7//HOtWrVKBw8e1OLFi/XVV19p6NChxTrW09NTbdu2VUxMjL777jtlZGTonXfe0aZNmxQREVGsPho3bqy2bdvqtdde0zfffKMjR47ovffe08KFC1W/fv1i9QEAAAAAKIwp4kWYNm2aZs6cqTFjxshsNsvf318JCQny9vbW4sWLNWfOHPXq1UvOzs4KCQnRP/7xj2tOyb6WXr166auvvtL06dPVsGFDzZ49W4888kixa5s1a5ZmzZqll19+WefPn1eTJk0UHx+vDh06FLuPt99+W2+//bZeffVV/e9//1P9+vX1xhtvqFevXsXuAwAAAADwf+wsxf22FAwRFhamXr166YUXXrB1KYa7PPX9pF09ncvOs3E1t05150pq36yGrctAKWVnZyslJUU+Pj5ydna2dTlAkbhXUVZwr6Ks4F5FaV3OOb6+vjdsyxRxAAAAAAAMQMAGAAAAAMAAvIN9m33zzTe2LgEAAAAAcAvwBBsAAAAAAAPwBBuGc3Gyt3UJt1R5Hx8AAACA0iFgw3DBnq62LuGWs1gssrOzs3UZAAAAAO4gTBGHocxms3Jycmxdxi1HuAYAAADwVwRsGI5PqwMAAACoiAjYAAAAAAAYgIANAAAAAIABCNgwHO8nAwAAAKiICNgwlIODg5ycnGxdxm3FO+cAAAAAJD7ThVtga/p5Zebk27qM28LFyb5CfJYMAAAAwI0RsGG4zJx8ncvOs3UZAAAAAHBbMUUcAAAAAAADELABAAAAADAAARsAAAAAAAMQsMsgk8kkLy8vm/cBAAAAAPg/BOwKqkuXLkpMTLR1GQAAAABQbrCKeAXl6OgoR0dHW5cBAAAAAOUGT7DvYBcuXNCUKVMUGhqqwMBAhYeHa8+ePdb9JpNJ7du3l6+vr3r37q1du3ZZ9x0/flyRkZEKCQnRAw88oDZt2iguLk4FBQXWY6+cIu7l5aW5c+eqbdu2Cg0N1cGDB2/bOAEAAACgPCBg38HGjh2rzZs3KzY2VmvXrpW7u7siIiJ0/vx5SdKaNWs0a9Ysffzxx3JwcNDYsWOtx44YMUKZmZlaunSpNm7cqIiICC1evFjffPNNked7//33NXfuXL3zzjtq2LDhLR4dAAAAAJQvTBG/Qx04cECbN29WQkKCQkNDJUmTJ0+Wq6urnJ2dJUlvvPGGPD09JUnPPPOMRo0apTNnzujuu+9Wjx491LlzZ7m5uUmShgwZovfee0/79u1T+/btr3nOHj16yNfX9zaMDgAAAADKHwL2HSotLU2SFBAQYN1WpUoVRUVFyWQySVKhp8yurq6SpIsXL6pWrVoKDw/Xxo0btXv3bh06dEj79u3T6dOnrVPEr6VBgwbGDwQAAAAAKggC9h2qUqUb/19jb29/1TaLxaLs7GyFh4fr4sWL6tSpk3r16iU/Pz8NHDjwuv2x6BkAAAAAlB4B+w51eep3UlKSQkJCJEl5eXnq2LHjDYNyYmKikpOT9eOPP6p27dqSpHPnzunMmTOyWCy3tnAAAAAAqKBY5OwO5eHhoY4dOyomJkZbtmxRRkaGoqOjlZube8Nj77vvPknS+vXrdezYMW3btk0jR47UpUuXZDabb3XpAAAAAFAh8QT7DjZt2jTNnDlTY8aMkdlslr+/vxISErR3797rHufn56eoqCgtW7ZMs2fP1r333qsuXbrIzc1NSUlJt6l6AAAAAKhY7CzMGYZBLof3k3b1dC47z8bV3B7VnSupfbMati4DJZCdna2UlBT5+PhYV+QH7kTcqygruFdRVnCvorQu55zifHGJKeIAAAAAABiAgA0AAAAAgAEI2AAAAAAAGICADQAAAACAAVhFHIZzcbK3dQm3TUUaKwAAAIDrI2DDcMGerrYu4bayWCyys7OzdRkAAAAAbIwp4jCU2WxWTk6Orcu4rQjXAAAAACQCNm4BPq0OAAAAoCIiYAMAAAAAYAACNgAAAAAABiBgw3C8kwwAAACgIiJgw1AODg5ycnKydRm4Dt6RBwAAAG4NPtMFw21NP6/MnHxbl4FrcHGyr3CfUQMAAABuFwI2DJeZk69z2Xm2LgMAAAAAbiumiAMAAAAAYAACNgAAAAAABiBgAwAAAABgAAL2dZhMJnl5ednk3GFhYYqPjy9Ve1vWDQAAAAAVFQG7HOrSpYsSExNtXQYAAAAAVCisIl4OOTo6ytHR0dZlAAAAAECFwhNsSRcuXNCUKVMUGhqqwMBAhYeHa8+ePdb9JpNJ7du3l6+vr3r37q1du3ZZ9x0/flyRkZEKCQnRAw88oDZt2iguLk4FBQXWYzt06GD932bNmql379769ddfrX1kZmbqH//4hx588EG1bNlSS5cuvarG7du3a+DAgfLz89Ojjz6qmJgYZWVlXXM8f50inpmZqejoaLVs2VJBQUEaPHiwkpKSrPvj4+MVHh6uyMhINW/eXFOmTCn9xQQAAACACoqALWns2LHavHmzYmNjtXbtWrm7uysiIkLnz5+XJK1Zs0azZs3Sxx9/LAcHB40dO9Z67IgRI5SZmamlS5dq48aNioiI0OLFi/XNN99Y25w4cUKrV69WXFycPvnkEzk5OWnSpEmyWCzW8+/evVsLFizQ0qVL9d133+nYsWPW41NTU/X000+rdevWWr9+vd58800lJycrIiLC2kdRLBaLhg0bpiNHjmjhwoVas2aNAgIC1L9/f+3du9fa7pdfflHt2rW1bt06DRo0yIjLCgAAAAAVSoWfIn7gwAFt3rxZCQkJCg0NlSRNnjxZrq6ucnZ2liS98cYb8vT0lCQ988wzGjVqlM6cOaO7775bPXr0UOfOneXm5iZJGjJkiN577z3t27dP7du3lyRdunRJMTEx8vHxkSQ9/fTTev7553Xq1CllZWUpMTFRy5Yt04MPPihJeuutt9S2bVtrjQkJCWrVqpWGDx8uSWrYsKHeeusttW/fXj///LOCg4OLHN+WLVu0c+dObdmyRdWrV5ckjRs3Ttu3b9eKFSs0ffp0a9vRo0fLxcXlpq8pAAAAAFREFT5gp6WlSZICAgKs26pUqaKoqCiZTCZJfwbay1xdXSVJFy9eVK1atRQeHq6NGzdq9+7dOnTokPbt26fTp09bp4hfdjmgS7KG2EuXLlnP7+vra91fu3Ztubu7W3/v3btXhw4dUmBg4FX1p6enXzdgJycny2KxFArskmQ2m5Wbm2v9XatWLcI1AAAAANyECh+wK1W68SWwt7e/apvFYlF2drbCw8N18eJFderUSb169ZKfn58GDhx4VXsHB4dr9mFnZydJVwXyK+sqKChQ9+7drU+wr1SzZs3r1l5QUKCqVata/7GgqJpYFA0AAAAAbk6Ffwf78pPlKxf9ysvLU1hYmM6ePXvdYxMTE5WcnKwVK1Zo9OjR6tKli6pWraozZ87c8N3oyy5PG9++fbt12/nz53X48GHr78aNG2v//v1q0KCB9b+8vDzFxsbqxIkT1+2/SZMmysrK0qVLlwod/95772nTpk3FqhEAAAAAcGMVPmB7eHioY8eOiomJ0ZYtW5SRkaHo6OhC06eLct9990mS1q9fr2PHjmnbtm0aOXKkLl26JLPZXKzz169fX506ddLrr7+u//znP0pLS9PEiRMLHR8REaG9e/cqJiZG6enp2rFjh8aPH6+DBw8Wmr5+La1bt5aPj48iIyO1ZcsWHTp0SLGxsTKZTIWmrQMAAAAAbk6FnyIuSdOmTdPMmTM1ZswYmc1m+fv7KyEhodAq29fi5+enqKgoLVu2TLNnz9a9996rLl26yM3NrdAT8RuZMWOGZsyYocjISBUUFKhfv37673//a90fEBCgxYsXa86cOerVq5ecnZ0VEhKif/zjH9ecen4le3t7LVmyRHFxcRo7dqxycnLk6empd955RyEhIcWuEQAAAABwfXaW4s5lBm7g8j8qnLSrp3PZeTauBtdS3bmS2jerYesybCo7O1spKSny8fGxfikAuBNxr6Ks4F5FWcG9itK6nHOuXJi6KBV+ijgAAAAAAEYgYAMAAAAAYAACNgAAAAAABiBgAwAAAABgAFYRh+FcnOxtXQKKwP83AAAAwK1DwIbhgj1dbV0CrsNiscjOzs7WZQAAAADlDlPEYSiz2aycnBxbl4HrIFwDAAAAtwYBG4bj0+oAAAAAKiICNgAAAAAABiBgAwAAAABgAAI2DMc7vgAAAAAqIgI2DOXg4CAnJydbl1FivDcOAAAA4GbxmS4Ybmv6eWXm5Nu6jGJzcbLn02IAAAAAbhoBG4bLzMnXuew8W5cBAAAAALcVU8QBAAAAADAAARsAAAAAAAMQsAEAAAAAMAAB+w41aNAgTZo0qcz0CwAAAAAVHQEbAAAAAAADELABAAAAADBAmQ/YFy5c0JQpUxQaGqrAwECFh4drz549kqQdO3Zo8ODBCgoKUnBwsKKionT27FnrsWFhYYqPjy/U31+3JSYmqlevXvL19VW3bt308ccfy8vLS0ePHpUkHT9+XJGRkQoJCdEDDzygNm3aKC4uTgUFBZIkk8mkDh06aOrUqQoKCtLIkSNLNLbx48fL399foaGhmjt3rrVfSUpPT9fw4cMVHBysoKAgjR49WseOHbPuN5vNmjZtmkJCQhQUFFSoLknq2bOnoqKiCp3zhx9+kK+vr86dO1fsOgEAAAAA5SBgjx07Vps3b1ZsbKzWrl0rd3d3RUREaNeuXRo0aJAaN26sNWvWaM6cOdq1a5eeeeYZ5efnF6vvlJQUPffccwoJCdG6des0YsQIzZgxo1CbESNGKDMzU0uXLtXGjRsVERGhxYsX65tvvrG2OXz4sP744w+tXbtWkZGRxR7bl19+qRo1ashkMmnixIlaunSpVqxYIUk6duyY+vXrJwcHBy1fvlxLlizRqVOnFB4erqysLEnS1KlTtWHDBk2fPl2rV6/W77//rm3btln77927t7744gtdvHjRum3t2rUKCwtT9erVi10nAAAAAKCMB+wDBw5o8+bNeu2119S6dWs1aNBAkydPVq9evbR48WJ5eXkpOjpanp6eatmypWbNmqXk5GQlJiYWq/9ly5apWbNmmjhxou6//3517dpVo0aNsu6/ePGievTooSlTpsjb21vu7u4aMmSIateurX379hXqa+TIkXJ3d1fjxo2LPb6mTZvqlVdekaenpx5//HENHjxYS5YskSS9//77cnZ21ptvvilvb2/5+/tr7ty5OnPmjNatW6esrCyZTCaNGTNGjzzyiBo3bqxp06apdu3a1v67d+8us9msr7/+WpKUlZWlr7/+Wr179y52jQAAAACAP5XpgJ2WliZJCggIsG6rUqWKoqKilJ6erubNmxdq7+3tLRcXl6vCb1H27t1bqG9JatGihfVvR0dHhYeH65dfftHUqVM1bNgwtWnTRqdPny40FVuSGjZsWPyB/X9BQUGFfvv5+enkyZM6f/680tLS1KxZMzk4OFj316lTRx4eHkpLS1NGRoYuXbokX19f6/4qVaqoadOm1t81atRQu3bttHbtWknSv//9b7m4uCg0NLTEtQIAAABARVemA3alSpWK3GexWIrcXrly5SKPy8vLs/5tb29/VVC+UnZ2tp566iktWLBArq6u6tWrl95//33dd999V7V1dHQssp+i3HVX4f97CgoKZGdnp8qVKxc5voKCAlWuXFl2dnaSrr4Of71mffr00X/+8x+dOXNG69evV48ePWRvb1/iWgEAAACgoivTAdvT01OSlJSUZN2Wl5ensLAwHTx4UL/++muh9qmpqcrKyrIeV7lyZev7ytKfU6TPnDlj/e3t7a3du3cX6mPHjh3WvxMTE5WcnKwVK1Zo9OjR6tKli6pWraozZ84UGYBLIjk5udDvX3/9VfXq1ZOTk5O8vLyUlJQks9ls3X/69GkdOnRInp6e8vDwUJUqVbR9+3br/ry8PKWmphbqMzQ0VHXq1NGaNWu0bds2pocDAAAAQCmV6YDt4eGhjh07KiYmRlu2bFFGRoaio6OVm5ur1atXa9++fZoyZYrS09O1detWTZgwQU2bNlVISIikP6eWb9iwQdu3b9f+/fv10ksvFXp6GxERoaSkJL355pvKyMjQV199pblz50qS7OzsrE+q169fr2PHjmnbtm0aOXKkLl26VCj4ltb27dsVFxen9PR0ffjhh3r//fetq5D3799fFy5c0IsvvqjU1FTt3r1bY8aMUY0aNdS1a1fdfffdCg8P19y5c/Xll18qPT1dr732mk6ePFnoHHfddZd69uypBQsWyNfX1/qPDwAAAACAkil6jnUZMW3aNM2cOVNjxoyR2WyWv7+/EhIS5O3trcWLF2v27Nnq2bOnqlatqvbt22v8+PHWKeLjxo3TuXPn9PTTT8vFxUURERE6f/68te8mTZronXfe0axZs7Rs2TJ5eHgoPDxc8fHxqly5svz8/BQVFaVly5Zp9uzZuvfee9WlSxe5ubkVeqpeWn379tXBgwfVq1cv1axZU+PHj7c+Ya5Xr55WrlypuLg462rirVq1UlxcnFxdXSVJ48ePV5UqVfT666/rwoUL6ty5s8LCwq46T+/evbVgwQKeXgMAAADATbCzGDGXuZzavXu3KlWqVGhhsE8//VQvvfSSduzYcd13wMuSrVu36rnnntMPP/wgFxeXUvdz+R8VTtrV07nsvBu0vnNUd66k9s1q2LoM3CbZ2dlKSUmRj4+PnJ2dbV0OUCTuVZQV3KsoK7hXUVqXc86VC0gXpUxPEb/VUlJSNHjwYG3atEnHjx/XTz/9pPj4eHXt2rVchOv09HT9+9//1rRp09SrV6+bCtcAAAAAUNGV/ZR4Cz355JM6deqUpk2bppMnT6pWrVrq2rWrRo8eXeo+33vvPc2fP/+6bV566SX17du31OcorkOHDikqKkr+/v6KjIy85ecDAAAAgPKMgH0ddnZ2GjVqlEaNGmVYn08++aQ6dux43Ta1atUy7HzXExYWpp07d96WcwEAAABAeUfAvs2qVaumatWq2boMAAAAAIDBCNgwnIuT/Y0b3UHKWr0AAAAA7kwEbBgu2NPV1iWUmMVikZ2dna3LAAAAAFCGsYo4DGU2m5WTk2PrMkqMcA0AAADgZhGwYTg+rQ4AAACgIiJgAwAAAABgAAI2AAAAAAAGIGDDcLzPDAAAAKAiImDDUA4ODnJycrJ1GXcE3kUHAAAAKhY+0wXDbU0/r8ycfFuXYVMuTvZl8nNlAAAAAEqPgA3DZebk61x2nq3LAAAAAIDbiiniAAAAAAAYgIANAAAAAIABCNgAAAAAABiAgF1GnDt3TkOGDJGvr6+eeOIJW5cDAAAAAPgLFjkrI9avX69t27bp/fff17333mvrcgAAAAAAf0HALiPOnz+vOnXqyM/Pz9alAAAAAACuodxNEb9w4YKmTJmi0NBQBQYGKjw8XHv27JEk7dixQ4MHD1ZQUJCCg4MVFRWls2fPWo8NCwtTfHx8of7+ui0xMVG9evWSr6+vunXrpo8//lheXl46evSoJOn48eOKjIxUSEiIHnjgAbVp00ZxcXEqKCiQJJlMJnXo0EFTp05VUFCQRo4cecMxTZo0SfHx8Tp+/Li8vLxkMplUUFCghQsX6rHHHlOzZs3UvHlzDR06VIcPHy7WtZCk7du3a+DAgfLz89Ojjz6qmJgYZWVlleKqAwAAAADKXcAeO3asNm/erNjYWK1du1bu7u6KiIjQrl27NGjQIDVu3Fhr1qzRnDlztGvXLj3zzDPKz88vVt8pKSl67rnnFBISonXr1mnEiBGaMWNGoTYjRoxQZmamli5dqo0bNyoiIkKLFy/WN998Y21z+PBh/fHHH1q7dq0iIyNveN6XX35ZERERuu+++5SYmKguXbpoxYoVSkhI0KRJk/TFF19o3rx5OnjwoKZPn37Da/G///1Pqampevrpp9W6dWutX79eb775ppKTkxURESGLxVLMqw0AAAAAuKxcTRE/cOCANm/erISEBIWGhkqSJk+eLFdXVy1evFheXl6Kjo6WJHl6emrWrFnq0aOHEhMT9cgjj9yw/2XLlqlZs2aaOHGiJOn+++/XmTNn9MYbb0iSLl68qB49eqhz585yc3OTJA0ZMkTvvfee9u3bp/bt21v7GjlypNzd3Ys1LhcXFzk7O8ve3l516tSRJNWvX18zZsxQ27ZtJUl169ZVp06dtHHjxhtei7NnzyohIUGtWrXS8OHDJUkNGzbUW2+9pfbt2+vnn39WcHBwsWoDAAAAAPypXAXstLQ0SVJAQIB1W5UqVRQVFaUuXbqoVatWhdp7e3vLxcVF+/btK1bA3rt3rx5++OFC21q0aGH929HRUeHh4dq4caN2796tQ4cOad++fTp9+rR1ivhlDRs2LOHoCgsLC9OuXbs0Z84cZWRkKCMjQ/v377cugHa9a3F5LIcOHVJgYOBVfaenpxOwAQAAAKCEylXArlSp6OEUNe3ZYrGocuXKRR6Xl5dn/dve3v6qoHyl7OxshYeH6+LFi+rUqZN69eolPz8/DRw48Kq2jo6ORfZTHIsWLdK8efPUq1cvhYSEaMiQIdq0aZM+//xzSde/FpJUUFCg7t27W59gX6lmzZo3VRsAAAAAVETlKmB7enpKkpKSkhQSEiLpz4DcsWNHnThxQk5OToXap6amKisry3pc5cqVCy3ylZWVpTNnzlh/e3t7a/fu3YX62LFjh/XvxMREJScn68cff1Tt2rUl/fn96jNnzhj+XvOCBQv0/PPP69lnn7VuS0hIsJ7netdi4sSJaty4sfbv368GDRpYj09PT1dcXJzGjRsnFxcXQ+sFAAAAgPKuXC1y5uHhoY4dOyomJkZbtmxRRkaGoqOjlZubq9WrV2vfvn2aMmWK0tPTtXXrVk2YMEFNmza1BtCAgABt2LBB27dv1/79+/XSSy/J3t7e2n9ERISSkpL05ptvKiMjQ1999ZXmzp0rSbKzs9N9990n6c9vVh87dkzbtm3TyJEjdenSJZnNZkPH6ubmph9//FH79+/XgQMH9Pbbb+vLL7+0nud61+Khhx5SRESE9u7dq5iYGKWnp2vHjh0aP368Dh48eNPT1wEAAACgIipXAVuSpk2bphYtWmjMmDHq3bu3Tpw4oYSEBPn7+2vx4sXas2ePevbsqbFjxyowMFBLly61ThEfN26cmjZtqqefflpDhgxRQECAmjdvbu27SZMmeuedd/Tdd9+pe/fumjt3rsLDwyX9+fTbz89PUVFRWrFihTp37qyoqCi1aNFC3bp1U1JSkqHjnDlzpi5evKg+ffooPDxcaWlpiomJ0ZkzZ3T8+PHrXouaNWsqICBAixcvVkpKinr16qURI0bIw8NDy5Ytk4ODg6G1AgAAAEBFYGfhm0zFtnv3blWqVElNmza1bvv000/10ksvaceOHTd877m8u/yPCCft6ulcdt4NWpdv1Z0rqX2zGrYuA9eQnZ2tlJQU+fj4yNnZ2dblAEXiXkVZwb2KsoJ7FaV1Oef4+vresG25e4J9K6WkpGjw4MHatGmTjh8/rp9++knx8fHq2rVrhQ/XAAAAAFDRkQpL4Mknn9SpU6c0bdo0nTx5UrVq1VLXrl01evToUvf53nvvaf78+ddt89JLL6lv376lPgcAAAAA4NYjYJeAnZ2dRo0apVGjRhnW55NPPqmOHTtet02tWrUMOx8AAAAA4NYgYNtYtWrVVK1aNVuXAQAAAAC4SQRsGM7Fyf7Gjco5rgEAAABQ8RCwYbhgT1dbl3BHsFgssrOzs3UZAAAAAG4TVhGHocxms3Jycmxdxh2BcA0AAABULARsGI5PqwMAAACoiAjYAAAAAAAYgIANAAAAAIABCNgwHO8eAwAAAKiICNgwlIODg5ycnGxdxh2Jd9MBAACA8o3PdMFwW9PPKzMn39Zl3FFcnOz5fBkAAABQzhGwYbjMnHydy86zdRkAAAAAcFsxRRwAAAAAAAMQsAEAAAAAMAABGwAAAAAAAxCwK6hBgwZp0qRJti4DAAAAAMoNAjYAAAAAAAYgYAMAAAAAYAACdhlx4cIFTZkyRaGhoQoMDFR4eLj27Nkjk8mkDh06aOrUqQoKCtLIkSMlSV9//bX69u2rgIAA+fr6qnfv3vrhhx+u6nP8+PHy9/dXaGio5s6dq4KCAlsMDwAAAADKPAJ2GTF27Fht3rxZsbGxWrt2rdzd3RUREaHz58/r8OHD+uOPP7R27VpFRkZqz549euGFF9S1a1d9+umnWrNmjWrWrKmJEyfKbDZb+/zyyy9Vo0YNmUwmTZw4UUuXLtWKFStsOEoAAAAAKLsq2boA3NiBAwe0efNmJSQkKDQ0VJI0efJkubq6ytnZWZI0cuRIubu7S5JSUlIUHR2tAQMGWPsYPHiwhg0bpjNnzsjNzU2S1LRpU73yyiuSJE9PT6Wnp2vJkiUaMmTIbRwdAAAAAJQPBOwyIC0tTZIUEBBg3ValShVFRUXJZDJJkho2bGjd5+Pjo2rVqmnRokU6cOCADh06pNTUVElSfn6+tV1QUFCh8/j5+WnBggU6f/68XF1db9FoAAAAAKB8Yop4GVCp0o3/HcTR0dH6988//6zHHntMSUlJ8vb21qhRoxQXF3fVMXfdVfj//oKCAtnZ2aly5co3XzQAAAAAVDAE7DLA09NTkpSUlGTdlpeXp7CwMJ09e/aq9kuWLFFwcLDi4+M1ZMgQtWrVSidOnJAkWSwWa7vk5ORCx/3666+qV6+enJycbsUwAAAAAKBcI2CXAR4eHurYsaNiYmK0ZcsWZWRkKDo6Wrm5udds7+bmpn379mnbtm06evSoPv74Y82ZM0eSCi1ytn37dsXFxSk9PV0ffvih3n//fesq5AAAAACAkuEd7DJi2rRpmjlzpsaMGSOz2Sx/f38lJCRo7969V7UdPXq0Tp8+reHDh0uSGjVqpGnTpunFF19UUlKS9Yl43759dfDgQfXq1Us1a9bU+PHj1bt379s6LgAAAAAoL+wsV84ZBm7C5SnsJ+3q6Vx2no2rubNUd66k9s1q2LoMSMrOzlZKSop8fHysq/ADdyLuVZQV3KsoK7hXUVqXc46vr+8N2zJFHAAAAAAAAxCwAQAAAAAwAAEbAAAAAAADELABAAAAADAAq4jDcC5O9rYu4Y7DNQEAAADKPwI2DBfs6WrrEu5IFotFdnZ2ti4DAAAAwC3CFHEYymw2Kycnx9Zl3JEI1wAAAED5RsCG4fi0OgAAAICKiIANAAAAAIABCNgwHFOhAQAAAFREBGwYysHBQU5OTrYu447BdHkAAACg4mAVcRhua/p5Zebk27oMm3NxsmdFdQAAAKACIWDDcJk5+TqXnWfrMgAAAADgtmKKOAAAAAAABiBgAwAAAABgAAI2AAAAAAAGIGADAAAAAGAAAnYZ9v333yssLEy+vr5asWKFwsLCFB8fX6xjBw0apEmTJt3iCgEAAACg4mAV8TJs9uzZ8vDw0IoVK1S9enV169ZNVapUsXVZAAAAAFAhEbDLsP/9739q27at6tWrZ+tSAAAAAKDCY4q4gS5cuKApU6YoNDRUgYGBCg8P1549e2QymdShQwdNnTpVQUFBGjlypCTp66+/Vt++fRUQECBfX1/17t1bP/zwg3Wft7e3jh07Vugc/fr104wZM+Tl5aVjx45p3rx58vLykqRCU8RzcnL08ssvq1WrVvL19VXPnj315ZdfXlVvVFSUHnzwQQUFBWnSpEnKzs6+1ZcJAAAAAMolAraBxo4dq82bNys2NlZr166Vu7u7IiIidP78eR0+fFh//PGH1q5dq8jISO3Zs0cvvPCCunbtqk8//VRr1qxRzZo1NXHiRJnNZj366KOqWbOm1q1bZ+0/IyNDO3fuVJ8+fZSYmKj77rtPERERSkxMvKqWOXPmaN++fVq0aJE2bNigNm3aKDIyUkePHrW2+fLLL3XPPffIZDJp5syZ2rBhg957773bcq0AAAAAoLxhirhBDhw4oM2bNyshIUGhoaGSpMmTJ8vV1VXOzs6SpJEjR8rd3V2SlJKSoujoaA0YMMDax+DBgzVs2DCdOXNGbm5u6tGjh9atW2d94r127Vr5+vqqUaNGkiR7e3s5OzurTp06V9Vz+PBh3X333XJ3d5erq6vGjBmjFi1aqFq1atY2fn5+ioyMlCTVr19frVq10p49e27B1QEAAACA8o+AbZC0tDRJUkBAgHVblSpVFBUVJZPJJElq2LChdZ+Pj4+qVaumRYsW6cCBAzp06JBSU1MlSfn5+ZKkPn36aMmSJdq1a5f8/Py0fv16DRs2rFj1DBs2TMOHD1dISIj8/PzUqlUrde/eXS4uLtY2V9YjSdWqVbtqSjoAAAAAoHiYIm6QSpVu/G8Vjo6O1r9//vlnPfbYY0pKSpK3t7dGjRqluLi4Qu0bNWokf39/rV+/Xj///LNOnz6tbt26FauewMBAff/995o7d64eeOABrV27Vl26dNFPP/1kbWNvb1/M0QEAAAAAboSAbRBPT09JUlJSknVbXl6ewsLCdPbs2avaL1myRMHBwYqPj9eQIUPUqlUrnThxQpJksVis7fr06aOvv/5aGzduVPv27eXq6lqseubOnatff/1V7dq10yuvvKIvvvhC7u7u+uKLL25mmAAAAACAIhCwDeLh4aGOHTsqJiZGW7ZsUUZGhqKjo5Wbm3vN9m5ubtq3b5+2bdumo0eP6uOPP9acOXMkSWaz2dqua9eu+t///ieTyaRevXoVu54jR47otdde008//aRjx47piy++0PHjxxUYGHhzAwUAAAAAXBPvYBto2rRpmjlzpsaMGSOz2Sx/f38lJCRo7969V7UdPXq0Tp8+reHDh0v6czr4tGnT9OKLLyopKcn6RLxq1apq3769fv75Z7Vq1arYtbz22muaMWOGXnzxRZ07d05169bVhAkT1KNHD2MGCwAAAAAoxM5y5Xxk3JEGDRqk5s2bW1f8vlNdnh5/0q6ezmXn2bga26vuXEntm9WwdRn4i+zsbKWkpMjHx8e6wj9wJ+JeRVnBvYqygnsVpXU55/j6+t6wLU+w72Bff/21UlJStHPnTs2cOdPW5QAAAAAAroOAfQdbvHixMjIyNGXKFLm5udm6HAAAAADAdRCw72CrV6+2dQkAAAAAgGJiFXEAAAAAAAzAE2wYzsXJ3tYl3BG4DgAAAEDFQsCG4YI9XW1dwh3DYrHIzs7O1mUAAAAAuA2YIg5Dmc1m5eTk2LqMOwbhGgAAAKg4CNgwHJ9WBwAAAFAREbABAAAAADAAARuGY1o0AAAAgIqIgA1DOTg4yMnJydZl3BSmuAMAAAAoDVYRh+G2pp9XZk6+rcsoFRcne1ZBBwAAAFAqBGwYLjMnX+ey82xdBgAAAADcVkwRBwAAAADAAARsAAAAAAAMQMAGAAAAAMAABOxyZtKkSRo0aJAk6ejRo/Ly8tLWrVslSYMGDdKkSZNsWR4AAAAAlFssclaOubm5KTExUdWqVbN1KQAAAABQ7hGwyzF7e3vVqVPH1mUAAAAAQIXAFPESuHDhgqZMmaLQ0FAFBgYqPDxce/bskclkUocOHTR16lQFBQVp5MiRkqT09HQNHz5cwcHBCgoK0ujRo3Xs2DFrfxaLRcuXL9djjz0mPz8/de3aVZ999pl1/4kTJzRhwgS1atVKAQEBeuaZZ5Samlro+Pnz56tNmzYKCAhQVFSUcnNzrfv/OkX8r9LT0zVs2DAFBgYqNDRU48eP16lTp4y+bAAAAABQIRCwS2Ds2LHavHmzYmNjtXbtWrm7uysiIkLnz5/X4cOH9ccff2jt2rWKjIzUsWPH1K9fPzk4OGj58uVasmSJTp06pfDwcGVlZUmSFi9erLfffltDhw7VZ599pqeeekoTJ07Uli1blJWVpf79++vkyZN69913tXr1ajk6Oio8PNwa0hctWqTFixdr4sSJMplMcnV11YYNG4o1lpMnT2rAgAFq0KCBPvroIy1YsEBZWVnq16+fsrOzb9k1BAAAAIDyiinixXTgwAFt3rxZCQkJCg0NlSRNnjxZrq6ucnZ2liSNHDlS7u7ukqS4uDg5OzvrzTfflIODgyRp7ty5ateundatW6cBAwZo+fLlGjx4sPr27Svpz0XILl68qLy8PK1fv15nz56VyWRSzZo1JUlvvfWW2rdvr1WrVunFF1/UP//5Tw0ePFjdunWTJEVFRRX5tPqvPvjgA91333165ZVXrNtmz56tli1bauPGjerdu7cBVw0AAAAAKg4CdjGlpaVJkgICAqzbqlSpoqioKJlMJklSw4YNC7Vv1qyZNVxLUp06deTh4aG0tDSdPXtWp06dkr+/f6HzDBs2TNKf4b1hw4bWcC1Jjo6O8vPzK3S8r69voeMDAgKUnp5+w/Hs3btXv/32mwIDAwttz83NLdbxAAAAAIDCCNjFVKnSjS+Vo6Oj9W+LxXLNNgUFBapcubIqV6583b6ud3ylSpVkZ2d3zXbFqfNyPy1bttRrr7121T4XF5di9QEAAAAA+D+8g11Mnp6ekqSkpCTrtry8PIWFhens2bNXtffy8lJSUpLMZrN12+nTp3Xo0CF5enrKxcVF99xzT6H+JGn06NGKjY2Vl5eXDh48qDNnzlj35ebmas+ePWrUqJFq1KghNzc3/frrr4WO37NnT7HG07hxY6Wnp8vNzU0NGjRQgwYNVK1aNU2bNs36tB4AAAAAUHwE7GLy8PBQx44dFRMToy1btigjI0PR0dGFVu2+Uv/+/XXhwgW9+OKLSk1N1e7duzVmzBjVqFFDXbt2lSQ9++yzWr58udatW6fDhw9rxYoV2rRpk9q1a6fu3burevXqGjt2rHbv3q3U1FRNmDBB2dnZ6tevn6Q/p5OvWrVKH374oTIyMjR79mzt3r27WOMZMGCAMjMzNWHCBKWmpio1NVWRkZFKSkpSkyZNjLloAAAAAFCBMEW8BKZNm6aZM2dqzJgxMpvN8vf3V0JCgvbu3XtV23r16mnlypWKi4uzribeqlUrxcXFydXVVZIUHh6uixcvas6cOTp16pQaNmyot99+Ww899JAkaeXKlZo+fbqGDBkiSQoKCtIHH3xgXUht4MCBKigo0LvvvqvTp0+rdevWeuKJJ5SRkXHDsbi7u2vlypV666231L9/f9nb26t58+ZasWJFofe+AQAAAADFY2cp6mVfoIQuT3c/aVdP57LzbFxN6VR3rqT2zWrYugzcQtnZ2UpJSZGPj4/1CwDAnYh7FWUF9yrKCu5VlNblnPPXBaavhSniAAAAAAAYgIANAAAAAIABCNgAAAAAABiAgA0AAAAAgAFYRRyGc3Gyt3UJpVaWawcAAABgWwRsGC7Y09XWJdwUi8UiOzs7W5cBAAAAoIxhijgMZTablZOTY+sybgrhGgAAAEBpELBhOD6tDgAAAKAiImADAAAAAGAAAjYAAAAAAAYgYMNwvMMMAAAAoCIiYMNQDg4OcnJysnUZN433yAEAAACUFJ/pguG2pp9XZk6+rcsoNRcn+zL/qTEAAAAAtx8BG4bLzMnXuew8W5cBAAAAALcVU8QBAAAAADAAARsAAAAAAAMQsAEAAAAAMAABuxgmTZqkQYMGSZKOHj0qLy8vbd26VZI0aNAgTZo0ybBzbd26VV5eXjp69KhhfRaX0WMBAAAAgIqERc5KyM3NTYmJiapWrZqtSwEAAAAA3EEI2CVkb2+vOnXq2LoMAAAAAMAdxuZTxC9cuKApU6YoNDRUgYGBCg8P1549e2QymdShQwdNnTpVQUFBGjlypCQpPT1dw4cPV3BwsIKCgjR69GgdO3bM2p/FYtHy5cv12GOPyc/PT127dtVnn31m3X/ixAlNmDBBrVq1UkBAgJ555hmlpqYWOn7+/Plq06aNAgICFBUVpdzcXOv+v04R/6v09HQNGzZMgYGBCg0N1fjx43Xq1KkSX5fvv/9e3bp1U7NmzdS1a1d99913hWp877331K5dO/n7+6tHjx5av359oeO//vpr9e3bVwEBAfL19VXv3r31ww8/WPebzWZNmzZNISEhCgoKUlxcnAoKCkpcJwAAAADgTzYP2GPHjtXmzZsVGxurtWvXyt3dXRERETp//rwOHz6sP/74Q2vXrlVkZKSOHTumfv36ycHBQcuXL9eSJUt06tQphYeHKysrS5K0ePFivf322xo6dKg+++wzPfXUU5o4caK2bNmirKws9e/fXydPntS7776r1atXy9HRUeHh4daQvmjRIi1evFgTJ06UyWSSq6urNmzYUKyxnDx5UgMGDFCDBg300UcfacGCBcrKylK/fv2UnZ1douuyYsUKRUdH69NPP1XDhg01duxYXbhwQZL09ttv64MPPrDuHzx4sCZPnqxVq1ZJkvbs2aMXXnhBXbt21aeffqo1a9aoZs2amjhxosxmsyRp6tSp2rBhg6ZPn67Vq1fr999/17Zt20pUIwAAAADg/9h0iviBAwe0efNmJSQkKDQ0VJI0efJkubq6ytnZWZI0cuRIubu7S5Li4uLk7OysN998Uw4ODpKkuXPnql27dlq3bp0GDBig5cuXa/Dgwerbt6+kPxfuunjxovLy8rR+/XqdPXtWJpNJNWvWlCS99dZbat++vVatWqUXX3xR//znPzV48GB169ZNkhQVFVXk0+q/+uCDD3TffffplVdesW6bPXu2WrZsqY0bN6p3797FvjYvvfSSgoODJUnPP/+8vv76a6Wnp6tRo0ZatmyZZs2apUcffVSSVL9+fR07dkwJCQkaOHCg7O3tFR0drQEDBlj7Gzx4sIYNG6YzZ87IxcVFJpNJr732mh555BFJ0rRp07Rly5Zi1wcAAAAAKMymATstLU2SFBAQYN1WpUoVRUVFyWQySZIaNmxYqH2zZs2s4VqS6tSpIw8PD6Wlpens2bM6deqU/P39C51n2LBhkv4M7w0bNrSGa0lydHSUn59foeN9fX0LHR8QEKD09PQbjmfv3r367bffFBgYWGh7bm5usY6/koeHh/VvV1dXSdLFixe1f/9+5ebmavz48brrrv+bgJCXlyez2ayLFy/Kx8dH1apV06JFi3TgwAEdOnTIOg0+Pz9fGRkZunTpUqFxVqlSRU2bNi1RjQAAAACA/2PTgF2p0o1P7+joaP3bYrFcs01BQYEqV66sypUrX7ev6x1fqVIl2dnZXbNdceq83E/Lli312muvXbXPxcWlWH1cdmV4vsxisVhrmz17tu6///6r2jg4OOjnn3/WM888o0cffVRBQUHq3r27cnJy9Pzzz0vSTY8TAAAAAHA1m76D7enpKUlKSkqybsvLy1NYWJjOnj17VXsvLy8lJSVZ3yOWpNOnT+vQoUPy9PSUi4uL7rnnnkL9SdLo0aMVGxsrLy8vHTx4UGfOnLHuy83N1Z49e9SoUSPVqFFDbm5u+vXXXwsdv2fPnmKNp3HjxkpPT5ebm5saNGigBg0aqFq1apo2bZr1af3Nuv/++1WpUiUdP37ceo4GDRro+++/V0JCgu666y4tWbJEwcHBio+P15AhQ9SqVSudOHFC0p+h2sPDQ1WqVNH27dut/ebl5RVa7A0AAAAAUDI2DdgeHh7q2LGjYmJitGXLFmVkZCg6OrrQqt1X6t+/vy5cuKAXX3xRqamp2r17t8aMGaMaNWqoa9eukqRnn31Wy5cv17p163T48GGtWLFCmzZtUrt27dS9e3dVr15dY8eO1e7du5WamqoJEyYoOztb/fr1k/TndPJVq1bpww8/VEZGhmbPnq3du3cXazwDBgxQZmamJkyYoNTUVKWmpioyMlJJSUlq0qSJIdfMxcVFTz31lObMmaN169bpyJEj+uijjxQXF6d77rlH0p/f6t63b5+2bdumo0eP6uOPP9acOXMk/bl6+N13363w8HDNnTtXX375pdLT0/Xaa6/p5MmThtQIAAAAABWRzecET5s2TTNnztSYMWNkNpvl7++vhIQE7d2796q29erV08qVKxUXF2ddTbxVq1aKi4uzvqccHh6uixcvas6cOTp16pQaNmyot99+Ww899JAkaeXKlZo+fbqGDBkiSQoKCtIHH3xgXUht4MCBKigo0LvvvqvTp0+rdevWeuKJJ5SRkXHDsbi7u2vlypV666231L9/f9nb26t58+ZasWJFofe+b1ZUVJRq1KihOXPm6I8//pCbm5tGjx6toUOHSvrzif3p06c1fPhwSVKjRo00bdo0vfjii0pKSpKnp6fGjx+vKlWq6PXXX9eFCxfUuXNnhYWFGVYjAAAAAFQ0dpaiXkwGSujy1PyTdvV0LjvPxtWUXnXnSmrfrIaty8Atkp2drZSUFPn4+Fi/VgDcibhXUVZwr6Ks4F5FaV3OOX9dDPtabP4dbAAAAAAAygObTxGvSB588EHl5+cXub9WrVr6+uuvb2NFAAAAAACjELBvI5PJVOSnwiTJ3t7+NlYDAAAAADASAfs2ql+/vq1LAAAAAADcIgRsGM7FqWw/iS/r9QMAAACwDQI2DBfs6WrrEm6axWKRnZ2drcsAAAAAUIawijgMZTablZOTY+sybhrhGgAAAEBJEbBhOD6tDgAAAKAiImADAAAAAGAAAjYAAAAAAAYgYMNwvL8MAAAAoCIiYMNQDg4OcnJysnUZtwzvlwMAAAAoCp/pguG2pp9XZk6+rcswnIuTfbn4BBkAAACAW4OADcNl5uTrXHaercsAAAAAgNuKKeIAAAAAABiAgA0AAAAAgAEI2AAAAAAAGICADQAAAACAAQjYAAAAAAAYgIANAAAAAIABCNhl2IULFzRlyhSFhoYqMDBQ4eHh2rNnj0wmk7y8vAq1/eu2sLAwzZ8/X88884z8/PzUoUMHffjhh7d7CAAAAABQbhCwy7CxY8dq8+bNio2N1dq1a+Xu7q6IiAidP3++WMfPnz9fgYGBWrt2rQYOHKhXX31VGzZsuMVVAwAAAED5VMnWBaB0Dhw4oM2bNyshIUGhoaGSpMmTJ8vV1VXOzs7F6iM0NFSjRo2SJN1///3atWuXli9fri5dutyyugEAAACgvOIJdhmVlpYmSQoICLBuq1KliqKiolSpUvH+3SQ4OLjQ78DAQGu/AAAAAICSIWCXUcUN0Zfl5+ffsI+CggLddRe3BAAAAACUBmmqjPL09JQkJSUlWbfl5eUpLCzMGpKzsrKs+w4ePHhVH1ceK0nbt29X06ZNb0G1AAAAAFD+EbDLKA8PD3Xs2FExMTHasmWLMjIyFB0drdzcXN1///2ys7NTfHy8jh49qn//+9/65JNPrurj888/16pVq3Tw4EEtXrxYX331lYYOHWqD0QAAAABA2UfALsOmTZumFi1aaMyYMerdu7dOnDihhIQE+fn5KSYmRl999ZU6d+6sf/3rX5o4ceJVx/fq1UtfffWVunfvrnXr1mn27Nl65JFHbDASAAAAACj7WEW8DHNxcdGUKVM0ZcqUq/b169dP/fr1K7StZ8+ehX7fe++9mjp16q0sEQAAAAAqDJ5gAwAAAABgAAI2AAAAAAAGYIp4BfXNN9/YugQAAAAAKFd4gg0AAAAAgAF4gg3DuTjZ27qEW6K8jgsAAACAMQjYMFywp6utS7hlLBaL7OzsbF0GAAAAgDsQU8RhKLPZrJycHFuXccsQrgEAAAAUhYANw1ksFluXAAAAAAC3HQEbAAAAAAADELABAAAAADAAARuG4z1lAAAAABURARuGcnBwkJOTk63LsCneQQcAAAAqJj7TBcNtTT+vzJx8W5dhEy5O9uX6M2UAAAAAikbAhuEyc/J1LjvP1mUAAAAAwG3FFHEAAAAAAAxAwAYAAAAAwAAEbAAAAAAADEDALgEvLy+ZTCbD25bWt99+q/3790uStm7dKi8vLx09evSWnhMAAAAAcG0E7DLq2LFjGj58uM6cOSNJCgwMVGJiotzc3GxcGQAAAABUTKwiXkb99VvLDg4OqlOnjo2qAQAAAADwBLsIv//+u0aMGKHAwEC1adNGn376qXVfQUGBFi5cqMcee0zNmjVT8+bNNXToUB0+fPiafcXHx2vIkCF655139PDDDyswMFCvvvqqTpw4oeeee07+/v7q0KGDvvvuO+sxx48fV2RkpEJCQvTAAw+oTZs2iouLU0FBgY4ePap27dpJkgYPHqz4+Pirpohf73hJMplM6tChg/V/mzVrpt69e+vXX3+9RVcUAAAAAMo3AvY15OXlaejQoTp79qxWrlypOXPmKCEhwbp/xYoVSkhI0KRJk/TFF19o3rx5OnjwoKZPn15kn9u2bVNGRoZWrVqlV155Rf/617/0xBNPqHPnzjKZTPL09NSkSZOsT6ZHjBihzMxMLV26VBs3blRERIQWL16sb775Rm5ubvrwww8l/RneIyIirjrf9Y6/7MSJE1q9erXi4uL0ySefyMnJqVANAAAAAIDiI2Bfw08//aTffvtNM2fO1AMPPKDAwEDFxsZa99evX18zZsxQ27ZtVbduXYWEhKhTp05KS0srss+CggLFxMTIw8NDffr0UY0aNdSyZUv17NlTnp6e6t+/v86ePatTp07p4sWL6tGjh6ZMmSJvb2+5u7tryJAhql27tvbt2yd7e3vVrFlTklStWjXdfffdhc51o+Mvu3TpkmJiYhQQEKDGjRvr6aef1uHDh3Xq1CmDrygAAAAAlH+8g30NaWlpqlatmurXr2/d5uPjI0dHR0lSWFiYdu3apTlz5igjI0MZGRnav3+/7r333iL7rFWrlqpWrWr97ezsXKj/y32bzWY5OjoqPDxcGzdu1O7du3Xo0CHt27dPp0+ftk7xvp6SHO/p6Wn928XFRdKfwRsAAAAAUDI8wb4GOzu7awbZSpX+/PeIRYsWafDgwTp79qxCQkIUExNzzWnaV6pcufJV2+6669qXPzs7W0899ZQWLFggV1dX9erVS++//77uu+++YtVfkuMdHByu2sYUcQAAAAAoOZ5gX4OPj48yMzP122+/qXHjxpKkgwcPKisrS5K0YMECPf/883r22WetxyQkJBgWTBMTE5WcnKwff/xRtWvXliSdO3dOZ86csZ7Dzs7upo4HAAAAABiLJ9jXEBwcLH9/f02cOFE7d+5UUlKSJk6caH3i7Obmph9//FH79+/XgQMH9Pbbb+vLL7+U2Ww25PyXnzSvX79ex44d07Zt2zRy5EhdunTJeg5nZ2dJf05nz8zMLPHxAAAAAABjEbCv4a677tLChQt1//33KyIiQs8995y6du1qXVhs5syZunjxovr06aPw8HClpaUpJiZGZ86c0fHjx2/6/H5+foqKitKKFSvUuXNnRUVFqUWLFurWrZuSkpIkSTVq1FCfPn00c+ZMzZkzp8THAwAAAACMZWdhzjAMcjm8n7Srp3PZeTauxjaqO1dS+2Y1bF0GriM7O1spKSny8fGxzgQB7kTcqygruFdRVnCvorQu5xxfX98btuUJNgAAAAAABiBgAwAAAABgAAI2AAAAAAAGIGADAAAAAGAAvoMNw7k42du6BJupyGMHAAAAKjoCNgwX7Olq6xJsymKxyM7OztZlAAAAALjNmCIOQ5nNZuXk5Ni6DJsiXAMAAAAVEwEbhuPT6gAAAAAqIgI2AAAAAAAGIGADAAAAAGAAAjYMxzvIAAAAACoiAjYM5eDgICcnJ1uXYQjeJQcAAABQEnymC4bbmn5emTn5ti7jprg42Vf4z40BAAAAKBkCNgyXmZOvc9l5ti4DAAAAAG4rpogDAAAAAGAAAjYAAAAAAAYgYAMAAAAAYAACdgl5eXnJZDKVuG18fLzCwsJuZWmSpLCwMMXHxxe532QyycvLy6Y1AgAAAEB5RMCuYLp06aLExERblwEAAAAA5Q6riFcwjo6OcnR0tHUZAAAAAFDu8AT7On7//XeNGDFCgYGBatOmjT799NNC+7/77js9+eSTCgwMVGhoqGJjY3Xx4sVi9Z2WlqbnnntOLVq0ULNmzdSuXTstWbLEuj8+Pl7h4eGKjIxU8+bNNWXKlGLXferUKQ0dOlS+vr4KCwvTqlWrrPv+OkUcAAAAAGAMAnYR8vLyNHToUJ09e1YrV67UnDlzlJCQYN3/1VdfacSIEXr00UdlMpkUExOjDRs2aNy4cTfsOycnRxEREapevbpWr16tzz77TJ06ddKMGTOUkpJibffLL7+odu3aWrdunQYNGlTs2tesWaMHH3xQ69ev19NPP6033nhDX331VckuAAAAAACgRJgiXoSffvpJv/32m7766ivVr19fkhQbG6uePXtKkhYtWqQOHTpo5MiRkiQPDw9ZLBY9//zz2r9/vxo1alRk3zk5ORo8eLAGDhyou+++W5I0evRoLV68WPv27ZOPj4+17ejRo+Xi4lKi2tu3b6/hw4db69q5c6eWLFmiDh06lKgfAAAAAEDxEbCLkJaWpmrVqlnDtST5+PhY319OS0tT165dCx3z0EMPWfddL2DXrFlTAwYM0Geffaa9e/fq8OHDSk1NlSQVFBRY29WqVavE4VqSgoKCCv329/fX999/X+J+AAAAAADFR8Augp2dXaGwe1mlSn9eMovFctW+y+0vtynKqVOn1K9fP9WsWVNhYWEKDQ2Vr6+vHnnkkULtSrsY2V13FZ75X1BQIAcHh1L1BQAAAAAoHgJ2EXx8fJSZmanffvtNjRs3liQdPHhQWVlZkv78fvT27ds1ZMgQ6zHbtm2TJHl6el63788++0znzp3TF198ocqVK0uS9u3bJ+nawb2kkpOTC/3+9ddfrWMAAAAAANwaLHJWhODgYPn7+2vixInauXOnkpKSNHHiROvT4aFDh+rLL7/U/PnzlZGRoW+//VZTpkxR27Ztbxiw77vvPuXk5Gjjxo06fvy4EhMTrYujmc3mm679888/15IlS3TgwAEtWrRIX331lfVdcQAAAADArcET7CLcddddWrhwoaZOnaqIiAg5Ojrqueee07FjxyRJjz32mGbNmqV3331X8+fPV82aNdWtWzeNHj36hn136tRJycnJmj59urKyslS3bl317dtXmzZtUlJSkvr3739TtT/zzDP69ttvNWvWLNWtW1dvvfWWgoODb6pPAAAAAMD12VmMmJMMSEpKSpIknbSrp3PZeTau5uZUd66k9s1q2LoM3ALZ2dlKSUmRj4+PnJ2dbV0OUCTuVZQV3KsoK7hXUVqXc46vr+8N2zJFHAAAAAAAAzBFvIx4/fXX9cknn1y3zbx58/Twww/fpooAAAAAAFciYJcRo0aN0t///vfrtrnnnntuUzUAAAAAgL8iYJcRNWvWVM2aNW1dBgAAAACgCARsGM7Fyd7WJdy08jAGAAAAALcXARuGC/Z0tXUJhrBYLLKzs7N1GQAAAADKCFYRh6HMZrNycnJsXYYhCNcAAAAASoKADcPxaXUAAAAAFREBGwAAAAAAAxCwAQAAAAAwAAEbhuPdZQAAAAAVEQEbhnJwcJCTk5Oty7AJ3j0HAAAAKjY+0wXDbU0/r8ycfFuXcVu5ONmXm8+TAQAAACgdAjYMl5mTr3PZebYuAwAAAABuK6aIAwAAAABgAAI2AAAAAAAGIGADAAAAAGAAAvZt5OXlJZPJZHjb4rSPj49XWFhYsfsDAAAAAJQMAbuCiIiI0EcffWTrMgAAAACg3GIV8Qri7rvv1t13323rMgAAAACg3OIJ9i3y+++/a8SIEQoMDFSbNm306aefFtr/3Xff6cknn1RgYKBCQ0MVGxurixcvXrOv+Ph49e/fX/PmzVNwcLAefPBBRUVFKSsrq1C7jIwMDRkyRL6+vmrdurUWLlxYqI/LU8SPHj0qLy8vffHFF+rbt6+aNWumsLAw/etf/zL4KgAAAABAxUHAvgXy8vI0dOhQnT17VitXrtScOXOUkJBg3f/VV19pxIgRevTRR2UymRQTE6MNGzZo3LhxRfaZlJSkxMRELVmyRPPmzdMvv/yisWPHFmqzcuVK9ezZUxs2bFD//v01a9Ys/fTTT0X2GRsbq+HDh+vf//63Hn30UU2ePFlHjhy56fEDAAAAQEVEwL4FfvrpJ/3222+aOXOmHnjgAQUGBio2Nta6f9GiRerQoYNGjhwpDw8PtWvXTq+99po2bdqk/fv3X7NPOzs7zZ49Ww888ICCg4P16quv6ocfftCBAwesbQYMGKCePXvK3d1dI0eOlIuLi/bs2VNknUOGDFG7du3k7u6uyMhIFRQUaNeuXcZdCAAAAACoQAjYt0BaWpqqVaum+vXrW7f5+PjI0dHRur958+aFjnnooYes+66lYcOGuvfee62/Lx9/ZfuGDRsWOsbV1VW5ublF1unp6Wn928XFRZJ06dKlItsDAAAAAIpGwL4F7OzsVFBQcNX2SpX+XFPOYrFcte9y+8tt/qpy5cqFfufn50uS7O3trduu/Puya53rMgcHhxK1BwAAAAAUjYB9C/j4+CgzM1O//fabddvBgweti5J5eXlp+/bthY7Ztm2bpMJPla+UkZGhzMxM6+8dO3ZIkpo2bWpo7QAAAACA0iFg3wLBwcHy9/fXxIkTtXPnTiUlJWnixIm6664/L/fQoUP15Zdfav78+crIyNC3336rKVOmqG3btkUG7OzsbE2cOFFpaWn6z3/+o9dff11dunRR3bp1b+fQAAAAAABF4DvYt8Bdd92lhQsXaurUqYqIiJCjo6Oee+45HTt2TJL02GOPadasWXr33Xc1f/581axZU926ddPo0aOL7NPNzU0+Pj4aOHCg7O3t1b17d02YMOF2DQkAAAAAcAN2Fl66vePFx8frk08+0TfffGPrUq4rKSlJknTSrp7OZefZuJrbq7pzJbVvVsPWZaAYsrOzlZKSIh8fHzk7O9u6HKBI3KsoK7hXUVZwr6K0LuccX1/fG7ZlijgAAAAAAAYgYAMAAAAAYAACdhnwwgsv3PHTwwEAAACgoiNgAwAAAABgAFYRh+FcnOxtXcJtVxHHDAAAAKAwAjYMF+zpausSbMJiscjOzs7WZQAAAACwEaaIw1Bms1k5OTm2LsMmCNcAAABAxUbAhuH4tDoAAACAioiADQAAAACAAQjYAAAAAAAYgIANw/EuMgAAAICKiIANQzk4OMjJycnWZdgc76EDAAAAFQ+f6YLhtqafV2ZOvq3LsBkXJ/sK+6kyAAAAoCIjYMNwmTn5OpedZ+syAAAAAOC2Yoo4AAAAAAAGIGADAAAAAGAAAjYAAAAAAAYgYJeSl5eXTCaTrcu4oXfffVcPPfSQAgMDlZSUJC8vL23dutXWZQEAAABAuUPALscyMzM1Z84cDRgwQJ999plcXFxsXRIAAAAAlFsE7HLs/PnzslgsatmyperWratKlVg0HgAAAABuFQJ2Mfz+++8aMWKEAgMD1aZNG3366afWffHx8QoPD1dkZKSaN2+uKVOmSJI+/PBDde/eXX5+fgoICNCAAQOUlJRkPS4nJ0evvfaagoOD1bx5c7388ssaP368Jk2aZG2zY8cODR48WEFBQQoODlZUVJTOnj1r3R8WFqaEhAS98MILCgwMVHBwsKZOnaq8vDxt3bpVYWFhkqS///3vGjRoUKExpaamysvLS7/88kuh7ePGjdPo0aONu3gAAAAAUEEQsG8gLy9PQ4cO1dmzZ7Vy5UrNmTNHCQkJhdr88ssvql27ttatW6dBgwbpq6++0uuvv66hQ4fq3//+t5YtW6bc3Fy98sor1mP+8Y9/6Mcff9Tbb7+t1atXKzMzU59//rl1/+7duzVo0CA1btxYa9as0Zw5c7Rr1y4988wzys/Pt7abM2eOWrRoofXr12vixIlauXKlPvvsMwUGBurDDz+U9Oc/AsTHxxeq2dvbW02bNtXatWut2zIzM/X111+rT58+Rl5CAAAAAKgQCNg38NNPP+m3337TzJkz9cADDygwMFCxsbFXtRs9erTc3d3VsGFDVa9eXW+88YZ69OihunXrKiAgQE888YTS0tIkSUeOHNEXX3yh1157TQ8//LCaNGmiuLg41a5d29rfkiVL5OXlpejoaHl6eqply5aaNWuWkpOTlZiYaG0XGhqqwYMHy93dXX369JG3t7e2b98uBwcH1axZU5JUrVo1Va9e/aqa+/Tpoy+++EK5ubmSpH//+99ydXVVaGiokZcQAAAAACoEAvYNpKWlqVq1aqpfv751m4+PjxwdHa2/a9WqVWgBsRYtWuiBBx7QvHnzNH78eD3xxBOaNm2aCgoKJEl79+6VJAUGBlqPqVKlivz8/Aqdt3nz5oVq8fb2louLi/bt22fd5unpWaiNi4uLLl26VKyxde/eXbm5udq0aZMk6ZNPPlGPHj1kb29frOMBAAAAAP+HgH0DdnZ21mB8pSsXDLsybEvSp59+qscff1xHjhxR8+bN9Y9//KPQu9WXA+y1+r3MYrEUub1y5crW3w4ODsU+9q+qVaum9u3ba/369Tpy5Ih27Nih3r17F+tYAAAAAEBhBOwb8PHxUWZmpn777TfrtoMHDyorK6vIYxYtWqQnnnhC06dP18CBA9WiRQsdOXJE0p/h18vLS3Z2dtq5c6f1GLPZrOTkZOtvLy8v/frrr4X6TU1NVVZW1lVPrW9Gnz599OOPP2rt2rXy8/MztG8AAAAAqEgI2DcQHBwsf39/TZw4UTt37lRSUpImTpyou+4q+tK5ublp+/btSk5O1uHDh7Vs2TKtXLlS0p9B2t3dXZ07d9aUKVP0008/af/+/Xr55Zf1+++/y87OTpL09NNPa9++fZoyZYrS09O1detWTZgwQU2bNlVISIhh43v44YdVu3ZtLV68WL169TKsXwAAAACoaAjYN3DXXXdp4cKFuv/++xUREaHnnntOXbt2tS4gdi3R0dGqXbu2wsPD1bdvX3377beaOXOmJFk/1TVlyhQFBQXphRdeUL9+/XT33XcrMDDQOv3b399fixcv1p49e9SzZ0+NHTtWgYGBWrp0aaEp4kaM7/HHH5fFYlHXrl0N6xcAAAAAKho7S3Ff2IVhcnNz9cMPP6hly5aqWrWqdftjjz2mxx9/XM8///xtrWfSpEnKy8vTm2++eVP9XP7Hg5N29XQuO8+I0sqk6s6V1L5ZDVuXgSJkZ2crJSVFPj4+cnZ2tnU5QJG4V1FWcK+irOBeRWldzjm+vr43bFvphi1gOAcHB8XExOihhx7SyJEjZW9vr48++kjHjx9Xp06dblsdP/74o/bv36/PP/9cq1atum3nBQAAAIDyiIBtA3Z2dlq0aJHi4uLUr18/5efnq2nTplqyZMltXWTs448/1nfffacXXnih0CfCAAAAAAAlR8C2ER8fHy1ZssSmNcyaNcum5wcAAACA8oRFzgAAAAAAMABPsGE4Fyd7W5dgUxV9/AAAAEBFRcCG4YI9XW1dgs1ZLBbrN80BAAAAVAxMEYehzGazcnJybF2GzRGuAQAAgIqHgA3D8Wl1AAAAABURARsAAAAAAAMQsGE4pkcDAAAAqIgI2DCUg4ODnJycbF3GHY0p9AAAAED5xCriMNzW9PPKzMm3dRl3JBcne1ZZBwAAAMopAjYMl5mTr3PZebYuAwAAAABuK6aIAwAAAABgAAI2AAAAAAAGIGADAAAAAGAAAjYAAAAAAAYo8wE7Pj5eYWFhhvV39uxZffjhh9dtM2nSJA0aNMiwc96so0ePysvLS1u3bpUkZWdna9WqVTauCgAAAAAqFlYR/4uZM2fq6NGj6tu3b5FtXn75ZeXn3zmfoXJzc1NiYqKqVasmSVqyZIlMJpMGDhxo48oAAAAAoOIgYP+FxWK5YRsXF5fbUEnx2dvbq06dOtbfxRkDAAAAAMBYZWKKeGZmpqKjo9WyZUsFBQVp8ODBSkpKKnXbH374Qf369ZO/v7/atGmjt99+W/n5+Zo0aZI++eQT/fzzz/Ly8pIkDRo0SNHR0erbt68efPBBrV+//qop4ocOHdKIESMUFBSk4OBgjRs3TmfOnCn2+A4fPqxhw4YpMDBQrVu31tKlS9WhQweZTCZJ156SfuW2K6eIx8fH65133tGxY8fk5eWlo0ePymw2a8aMGQoLC1OzZs300EMPacyYMfrvf/9b6PiFCxeqVatWateunbKysopdPwAAAACgDDzBtlgsGjZsmBwdHbVw4UJVrVpV69atU//+/bVmzZoStW3atKl27NihZ599Vk8//bSmTZumY8eO6cUXX1SlSpX08ssv6+LFi/r9998VHx9v7ffDDz9UXFycvLy8VKdOHf3nP/+x7jt//rwGDhwoLy8vLV++XHfddZdeffVVjR07Vv/85z9vOL6cnBwNGTJEHh4e+uCDD5SVlaWYmBgdOXKkVNcrIiJC2dnZ2rBhgz766CPVrFlTsbGx+vbbbzV9+nTVrVtX+/btU1RUlN599129/PLL1mM/+eQTLV++XDk5OapatWqpzg8AAAAAFdUdH7C3bNminTt3asuWLapevbokady4cdq+fbtWrFihunXrFrvt9OnT9c9//lP+/v6aOHGiJMnT01Ovv/66zpw5IxcXFzk6Oqpy5cqFplz7+Pioe/fu16xvw4YNunDhgmbNmmV9B3rq1Kn6/PPPZTab5eDgcN3xbdiwQf/9739lMpmsNcfFxalHjx6luVy6++675ezsXGjauK+vrzp16qQHH3xQklS3bl09/PDDSktLK3TsgAED1KhRo1KdFwAAAAAqujs+YCcnJ8tisaht27aFtpvNZuXm5hYK2DdqK0lpaWlq1apVof2PPfbYdWto0KBBkfvS0tLUsGFDa7iWJG9vb3l7e19/YP/f3r175eHhYQ3Xl4838j3vHj166D//+Y/efPNNHTx4UAcOHFBGRoY1cF92vXECAAAAAK7vjg/YBQUFqlq1qvV95Cs5ODjoo48+KnZbSapUqeRDdnR0LHJfafq7kr29vQoKCkp8XF5eXrHbvvrqq/riiy/Us2dPhYWF6fnnn1dCQoJOnjxZqN31xgkAAAAAuL47fpGzJk2aKCsrS5cuXVKDBg2s/7333nvatGlTidt6enpetejZ8uXLrZ/lsrOzK1F9jRo10sGDB5WZmWndlpycrJCQEP3+++83PN7b21uHDh3SuXPnrNvS09ML9Ve5cuWrFh07dOhQkX1eOYazZ8/qX//6l1577TVFRUWpd+/e8vHx0YEDB1htHAAAAAAMdMcH7NatW8vHx0eRkZHasmWLDh06pNjYWJlMJnl6epa47dChQ7Vz507NmTNHBw8e1Pfff6/58+fr0UcflSQ5Ozvrjz/+KPYiY927d1e1atX04osvKjU1VXv27NFrr72mJk2a6L777rvh8d26dVONGjU0YcIEpaamaufOnXrxxRcl/V9QDggIUGpqqtavX68jR45o3rx5V70/fSVnZ2f973//U0ZGhqpWrSoXFxdt2rRJhw4d0r59+xQdHa3k5GSZzeZijREAAAAAcGN3fMC2t7fXkiVL1KxZM40dO1aPP/64fvnlF73zzjsKCQkpcVsfHx/NmzdP3333nbp166aYmBgNHjxYI0aMkCT17NlTOTk56tat21VTqK/FyclJCQkJysvL01NPPaWhQ4eqUaNGmj17drHG5+DgoMWLF+vSpUt68skn9cILL6hPnz6S/nxyLUmPP/64Bg4cqKlTp6pHjx46fvy4/v73vxfZZ8eOHVWnTh09/vjj2rt3r+bMmaO0tDR1795dQ4cOVU5OjsaNG6f9+/crJyenWHUCAAAAAK7PzsI8YZs6evSoDh48qNDQUOu2kydPqk2bNlq1atVVC5HdyS5PvT9pV0/nsov/jnhFUt25kto3q2HrMiq07OxspaSkyMfHR87OzrYuBygS9yrKCu5VlBXcqyityznH19f3hm3v+CfY5V1ubq6effZZJSQk6MiRI9q7d6+io6PVsGFD+fv727o8AAAAAEAx3fGriJdljz/++A3f5d66datmzZqlBQsWaO7cuXJ0dFRISIiWLl1qnSIOAAAAALjzEbBvoQULFujSpUvXbVO5cmV16tRJnTp1uk1VAQAAAABuBQL2LfS3v/3N1iUAAAAAAG4TAjYM5+Jkb+sS7lhcGwAAAKD8ImDDcMGerrYu4Y5msVis3zgHAAAAUH6wijgMZTab+bb2DRCuAQAAgPKJgA3D8Wl1AAAAABURARsAAAAAAAMQsGE4pkADAAAAqIgI2DCUg4ODnJycbF3Gbce0eAAAAACsIg7DbU0/r8ycfFuXcdu4ONmzcjoAAAAAAjaMl5mTr3PZebYuAwAAAABuK6aIAwAAAABgAAI2AAAAAAAGIGADAAAAAGAAArbB4uPjFRYWZmifXl5eMplMhvb5VxaLRZ988onOnDlzS88DAAAAAOUVARuSpF9++UWTJk1STk6OrUsBAAAAgDKJgA1JfMcZAAAAAG4WAbsUMjMzFR0drZYtWyooKEiDBw9WUlJSqdrGx8erf//+mjdvnoKDg/Xggw8qKipKWVlZhfrJyMjQkCFD5Ovrq9atW2vhwoXWfQUFBVq4cKEee+wxNWvWTM2bN9fQoUN1+PBhaxsvLy999NFHGjJkiPz8/BQaGqp33nlHkrR161YNHjxYktSuXbtbPh0dAAAAAMojAnYJWSwWDRs2TEeOHNHChQu1Zs0aBQQEqH///tq7d2+p2iYlJSkxMVFLlizRvHnz9Msvv2js2LGF+lq5cqV69uypDRs2qH///po1a5Z++uknSdKKFSuUkJCgSZMm6YsvvtC8efN08OBBTZ8+vVAfM2bMUK9evfT5558rPDxc8fHx+uWXXxQYGKj4+HhJ0ocffqguXbrcgisHAAAAAOUbAbuEtmzZop07d2r27Nny9/eXp6enxo0bp4CAAK1YsaJUbe3s7DR79mw98MADCg4O1quvvqoffvhBBw4csLYZMGCAevbsKXd3d40cOVIuLi7as2ePJKl+/fqaMWOG2rZtq7p16yokJESdOnVSWlpaoXp69uypHj16yN3dXcOHD5erq6u2b98uBwcHVatWTZJUs2ZNOTo63qrLBwAAAADlViVbF1DWJCcny2KxqG3btoW2m81m5ebmqm7dusVue1nDhg117733Wn83b95ckpSWlqb777/f2uZKrq6u1j7CwsK0a9cuzZkzRxkZGcrIyND+/fsL9SlJnp6ehX67uLjo0qVLJRk+AAAAAKAIBOwSKigoUNWqVa/5nrKDg4M++uijYre9rHLlyoX25efnS5Ls7e2t2678+7LLC5MtWrRI8+bNU69evRQSEqIhQ4Zo06ZN+vzzz4s851/7AAAAAADcHAJ2CTVp0kRZWVm6dOmSGjVqZN3+yiuvyNvbu0Rtw8PDJf25gFlmZqZcXFwkSTt27JAkNW3atFg1LViwQM8//7yeffZZ67aEhIQShWc7O7titwUAAAAAXI13sEuodevW8vHxUWRkpLZs2aJDhw4pNjZWJpPpqinYxW2bnZ2tiRMnKi0tTf/5z3/0+uuvq0uXLoWmm1+Pm5ubfvzxR+3fv18HDhzQ22+/rS+//FJms7nY43J2dpYkpaam6sKFC8U+DgAAAADwJwJ2Cdnb22vJkiVq1qyZxo4dq8cff1y//PKL3nnnHYWEhJSqrZubm3x8fDRw4ECNGzdO7dq1u2oF8OuZOXOmLl68qD59+ig8PFxpaWmKiYnRmTNndPz48WL10aRJEz3yyCMaO3as/vWvfxX73AAAAACAP9lZeAnXpuLj4/XJJ5/om2++sXUpN+3y971P2tXTuew8G1dz+1R3rqT2zWrYugwUU3Z2tlJSUuTj42OduQHcibhXUVZwr6Ks4F5FaV3OOb6+vjdsyxNsAAAAAAAMQMAGAAAAAMAABGwbe+GFF8rF9HAAAAAAqOgI2AAAAAAAGIDvYMNwLk72ti7htqpo4wUAAABwbQRsGC7Y09XWJdx2FotFdnZ2ti4DAAAAgA0xRRyGMpvNysnJsXUZtx3hGgAAAAABG4bj0+oAAAAAKiICNgAAAAAABiBgAwAAAABgAAI2DMf7yAAAAAAqIgI2DOXg4CAnJydbl2EY3icHAAAAUFx8pguG25p+Xpk5+bYu46a5ONlXyE+OAQAAACgdAjYMl5mTr3PZebYuAwAAAABuK6aIAwAAAABgAAI2AAAAAAAGIGADAAAAAGAAAjYAAAAAAAYgYAMAAAAAYAACNgAAAAAABiBglxGZmZmKjo5Wy5YtFRQUpMGDByspKUmSFB8fryFDhuidd97Rww8/rMDAQL366qs6ceKEnnvuOfn7+6tDhw767rvvrP2FhYUpPj6+0DmutQ0AAAAAUDwE7DLAYrFo2LBhOnLkiBYuXKg1a9YoICBA/fv31969eyVJ27ZtU0ZGhlatWqVXXnlF//rXv/TEE0+oc+fOMplM8vT01KRJk2SxWGw8GgAAAAAonyrZugDc2JYtW7Rz505t2bJF1atXlySNGzdO27dv14oVK1S3bl0VFBQoJiZGVatWlYeHh+Li4tSyZUv17NlTktS/f399++23OnXqlO655x7bDQYAAAAAyikCdhmQnJwsi8Witm3bFtpuNpuVm5urunXrqlatWqpatap1n7Ozs+rXr2/97ejoaD0GAAAAAGA8AnYZUFBQoKpVq8pkMl21z8HBQR999JEqV6581b677irZGwB5eXmlrhEAAAAAKjoCdhnQpEkTZWVl6dKlS2rUqJF1+yuvvCJvb+9S9Vm5cmVlZWVZf2dlZenMmTM3XSsAAAAAVFQsclYGtG7dWj4+PoqMjNSWLVt06NAhxcbGWhcvK42AgABt2LBB27dv1/79+/XSSy/J3t7e4MoBAAAAoOLgCXYZYG9vryVLliguLk5jx45VTk6OPD099c477ygkJETbtm0rcZ/jxo3TuXPn9PTTT8vFxUURERE6f/78LageAAAAACoGOwvfbYJBLn+X+6RdPZ3LLvvvc1d3rqT2zWrYugwYLDs7WykpKfLx8ZGzs7OtywGKxL2KsoJ7FWUF9ypK63LO8fX1vWFbpogDAAAAAGAAAjYAAAAAAAYgYAMAAAAAYAACNgAAAAAABmAVcRjOxal8fO6rvIwDAAAAwO1BwIbhgj1dbV2CYSwWi+zs7GxdBgAAAIAygCniMJTZbFZOTo6tyzAM4RoAAABAcRGwYTg+rQ4AAACgIiJgAwAAAABgAAI2AAAAAAAGIGDDcLy3DAAAAKAiImDDUA4ODnJycrJ1Gbcd750DAAAA4DNdMNzW9PPKzMm3dRm3jYuTfbn6NBkAAACA0iFgw3CZOfk6l51n6zIAAAAA4LZiijgAAAAAAAYgYAMAAAAAYAACNgAAAAAABiBgGyw+Pl5hYWG3/DxeXl4ymUy3/DwAAAAAgOJhkbMyKjExUS4uLrYuAwAAAADw/xGwy6g6derYugQAAAAAwBUq3BTxzMxMRUdHq2XLlgoKCtLgwYOVlJQk6drTu/+6zcvLS6tWrdKTTz4pX19fde/eXZs2bbrqPIsWLVKbNm3k5+enQYMG6eDBg9Z9586dU0xMjB555BH5+fnpqaee0tatWwudc8iQIdY+fH19FR4ervT09EJ1XJ4iPmnSJA0aNKjQ+a/cdvToUXl5eenzzz9Xz5495evrq969eys9PV3z5s3Tww8/rIceekgxMTGyWCylvLIAAAAAULFVqIBtsVg0bNgwHTlyRAsXLtSaNWsUEBCg/v37a+/evcXu580331SPHj20bt06PfLIIxo1apS2b99u3X/s2DFt375dixYt0sqVK3Xq1Cm9/PLLkqT8/HxFRERo27ZtiouLk8lkUpMmTfTMM89o9+7d1j62bdumX3/9VYsWLdL777+vM2fOKCYm5qbG//bbb+ull17Shx9+qPPnz6t///46ePCg/vnPfyoyMlLvv/++vv3225s6BwAAAABUVBUqYG/ZskU7d+7U7Nmz5e/vL09PT40bN04BAQFasWJFsfvp3bu3Bg4cqPvvv18TJkyQr6+vVq5cad1fuXJlvfnmm/L29rY+od6zZ4+kP9+dTk5O1ltvvaWHHnpIjRo1UkxMjBo3bqyEhARrH3l5eZo5c6a8vb3l6+urp556qlCIL42IiAg99NBD8vb2VocOHZSdna3XX39dnp6e6t+/v2rVqqXffvvtps4BAAAAABVVhXoHOzk5WRaLRW3bti203Ww2Kzc3V3Xr1i1WP8HBwYV+BwYG6scff7T+rlWrlqpWrWr97erqqosXL0qS0tLS5OLioiZNmlj329nZ6cEHH1RiYqJ1W+3atVWtWjXrbxcXF126dKlY9RWlQYMG1r+dnZ1Vu3ZtOTk5Wbc5OjrKbDbf1DkAAAAAoKKqUAG7oKBAVatWvebnrRwcHPTRRx9dtT0vL++qbZUqFb5s+fn5uuuu/5sMYG9vX2QNRb3jbLFYCvXr4OBQZB/FUZy6r6wZAAAAAHBzKlTCatKkibKysnTp0iU1aNDA+t97772nTZs2qXLlyrpw4UKhYw4dOnRVP5cXRbtsx44deuCBB4pVg5eXlzIzM5WWlmbdZrFY9Ouvv6pRo0alGNWfU9KzsrIKbbtW3QAAAACAW6dCBezWrVvLx8dHkZGR2rJliw4dOqTY2FiZTCZ5enoqICBA586dU0JCgo4eParVq1dr8+bNV/WzfPlyffrpp8rIyNCMGTO0b98+/f3vfy9WDaGhofLx8dH48eP1888/Kz09Xa+//rrS0tKK3cdfBQQEKDU1VevXr9eRI0c0b968QgEeAAAAAHDrVagp4vb29lqyZIni4uI0duxY5eTkyNPTU++8845CQkIkSS+88IKWLFmiuXPnqk2bNho9evRVC6A99dRTWrZsmdLS0uTt7a2EhAR5e3uXqIYZM2Zo1KhRMpvNatasmZYtW6aAgIBSjevxxx9XSkqKpk6dqry8PHXu3Fl///vftWPHjlL1BwAAAAAoOTsLHz4uES8vL8XGxqp37962LuWOc3nq/Em7ejqXffU74OVVdedKat+shq3LQDFlZ2crJSVFPj4+cnZ2tnU5QJG4V1FWcK+irOBeRWldzjm+vr43bFuhpogDAAAAAHCrELABAAAAADBAhXoH2wj79u2zdQkAAAAAgDsQT7ABAAAAADAAT7BhOBcne1uXcFtVtPECAAAAuDYCNgwX7Olq6xJuO4vFIjs7O1uXAQAAAMCGmCIOQ5nNZuXk5Ni6jNuOcA0AAACAgA3D8Wl1AAAAABURARsAAAAAAAMQsAEAAAAAMAABG4bjfWQAAAAAFREBG4ZycHCQk5OTrcsoF3iXHQAAAChb+EwXDLc1/bwyc/JtXUaZ5uJkXyE/dwYAAACUZQRsGC4zJ1/nsvNsXQYAAAAA3FZMEQcAAAAAwAAEbAAAAAAADEDABgAAAADAAARsAAAAAAAMQMAGAAAAAMAABGwAAAAAAAxAwL6DZWZmKjo6Wi1btlRQUJAGDx6spKQkffPNN/L29tZ///tfa9uePXuqW7du1t//+9//1LRp0//H3p2HVVXtfxz/IINgIg6QmQMqKWKAohmhmIl1nXLCVERFQmxQMy01nMMyB7yJ41UUQyXNIRyv5nSzrv4MMxxwJBFxSjNHFBSE8/ujx3Mj1NCOHIH363l8Omfvtdf+7tP+58Naey/t2bNHkvTtt9/K399fnp6eeu211xQZGanMzExje1dXV02fPl3NmzeXr6+vTp48WWDXCQAAAABFAetgP6EMBoP69u0rW1tbzZ07V6VLl9aaNWvUvXt3LV68WCVLltQPP/ygNm3a6PLlyzp27JhycnJ06dIlVahQQTt27JCDg4MaNGig77//XoMGDdLw4cPVuHFjnTp1Sp988olSUlI0bdo04zmXLFmiefPmKTs7W9WrVzffxQMAAABAIUTAfkL98MMP2rdvn3744QeVLVtWkvTBBx8oISFBy5Ytk4+Pj3bs2KE2bdro//7v/1S3bl1dvHhR8fHxatOmjbZv365XXnlFJUqU0Jw5c9S1a1cFBARIkqpVq6bw8HD17t1bZ86cUZUqVSRJHTp0kIeHh7kuGQAAAAAKNQL2E+rQoUMyGAxq3rx5ru2ZmZm6ffu2unTpotmzZ0uSdu7cKR8fH509e1Y//PCDWrVqpf/+97/69NNPJUmHDx/WgQMHtHLlSmM/BoNBkpScnGwM2M7OzgVxaQAAAABQJBGwn1A5OTkqXbq04uLi8uyzsbGRpaWlxowZo+TkZO3atUvjx4/X2bNnFR0drf379ysjI0NNmjQx9hUaGqpOnTrl6cvJycn42dbW9vFdEAAAAAAUcbzk7AlVu3Zt3bhxQ1lZWXJ2djb+mzdvnrZt26ann35a7u7uWrp0qS5duqSGDRvKx8dHJ0+e1LJly9S4cWPZ2dlJkmrVqqWUlJRc/Zw/f16TJ0/WzZs3zXylAAAAAFA0ELCfUE2bNpWbm5sGDx6sH374QampqZowYYLi4uLk4uIiSfLz89OyZctUv3592draqmrVqqpSpYrWrFmjFi1aGPvq27evNm3apJkzZyolJUW7du3S8OHDlZaWlmsEGwAAAADw6AjYTyhLS0stWLBA7u7uGjRokNq3b68ff/xRM2fOlI+Pj6TfA3ZmZqZeeukl43GNGzeWpFzPbrdq1UpTp07V1q1b1a5dOw0dOlS+vr6aOXNmwV4UAAAAABRhFoa7b7sC/qbExERJ0gWLKrqafsfM1RRuZUtZ6VX3cuYuo0hKT0/XkSNH5ObmplKlSpm7HOC+uFdRWHCvorDgXsWjuptz8rPiEiPYAAAAAACYAAEbAAAAAAATIGADAAAAAGACBGwAAAAAAEzAytwFoOixt7M0dwmFHr8hAAAAUPgQsGFy3i5lzF1CkWAwGGRhYWHuMgAAAADkE1PEYVKZmZnKyMgwdxlFAuEaAAAAKFwI2DA5llYHAAAAUBwRsAEAAAAAMAECNgAAAAAAJkDAhsnx7DAAAACA4oiADZOysbGRnZ2ducswK55BBwAAAIonlumCycUnX1daRra5yzALeztLlikDAAAAiikCNkwuLSNbV9PvmLsMAAAAAChQTBEHAAAAAMAECNgAAAAAAJgAARsAAAAAABMgYBcCiYmJat26tdzd3TVp0iRzlwMAAAAAuAdeclYIzJ07V9bW1tqwYYPs7e3NXQ4AAAAA4B4I2IXAtWvX5ObmpmrVqpm7FAAAAADAfTBF/Ann5+en3bt3a/Xq1XJ1ddXp06c1b948tWjRQvXq1VOHDh20du1aY/v4+HjVrVtXUVFR8vb2lr+/v06fPi1XV1fNnTtXTZo0UYsWLfTZZ5/p1VdfzXWutLQ0eXp6avv27QV8lQAAAABQ+DGC/YRbuXKl+vXrp2eeeUYjR47UokWL9O9//1tjxoxRzZo19eOPP+rjjz9WWlqaevToIUnKzs7Wd999p2XLlikjI0MWFhaSpFWrVmnhwoXKyMiQtbW1Fi5cqD179uiFF16QJG3YsEFlypRR06ZNzXa9AAAAAFBYEbCfcOXLl5e1tbVsbW311FNPaeHChfr888/1yiuvSJKqVaums2fPKjo62hiwJSkkJETVq1eXJJ05c0aSFBgYqOeee87Y5vnnn9fatWuNAXvVqlVq3769LC0tC+biAAAAAKAIIWAXIsePH9ft27f14YcfqkSJ/83uv3PnjjIzM3Xr1i3jtrvh+o+cnZ1zfe/cubMiIyM1atQo/fLLL9q7d6/Gjx//2OoHAAAAgKKMgF2IGAwGSVJkZKRq1qyZZ7+NjY3xc8mSJfPst7W1zfW9Xbt2mjRpkr799lslJSXJ09NTLi4uJq4aAAAAAIoHXnJWiNSsWVNWVlY6d+6cnJ2djf++++47RUdH5xrVzo8yZcrotdde05YtW7Rp0yb5+/s/psoBAAAAoOgjYBci9vb2CggI0LRp07RmzRqdPn1aK1euVEREhJ5++ulH6rNz587asmWLTp06pbZt25q4YgAAAAAoPpgiXsgMHz5c5cqV07Rp0/Trr7+qUqVKGjhwoEJDQx+pPx8fH5UrV04NGjRQmTJlTFwtAAAAABQfBOxCYPHixcbPVlZWGjBggAYMGHDPtt7e3jp27FiubVWqVMmz7a709HRdu3ZNb7zxhukKBgAAAIBiiIBdTF27dk0//PCDNm7cqMqVK8vHx8fcJQEAAABAoUbALqays7M1cuRIlS9fXpGRkbKwsDB3SQAAAABQqBGwi6ny5ctrz5495i4DAAAAAIoM3iIOAAAAAIAJMIINk7O3szR3CWZTnK8dAAAAKO4I2DA5b5fivdyXwWDgmXYAAACgGGKKOEwqMzNTGRkZ5i7DrAjXAAAAQPFEwIbJGQwGc5cAAAAAAAWOgA0AAAAAgAkQsAEAAAAAMAECNkyOZ5ABAAAAFEcEbJiUjY2N7OzszF2GWfEMOgAAAFA8sUwXTC4++brSMrLNXYZZ2NtZFvtlygAAAIDiioANk0vLyNbV9DvmLgMAAAAAChRTxAEAAAAAMAECNgAAAAAAJkDABgAAAADABAjYjygxMVGtW7eWu7u7/P39FRYW9tjOdebMGbm6uio+Pv6xnQMAAAAA8PcQsB/R3LlzZW1trQ0bNigrK+uxnqtSpUrasWOHvLy8Hut5AAAAAACPjreIP6Jr167Jzc1N1apVU9myZR/ruSwtLeXk5PRYzwEAAAAA+HsYwX4Efn5+2r17t1avXi1XV1edPXs21/6tW7eqS5cuql+/vjw8POTv76///ve/xv29evXSpEmTNGTIEHl5ecnX11dLly7VTz/9pA4dOqhevXoKCAjQyZMnJeWdIt6rVy9NmTJFI0aM0AsvvKAGDRroww8/1I0bN4znOHjwoHr06KF69eqpRYsWWrt2rerWrWvsIzs7WzExMWrZsqU8PDzUsmVLLV269DH/cgAAAABQdBGwH8HKlSvl5eWl1q1ba8eOHXrmmWeM+w4ePKj33ntPbdu21bp167R8+XKVL19ew4YNU2ZmprHd4sWL5ebmprVr16pFixb69NNP9fHHH2vEiBGKjY3Vr7/+qn/+85/3rSEmJkaOjo5auXKlIiIitG3bNsXExEiSLly4oN69e6ty5cr6+uuvNWbMGE2dOlXZ2dnG4ydOnKjZs2drwIABWrdunXr06KHx48cb+wAAAAAAPBwC9iMoX768rK2tZWtrKycnJ1laWhr3WVpaavTo0QoODlbVqlXl5uamoKAgXb58WZcuXTK2c3NzU58+fVS1alX17NlTd+7cUa9eveTt7S0PDw+1bt1aSUlJ963hueee0wcffKDq1aurRYsWatKkifbu3StJWrZsmezt7TV+/Hg999xzatasmUaNGmU89saNG1q6dKkGDhyodu3aqXr16goKClJgYKCioqJkMBgew68GAAAAAEUbz2CbmJubmxwcHBQVFaUTJ04oNTVVR48elaRcI8jVqlUzfrazs5MkVa1a1bjN1tb2gS9Pq1mzZq7v9vb2un79uiTp8OHDcnd3l7W1tXF/o0aNjJ9PnDihrKwsNWzYMFcfL774ohYuXKhLly7J0dEx39cMAAAAAGAE2+R2796tli1bKjExUXXq1NGAAQMUERGRp90fw+9dJUrk/3+HjY3NffdZWloqJyfnvvvvN0J99xgrK/7uAgAAAAAPi4BtYgsWLJC3t7dmzJih4OBgNWnSRL/88ouk+wdbU6tTp44OHz6cawT87vRxSXJxcZG1tbV++umnXMft2bNHTk5OcnBwKJA6AQAAAKAoIWCbWKVKlXTs2DHt2bNHZ86c0ddff61p06ZJUq6XnD1OgYGBun79ukaPHq3k5GT93//9nz755BNJkoWFhUqXLq1u3bpp+vTpWr9+vVJTU/Xll19qyZIlCgkJkYWFRYHUCQAAAABFCXOBTWzgwIH67bff9M4770j6/WVkn332mYYOHarExES5uLg89hoqVKig+fPn67PPPlOHDh30zDPPqHv37po8ebJxavrw4cNVrlw5TZkyRb/99puqV6+uMWPGqGvXro+9PgAAAAAoiiwMvDK6yDl+/LiuXbuW6yVmCQkJ6t69u7Zv365KlSo9lvMmJiZKki5YVNHV9DuP5RxPurKlrPSqezlzl4EHSE9P15EjR+Tm5qZSpUqZuxzgvrhXUVhwr6Kw4F7Fo7qbczw8PP6yLVPEi6Dz588rKChIq1ev1tmzZ7V3715NmDBBL7744mML1wAAAABQ3DFFvAjy9fXVyJEjNXfuXI0ePVr29vby8/PTkCFDzF0aAAAAABRZBOwiKjAwUIGBgeYuAwAAAACKDaaIAwAAAABgAoxgw+Ts7SzNXYLZFOdrBwAAAIo7AjZMztuljLlLMCuDwcBa4gAAAEAxxBRxmFRmZqYyMjLMXYZZEa4BAACA4omADZNjaXUAAAAAxREBGwAAAAAAEyBgAwAAAABgAgRsmBzPIAMAAAAojgjYMCkbGxvZ2dmZu4x843lxAAAAAKbCMl0wufjk60rLyDZ3GX/J3s6y2C8pBgAAAMB0CNgwubSMbF1Nv2PuMgAAAACgQDFFHAAAAAAAEyBgAwAAAABgAgRsAAAAAABM4IkK2ImJiWrdurXc3d3l7++vsLCwx3auM2fOyNXVVfHx8Y/tHI+iV69ej/W67yc+Pl6urq46c+ZMgZ8bAAAAAIqCJypgz507V9bW1tqwYYOysrIe67kqVaqkHTt2yMvL67GeBwAAAABQPDxRbxG/du2a3NzcVK1aNZUtW/axnsvS0lJOTk6P9RwAAAAAgOLjiRnB9vPz0+7du7V69Wq5urrq7NmzufZv3bpVXbp0Uf369eXh4SF/f3/997//Ne7v1auXJk2apCFDhsjLy0u+vr5aunSpfvrpJ3Xo0EH16tVTQECATp48KSnvFPFevXppypQpGjFihF544QU1aNBAH374oW7cuGE8x8GDB9WjRw/Vq1dPLVq00Nq1a1W3bl1jH9nZ2YqJiVHLli3l4eGhli1baunSpQ/9W9y8eVPDhw/XCy+8oIYNGyosLEzp6enG/cnJyerbt6/xOj/88ENdvHjRuP/atWsaNWqUmjZtqueff14+Pj4aNWqUMjIyjG327NmjLl26yNPTU+3bt9fRo0cfuk4AAAAAwP88MQF75cqV8vLyUuvWrbVjxw4988wzxn0HDx7Ue++9p7Zt22rdunVavny5ypcvr2HDhikzM9PYbvHixXJzc9PatWvVokULffrpp/r44481YsQIxcbG6tdff9U///nP+9YQExMjR0dHrVy5UhEREdq2bZtiYmIkSRcuXFDv3r1VuXJlff311xozZoymTp2q7Oxs4/ETJ07U7NmzNWDAAK1bt049evTQ+PHjjX3k1+bNm/X0008rLi5OkydP1oYNGzRv3jxjHYGBgXJ2dtbKlSs1Z84c3bhxQ926dTOG8LCwMB0+fFgzZ87Upk2bNHz4cK1evVrLli2TJJ0+fVohISFyc3PTqlWr1L9/f82ePfuhagQAAAAA5PbETBEvX768rK2tZWtrKycnJ1laWhr3WVpaavTo0QoMDDRuCwoKUt++fXXp0iVVqlRJkuTm5qY+ffpIknr27KmvvvpKvXr1kre3tySpdevW2rp1631reO655/TBBx9IkqpXr64mTZpo7969kqRly5bJ3t5e48ePl7W1tZ577jmNGjVK/fr1kyTduHFDS5cuVVhYmNq1a2fs48yZM4qKilLv3r1lYWGRr9/C09NTgwcPliRVq1ZNTZo00cGDByVJS5cu1TPPPKNRo0YZ20dGRuqll17SN998I39/fzVp0kSNGjWSq6urJKlKlSqKjY1VUlKSJGn58uVydHTU2LFjZWlpKRcXF/3yyy+aMGFCvuoDAAAAAOT1xATsB3Fzc5ODg4OioqJ04sQJpaamGqc0/3EEuVq1asbPdnZ2kqSqVasat9na2j7w5Wk1a9bM9d3e3l7Xr1+XJB0+fFju7u6ytrY27m/UqJHx84kTJ5SVlaWGDRvm6uPFF1/UwoULdenSJTk6OubreqtXr57ru4ODg3HK/OHDh/Xzzz/neTnb7du3lZycLEkKDAzUf/7zH61atUonT57U8ePHdebMGeP1JSUlqW7durn+iNGgQYN81QYAAAAAuLdCEbB3796txcE3owABAABJREFUPn366JVXXlHDhg3Vrl07ZWRkqH///rna/TH83lWiRP5nwdvY2Nx3n6WlpXJycu6732Aw3HP73WOsrPL/U/8x+N6rv5deekljx47Ns8/e3l45OTl6++239fPPP+v1119XmzZt9Pzzz2v06NHGdhYWFnmu5WHqAwAAAADkVShS1YIFC+Tt7a0ZM2YYty1evFjS/YOtqdWpU0dff/21srKyjEH+7vRxSXJxcZG1tbV++uknubm5Gbfv2bNHTk5OcnBwMEkdtWrV0oYNG1SpUiXjHwSuXr2qjz76SG+++abs7e31/fffa/ny5apXr54kKSsrS6dOnTKO5tepU0dxcXHKzMw09nF3CjoAAAAA4NE8MS85e5BKlSrp2LFj2rNnj86cOaOvv/5a06ZNk6RcLzl7nAIDA3X9+nWNHj1aycnJ+r//+z998sknkn4fES5durS6deum6dOna/369UpNTdWXX36pJUuWKCQkJN/PX+enjrS0NA0ZMkRHjx7V0aNHNXjwYCUmJqp27dpydHSUlZWVNm7cqNOnTysxMVGDBg3SxYsXjb9V9+7dlZGRoREjRig5OVnffvttrj9eAAAAAAAeXqEI2AMHDlT9+vX1zjvvqGPHjlqxYoU+++wz2draKjExsUBqqFChgubPn6/jx4+rQ4cOGjNmjLp37y7pf1PThw8frqCgIE2ZMkVt27bV0qVLNWbMGIWEhJisjqpVqyo2NlY3b95U9+7d1bNnT1lbW2vRokUqX768KlasqIkTJ+o///mP2rRpo/fff18VK1ZUcHCwcZS6YsWKWrhwoc6fP69OnTpp4sSJevfdd01WIwAAAAAURxaGgppjXcgdP35c165dy/USs4SEBHXv3l3bt283vsm8OLv7x44LFlV0Nf2Omav5a2VLWelV93LmLgMFLD09XUeOHJGbm5tKlSpl7nKA++JeRWHBvYrCgnsVj+puzvHw8PjLtoViBPtJcP78eQUFBWn16tU6e/as9u7dqwkTJujFF18kXAMAAAAACsdLzp4Evr6+GjlypObOnavRo0fL3t5efn5+GjJkSL6OnzdvnmbPnv3ANiNGjFCXLl1MUS4AAAAAoIARsB9CYGCgAgMDH+nYrl276h//+McD21SoUOGR+gYAAAAAmB8Bu4A4ODiYbKkuAAAAAMCTh4ANk7O3szR3CflSWOoEAAAAUDgQsGFy3i5lzF1CvhkMBpOtUQ4AAACgeOMt4jCpzMxMZWRkmLuMfCNcAwAAADAVAjZMjqXVAQAAABRHBGwAAAAAAEyAgA2TY9o1AAAAgOKIgA2TsrGxkZ2dnVlrYIo6AAAAAHPgLeIwufjk60rLyDbLue3tLAvVW8wBAAAAFB0EbJhcWka2rqbfMXcZAAAAAFCgmCIOAAAAAIAJELABAAAAADABAjYAAAAAACZAwAYAAAAAwAQI2IXI6dOn1blzZ7m7u+v9999XWFiYevXqle/je/XqpbCwsPvuj4+Pl6urq86cOWOKcgEAAACgWOEt4oVIbGyszp8/rzVr1qhs2bKysbFRdrZ5lsMCAAAAAORGwC5Erl+/rho1asjFxcXcpQAAAAAA/oSA/ZhcvnxZn3zyif773//K0tJSXbp00YEDB9SoUSP1799f8+bNU1xcnM6ePSsbGxs1aNBAY8aMUbVq1SRJrq6u6t+/v1atWqWsrCxZWFjo119/Ne5btGiRVq1apbNnz2rx4sWSpOTkZE2cOFF79uzRU089JW9vb4WFhcnJyemeNe7Zs0eTJk3SsWPHVL16dXXu3LlgfhwAAAAAKIJ4BvsxyMnJ0dtvv63U1FTNnz9fCxYs0L59+7R7925J0qJFixQdHa2wsDBt2rRJs2bN0smTJzVx4sRc/SxZskTTp0/XzJkztW7dOrVu3VpeXl7asWOHvLy8crW9cOGCAgMD5ezsrJUrV2rOnDm6ceOGunXrpvT09Dw1nj59WiEhIXJzc9OqVavUv39/zZ49+/H9KAAAAABQxDGC/Rjs3r1bBw4c0MaNG1WzZk1JUmRkpPz8/CRJ1apV06RJk9S8eXNJUuXKldWqVSt98803ufrp0KGDPDw8jN9tbW1lbW19zxHppUuX6plnntGoUaOM2yIjI/XSSy/pm2++kb+/f672y5cvl6Ojo8aOHStLS0u5uLjol19+0YQJE0zzIwAAAABAMUPAfgwOHz4sBwcHY7iWJEdHR9WoUUOS5Ofnp/3792vatGlKSUlRSkqKjh8/rooVK+bqx9nZ+aHO+fPPP+cZ2b59+7aSk5PztE9KSlLdunVlaWlp3NagQYN8nw8AAAAAkBsB+zGwtLRUTk7OffdHRUVp1qxZ6tSpk3x8fBQcHKxt27bp3//+d652tra2+T5nTk6OXnrpJY0dOzbPPnt7+zzbLCws8tRoZcXtAAAAAACPimewH4M6deooLS0t18jxlStXlJqaKkmaM2eO+vfvr48//ljdunVT/fr1dfLkSRkMhkc+Z61atZScnKxKlSrJ2dlZzs7OcnBw0GeffaakpKR71njw4EFlZmYatx08ePCRzw8AAAAAxR0B+zHw9vZWvXr1NGzYMO3bt09Hjx7VkCFDlJGRIQsLC1WqVEk7d+7U8ePHdeLECU2dOlWbN2/OFXYfVmBgoNLS0jRkyBAdPXpUR48e1eDBg5WYmKjatWvnad+9e3dlZGRoxIgRSk5O1rfffqsZM2b8ncsGAAAAgGKNgP2YzJgxQ88884yCg4PVu3dveXp66tlnn5W1tbUmT56sW7duqXPnzurZs6eSkpIUHh6uS5cu6dy5c490vqpVqyo2NlY3b95U9+7d1bNnT1lbW2vRokUqX758nvYVK1bUwoULdf78eXXq1EkTJ07Uu++++3cvGwAAAACKLQvD35mXjHu6fPmy9u/fL19fX1lbW0uSMjMz5e3trbFjx6pjx47mLfAxSUxMlCRdsKiiq+l3zFJD2VJWetW9nFnOjcIhPT1dR44ckZubm0qVKmXucoD74l5FYcG9isKCexWP6m7O+eMKT/fDW60eAysrKw0ePFgBAQHq3r27srKyFB0dLRsbG7388svmLg8AAAAA8BgwRfwxKFOmjObMmaN9+/apY8eO6tatm3777bf7TtcGAAAAABR+jGA/Ji+99JK++uorc5cBAAAAACggjGADAAAAAGACjGDD5OztLIvluQEAAAAUbwRsmJy3Sxmznt9gMMjCwsKsNQAAAAAofpgiDpPKzMxURkaGWWsgXAMAAAAwBwI2TI6l1QEAAAAURwRsAAAAAABMgIANk2OKNgAAAIDiiIANk7KxsZGdnZ1Za2CKOgAAAABz4C3iMLn45OtKy8g2y7nt7SzN/hZzAAAAAMUTARsml5aRravpd8xdBgAAAAAUKKaIAwAAAABgAgRsAAAAAABMgIANAAAAAIAJELCLsbi4OLm6upq7DAAAAAAoEgjYAAAAAACYAAEbAAAAAAATIGCbwOXLlzV48GC98MIL8vb21pQpUxQUFKQZM2ZIkr799lv5+/vL09NTr732miIjI5WZmWk83tXVVdOnT1fz5s3l6+urkydPKjMzUxEREWratKm8vLzUtWtX7dixw3hMXFycXnvtNeN/3d3d5e/vr59++snYxs/Pz1jDg7bd9c0338jd3V1fffWVKX8eAAAAACgWCNh/U05Ojt5++22lpqZq/vz5WrBggfbt26fdu3dLkr7//nsNGjRIXbt21fr16zV27Fht3LhRQ4cOzdXPkiVLNH36dM2cOVPVq1fX8OHDtXPnTk2ZMkWrVq1S69at9c4772j79u3GY3755Rd99dVXioiI0KpVq2RnZ6ewsDAZDIaHvo6tW7dq6NChGjt2rAICAv7WbwIAAAAAxZGVuQso7Hbv3q0DBw5o48aNqlmzpiQpMjJSfn5+kqQ5c+aoa9euxtBarVo1hYeHq3fv3jpz5oyqVKkiSerQoYM8PDwkSampqVq/fr1Wr14tNzc3SdKbb76po0ePKjo6Wq+88ookKSsrS+Hh4bna9O/fXxcvXtTTTz+d72vYvn27PvjgA4WHh8vf3//v/ygAAAAAUAwRsP+mw4cPy8HBwRiuJcnR0VE1atQw7j9w4IBWrlxp3H93hDk5OdkYsJ2dnXP1KUmBgYG5zpWVlaUyZcrk2ubi4mL8bG9vb2z3MN5//31lZmYaawEAAAAAPDwC9t9kaWmpnJyc++7PyclRaGioOnXqlGefk5OT8bOtra3x890A/uWXX+qpp57KdUyJErln9dvY2OTp90FTxO/cuZNn26effqotW7Zo5MiRWrt2rezs7O57PAAAAADg3ngG+2+qU6eO0tLSlJycbNx25coVpaamSpJq1aqllJQUOTs7G/+dP39ekydP1s2bN+/ZZ61atSRJFy9ezHVcXFyc4uLi8l2btbW1bty4Yfx+48YNXbp0KU+7du3aafTo0bp69ao+//zzfPcPAAAAAPgfAvbf5O3trXr16mnYsGHat2+fjh49qiFDhigjI0MWFhbq27evNm3apJkzZyolJUW7du3S8OHDlZaWlmsE+49q1aql5s2ba+zYsfrPf/6j06dPa968eZo7d66qVauW79rq16+vDRs2KCEhQcePH9eIESNkaWl5z7ZOTk4aOnSoYmNjc72JHAAAAACQP0wRN4EZM2Zo3LhxCg4OVsmSJRUYGKgTJ07I2tparVq10tSpUzV37lzNmTNHZcuWlZ+fn4YMGfLAPqdOnaqpU6dqzJgxunbtmqpVq6bx48ffc6r5/XzwwQe6evWq3nzzTdnb2yskJETXr1+/b/suXbpo7dq1GjFihNasWZNr2joAAAAA4MEsDI+yphOMLl++rP3798vX11fW1taSpMzMTHl7e2vs2LHq2LGjeQssQImJiZKkCxZVdDU977PeBaFsKSu96l7OLOdG4ZCenq4jR47Izc1NpUqVMnc5wH1xr6Kw4F5FYcG9ikd1N+fcXfXpQRjB/pusrKw0ePBgBQQEqHv37srKylJ0dLRsbGz08ssvm7s8AAAAAEAB4Rnsv6lMmTKaM2eO9u3bp44dO6pbt2767bfftGjRIpUvX97c5QEAAAAACggj2Cbw0ksv6auvvjJ3GQAAAAAAM2IEGwAAAAAAE2AEGyZnb3fvpcCK+rkBAAAAFG8EbJict0sZs57fYDDIwsLCrDUAAAAAKH6YIg6TyszMVEZGhllrIFwDAAAAMAcCNkyOpdUBAAAAFEcEbAAAAAAATICADQAAAACACRCwYXI8Aw0AAACgOCJgw6RsbGxkZ2dn7jL+Np4jBwAAAPCwWKYLJheffF1pGdnmLuOR2dtZmn2pMQAAAACFDwEbJpeWka2r6XfMXQYAAAAAFCimiAMAAAAAYAIEbAAAAAAATICADQAAAACACRCwnzDx8fFydXXVmTNnzF0KAAAAAOAhELABAAAAADABAjYAAAAAACZQZJbpunz5sj755BP997//laWlpbp06aIDBw6oUaNGkn6feu3k5KTvvvtOnTp10ujRo7VixQotWrRIqampKlGihOrWravhw4fLw8NDkuTn56eAgADt2bNH8fHxqlChgkaMGCFJioiI0IULF9SwYUNNnjxZFSpUkCQlJycrIiJCe/fu1Z07d9SkSRN99NFHqly5siSpV69eqlOnji5duqRt27bJwcFBPXv2VN++fWVhYWG8nu+++05Lly7VyZMn5ezsrKFDh+qVV16RJGVnZ2vx4sVaunSpzp07p2effVbBwcHq3r278VrffPNN/etf/1JERIROnjypKlWqaMiQIXr11VclSQaDQfPnz9dXX32l3377TdWrV1efPn3Uvn37x/8/CwAAAACKoCIxgp2Tk6O3335bqampmj9/vhYsWKB9+/Zp9+7dxjY//vijHB0dtWbNGvXq1UtbtmzRuHHjFBoaqo0bNyomJka3b9/WqFGjcvU9e/ZstWnTRuvWrVOdOnU0bNgwzZkzRxEREZozZ44SExM1b948SdLZs2fVrVs32djYaOHChVqwYIEuXryonj176saNG8Y+ly5dKnt7e8XFxWnw4MGaNWuWsY+7Fi1apNGjR2vdunWqXr26Bg0apJs3b0qSJk6cqNmzZ2vAgAFat26devToofHjxysmJsZ4fHZ2tiIiIjRy5EitX79etWvX1kcffWTsY+rUqVq6dKnxHEFBQfr444/15ZdfmvT/DQAAAAAUF0ViBHv37t06cOCANm7cqJo1a0qSIiMj5efnl6vdwIEDZW9vL0m6ePGixo8fbxyxrVy5st544w2NGzcu1zGvvPKKOnbsKEnq2rWrtm3bpsGDB8vT01OS1LhxY/3888+SpCVLlqhUqVKaMmWKbGxsJEnTp09XixYttGbNGvXo0UOSVKNGDX388ceysLCQi4uLkpOTtWjRIvXt29d43hEjRsjb21uS1L9/f23dulXJycmqWbOmli5dqrCwMLVr106SVL16dZ05c0ZRUVHq3bu3sY9BgwbJx8dHktSvXz9t2rRJSUlJcnV1VUxMjD7//HPjqHi1atV09uxZRUdHG+sEAAAAAORfkQjYhw8floODgzFcS5Kjo6Nq1Khh/F6hQgVjuJakRo0aKTk5WbNmzdKJEyeUmpqqY8eOKScnJ1ffzs7Oxs92dnaSfg+jd9na2urSpUuSpKSkJLm7uxvDtSQ5OTmpRo0aSkpKMm7z9vbONR3cy8tL8+bN05UrV4zb/lh7mTJlJEm3bt3SiRMnlJWVpYYNG+aq88UXX9TChQuNtUjK9XuULl1akpSVlaXjx4/r9u3b+vDDD1WixP8mMdy5c0eZmZm6deuWbG1tBQAAAADIvyIRsC0tLfME4z/7c2Bct26dcRS4QYMGCggIUFJSUp4RbCurvD/RH8PxHxkMhntuz8nJkbW19X37vFu7paWlcdsfg+8f+3/QOf7c9x+D/r36iIyMzBXCH3QcAAAAAODBisQz2HXq1FFaWpqSk5ON265cuaLU1NT7HhMVFaU33nhDEydOVI8ePdSoUSOdPn1a0v2D8l9xdXVVYmKiMjMzjdt+++03paamysXFxbgtMTEx13EJCQmqUqWKHBwc/vIcLi4usra21k8//ZRr+549e+Tk5JSvPmrWrCkrKyudO3dOzs7Oxn/fffedoqOj7xnuAQAAAAAPViSSlLe3t+rVq6dhw4Zp3759Onr0qIYMGaKMjIz7jjZXqlRJCQkJOnTokE6dOqWYmBjFxsZKUq6A/DC6d++umzdvaujQoTp69KgOHDig999/X+XKlVPbtm2N7fbs2aPp06fr5MmTWrlypb788kuFhobm6xylS5dWt27dNH36dK1fv16pqan68ssvtWTJEoWEhNz3ev/I3t5eAQEBmjZtmtasWaPTp09r5cqVioiI0NNPP/1I1w4AAAAAxV2RmCIuSTNmzNC4ceMUHByskiVLKjAwUCdOnJC1tfU9A/Po0aM1ZswY9ezZUzY2NqpTp44mT56swYMHKzExUS+88MJD11ClShXFxsYqIiLC+DbxJk2aKCIiwvgctSS1aNFCycnJat++vZ5++mkNHz7cuMRWfgwfPlzlypXTlClTjEtsjRkzRl27dn3oPqZNm6Zff/1VlSpV0sCBA/Md9AEAAAAAuVkYHnU+9BPk8uXL2r9/v3x9fY3POmdmZsrb21tjx441vgX8SdCrVy9VrlxZEydONHcpJnd36vsFiyq6mn7HzNU8urKlrPSqezlzl4HHJD09XUeOHJGbm5tKlSpl7nKA++JeRWHBvYrCgnsVj+puzvHw8PjLtkViBNvKykqDBw9WQECAunfvrqysLEVHR8vGxkYvv/yyucsDAAAAABQDReIZ7DJlymjOnDnat2+fOnbsqG7duum3337TokWLVL58eXOXBwAAAAAoBorECLYkvfTSS/rqq6/MXcZfWrx4sblLAAAAAAA8BkViBBsAAAAAAHMrMiPYeHLY21mau4S/pbDXDwAAAMA8CNgwOW+XMn/d6AlnMBjytaY4AAAAANzFFHGYVGZmpjIyMsxdxt9GuAYAAADwsAjYMLkisLQ6AAAAADw0AjYAAAAAACZAwAYAAAAAwAQI2DA5nl8GAAAAUBwRsGFSNjY2srOzM3cZxRrPwAMAAADmwTJdMLn45OtKy8g2dxnFkr2dZZFYJg0AAAAojAjYMLm0jGxdTb9j7jIAAAAAoEAxRRwAAAAAABMgYAMAAAAAYAIEbAAAAAAATICA/RjExcXJ1dXVpH36+flpxowZJu0TAAAAAGA6vOSskFi5cqVKlixp7jIAAAAAAPdBwC4kypcvb+4SAAAAAAAPUKSmiF++fFmDBw/WCy+8IG9vb02ZMkVBQUGaMWOGZsyYoZ49e2rw4MFq0KCBPvnkE0nSihUr1K5dO3l6eqp+/foKDAxUYmKisU8/Pz9FR0frvffek5eXl7y9vfXpp5/qzp3/LUO1ZcsWtWvXTh4eHgoMDNS5c+cequ64uDi9/PLLWr58uXx9feXl5aX+/fvrwoULueq4O0U8JydHc+fOVcuWLeXu7q4GDRooNDRUp06dMrZ3dXXVypUrFRwcLE9PT/n6+mrmzJm5zrt9+3Z17dpVXl5e8vX11YQJE3Tr1q2Hqh0AAAAA8LsiE7BzcnL09ttvKzU1VfPnz9eCBQu0b98+7d6929jmxx9/lKOjo9asWaNevXppy5YtGjdunEJDQ7Vx40bFxMTo9u3bGjVqVK6+p02bpkaNGmnt2rUaNmyYYmNjtX79eklSQkKC3nvvPbVs2VJr165Vp06dFBUV9dD1X758WQsXLlRkZKQWLlyoX375RaGhobmC/F2LFi1SdHS0wsLCtGnTJs2aNUsnT57UxIkTc7WbNGmSOnXqpH//+9/q2bOnZsyYoR9//FHS738UePfdd/XKK68oLi5O4eHh2rBhgz744IOHrh0AAAAAUISmiO/evVsHDhzQxo0bVbNmTUlSZGSk/Pz8crUbOHCg7O3tJUkXL17U+PHj1b59e0lS5cqV9cYbb2jcuHG5jvH19VVQUJAkqWrVqlq8eLESEhLUsWNHxcbGqkGDBhowYIAkqUaNGkpKStKiRYseqv6srCxNmjRJ7u7ukqSIiAi1adNGu3btUtOmTXO1rVatmiZNmqTmzZsb627VqpW++eabXO06duyoDh06SJLeeecdRUdHKyEhQY0aNVJUVJRee+019evXz1i3wWBQ//79dfz4cT333HMPVT8AAAAAFHdFJmAfPnxYDg4OxnAtSY6OjqpRo4bxe4UKFYzhWpIaNWqk5ORkzZo1SydOnFBqaqqOHTumnJycXH27uLjk+m5vb6+srCxJUlJSkpo0aZJrv5eX10MH7KeeesoYru+e08HBQUlJSXkCtp+fn/bv369p06YpJSVFKSkpOn78uCpWrPhQdbdt2zbX/hdffNG4j4ANAAAAAA+nyEwRt7S0zBOM/8zW1jbX93Xr1ql9+/Y6ffq0GjRooI8++khhYWF5jrOxscmzzWAwSJIsLCzynNfa2vphy7/nMdnZ2bK0tMyzPSoqSkFBQbpy5Yp8fHwUHh6ukJCQh6r77n//6O51WFkVmb+7AAAAAECBKTJJqk6dOkpLS1NycrJx5PbKlStKTU297zFRUVF64403FB4ebty2bds2Sb8HUAsLi3ydd+/evbm2HTx48KHrv3r1qk6fPq2qVatKkn7++WfduHFDdevWzdN2zpw56t+/v9566y3jtujo6HuG5vtxdXVVQkKCgoODjdv27NkjKe/INwAAAADgrxWZEWxvb2/Vq1dPw4YN0759+3T06FENGTJEGRkZ9w3KlSpVUkJCgg4dOqRTp04pJiZGsbGxkqTMzMx8nTckJERHjx7VpEmTlJKSorVr1xr7eFhDhw7VwYMHtW/fPg0bNkxeXl5q1KjRPeveuXOnjh8/rhMnTmjq1KnavHlzvmuWpNDQUG3evFmzZ89WSkqKvv32W33yySdq3rw5ARsAAAAAHkGRCdiSNGPGDD3zzDMKDg5W79695enpqWefffa+U7ZHjx4tR0dH9ezZU126dNG3336ryZMnS1KupboexM3NTfPmzVN8fLzat2+vmJgYvfPOO49Uf7t27fTWW28pNDRUtWrV0ty5c+/5x4HJkyfr1q1b6ty5s3r27KmkpCSFh4fr0qVL+V4irGXLlvr888+1ceNGtWvXTmPHjlXbtm0VGRn5SLUDAAAAQHFnYXiYecVPsMuXL2v//v3y9fU1BurMzEx5e3tr7Nix6tixo3kLfIC4uDgNHz5cx44dM3cpf8vdP0pcsKiiq+l5lxfD41e2lJVedS9n7jKeaOnp6Tpy5Ijc3NxUqlQpc5cD3Bf3KgoL7lUUFtyreFR3c46Hh8dfti0yz2BbWVlp8ODBCggIUPfu3ZWVlaXo6GjZ2Njo5ZdfNnd5AAAAAIAirsgE7DJlymjOnDmKjIzUsmXLVKJECTVo0ECLFi1S+fLlzVLThQsX1KpVqwe28fDweKJH1wEAAAAA+VNkArYkvfTSS/rqq6/MXYaRo6OjVq9e/cA2JUuW1DPPPCN/f/+CKQoAAAAA8FgUqYD9pLG0tJSzs7O5ywAAAAAAFAACNkzO3s7S3CUUW/z2AAAAgPkQsGFy3i5lzF1CsWYwGO679jsAAACAx6dIrYMN88vMzFRGRoa5yyjWCNcAAACAeRCwYXJFZGl1AAAAAHgoBGwAAAAAAEyAgA0AAAAAgAkQsGFyPAMMAAAAoDgiYMOkbGxsZGdnZ+4yij2egwcAAAAKHst0weTik68rLSPb3GUUW/Z2liyVBgAAAJgBARsml5aRravpd8xdBgAAAAAUKKaIAwAAAABgAgRsAAAAAABMgIANAAAAAIAJELDzwdXVVXFxcYXifGFhYerVq9d99585c0aurq6Kj4+XJPXq1UthYWGSpPj4eLm6uurMmTOPdG4AAAAAKM54yVkxU6lSJe3YsUMODg7mLgUAAAAAihQCdjFjaWkpJycnc5cBAAAAAEUOU8TzKSUlRcHBwfLw8FDTpk01d+5c476cnBzNnTtXLVu2lLu7uxo0aKDQ0FCdOnVKkuTv769PP/3U2H7r1q1ydXXVN998Y9w2ceJEBQcH5znvxYsX1apVK7355pu6deuWsrOzFRERoWbNmsnd3V2tWrXS0qVLcx1z584dffLJJ2rQoIG8vb01btw43b59W1LeKeIAAAAAANMgYOdTbGysOnbsqA0bNqh79+76/PPPtWvXLknSokWLFB0drbCwMG3atEmzZs3SyZMnNXHiRElS8+bNtXPnTmNf//d//ycLC4tcIXf79u1q0aJFrnNevnxZwcHBqly5subMmSNbW1stWbJE33zzjaZOnapNmzapZ8+e+vjjj7Vnzx7jcQkJCbp06ZKWLVumiRMnatOmTYqIiHicPw8AAAAAFHsE7HwKDAxUx44dVbVqVfXr10/29vY6ePCgJKlatWqaNGmSmjdvrsqVK8vHx0etWrVSUlKSJMnPz08nTpzQL7/8IknauXOnWrRoYQzYp06dUkpKivz8/Iznu3r1qoKDg/Xss8/qX//6l0qWLGlsW6pUKVWpUkWVK1dWz5499cUXX6hGjRrGY52cnDRp0iTVqlVLzZs31/vvv6+vvvpKGRkZBfJbAQAAAEBxxDPY+VS9evVc38uUKWOcdu3n56f9+/dr2rRpSklJUUpKio4fP66KFStKkp5//nlVrFhRO3fuVOPGjXXmzBlFRESoS5cuunjxorZv3y43NzdVrlzZ2P/UqVOVlZUld3d32djYGLf36NFDW7duVbNmzeTm5qYmTZqobdu2qlChgrGNu7u7MZBLkqenp7KysnTy5EnZ29s/jp8HAAAAAIo9RrDzydLSMs82g8EgSYqKilJQUJCuXLkiHx8fhYeHKyQkJFfbu9PE/+///k8eHh7y9PRUxYoVFR8fr++++y7P9PDGjRtr+vTp+vrrr7Vjxw7j9urVq2vz5s2aP3++XnrpJW3fvl0dO3bUqlWr7ltrTk6OJOUK6gAAAAAA0yJgm8CcOXPUv39/ffzxx+rWrZvq16+vkydPGgO49Pso965du7Rr1y75+PhIknx8fPSf//xH8fHxeQJ2y5Yt9Y9//ENt2rTR6NGjdePGDUm/P++9efNmNWnSRMOGDdO6devk4+OjDRs2GI89cuSIMVRL0k8//SRbW1tVrVr1cf4MAAAAAFCsEbBNoFKlStq5c6eOHz+uEydOaOrUqdq8ebMyMzONbXx8fHT79m1t3rw5V8DeuHGjnJycVLdu3Xv2PXLkSN28eVOTJ0+W9PuLz8aNG6dt27bp7Nmz+u9//6sjR47Iy8vLeMwvv/yiESNG6Oeff9amTZs0Y8YMhYaGMoINAAAAAI8Rz2CbwOTJkzVu3Dh17txZTz31lOrVq6fw8HB9/PHHOnfunJ599lnZ2NiocePG2rFjh+rXry/p94Cdk5OT6+Vmf+bo6Khhw4Zp5MiRat26tQYMGKCsrCx9+umnunjxopycnNS9e3e9/fbbxmNatGghS0tLde3aVXZ2durevbv69ev3uH8GAAAAACjWLAx/nMcM/A2JiYmSpAsWVXQ1/Y6Zqym+ypay0qvu5cxdxhMrPT1dR44ckZubm0qVKmXucoD74l5FYcG9isKCexWP6m7O8fDw+Mu2TBEHAAAAAMAECNgAAAAAAJgAARsAAAAAABMgYAMAAAAAYAK8RRwmZ29nae4SijV+fwAAAMA8CNgwOW+XMuYuodgzGAyysLAwdxkAAABAscIUcZhUZmamMjIyzF1GsUe4BgAAAAoeARsmx9LqAAAAAIojAjYAAAAAACZAwAYAAAAAwAQI2DA5nv8FAAAAUBwRsGFSNjY2srOzM3cZD8Qz4gAAAAAeB5bpgsnFJ19XWka2ucu4J3s7S5YRAwAAAPBYELBhcmkZ2bqafsfcZQAAAABAgWKKOAAAAAAAJkDABgAAAADABAjYAAAAAACYQLEK2K6uroqLiyvw886YMUN+fn6PrT0AAAAAwPyKVcAGAAAAAOBxIWADAAAAAGACxS5gp6SkKDg4WB4eHmratKnmzp2ba/+3334rf39/eXp66rXXXlNkZKQyMzON+5OSkvT222+rUaNGcnd3V4sWLbRgwYJcfSxbtkyvvfaaPD099c477+jatWu59ru6uurLL79U165d5eHhoXbt2mnbtm15ao2KitLLL78sT09P9erVSydPnjTuu3r1qsLDw9WsWTN5enoqICBA8fHxxv0zZsxQcHCwsQ8PDw/17NlTycnJxjZpaWkaPXq0XnrpJTVs2FBBQUFKTEx8pN8VAAAAAIq7YhewY2Nj1bFjR23YsEHdu3fX559/rl27dkmSvv/+ew0aNEhdu3bV+vXrNXbsWG3cuFFDhw6VJGVkZCgkJERly5bVV199pfXr16tVq1aaNGmSjhw5Iklav369xo0bp+DgYK1Zs0YNGjTQl19+maeOKVOmqEOHDlqzZo2aNWumAQMGKCEhwbj/7NmzSkhIUFRUlGJjY3Xx4kWNHDlSkpSdna2QkBDt2bNHERERiouLU+3atdWnTx8dOHDA2MeePXv0008/KSoqSkuWLNGlS5cUHh4uSTIYDOrbt69Onz6tuXPnavny5apfv766d++uw4cPP54fHwAAAACKsGIXsAMDA9WxY0dVrVpV/fr1k729vQ4ePChJmjNnjrp27aqAgABVq1ZNvr6+Cg8P1zfffKMzZ84oIyNDQUFBGjNmjFxcXFS9enUNHDhQknTs2DFJ0uLFi9WmTRv16NFDNWrU0FtvvaXmzZvnqcPf3189evRQzZo1NWTIEHl4eCg2Nta439raWlOmTFGdOnWMI9R369yxY4cOHTqkf/7zn3rxxRf13HPPKTw8XLVq1VJ0dLSxjzt37mjy5MmqU6eOPDw8FBAQYAzxP/zwg/bt26fIyEjVq1dPLi4u+uCDD1S/fn0tWrTo8fz4AAAAAFCEWZm7gIJWvXr1XN/LlCmj27dvS5IOHz6sAwcOaOXKlcb9BoNBkpScnKxmzZopMDBQ69ev1+HDh3Xq1CkdPXpUkpSTkyPp9ynkbdu2zXUOLy8vY7u7vL2987TZuXOn8XuFChVUunTpXHXeunXLeA57e3vVrl3buN/CwkIvvPCCduzYYdzm6OgoBwcH43d7e3tlZWVJkg4dOiSDwZAn/GdmZhp/DwAAAABA/hW7gG1paZln290QnZOTo9DQUHXq1ClPGycnJ128eFHdunVT+fLl5efnJ19fX3l4eKhZs2a52t4N23dZW1vn6c/KKvdPn52drRIl/jeh4F51/rnee23/Y782Njb37SMnJ0elS5e+57JlDzoOAAAAAHBvxW6K+IPUqlVLKSkpcnZ2Nv47f/68Jk+erJs3b2r9+vW6evWqli5dqn79+um1114zvsDsbuh1c3PL9Sy1pHu+OOzP2/bu3avnn38+X3W6uroqLS1NSUlJxm0Gg0E//fSTnnvuuXz1Ubt2bd24cUNZWVm5rnfevHn3fOEaAAAAAODBCNh/0LdvX23atEkzZ85USkqKdu3apeHDhystLU1OTk565plnlJGRoW+++Ubnzp3Tjh079MEHH0iS8U3jb731lrZs2aL58+fr5MmTWrx4sTZt2pTnXAsXLtS6deuUkpKiSZMm6dixY+rdu3e+6vT19ZWbm5s+/PBD7d69W8nJyRo3bpySkpLy3UfTpk3l5uamwYMH64cfflBqaqomTJiguLg4ubi45PMXAwAAAADcVeymiD9Iq1atNHXqVM2dO1dz5sxR2bJl5efnpyFDhhj3Hzp0SBMnTtSNGzdUuXJldenSRdu2bVNiYqK6d++uV155Rf/85z81Y8YMTZs2TfXr11dISIjWr1+f61wBAQGKiYlRUlKS6tSpo+joaNWpUydfdVpaWmrBggWaNGmSBgwYoMzMTLm7uysmJkb169d/qD4iIiI0aNAgZWRkyMXFRTNnzpSPj89D/W4AAAAAAMnCcL8HevHYuLq6asKECfL39zd3KSZ1d9r7BYsqupp+x8zV3FvZUlZ61b2cucuAGaWnp+vIkSNyc3NTqVKlzF0OcF/cqygsuFdRWHCv4lHdzTkeHh5/2ZYp4gAAAAAAmAABGwAAAAAAE+AZbDM4duyYuUsAAAAAAJgYI9gAAAAAAJgAI9gwOXs7S3OXcF9Pcm0AAAAACjcCNkzO26WMuUt4IIPBIAsLC3OXAQAAAKCIYYo4TCozM1MZGRnmLuOBCNcAAAAAHgcCNkyOpdUBAAAAFEcEbAAAAAAATICADQAAAACACRCwYXI84wwAAACgOCJgw6RsbGxkZ2dn7jJMimfKAQAAAOQHy3TB5OKTrystI9vcZZiEvZ3lE7/sGAAAAIAnAwEbJpeWka2r6XfMXQYAAAAAFCimiAMAAAAAYAIEbAAAAAAATICADQAAAACACRCw/8DV1VVxcXFPfL8zZsyQn5+fyfoDAAAAAPx9BGwAAAAAAEyAgA0AAAAAgAkQsP8kJSVFwcHB8vDwUNOmTTV37txc+7/99lv5+/vL09NTr732miIjI5WZmWncf/78eb377rvy8vLSyy+/rHXr1uU5x7p169S6dWt5eHioS5cuWrRokVxdXY3709LSNHr0aL300ktq2LChgoKClJiYmKefqKgovfzyy/L09FSvXr108uRJ476rV68qPDxczZo1k6enpwICAhQfH/9QdQAAAAAA8o+A/SexsbHq2LGjNmzYoO7du+vzzz/Xrl27JEnff/+9Bg0apK5du2r9+vUaO3asNm7cqKFDh0qS7ty5o9DQUF25ckWxsbGaNm2aoqOjc/X/7bff6qOPPtIbb7yhtWvXyt/fX1OmTDHuNxgM6tu3r06fPq25c+dq+fLlql+/vrp3767Dhw8b2509e1YJCQmKiopSbGysLl68qJEjR0qSsrOzFRISoj179igiIkJxcXGqXbu2+vTpowMHDuSrDgAAAADAw7EydwFPmsDAQHXs2FGS1K9fPy1YsEAHDx6Uj4+P5syZo65duyogIECSVK1aNYWHh6t37946c+aMUlJS9PPPP2vLli2qVq2aJGnChAnG/iQpOjparVq1Up8+fSRJNWrU0MmTJxUTEyNJ+uGHH7Rv3z798MMPKlu2rCTpgw8+UEJCghYtWqSJEydKkqytrTVlyhSVLl1akhQQEKCpU6dKknbs2KFDhw5p3bp1ql27tiQpPDxciYmJio6ONgb/B9UBAAAAAHg4BOw/qV69eq7vZcqU0e3btyVJhw8f1oEDB7Ry5UrjfoPBIElKTk7W8ePH5eDgYAzXkuTm5iZbW1vj90OHDukf//hHrnM0atTIGGwPHTokg8Gg5s2b52qTmZlprEOSKlSoYAzXd+u8deuWJCkpKUn29vbGcC1JFhYWeuGFF7Rjx4581QEAAAAAeDgE7D+xtLTMs+1uiM7JyVFoaKg6deqUp42Tk5OSk5OVk5OTZ5+VlVWuz/dqc1dOTo5Kly59z2W9bGxsHljnn+u91/a7tfxVHQAAAACAh8Mz2A+hVq1aSklJkbOzs/Hf+fPnNXnyZN28eVNubm5KS0vTzz//bDzm5MmTunHjhvF7nTp1tH///lz97t271/i5du3aunHjhrKysnKdZ968edq2bVu+6nR1dVVaWpqSkpKM2wwGg3766Sc999xz+aoDAAAAAPBwCNgPoW/fvtq0aZNmzpyplJQU7dq1S8OHD1daWpqcnJzk7e2tevXqadiwYdq3b58SExM1bNgwlShRIlcf33zzjb744gudPHlSX3/9tWJjY437mzZtKjc3Nw0ePFg//PCDUlNTNWHCBMXFxcnFxSVfdfr6+srNzU0ffvihdu/ereTkZI0bN05JSUnq3bt3vuoAAAAAADwcAvZDaNWqlaZOnaqtW7eqXbt2Gjp0qHx9fTVz5kxJUokSJTR37lzVrFlTISEhevvtt9W2bVuVL1/e2MfLL7+scePG6csvv9Trr7+uFStWqHv37rK2tpb0+9TvBQsWyN3dXYMGDVL79u31448/aubMmfLx8clXnXf7qFu3rgYMGKDOnTvr559/VkxMjOrXr5+vOgAAAAAAD8fCcL8HdvFY7N69W46OjqpZs6Zx25w5c7Ry5Upt3bq1UNdxd63uCxZVdDX9jknqNLeypaz0qns5c5cBE0pPT9eRI0fk5uamUqVKmbsc4L64V1FYcK+isOBexaO6m3M8PDz+si0j2AVsx44d6tOnj3744QedO3dO27Zt08KFC9WhQ4diWQcAAAAAFBW8RbyADRgwQOnp6Ro2bJguX76sSpUqKTg4WKGhocWyDgAAAAAoKgjYBczGxkajRo3SqFGjqAMAAAAAihCmiAMAAAAAYAKPPIJ9+vRpZWZmysXFRWlpaYqMjNTZs2fVqlUrdezY0YQlorCxt7M0dwkmU5SuBQAAAMDj9UgB+7vvvlP//v3Vq1cvffTRRxozZow2b96s2rVra/jw4crKylKXLl1MXSsKCW+XMuYuwaQMBoMsLCzMXQYAAACAJ9wjTRH/17/+JV9fX/Xv31/Xr1/Xli1b9NZbb2nVqlV66623tGjRIlPXiUIiMzNTGRkZ5i7DpAjXAAAAAPLjkQL20aNH1bt3b5UuXVrff/+9srOz1bJlS0lSkyZNlJqaatIiUbiwtDoAAACA4uiRAnbJkiV1584dSb+vp1yhQgXVqVNHkvTbb7+pTJmiNUUYAAAAAIC/8kjPYDdo0EALFizQ9evXtWnTJnXq1EmSdPDgQc2cOVMNGjQwaZEAAAAAADzpHmkEe8SIETp//rw+/PBDVa5cWe+++64k6e2339bt27c1ZMgQkxaJwoVnlgEAAAAUR480gl21alVt2LBBly5dkqOjo3H7rFmzVLduXdnY2JisQBQuNjY2srOzM3cZRQ5vMgcAAACefI+8DraFhYVKlSpl/L5p0yadO3dO5cqVk7Ozs0mKQ+EUn3xdaRnZ5i6jyLC3syxyS58BAAAARdEjBewTJ07o7bffVtu2bTVo0CBFRkZq7ty5MhgMioyM1IIFC9SwYUNT14pCIi0jW1fT75i7DAAAAAAoUI/0DPaUKVNkZWWlFi1aKDMzU0uWLFHr1q21Z88eNW3aVJGRkSYuEwAAAACAJ9sjBew9e/boww8/lIeHh3bv3q20tDR169ZNpUuXVkBAgA4ePGjqOgEAAAAAeKI9UsDOysoyrnX9/fffy87OzjglPDs7W1ZWj/xoNwAAAAAAhdIjBezatWtr8+bNunjxor755hv5+vrKyspKWVlZ+vLLL1W7dm1T11mgXF1dFRcXZ7I+ZsyYIT8/P1OUli8Gg0GrVq3SpUuXCuycAAAAAFDcPVLAHjhwoFauXKmXX35Z165dU9++fSVJLVu21A8//KD+/fubtMjCLiQkRCtXriyw8/34448KCwtTRkZGgZ0TAAAAAIq7R5rL3aRJE61bt06JiYmqV6+eKleuLEnq3bu3XnrpJbm6upq0yMLuqaee0lNPPVVg5zMYDAV2LgAAAADA7x5pBFuSqlatqjZt2hjDtfR7wHZ1ddWNGzdMUpw5paSkKDg4WB4eHmratKnmzp2ba/+3334rf39/eXp66rXXXlNkZKQyMzPv2defp4j/9ttvGjZsmLy9vdWwYUO9/fbbSk1NNe7fvn27unbtKi8vL/n6+mrChAm6deuWcb+rq6u+/PJLde3aVR4eHmrXrp22bdsmSYqPj1dQUJAkqUWLFsZp6gkJCerRo4c8PT31yiuvKDw8PNf/Jz8/P02aNElt2rSRt7e3du/e/Td/QQAAAAAoXh4pYGdmZmrevHnq27evevfuraCgIAUFBalXr17q3LmzmjRpYuo6C1xsbKw6duyoDRs2qHv37vr888+1a9cuSb+/2G3QoEHq2rWr1q9fr7Fjx2rjxo0aOnToX/Z7584dhYSE6Pjx45o9e7aWL1+unJwchYaGKjs7W1u2bNG7776rV155RXFxcQoPD9eGDRv0wQcf5OpnypQp6tChg9asWaNmzZppwIABSkhIkJeXl2bMmCFJWrFihdq0aaOjR4/qzTffVNOmTbV27VpNmTJFhw4dUkhISK7R7tjYWI0aNUrz589X/fr1TfdjAgAAAEAx8EhTxCdPnqzY2FjVrl1bly9fVsmSJVW+fHklJSUpKytLAwYMMHWdBS4wMFAdO3aUJPXr108LFizQwYMH5ePjozlz5qhr164KCAiQJFWrVk3h4eHq3bu3zpw5oypVqty33127dunYsWP65ptvVKNGDUnSp59+qpiYGF27dk1RUVF67bXX1K9fP0lSjRo1ZDAY1L9/fx0/flzPPfecJMnf3189evSQJA0ZMkS7d+9WbGysPv/8czk4OEiSypcvL1tbW0VHR6tJkyZ65513JEnVq1fXP//5T7366qvavXu3vL29JUnNmjVT48aNTfxLAgAAAEDx8EgBe/PmzXrzzTf10Ucfac6cOTpy5IimTZumCxcuqGfPnsrJyTF1nQWuevXqub6XKVNGt2/fliQdPnxYBw4cyPXisrsjwcnJyQ8M2ElJSXJwcDCGa0mqWLGiPvroI+P+tm3b5jrmxRdfNO67G7DvhuK7vLy8tHPnznue8/Dhw0pNTZWXl1eefcnJyca+nJ2d71s3AAAAAODBHilgX758WS+//LKk35fsWr58uaTfg+Jbb72lL774otCPYltaWubZdjdE353S3alTpzxtnJycHtjvX60Rfq8XlN39g8Ufj/1zP9nZ2SpR4t4z/nNyctSuXTvjCPYflS9f3vjZ1tb2gbUBAAAAAO7vkZ7Btre3N77Qy9nZWb/88ovxhVnVq1fXL7/8YroKn0C1atVSSkqKnJ2djf/Onz+vyZMn6+bNmw889rnnntO1a9dyvdTs8uXL8vb21r59++Tq6qqEhIRcx+zZs0eS5OLiYtyWmJiYq83evXv1/PPPS5IsLCzy1Hv8+PFc9d65c0cTJkwo8v+vAAAAAKCgPFLAfuGFF7R48WJlZGTI2dlZdnZ22rp1q6Tfg17p0qVNWuSTpm/fvtq0aZNmzpyplJQU7dq1S8OHD1daWtpfjmD7+PjI3d1dH330kQ4cOKCff/5ZH330kcqXL6/nn39eoaGh2rx5s2bPnq2UlBR9++23+uSTT9S8efNcAXvhwoVat26dUlJSNGnSJB07dky9e/eWJJUqVUqSdPToUd28eVMhISE6fPiwwsPDlZycrL179+rDDz/UyZMn80yFBwAAAAA8mkcK2AMGDNC+ffv01ltvycrKSoGBgRo9erT8/f01bdo0tWzZ0tR1PlFatWqlqVOnauvWrWrXrp2GDh0qX19fzZw58y+PLVGihGbPnq1nnnlGb775prp3766SJUtq/vz5sra2VsuWLfX5559r48aNateuncaOHau2bdsqMjIyVz8BAQGKiYlR+/bttWfPHkVHR6tOnTqSfp+236xZMw0aNEjLli1T/fr1NX/+fB05ckSdOnXSu+++qxo1aigmJkY2NjaP4ycCAAAAgGLHwnCvh37z4eLFi0pKSlKTJk1kMBg0d+5cJSQkyNPTU2+99RbB7TFydXXVhAkT5O/vb+5Scrk7bf2CRRVdTb9j5mqKjrKlrPSqezlzl1FkpKen68iRI3JzczPO9gCeRNyrKCy4V1FYcK/iUd3NOR4eHn/Z9pFecib9/jKvu9OhLSws7vkCLQAAAAAAiot8B+z8TH++y8LCQv3793+kggAAAAAAKIwI2IXQsWPHzF0CAAAAAOBP8h2wjx49avyckZEhOzu7XPsPHz6sunXrmq4yAAAAAAAKkYd6BvvYsWMaMWKEXn31Vb377rvG7devX9cbb7yhWrVqKTIyUjVq1DB5oSg87O0szV1CkcLvCQAAABQO+Q7YZ86cUVBQkGxtbfMEaGtraw0bNkxffPGFAgMDtXr1alWsWNHkxaJw8HYpY+4SihyDwSALCwtzlwEAAADgAfK9DnZUVJTKli2rVatWqVWrVrn22dnZKTg4WCtXrlTJkiU1d+5ckxeKwiEzM1MZGRnmLqPIIVwDAAAAT758B+xdu3YpNDRU5cuXv28bJycnhYSEaOfOnSYpDoXTIy6tDgAAAACFWr4D9q+//qrq1av/ZbvatWvr/Pnzf6cmAAAAAAAKnXwH7PLly+vXX3/9y3ZXrlyRg4PD3yoKhRvTmQEAAAAUR/kO2I0aNVJcXNxftlu9ejXLdRVjNjY2eZZww19jWj0AAABQ+OX7LeK9evVS9+7dNXHiRA0ePFglS5bMtT8zM1ORkZH6/vvvFRUVZfJCUXjEJ19XWka2ucsoNOztLHnzOgAAAFAE5Dtge3h4aPjw4frss8+0Zs0a+fj4qEqVKsrOzta5c+cUHx+vK1eu6P3331fTpk0fZ814wqVlZOtq+h1zlwEAAAAABSrfAVuSevTooTp16ig6Olrbtm3T7du3JUlPPfWUfH19FRISonr16j2WQgEAAAAAeJI9VMCWpIYNG6phw4aSpMuXL8vKykplyjC9FQAAAABQvD10wP6jB62JDQAAAABAcZLvt4jjyeTq6mp8u3tYWJh69ep137ZnzpyRq6ur4uPjC6o8AAAAACg2/tYINsxvx44dsre3z1fbSpUqaceOHaxTDgAAAACPAQG7kHNycsp3W0tLy4dqDwAAAADIP6aIF3J/nCIuSXfu3NEnn3yiBg0ayNvbW+PGjTO+7f3PU8RPnjypPn36qGHDhvLy8lKfPn107Ngxs1wHAAAAABR2BOwiJiEhQZcuXdKyZcs0ceJEbdq0SREREfds+8EHH6hixYr6+uuvtWLFCpUoUUIDBgwo4IoBAAAAoGggYBcxTk5OmjRpkmrVqqXmzZvr/fff11dffaWMjIw8bU+dOqXy5curcuXKeu655/TZZ5/p008/VU5OjhkqBwAAAIDCjYBdxLi7u6tkyZLG756ensrKytLJkyfztB08eLC++OILeXt765133tHmzZtVp04dlSjBbQEAAAAAD4skVcRYWlrm+n53NNrGxiZP2x49euj777/XqFGjZG9vr+nTp6tt27b67bffCqRWAAAAAChKCNhFzJEjR3JN8f7pp59ka2urqlWr5mp36dIljRs3TllZWfL391dERITWrl2rixcvavfu3QVdNgAAAAAUeizTVcT88ssvGjFihPr06aMTJ05oxowZCg0NzTOC7eDgoO3bt+vUqVP68MMPVbp0acXFxcna2lru7u5mqh4AAAAACi8CdhHTokULWVpaqmvXrrKzs1P37t3Vr1+/PO2srKw0b948TZo0ScHBwcrIyJCbm5uioqJUrVo1M1QOAAAAAIUbAbuQ++O61RMnTjR+Hj9+fJ62VapUydXexcVFUVFRj7dAAAAAACgmeAYbAAAAAAATIGADAAAAAGACBGwAAAAAAEyAgA0AAAAAgAkQsAEAAAAAMAHeIg6Ts7ezNHcJhQq/FwAAAFA0ELBhct4uZcxdQqFjMBhkYWFh7jIAAAAA/A1MEYdJZWZmKiMjw9xlFDqEawAAAKDwI2DD5AwGg7lLAAAAAIACR8AGAAAAAMAECNgwOaY7AwAAACiOCNgwKRsbG9nZ2RX4eZmWDgAAAMDceIs4TC4++brSMrIL7Hz2dpa8uRwAAACA2RGwYXJpGdm6mn7H3GUAAAAAQIFiijgAAAAAACZAwAYAAAAAwAQI2AAAAAAAmAABGwAAAAAAEyjSAdvV1VVxcXH5anvmzBm5uroqPj5ekhQWFqZevXo9zvIe2sNcz71cuXJFK1asMGFFAAAAAIC7ivRbxHfs2CF7e/tHOnbkyJHKzi64paYKwuTJk3XmzBl16dLF3KUAAAAAQJFTpAO2k5PTIx/7qMH8SWYwGMxdAgAAAAAUWcVminhYWJjCwsI0adIk+fj4qF69enr77bd14cKFex77xyni8fHxqlu3rr777ju9/vrrcnd3V6tWrbR161Zje4PBoHnz5qlFixaqV6+eOnTooLVr1z5UvSdPnlSfPn3UsGFDeXl5qU+fPjp27Ng92168eFGtWrXSm2++qVu3bkmSVqxYoXbt2snT01P169dXYGCgEhMTjdezatUq7d69W66uriarGQAAAADwuyIdsP9s/fr1unr1qmJjYzVv3jwdOnRIkZGR+To2OztbERERGjlypNavX6/atWvro48+0s2bNyVJU6dO1dKlSzV69GitW7dOQUFB+vjjj/Xll1/mu74PPvhAFStW1Ndff60VK1aoRIkSGjBgQJ52ly9fVnBwsCpXrqw5c+bI1tZWW7Zs0bhx4xQaGqqNGzcqJiZGt2/f1qhRoyT9PuW9devW8vLy0o4dO0xWMwAAAADgd0V6ivif2dvba9y4cbK2tpaLi4vatGmj7777Lt/HDxo0SD4+PpKkfv36adOmTUpKSpKrq6tiYmL0+eef65VXXpEkVatWTWfPnlV0dLR69OiRr/5PnTqlxo0bq3LlyrK2ttZnn32mEydOKCcnRyVK/P63kKtXryo4OFjPPvusZs2aJRsbG0lS2bJlNX78eLVv316SVLlyZb3xxhsaN26c8dptbW1lbW0tJycnpaenm6RmAAAAAMDvilXArlatmqytrY3f7e3tlZWVle/ja9asafxcunRpSVJWVpaOHz+u27dv68MPPzQGYUm6c+eOMjMzdevWLdna2v5l/4MHD9Znn32mJUuW6MUXX1TTpk31+uuv5+pz6tSpysrKkru7uzFcS1KjRo2UnJysWbNm6cSJE0pNTdWxY8eUk5Nzz3OZqmYAAAAAwO+KVcD+YyA11fEGg8H48rDIyMhcIfxhz9ujRw+1atVK3333nXbt2qXp06frX//6l1avXi1HR0dJUuPGjdW5c2e99957atOmjXx9fSVJ69atU1hYmNq1a6cGDRooICBASUlJxhHse9VtipoBAAAAAL8rVs9gPy41a9aUlZWVzp07J2dnZ+O/7777TtHR0blGiO/n0qVLGjdunLKysuTv76+IiAitXbtWFy9e1O7du43tWrZsqX/84x9q06aNRo8erRs3bkiSoqKi9MYbb2jixInq0aOHGjVqpNOnT0v6X5i2sLAwac0AAAAAgP8hRZmAvb29AgICNG3aNK1Zs0anT5/WypUrFRERoaeffjpffTg4OGj79u0aNWqUjhw5otOnT+urr76StbW13N3d87QfOXKkbt68qcmTJ0uSKlWqpISEBB06dEinTp1STEyMYmNjJUmZmZmSpFKlSunXX3/V6dOnTVIzAAAAAOB/itUU8cdp+PDhKleunKZNm6Zff/1VlSpV0sCBAxUaGpqv462srDRv3jxNmjRJwcHBysjIkJubm6KiolStWrU87R0dHTVs2DDj28FHjx6tMWPGqGfPnrKxsVGdOnU0efJkDR48WImJiXrhhRfUsWNHbdmyRa+//ro2b978t2sGAAAAAPyPheHu/GHgb7q75vYFiyq6mn6nwM5btpSVXnUvV2DnQ+GWnp6uI0eOyM3NTaVKlTJ3OcB9ca+isOBeRWHBvYpHdTfneHh4/GVbpogDAAAAAGACTBEvAPPmzdPs2bMf2GbEiBHq0qVLAVUEAAAAADA1AnYB6Nq1q/7xj388sE2FChUKqBoAAAAAwONAwC4ADg4OcnBwMHcZBcbezrJInw8AAAAA7oWADZPzdilT4Oc0GAy51vkGAAAAgILGS85gUpmZmcrIyCjw8xKuAQAAAJgbARsmx8pvAAAAAIojAjYAAAAAACZAwAYAAAAAwAQI2DA5nocGAAAAUBwRsGFSNjY2srOzM3cZBY7nzgEAAACwTBdMLj75utIyss1dRoGxt7M0y9JkAAAAAJ4sBGyYXFpGtq6m3zF3GQAAAABQoJgiDgAAAACACRCwAQAAAAAwAQI2AAAAAAAmUOQDtqurq+Li4v52P3FxcXJ1dTVBRX/ft99+q+PHj5u7DAAAAADAHxT5gL1jxw61adPG3GWYzNmzZ/XOO+/o0qVL5i4FAAAAAPAHRf4t4k5OTuYuwaRYbxkAAAAAnkxFfgT7j1PEV69erfbt28vT01N+fn6aPXu2srP/t17z6tWr1bZtW3l4eKhp06YaP368MjMzc/UXFxenV199VR4eHvL399f+/fuN+/z8/DRjxoxc7f+8bcWKFWrXrp08PT1Vv359BQYGKjExMV/XcubMGbVo0UKSFBQUpBkzZig+Pl5169ZVVFSUvL295e/vr5ycHF24cEGDBw/WCy+8IG9vb73zzjs6efJkrv6+/vprtW7dWp6enmrdurUWLlyonJycfNUCAAAAAMityAfsu2JiYjR69Gh169ZNa9eu1fvvv6/o6GhNnDhRknT06FGNGjVK7733njZt2qTPPvtMa9as0fz583P1s3z5cn3++ef6+uuvZWNjo0GDBuW7hi1btmjcuHEKDQ3Vxo0bFRMTo9u3b2vUqFH5Or5SpUpasWKFJGnGjBkKCQmRJGVnZ+u7777TsmXLNH78eN26dUu9evWSJMXGxmrx4sUqV66cunbtqgsXLkiSli1bpsmTJ2vAgAH697//rUGDBmnevHmaMmVKvq8HAAAAAPA/RX6KuPT7tOp58+apZ8+e6tGjhySpevXqunr1qiIiIjRw4ECdOXNGFhYWqly5sp599lk9++yzio6OVunSpXP1NX78eLm4uEiS+vTpowEDBujSpUuqUKHCX9ZRtmxZjR8/Xu3bt5ckVa5cWW+88YbGjRuXr+uwtLRU+fLlJUkODg566qmnjPtCQkJUvXp1Sb+Pkl+/fl0RERGysrIy1h0fH6/ly5frvffe0+zZs/Xuu++qbdu2kqSqVavqxo0bCg8P1/vvv6+SJUvmqyYAAAAAwO+KRcC+fPmyfvvtNzVs2DDX9hdffFFZWVk6ceKEmjZtKi8vL73xxhuqUqWKmjRpohYtWsjd3T3XMXdDrCSVKVNGknTr1q181dGoUSMlJydr1qxZOnHihFJTU3Xs2DGTTMv+Y12HDx/WtWvX1KhRo1xtbt++reTkZF2+fFnnz5/X559/rmnTphn35+Tk6Pbt2zpz5ozxjwgAAAAAgPwpFgH7fi8GuxtsraysVLJkSS1atEiHDx/Wjh07tGPHDr3zzjvq2LGjJkyYYDzG0tIy3/1L0p07d4yf161bp7CwMLVr104NGjRQQECAkpKS8j2C/SB/HHHOyclRjRo19K9//StPu1KlShmve/jw4WrcuHGeNpUqVfrb9QAAAABAcVMsnsF2dHSUo6Ojfvrpp1zb9+zZI2tra1WrVk3fffedZs6cqbp16+qtt97SokWLNHDgQG3YsCHf57G2ttaNGzeM32/cuJFrOa2oqCi98cYbmjhxonr06KFGjRrp9OnTkvL/dnALC4u/bFO7dm2dO3dO9vb2cnZ2lrOzs5599ln985//1I8//qgKFSqofPnyOn36tHG/s7OzDh06pMjIyHxfLwAAAADgf4pFwJZ+f146NjZWS5YsUWpqqtatW6eZM2eqW7dusre3l7W1tWbNmqWYmBidPn1aBw8e1Pbt2+Xl5ZXvc9SvX18bNmxQQkKCjh8/rhEjRuQa8a5UqZISEhJ06NAhnTp1SjExMYqNjZWkPG8rv59SpUpJkpKSkpSWlnbPNu3bt5eDg4MGDhyo/fv3Kzk5WWFhYfr+++/l6uoqCwsL9e3bV4sXL1ZsbKxOnTqlLVu26OOPP5atra1sbGzyfc0AAAAAgN8Viyni0u8vAbOxsdHChQv12Wef6ZlnnlHfvn3Vp08fSVLjxo01fvx4LViwQFOnTpWtra2aNWumsLCwfJ/jgw8+0NWrV/Xmm2/K3t5eISEhun79unH/6NGjNWbMGPXs2VM2NjaqU6eOJk+erMGDBysxMVEvvPDCX56jXLly6ty5syZPnqzU1FS99tpredrY29srNjZWkydPVp8+fZSdna3nn39eCxYsMD5bHRISopIlS2rx4sWaOHGiHB0d1bVrVw0cODDf1wsAAAAA+B8LQ37nJhdCd+7c0fPPP68pU6aoXbt25i6nyLu7nvcFiyq6mn7nL1oXHWVLWelV93LmLgP5lJ6eriNHjsjNzc04IwR4EnGvorDgXkVhwb2KR3U353h4ePxl2yI7gn3+/Hnt3btXEi/tAgAAAAA8fkU2YH/xxRdavny5Xn/99Yd6jtpcLly4oFatWj2wjYeHhxYtWlRAFQEAAAAAHkaRDdjDhw/X8OHDzV1Gvjk6Omr16tUPbPPHpbgAAAAAAE+WIhuwCxtLS0s5OzubuwwAAAAAwCMiYMPk7O0s/7pREVLcrhcAAADAvRGwYXLeLmXMXUKBMxgMsrCwMHcZAAAAAMyohLkLQNGSmZmpjIwMc5dR4AjXAAAAAAjYMLkivLQ6AAAAANwXARsAAAAAABMgYAMAAAAAYAIEbJgczyMDAAAAKI4I2DApGxsb2dnZmbuMIoPn2QEAAIDCg2W6YHLxydeVlpFt7jIKPXs7y2K55BkAAABQWBGwYXJpGdm6mn7H3GUAAAAAQIFiijgAAAAAACZAwAYAAAAAwAQI2AAAAAAAmAAB+y+4uroqLi7O3GUAAAAAAJ5wBGwAAAAAAEyAgA0AAAAAgAkQsB/CxYsX1apVK7355pu6deuWJGnFihVq166dPD09Vb9+fQUGBioxMdF4jJ+fn6Kjo/Xee+/Jy8tL3t7e+vTTT3Xnzv+WsdqxY4c6deokDw8Pvf766/r666/l6uqqM2fOSJLOnTunwYMHy8fHR88//7xefvllRUREKCcnR5IUFxen1157TZ9++qkaNmyofv36SZKSk5P1zjvvyNvbWw0bNtTAgQN19uxZ43mzs7MVExOjli1bysPDQy1bttTSpUsf++8IAAAAAEURATufLl++rODgYFWuXFlz5syRra2ttmzZonHjxik0NFQbN25UTEyMbt++rVGjRuU6dtq0aWrUqJHWrl2rYcOGKTY2VuvXr5ckHTlyRG+//bZ8fHy0Zs0avfvuu5o0aVKu4999912lpaXpiy++0DfffKOQkBDNnz9f//nPf4xtTp06pV9//VWrV6/W4MGDdfbsWXXr1k02NjZauHChFixYoIsXL6pnz566ceOGJGnixImaPXu2BgwYoHXr1qlHjx4aP368YmJiHu+PCQAAAABFEAE7H65evarg4GA9++yz+te//qWSJUtKksqWLavx48erQ4cOqly5surXr6833nhDSUlJuY739fVVUFCQqlatqs6dO6tOnTpKSEiQJMXExMjd3V3Dhg1TzZo11bZtWw0YMMB47K1bt9ShQwd98sknqlOnjqpWrarg4GA5Ojrq2LFjuc7Tr18/Va1aVbVq1dKSJUtUqlQpTZkyRXXq1FG9evU0ffp0Xbp0SWvWrNGNGze0dOlSDRw4UO3atVP16tUVFBSkwMBARUVFyWAwPOZfFQAAAACKFitzF1AYTJ06VVlZWXJ3d5eNjY1xe6NGjZScnKxZs2bpxIkTSk1N1bFjx4xTt+9ycXHJ9d3e3l5ZWVmSpMOHD6tx48a59jdq1Mj42dbWVj179tQ333yjAwcOGM/x22+/5TlP9erVjZ+TkpLy1Ovk5KQaNWooKSlJJ06cUFZWlho2bJirjxdffFELFy7UpUuX5Ojo+BC/EgAAAAAUb4xg50Pjxo01ffp0ff3119qxY4dx+7p169S+fXudPn1aDRo00EcffaSwsLA8x/8x5N51d4TY0tIyT1D+o/T0dAUEBGjOnDkqU6aMOnXqpCVLluiZZ57J09bW1jZP/3+Wk5Mja2vrB+6XJCsr/vYCAAAAAA+DFJUPLVu21D/+8Q+1adNGo0eP1rp161S6dGlFRUXpjTfeUHh4uLHttm3bJP0ecC0sLP6y7zp16ujAgQO5tu3du9f4eceOHTp06JB27txpHFG+evWqLl269MBp3K6urlq7dq0yMzONAf+3335TamqqAgMD5eLiImtra/30009yc3MzHrdnzx45OTnJwcEhH78MAAAAAOAuRrAfwsiRI3Xz5k1NnjxZklSpUiUlJCTo0KFDOnXqlGJiYhQbGytJyszMzFefISEhSkxM1JQpU5SSkqItW7Zo+vTpkiQLCwvjSPXatWt19uxZ7dmzR/369VNWVtYDz9G9e3fdvHlTQ4cO1dGjR3XgwAG9//77KleunNq2bavSpUurW7dumj59utavX6/U1FR9+eWXWrJkiUJCQvL1xwEAAAAAwP8QsB+Co6Ojhg0bpmXLlmnXrl0aPXq0HB0d1bNnT3Xp0kXffvutMXz/camuB6ldu7Zmzpyp7du3q127dpo+fbp69uwpSbK2tpanp6eGDx+uRYsWqXXr1ho+fLgaNWqk119//YHnqFKlimJjY3X9+nV169ZNffr0kZOTk5YuXaoyZcpIkoYPH66goCBNmTJFbdu21dKlSzVmzBiFhIT8zV8KAAAAAIofCwOvizarAwcOyMrKSnXr1jVuW7dunUaMGKG9e/cWqmeh7wb+CxZVdDX9zl+0xl8pW8pKr7qXM3cZRU56erqOHDkiNzc3lSpVytzlAPfFvYrCgnsVhQX3Kh7V3Zzj4eHxl20ZwTazI0eOKCgoSNu2bdO5c+e0a9cuzZgxQ23bti1U4RoAAAAAijsSnJl17dpVFy9e1GeffaYLFy6oQoUKatu2rQYOHGju0gAAAAAAD4GAbWYWFhYaMGCABgwYYO5SAAAAAAB/A1PEAQAAAAAwAUawYXL2dpbmLqFI4HcEAAAAChcCNkzO26WMuUsoMgwGA2uSAwAAAIUEU8RhUpmZmcrIyDB3GUUG4RoAAAAoPAjYMDmWVgcAAABQHBGwAQAAAAAwAQI2AAAAAAAmQMCGyfHcMAAAAIDiiIANk7KxsZGdnZ25y8Aj4vl5AAAA4NGxTBdMLj75utIyss1dBh6SvZ0lS6wBAAAAfwMBGyaXlpGtq+l3zF0GAAAAABQopogDAAAAAGACBGwAAAAAAEyAgA0AAAAAgAkQsJ8grq6uiouLe+Tjr1y5ohUrVuSr7ZkzZ+Tq6qr4+PhHPh8AAAAA4H8I2EXI5MmTtXbtWnOXAQAAAADFEgG7CGENYwAAAAAwHwL2E+rixYtq1aqV3nzzTd26dUuSlJCQoB49esjT01OvvPKKwsPDdePGDUlSWFiYVq1apd27d8vV1VXS74F74cKFatmypTw9PdW2bVutX78+13n279+vLl26yN3dXS1atNDXX39dsBcKAAAAAEUEAfsJdPnyZQUHB6ty5cqaM2eObG1tdfToUb355ptq2rSp1q5dqylTpujQoUMKCQmRwWDQyJEj1bp1a3l5eWnHjh2SpPnz52vq1KkKDQ3V+vXrFRAQoGHDhumHH34wnmvhwoV69913tWHDBjVt2lSjRo1SamqquS4dAAAAAAotK3MXgNyuXr2q4OBgPfvss5o1a5ZsbGwkSdHR0WrSpIneeecdSVL16tX1z3/+U6+++qp2794tb29v2draytraWk5OTsbR66CgIHXp0kWS1KtXL926dUt37twxnq9///7y8/OTJA0ePFhLly7VoUOH5OzsXMBXDgAAAACFGwH7CTN16lRlZWXJ3d3dGK4l6fDhw0pNTZWXl1eeY5KTk+Xt7Z1r25UrV3Tx4kXVq1cv1/a+fftK+v0t4pJUo0YN4z4HBwdJ0u3bt01zMQAAAABQjBCwnzCNGzdW586d9d5776lNmzby9fWVJOXk5Khdu3bGEew/Kl++fJ5t1tbW+TpfiRJ5nxLgZWkAAAAA8PB4BvsJ07JlS/3jH/9QmzZtNHr0aONLzGrVqqXjx4/L2dnZ+O/OnTuaMGGCfvnlF0mShYWFsR97e3s9/fTTSkxMzNX/wIEDNWHChIK7IAAAAAAoJgjYT6iRI0fq5s2bmjx5siQpJCREhw8fVnh4uJKTk7V37159+OGHOnnypKpXry5JKlWqlH799VedPn1akvTWW29p4cKFWrNmjU6dOqVFixZp27ZtatGihbkuCwAAAACKLAL2E8rR0VHDhg3TsmXLtGvXLtWvX1/z58/XkSNH1KlTJ7377ruqUaOGYmJijM9qd+zYURkZGXr99dd14cIF9ezZU/369dO0adPUtm1brVixQlOnTtWLL75o5qsDAAAAgKLHwsADtzCRu9PRL1hU0dX0O3/RGk+asqWs9Kp7OXOX8dilp6fryJEjcnNzU6lSpcxdDnBf3KsoLLhXUVhwr+JR3c05Hh4ef9mWEWwAAAAAAEyAgA0AAAAAgAkQsAEAAAAAMAECNgAAAAAAJmBl7gJQ9NjbWZq7BDwC/r8BAAAAfw8BGybn7VLG3CXgERkMBllYWJi7DAAAAKBQYoo4TCozM1MZGRnmLgOPiHANAAAAPDoCNkyOpdUBAAAAFEcEbAAAAAAATICADQAAAACACRCwYXI8xwsAAACgOCJgw6RsbGxkZ2dn7jIKDM+bAwAAALiLZbpgcvHJ15WWkW3uMh47eztLliQDAAAAYETAhsmlZWTravodc5cBAAAAAAWKKeIAAAAAAJgAARsAAAAAABMgYAMAAAAAYAIE7CeUq6ur4uLizF0GAAAAACCfCNgAAAAAAJgAARsAAAAAABMgYBcCOTk5mjt3rlq2bCl3d3c1aNBAoaGhOnXqlLGNq6urli1bpsDAQHl4eKh169ZKSEjQsmXL9Morr6hBgwYaNGiQbt26JUmKi4vTyy+/rOXLl8vX11deXl7q37+/Lly4YK7LBAAAAIBCjYBdCCxatEjR0dEKCwvTpk2bNGvWLJ08eVITJ07M1W7q1KkKDQ3VmjVrZG9vr3feeUebNm1SVFSUJkyYoK1bt2rFihXG9pcvX9bChQsVGRmphQsX6pdfflFoaKju3GENawAAAAB4WATsQqBatWqaNGmSmjdvrsqVK8vHx0etWrVSUlJSrnadO3eWn5+fatasqQ4dOujatWsaM2aMateurZYtW8rNzU0///yzsX1WVpYmTZqkF154QZ6enoqIiFBSUpJ27dpV0JcIAAAAAIWelbkLwF/z8/PT/v37NW3aNKWkpCglJUXHjx9XxYoVc7VzdnY2frazs5P0ezi/y9bWVpmZmcbvTz31lNzd3Y3fXVxc5ODgoKSkJDVt2vRxXQ4AAAAAFEmMYBcCUVFRCgoK0pUrV+Tj46Pw8HCFhITkaWdllffvJSVK3P9/sbW1dZ5t2dnZsrS0/HsFAwAAAEAxxAh2ITBnzhz1799fb731lnFbdHS0DAbD3+r36tWrOn36tKpWrSpJ+vnnn3Xjxg3VrVv3b/ULAAAAAMURI9iFQKVKlbRz504dP35cJ06c0NSpU7V58+Zc070f1dChQ3Xw4EHt27dPw4YNk5eXlxo1amSCqgEAAACgeCFgFwKTJ0/WrVu31LlzZ/Xs2VNJSUkKDw/XpUuXdO7cub/Vd7t27fTWW28pNDRUtWrV0ty5c2VhYWGiygEAAACg+GCK+BPq2LFjxs/PP/+8li1blqdNQEDAPdtLkr+/v/z9/XNtW7x4cZ4+evTooR49evzdcgEAAACg2GMEGwAAAAAAEyBgAwAAAABgAgTsYsrf3z/PtHIAAAAAwKMjYAMAAAAAYAK85AwmZ29nae4SCkRxuU4AAAAA+UPAhsl5u5QxdwkFxmAwsKwZAAAAAElMEYeJZWZmKiMjw9xlFBjCNQAAAIC7CNgwOYPBYO4SAAAAAKDAEbABAAAAADABAjYAAAAAACZAwIbJ8VwyAAAAgOKIgA2TsrGxkZ2dnbnLKJR4dh0AAAAo3FimCyYXn3xdaRnZ5i6jULG3syxWy5sBAAAARREBGyaXlpGtq+l3zF0GAAAAABQopogDAAAAAGACBGwAAAAAAEyAgA0AAAAAgAkQsM3E1dVVcXFxJuvPYDBo1apVunTpksn6BAAAAADkHwG7iPjxxx8VFhamjIwMc5cCAAAAAMUSAbuIYA1lAAAAADAvAvYTICcnR3PnzlXLli3l7u6uBg0aKDQ0VKdOnTK2cXV11ZdffqmuXbvKw8ND7dq107Zt2yRJ8fHxCgoKkiS1aNHCOPV87969CgoKUsOGDeXt7a3hw4frypUrxj79/Pw0e/Zs9enTR56ennrttde0YsWKArxyAAAAACg6CNhPgEWLFik6OlphYWHatGmTZs2apZMnT2rixIm52k2ZMkUdOnTQmjVr1KxZMw0YMEAJCQny8vLSjBkzJEkrVqxQmzZtdODAAfXq1Uu1atXS8uXLNW3aNO3fv199+vRRdna2sc/Zs2fLy8tLq1evVo8ePTRmzBht2LChQK8fAAAAAIoCAvYToFq1apo0aZKaN2+uypUry8fHR61atVJSUlKudv7+/urRo4dq1qypIUOGyMPDQ7GxsbKxsZGDg4MkqXz58rK1tdWCBQvk6uqq0aNHy8XFRS+99JI+//xzHTp0SDt27DD26evrqwEDBqhmzZoKDg5Wq1attHDhwgK9fgAAAAAoCqzMXQB+n6q9f/9+TZs2TSkpKUpJSdHx48dVsWLFXO28vb1zfffy8tLOnTvv2WdSUpKaNGmSa1udOnVkb2+vY8eOqVmzZvftc/v27X/zigAAAACg+GEE+wkQFRWloKAgXblyRT4+PgoPD1dISEiedlZWuf8ekp2drRIl7v2/8H4vPTMYDLK2tr5vnzk5OfftEwAAAABwf4xgPwHmzJmj/v3766233jJui46OzhOSExMT5efnZ/y+d+9ePf/885IkCwuLXG1dXV31008/5dp29OhR3bhxQy4uLrn6/KOEhATVrVv3710QAAAAABRDBOwnQKVKlbRz5075+fmpRIkSWrNmjTZv3ixHR8dc7RYuXKiaNWvK3d1dy5cv17FjxzR+/HhJUqlSpST9HqLLlSunN998U4GBgfrkk08UGBio3377TZ988onq1q0rHx8fY5///ve/Va9ePTVp0kRbt27Vli1bNGfOnIK7eAAAAAAoIpgL/ASYPHmybt26pc6dO6tnz55KSkpSeHi4Ll26pHPnzhnbBQQEKCYmRu3bt9eePXsUHR2tOnXqSJJq166tZs2aadCgQVq2bJnq1aun+fPn6+DBg+rYsaMGDRokLy8vffHFF7mmiHfq1ElbtmxRu3bttGbNGkVGRhqfzwYAAAAA5B8j2GZy7Ngx4+fnn39ey5Yty9MmICAg1/fnnntOw4YNu2d/NjY2ioqKyrXNx8cn12j1vVSsWFGffvppfssGAAAAANwHI9gAAAAAAJgAARsAAAAAABNgingh8ccp5abyn//8x+R9AgAAAEBxxQg2AAAAAAAmwAg2TM7eztLcJRQ6/GYAAABA4UfAhsn9P3t3HlZF3f9//IUsAYYL6m3mhmIeSUFxI9NSUW/cUcjdjNAS09wy03KJrNxXzNzIDTWXcN8zu7v1LksxIxdIcrcsF1ziKAjn90c/z7cTmtvAYXk+rsvrOjPzmc+8Z5h/Xs5n5hPgXcjeJeRKFotFDg4O9i4DAAAAwENiiDgMlZqaKrPZbO8yciXCNQAAAJC7EbBhOIvFYu8SAAAAACDbEbABAAAAADAAARsAAAAAAAMQsGE43iUGAAAAkB8RsGEoFxcXubm52buMXIP31QEAAIC8g2m6YLi9SVd1zZxu7zJyPA83R6Y0AwAAAPIQAjYMd82cruSUW/YuAwAAAACyFUPEAQAAAAAwAAEbAAAAAAADELABAAAAADAAATsHMZlMio2NlSRFRUUpMDDQzhUBAAAAAO4XARsAAAAAAAMQsAEAAAAAMAABO5dITExU7969VadOHVWrVk1NmjTRJ598Yt0eFRWlsLAwzZw5U88++6z8/f01atQo/fLLL+rdu7eqV6+uZs2a6csvv7Tuc+7cOQ0aNEj16tVT1apV9fzzz2vixInKyMiwwxkCAAAAQO5GwM4FzGazwsPDVaRIEX366afauHGjmjdvrvHjx+vIkSPWdvv27dPx48e1dOlSjRgxQitWrNALL7ygFi1aKDY2Vt7e3ho2bJgsFoskqU+fPrp27ZoWLFigrVu3Kjw8XPPnz9cXX3xhr1MFAAAAgFyLgJ0LmM1m9ejRQ6NGjZK3t7e8vLzUv39/SVJCQoK1XUZGhiIjI1WhQgWFhoaqaNGieuaZZ9SuXTt5e3urS5cuunz5sn7//XfduHFDwcHBGjNmjKpUqaKyZcsqLCxMxYsXt+kTAAAAAHB/nOxdAO7N09NTXbt21caNG3X48GGdOnVKR48elSSb4dzFihXT448/bl12d3dXuXLlrMuurq6SpNTUVLm6uqp79+7aunWrfvjhB508eVIJCQm6cOECQ8QBAAAA4CEQsHOB33//XZ06dZKnp6cCAwPVoEED+fr6qmHDhjbtnJ2dM+1boMCdBymkpKSoe/fuunHjhpo3b6727dvLz89P3bp1y5JzAAAAAIC8joCdC2zcuFHJycnatm2bNUTfHsZ9+33qB7V7924dOnRIe/bsUfHixSVJycnJunjx4kP3CQAAAAD5Ge9g5wJPPPGEzGaztm7dqnPnzmn37t0aPHiwpD+Hez9sn5K0fv16nT17Vvv27dNrr72mtLS0h+4TAAAAAPIznmDnAs2bN9ehQ4c0btw4Xb9+XaVLl1aHDh20c+dOxcfHq0uXLg/cp5+fn4YPH66FCxdq2rRpKlmypFq2bKlSpUopPj4+C84CAAAAAPI2BwvjgWGQ28H8vEMZJafcsnM1OV8Rdyc1rVbU3mXkOykpKTpy5Ih8fHzk7u5u73KAu+JeRW7BvYrcgnsVD+t2zvH19b1nW4aIAwAAAABgAAI2AAAAAAAGIGADAAAAAGAAAjYAAAAAAAbgK+IwnIebo71LyBW4TgAAAEDeQsCG4QK8C9m7hFzDYrHIwcHB3mUAAAAAMABDxGGo1NRUmc1me5eRaxCuAQAAgLyDgA3DMbU6AAAAgPyIgA0AAAAAgAEI2DAcw54BAAAA5EcEbBjKxcVFbm5u9i7jrhi+DgAAACCr8BVxGG5v0lVdM6fbu4xMPNwc+cI5AAAAgCxDwIbhrpnTlZxyy95lAAAAAEC2Yog4AAAAAAAGIGADAAAAAGAAAjYAAAAAAAYgYGcDk8mk2NjYLGv/dykpKVq6dOlD7w8AAAAAeHAE7Dzok08+UXR0tL3LAAAAAIB8hYCdBzHXMwAAAABkPwK2HXz55Zfq2LGj/P391aBBA40dO1Y3btywafPzzz+rc+fOqlatmlq0aKEtW7ZYt5nNZr3zzjuqX7++fH191a5dO23fvl2SFBUVpZkzZ+rs2bMymUw6c+aMJOmzzz5TixYt5OfnpxYtWmjRokXKyMiQJJ05c0Ymk0lz5sxR/fr11aRJE12/fj2brgYAAAAA5A0E7Gy2Y8cO9enTR40aNVJsbKwiIyO1efNmDR482KbdokWL1K5dO23YsEFBQUEaNGiQfvzxR0nS9OnTlZCQoLlz52rz5s16/vnnNWjQIJ05c0bh4eEKDw/XE088od27d6tUqVJasWKFJkyYoH79+mnTpk0aOHCg5s2bp0mTJtkcc82aNVq0aJGmTZumxx9/PNuuCQAAAADkBU72LiC/mTt3rpo1a6bXXntNklShQgVZLBb17dtXx44dU6VKlSRJXbt2VefOnSVJAwcO1DfffKOFCxdq0qRJOnXqlAoWLKiyZcuqUKFCGjBggOrUqaPChQurYMGCcnd3l6Ojo0qUKCFJmjVrlvr06aNWrVpJksqWLavr168rMjJSAwYMsNbWtWtX6/EBAAAAAA+GgJ3NEhMTrUH3trp161q33Q64tWrVsmlTvXp1ffPNN5KkV155RREREapXr578/PxUv359tWnTRh4eHpmOd+nSJf3666+aMmWKpk+fbl2fkZGhmzdv6syZM3rsscckSeXLlzfuRAEAAAAgnyFgZ7M7fYDs9rvQTk7/9+coUMB29H56erpcXFwkSf7+/vrPf/6jPXv26Ouvv9batWv18ccfa/78+apXr94d+x4+fLieffbZTMcuVaqUfvvtN0mSq6vrI5wZAAAAAORvvIOdzUwmk+Li4mzW7du3T5Lk7e1tXXfo0CGbNnFxcXrqqackSTNmzND+/fvVpEkTjRgxQtu2bVPZsmW1bds2SZKDg4N1v2LFisnT01OnT59W+fLlrf8OHTqkadOmZcUpAgAAAEC+RMDOZr169dL27ds1a9YsHT9+XLt27dKYMWPUuHFjm4C9cOFCrVmzRj///LM+/PBDJSYm6pVXXpEknT59WqNHj9bXX3+ts2fPatu2bTp37pz8/f0lSe7u7rpy5YqOHz+uW7du6ZVXXtGSJUsUExOjU6dOaceOHXr33Xfl6upqfSoOAAAAAHg0DBHPZkFBQZoyZYo+/vhjzZo1S56enmrdurX69+9v0+61117TkiVLNHLkSFWqVElz585VhQoVJEmjR4/W+PHj9eabbyo5OVmlS5fWkCFDFBwcLEn697//rZUrV6pt27aKiYlReHi4HnvsMS1ZskTjxo1T8eLF1bFjx0zHBAAAAAA8PAfLnV4KBh5CfHy8JOm8Qxklp9yyczWZFXF3UtNqRe1dBuwsJSVFR44ckY+Pj9zd3e1dDnBX3KvILbhXkVtwr+Jh3c45vr6+92zLEHEAAAAAAAxAwAYAAAAAwAAEbAAAAAAADEDABgAAAADAAARsAAAAAAAMwDRdMJyHm6O9S7ijnFoXAAAAgLyBgA3DBXgXsncJd2WxWOTg4GDvMgAAAADkQQwRh6FSU1NlNpvtXcZdEa4BAAAAZBUCNgxnsVjsXQIAAAAAZDsCNgAAAAAABiBgw3AMwwYAAACQHxGwYSgXFxe5ubnZuwy7YXg8AAAAkH/xFXEYbm/SVV0zp9u7jGzn4eaYo7+gDgAAACBrEbBhuGvmdCWn3LJ3GQAAAACQrRgiDgAAAACAAQjYAAAAAAAYgIANAAAAAIABCNg5mMlkUmxs7H23P3funDZt2pSFFQEAAAAA7oaAnYe89dZb+u9//2vvMgAAAAAgXyJgAwAAAABgAAJ2LvLll1+qY8eO8vf3V4MGDTR27FjduHFDkvTiiy/q22+/1Zo1axQYGChJCgwMVFRUlE0ff12Xnp6uiRMnqmHDhqpWrZqaN2+u5cuXZ+9JAQAAAEAeQcDOJXbs2KE+ffqoUaNGio2NVWRkpDZv3qzBgwdLkqKiouTv768WLVpo9erV99XnsmXLtHXrVk2dOlXbtm1T9+7d9e6772rfvn1ZeSoAAAAAkCc52bsA3J+5c+eqWbNmeu211yRJFSpUkMViUd++fXXs2DFVqlRJzs7OcnV1laen5331eerUKbm7u6tMmTL617/+pe7du6tixYqqUKFCVp4KAAAAAORJPMHOJRITE1WzZk2bdXXr1rVuexjdunXT9evX1bBhQ4WEhGjy5Mny9PRUsWLFHrleAAAAAMhvCNi5hMViybQuIyNDkuTkdP8DEW7dumX97eXlpe3bt2v+/Pl65pln9OWXX6pdu3Zas2bNoxcMAAAAAPkMATuXMJlMiouLs1l3+11pb2/vO+7j7Oys69evW5evX7+uixcvWpcXL16s7du3q379+ho6dKg2bNigevXqafPmzVlwBgAAAACQtxGwc4levXpp+/btmjVrlo4fP65du3ZpzJgxaty4sTVgFyxYUGfPntWvv/4qSapRo4Y2b96suLg4HTt2TG+//bYcHR2tfV66dEnvvfeedu7cqbNnz+q///2vjhw5In9/f7ucIwAAAADkZnzkLJcICgrSlClT9PHHH2vWrFny9PRU69at1b9/f2ubzp0766233lLbtm319ddfa/DgwUpOTtbLL78sDw8PhYeH6+rVq9b2/fr1U1pamt5//339/vvvKlGihLp06aLevXvb4xQBAAAAIFdzsNzp5V7gIcTHx0uSzjuUUXLKrXu0znuKuDupabWi9i4D95CSkqIjR47Ix8dH7u7u9i4HuCvuVeQW3KvILbhX8bBu5xxfX997tmWIOAAAAAAABiBgAwAAAABgAAI2AAAAAAAGIGADAAAAAGAAviIOw3m4Od67UR6UX88bAAAAwJ8I2DBcgHche5dgNxaLRQ4ODvYuAwAAAIAdMEQchkpNTZXZbLZ3GXZDuAYAAADyLwI2DMfU6gAAAADyIwI2AAAAAAAGIGADAAAAAGAAAjYMx3vIAAAAAPIjAjYM5eLiIjc3N3uXcU+8Jw4AAADAaEzTBcPtTbqqa+Z0e5dxVx5ujvl6KjEAAAAAWYOADcNdM6crOeWWvcsAAAAAgGzFEHEAAAAAAAxAwAYAAAAAwAAEbAAAAAAADEDAzkViY2NlMpkeun1gYKCioqKyojQAAAAAyPf4yFk+snr1aj322GP2LgMAAAAA8iQCdj7i6elp7xIAAAAAIM9iiPh9MJlMWrFihbp27SpfX1+1aNFCcXFxWrFihRo1aqSaNWtq4MCBunHjhnWfVatWqU2bNvLz81ONGjXUtWtXxcfHW7cHBgYqOjpar7/+uvz9/RUQEKD3339ft2793/RWO3bsUJs2beTr66uuXbvq3LlzNnXduHFD06ZNU5MmTeTr66vg4GBt27btrufx1yHiUVFRCgsL09y5c/X888/L19dX3bt3V1JSklGXDQAAAADyFQL2fZo6dap69eqldevWycPDQxEREdq2bZvmzp2rsWPH6vPPP9eqVask/RmM33vvPfXq1UtbtmzRwoULdfPmTY0YMcKmz+nTp6tOnTpav369hg4dqpiYGG3cuFGSFBcXp9dff11BQUFav3692rdvr7lz59rsP3jwYK1du1YjR47U+vXr1bRpUw0YMECff/75fZ3Tvn37tH//fs2dO1fLli3TxYsXFRkZacDVAgAAAID8h4B9n0JDQxUYGKiKFSsqODhYV65c0ahRo1S5cmUFBQXJx8dHP/30kySpSJEi+uCDDxQcHKzSpUurRo0aeuGFF5SYmGjTZ4MGDdSjRw+VLVtWoaGhqlKliuLi4iRJMTExqlmzpvr166cKFSqoQ4cO6tSpk3XfpKQk7dy5U6NHj1ajRo1UoUIFvf7662rSpIlmz559X+d069YtTZgwQVWqVJGvr686d+5sPT4AAAAA4MHwDvZ9Kl++vPW3m5ubJKlcuXLWda6urkpNTZUk1alTR0lJSfroo4/0888/6+TJk0pISFBGRoZNn97e3jbLHh4eSktLkyQlJiaqfv36Ntv9/f21ePFiSVJCQoIkqVatWjZt6tSpoylTptzXORUvXlyFCxe+4/EBAAAAAA+GJ9j3yckp8/9FFChw58u3YcMGtW3bVqdPn1bNmjX11ltvadiwYZnaubi4ZFpnsVgkSQ4ODpkCubOz8z3rtFgsd6z1Tu50fAAAAADAw+EJdhaYO3euXnjhBZv3mXfu3CnpzwDs4OBwzz6qVKmiAwcO2Kz78ccfrb9vz2+9f/9+NW7c2Lp+3759qlSp0iPVDwAAAAB4cATsLFCqVCnFxcXp0KFD8vDw0BdffKGYmBhJUmpq6n3NRR0eHq4OHTpo/Pjx6tixo+Lj4619SH8OL2/cuLEiIyPl4OCg8uXLa9OmTdq5c6emTZuWVacGAAAAALgLhohngZEjR6p48eLq3r27OnTooF27dmnChAmSZDNV1z/x8fHRvHnztHfvXrVt21YLFy5URESETZspU6aoadOmeuedd9S2bVvt2rVLUVFRat68ueHnBAAAAAD4Zw6W2y/9Ao/o9n8enHcoo+SUW/dobT9F3J3UtFpRe5cBO0lJSdGRI0fk4+Mjd3d3e5cD3BX3KnIL7lXkFtyreFi3c46vr+892/IEGwAAAAAAAxCwAQAAAAAwAAEbAAAAAAADELABAAAAADAA03TBcB5ujvYu4R/l9PoAAAAA5E4EbBguwLuQvUu4J4vFIgcHB3uXAQAAACAPYYg4DJWamiqz2WzvMu6JcA0AAADAaARsGI6p1QEAAADkRwRsAAAAAAAMQMAGAAAAAMAABGwYjvebAQAAAORHBGwYysXFRW5ubvYu4454NxwAAABAVmKaLhhub9JVXTOn27sMGx5ujrli+jAAAAAAuRcBG4a7Zk5Xcsote5cBAAAAANmKIeIAAAAAABiAgA0AAAAAgAEI2AAAAAAAGICAncd99tlnatCggfz8/LRjxw6ZTCbFxsbauywAAAAAyHP4yFkeN378eDVp0kT9+vWTp6envcsBAAAAgDyLgJ3HXblyRbVr11bp0qXtXQoAAAAA5GkMEc9GJpNJK1asUNeuXeXr66sWLVooLi5OK1asUKNGjVSzZk0NHDhQN27csO6zatUqtWnTRn5+fqpRo4a6du2q+Ph4SdKiRYvk7+8vs9lsbZ+RkaHnn39eS5culclkkiS9/fbbCgwMtKnl0qVLqlatmtauXWuzfvLkyQoNDc2iKwAAAAAAeRcBO5tNnTpVvXr10rp16+Th4aGIiAht27ZNc+fO1dixY/X5559r1apVkqQdO3bovffeU69evbRlyxYtXLhQN2/e1IgRIyRJbdq0UVpamrZv327t/3//+58uX76sli1bavfu3ZL+DNirV6+2qcPT01ONGjWyCdgZGRlav369QkJCsvgqAAAAAEDeQ8DOZqGhoQoMDFTFihUVHBysK1euaNSoUapcubKCgoLk4+Ojn376SZJUpEgRffDBBwoODlbp0qVVo0YNvfDCC0pMTJT0Z0gODAzU+vXrrf2vWbNGgYGBKlq0qEqUKCFJ8vDwuOP716Ghodq7d6/Onz8vSfr666916dIltW7dOqsvAwAAAADkObyDnc3Kly9v/e3m5iZJKleunHWdq6urUlNTJUl16tRRUlKSPvroI/388886efKkEhISlJGRYW0fGhqqPn366LfffpO7u7s+//xzzZgx475qef7551WsWDGtW7dOr776qtasWaMmTZqocOHCRpwqAAAAAOQrPMHOZk5Omf9Po0CBO/8ZNmzYoLZt2+r06dOqWbOm3nrrLQ0bNsymTYMGDVS8eHFt3LhR27dvV6FChdSgQYP7qsXR0VHt2rXThg0blJKSos8//1zt27d/8JMCAAAAAPAEOyebO3euXnjhBUVGRlrX7dy5U5JksVjk4OBgDck7duxQoUKFFBwcLEdHx/s+RmhoqObNm6clS5bIw8PjvsM5AAAAAMAWT7BzsFKlSikuLk6HDh3SqVOntHDhQsXExEiSdRi5JIWEhOjgwYP63//+98BPoCtUqKCaNWtq1qxZDxzOAQAAAAD/h4Cdg40cOVLFixdX9+7d1aFDB+3atUsTJkyQJOtUXZLk5eWl6tWr6+mnn5a3t/cDHyckJEQ3btxgeDgAAAAAPAKGiGejhIQEm+WQkJBMU2ItWbLE+rts2bJasGBBpn5atmxps2yxWPTbb78pIiLinsf8+7Ik/frrr6pZs+ZDhXMAAAAAwJ8I2LlYWlqavvjiC33zzTdKSUlRq1atHmj//fv36/jx41q8eLHee++9LKoSAAAAAPIHAnYu5uzsrPfff1+SNHHiRLm7uz/Q/rt27VJMTIxCQ0PVokWLrCgRAAAAAPINAnYu99///veh9x0yZIiGDBliYDUAAAAAkH/xkTMAAAAAAAzAE2wYzsMt5031lRNrAgAAAJC3ELBhuADvQvYu4Y4sFoscHBzsXQYAAACAPIoh4jBUamqqzGazvcu4I8I1AAAAgKxEwIbhLBaLvUsAAAAAgGxHwAYAAAAAwAAEbAAAAAAADEDAhuF41xkAAABAfkTAhqFcXFzk5uZm7zLyFN5pBwAAAHIHpumC4fYmXdU1c7q9y8gTPNwcc+y0ZwAAAABsEbBhuGvmdCWn3LJ3GQAAAACQrRgiDgAAAACAAQjYAAAAAAAYgIANAAAAAIABCNj51N69e2UymXTmzBl7lwIAAAAAeQIBGwAAAAAAAxCwAQAAAAAwAAH7AZhMJq1YsUJdu3aVr6+vWrRoobi4OK1YsUKNGjVSzZo1NXDgQN24ccO6T1xcnLp16yY/Pz81atRIkZGRun79unV7YGCgoqOj9frrr8vf318BAQF6//33devW/01zdeDAAfXo0UO1atVSQECAhg8frsuXL9v0MX78eLVs2VIBAQH69ttvdeXKFY0YMULPPfecqlatqnr16mnEiBEym8025/Sf//xHrVu3VrVq1dSqVSt9+eWXWXcBAQAAACAPI2A/oKlTp6pXr15at26dPDw8FBERoW3btmnu3LkaO3asPv/8c61atUqSdPToUb388st67rnntH79ek2aNEmHDh1SeHi4LBaLtc/p06erTp06Wr9+vYYOHaqYmBht3LhRkvTDDz/oxRdf1FNPPaWVK1dq+vTpOnjwoHr27Kn09HRrHzExMRoxYoTmz5+vGjVqaNiwYTp8+LBmzpypbdu2afjw4Vq7dq1WrFhhcz6LFy/WyJEjtWHDBnl5eWngwIH6448/suFKAgAAAEDeQsB+QKGhoQoMDFTFihUVHBysK1euaNSoUapcubKCgoLk4+Ojn376SZIUHR2t+vXrKyIiQl5eXqpdu7YmT56sgwcP6ttvv7X22aBBA/Xo0UNly5ZVaGioqlSpori4OEnSJ598IpPJpJEjR8rb21vPPPOMpkyZokOHDmn37t3WPho2bKhnn31Wvr6+cnFxUf369TV27FhVr15dZcqUUdu2bfX0008rMTHR5nzefvttBQQEqEKFCurbt6/MZrOSkpKy4UoCAAAAQN7iZO8Ccpvy5ctbf7u5uUmSypUrZ13n6uqq1NRUSdLhw4d18uRJ+fv7Z+onKSlJAQEBkiRvb2+bbR4eHkpLS5MkJSYmqn79+jbbq1SpIg8PDyUkJKhhw4aZ6pKkrl276osvvtCaNWt04sQJHTt2TGfOnFHFihVt2lWoUMH6u1ChQpJkM8QdAAAAAHB/CNgPyMkp8yUrUODOAwEyMjLUpk0bRUREZNrm6elp/e3i4pJp++0h5H8dSv737c7OztZlV1dXm+P27t1bP/30k1q3bq2WLVuqatWqGjly5H3VfrdjAgAAAADujoCdhZ566ikdO3bM5ulyUlKSJk6cqMGDB8vDw+OefZhMJu3fv99m3dGjR3X9+vVMT75vO3LkiL766iutXLlS1atXlySlpaXp1KlTKlu27COcEQAAAADgbngHOwuFh4fr8OHDioyMVFJSkg4cOKA33nhDJ06ckJeX13318fLLLyshIUFjxoxRUlKS9u7dqyFDhujpp59WvXr17rhP8eLF5eTkpC1btuj06dOKj4/XwIED9fvvv1uHrwMAAAAAjEXAzkI1atTQ/PnzdeTIEbVv3159+vRRhQoVtHDhwjsOC7+T6tWra/78+frxxx/Vrl07DRw4UP7+/lqwYIHNEPG/KlmypMaNG6cvvvhCLVu21IABA1SyZEmFhYXpxx9/NPIUAQAAAAD/n4OFF25hkPj4eEnSeYcySk65dY/WuB9F3J3UtFpRe5eRp6SkpOjIkSPy8fGRu7u7vcsB7op7FbkF9ypyC+5VPKzbOcfX1/eebXmCDQAAAACAAQjYAAAAAAAYgIANAAAAAIABCNgAAAAAABiAebBhOA83R3uXkGdwLQEAAIDcg4ANwwV4F7J3CXmKxWKRg4ODvcsAAAAAcA8MEYehUlNTZTab7V1GnkK4BgAAAHIHAjYMx9TqAAAAAPIjAjYAAAAAAAYgYAMAAAAAYAACNgzHO8MAAAAA8iMCNgzl4uIiNzc3uxybd78BAAAA2BPTdMFwe5Ou6po5PVuP6eHmyPRgAAAAAOyKgA3DXTOnKznllr3LAAAAAIBsxRBxAAAAAAAMQMAGAAAAAMAABGwAAAAAAAxAwH4Ely9f1qpVq+xdBgAAAAAgByBgP4IJEyZo/fr19i4DAAAAAJADELAfAfMuAwAAAABuyzcB22QyacWKFeratat8fX3VokULxcXFacWKFWrUqJFq1qypgQMH6saNG9Z94uLi1K1bN/n5+alRo0aKjIzU9evXJUnDhg3TmjVr9O2338pkMkmSXnzxRY0cOVIdOnRQ7dq1rU+3165dq7Zt28rPz0+BgYGaNWuW0tP/nCf6zJkzMplM2rZtmzp06KBq1aopMDBQK1assKn/fvrYtGmT2rVrJ19fX4WEhCgpKUkfffSRnn32WdWtW1eRkZE2/ymwa9cuhYSEyM/PT82aNdO0adOUmpqadX8EAAAAAMjD8k3AlqSpU6eqV69eWrdunTw8PBQREaFt27Zp7ty5Gjt2rD7//HPrO9VHjx7Vyy+/rOeee07r16/XpEmTdOjQIYWHh8tiseidd95RixYt5O/vr927d1uPsWrVKvXo0UPLli3Tc889p4ULF2rkyJHq1KmT1q9frwEDBig6Olrjxo2zqW3s2LGKiIjQli1b1KhRI7377rs6ffq0JN13H1OnTtXbb7+tVatW6erVq+rSpYtOnDihJUuWaNCgQVq2bJl27dolSfrqq680cOBAdezYURs3btTo0aO1ZcsWvfnmm1n5JwAAAACAPCtfBezQ0FAFBgaqYsWKCg4O1pUrVzRq1ChVrlxZQUFB8vHx0U8//SRJio6OVv369RURESEvLy/Vrl1bkydP1sGDB/Xtt9/Kw8NDrq6ucnZ2VokSJazH8PHxUZs2bVS5cmUVKVJE8+bNU/fu3dWtWzd5eXkpODhY/fv31/Lly3Xt2jXrfmFhYWrSpInKli2rQYMGKSMjQwcPHpTFYrnvPsLDw1W3bl1VqVJFzZo1U0pKit577z15e3urS5cuKlasmPX8Zs+erY4dO6pz584qV66cGjRooMjISG3dulVnzpzJpr8IAAAAAOQdTvYuIDuVL1/e+tvNzU2SVK5cOes6V1dX6xDpw4cP6+TJk/L398/UT1JSkgICAu55jEuXLunChQuqVauWTZu6desqLS1NP//8s4oVKyZJ8vb2tm738PCQJKWlpT1QH389tru7u4oXL249zzud3w8//KDVq1dbt98ePp6UlKQyZcrc8fwAAAAAAHeWrwK2k1Pm0y1Q4M4P8TMyMtSmTRtFRERk2ubp6XnXY7i6ulp/3+0jaBkZGZnqcXFxydTOYrE8UB9/P7+7ndvt/Xv16qX27dtn2vbXJ/IAAAAAgPuTr4aIP4innnpKx44dU/ny5a3/bt26pbFjx+qXX36RJDk4OPxjH8WLF1fx4sW1f/9+m/X79u2Ts7OzzdPzrOzjTp566ikdP37c5vx+/fVXTZgwQX/88cdD9QkAAAAA+RkB+y7Cw8N1+PBhRUZGKikpSQcOHNAbb7yhEydOyMvLS9Kfw7B/++0368fI7qRnz56KiYnRsmXLdPLkSW3YsEEzZ85Up06drEPB78WIPv7ulVde0bZt2zRz5kwdP35cX3/9tYYPH65r167xBBsAAAAAHkK+GiL+IGrUqKH58+dr+vTpat++vdzd3VWvXj299dZb1uHc7dq1044dO9S6dWtt3779jv2Eh4fLxcVFixYt0ocffqgnnnhCr7zyinr27HnftRjRx981b95cU6dO1Zw5czR79mwVKVJEgYGBGjJkyEP3CQAAAAD5mYPlbi/5Ag8oPj5eknTeoYySU25l67GLuDupabWi2XpM5E4pKSk6cuSIfHx85O7ubu9ygLviXkVuwb2K3IJ7FQ/rds7x9fW9Z1uGiAMAAAAAYAACNgAAAAAABiBgAwAAAABgAAI2AAAAAAAG4CviMJyHm2O+OCYAAAAA/BUBG4YL8C5kl+NaLBY5ODjY5dgAAAAAwBBxGCo1NVVms9kuxyZcAwAAALAnAjYMx9TqAAAAAPIjAjYAAAAAAAYgYAMAAAAAYAACNgzHu9AAAAAA8iMCNgzl4uIiNzc3e5eR4/GeOgAAAJD3ME0XDLc36aqumdPtXUaO5eHmaLepzAAAAABkHQI2DHfNnK7klFv2LgMAAAAAshVDxAEAAAAAMAABGwAAAAAAAxCwAQAAAAAwAAE7B4iNjZXJZLJ3GZKkXbt26dixY/YuAwAAAAByHQJ2DtCyZUvt3r3b3mXo7NmzioiI0MWLF+1dCgAAAADkOnxFPAdwdXWVq6urvctgbmYAAAAAeAQ8wc4CJpNJK1asUNeuXeXr66sWLVooLi5OK1asUKNGjVSzZk0NHDhQN27ckJR5iLjJZNLq1asVFhYmPz8/NWjQQDNnzrRuz8jI0Jw5cxQUFKRq1aqpZs2a6tWrl06dOmXTx4wZM9S4cWM1aNBAJ06cUGpqqiZOnKjnnntO/v7+6tixo/XJ+ZkzZ9SkSRNJUo8ePRQVFZUdlwoAAAAA8gwCdhaZOnWqevXqpXXr1snDw0MRERHatm2b5s6dq7Fjx+rzzz/XqlWr7rr/+PHj1b59e23atEndu3dXVFSUvvvuO0nS4sWLFR0drWHDhmnbtm366KOPdOLECY0bN86mj2XLlmnGjBmaOXOmvLy8NHz4cO3Zs0eTJk3SmjVr1KJFC0VEROjLL79UqVKlrPVERUUpPDw86y4OAAAAAORBBOwsEhoaqsDAQFWsWFHBwcG6cuWKRo0apcqVKysoKEg+Pj766aef7rp/u3btFBwcrLJlyyoiIkKFChVSXFycJKlcuXIaP368GjdurNKlS6tevXpq3ry5EhMTbfoIDg6Wr6+vatSooZMnT2rjxo0aO3asAgIC5OXlpZdfflmtWrVSdHS0HB0d5enpKUkqXLiwChYsmHUXBwAAAADyIN7BziLly5e3/nZzc5P0ZzC+zdXVVampqXfd39vb22bZw8NDaWlpkqTAwEAdPHhQ06dP1/Hjx3X8+HEdO3ZMJUuWvGsNhw8fliR17drVpk1aWpoKFSr0IKcGAAAAALgDAnYWcXLKfGkLFLj/AQMuLi6Z1t3+CNncuXP10UcfqX379qpXr57CwsK0c+dObdq0yab9Xz+cdnvfpUuXZno6/SB1AQAAAADujICdC82ePVt9+/bVq6++al0XHR39j18Bf+qppyRJv//+u55++mnr+qlTp6pAgQIaMGCAHBwcsq5oAAAAAMjjeHSZC5UqVUp79uzRsWPH9PPPP2vq1Knavn37Pw45f+qpp9S4cWONHj1aX3zxhU6fPq158+Zpzpw51qHr7u7ukqTExERdu3YtW84FAAAAAPIKAnYuNGHCBN24cUOhoaHq3r27EhMTFRkZqYsXL+rcuXN33W/q1Kn697//rVGjRqlly5Zau3atPvjgA7Vv316SVLRoUYWGhmrChAmaPn16dp0OAAAAAOQJDpZ/GlcMPID4+HhJ0nmHMkpOuWXnanKuIu5OalqtqL3LyLdSUlJ05MgR+fj4WEdtADkR9ypyC+5V5Bbcq3hYt3OOr6/vPdvyBBsAAAAAAAMQsAEAAAAAMAABGwAAAAAAAxCwAQAAAAAwAPNgw3Aebo72LiFH4/oAAAAAeRMBG4YL8C5k7xJyPIvFIgcHB3uXAQAAAMBADBGHoVJTU2U2m+1dRo5HuAYAAADyHgI2DMfU6gAAAADyIwI2AAAAAAAGIGADAAAAAGAAAjYMx/vFAAAAAPIjAjYM5eLiIjc3N3uXYTjeKwcAAABwL0zTBcPtTbqqa+Z0e5dhGA83R6YeAwAAAHBPBGwY7po5Xckpt+xdBgAAAABkK4aIAwAAAABgAAI2AAAAAAAGIGADAAAAAGAAAnYuY7FYtGbNGl28eFGSFBsbK5PJZN1uMpkUGxtrr/IAAAAAIN8iYOcy3333nYYNGyaz2SxJatmypXbv3m3nqgAAAAAAfEU8l/n7fMyurq5ydXW1UzUAAAAAgNt4gm0gk8mk1atXKywsTH5+fmrQoIFmzpxp3Z6RkaE5c+YoKChI1apVU82aNdWrVy+dOnXKpo+/D/G+vW7v3r3q0aOHJKlJkyaKjY3NNET8r6KiohQYGPiP6/7zn/8oJCRE1atXV7169TRs2DBduXLlka8FAAAAAOQ3BGyDjR8/Xu3bt9emTZvUvXt3RUVF6bvvvpMkLV68WNHR0Ro2bJi2bdumjz76SCdOnNC4cePuq29/f39FRUVJklatWqWWLVs+Uq2XLl1Sv379FBoaqs2bN2vmzJn67rvvNGHChEfqFwAAAADyI4aIG6xdu3YKDg6WJEVERCg6OlpxcXGqU6eOypUrp/Hjx6tx48aSpNKlS6t58+baunXrffXt4uKiwoULS5I8PT0feWj4+fPnlZqaqieffFKlS5dW6dKlNXv2bKWnpz9SvwAAAACQHxGwDebt7W2z7OHhobS0NElSYGCgDh48qOnTp+v48eM6fvy4jh07ppIlS9qjVPn4+Kh169aKiIhQiRIlVL9+fTVq1EjNmjWzSz0AAAAAkJsxRNxgLi4umdbd/jDZ3Llz1aNHD12+fFn16tVTZGSkwsPD/7G/W7duGVrf3/ubPHmytmzZol69euny5ct688031bNnT0OPCQAAAAD5AU+ws9Hs2bPVt29fvfrqq9Z10dHRNl8Gd3Z21vXr163LJ0+etOnDwcHhvo/n7OysP/74w2bdX/s7ePCgNm3apLffflsVK1ZUWFiY1q9frzfffFMXL15UsWLF7vtYAAAAAJDfEbCzUalSpbRnzx4FBgaqQIECWrdunbZv367ixYtb29SoUUOrVq1SnTp1ZLFYNHbsWJun4u7u7pKko0ePqmjRov94vBo1aig5OVnR0dEKCgrS7t279dVXX6lIkSKSpMcff1zLli2Ts7OzOnbsqJs3b2rz5s3y8vK6Z98AAAAAAFsMEc9GEyZM0I0bNxQaGqru3bsrMTFRkZGRunjxos6dOydJevfdd1W4cGF17NhRr7/+ujp06KAnnnjC2kflypXVsGFDDRw4UCtWrPjH4z3zzDN6/fXX9cknn6hVq1bas2eP+vfvb93u7e2tqKgoffPNN2rXrp26dOkiR0dHzZs3TwUKcGsAAAAAwINwsPx1fDLwCOLj4yVJ5x3KKDnF2HfH7amIu5OaVuOJfl6RkpKiI0eOyMfHxzoiBMiJuFeRW3CvIrfgXsXDup1zfH1979mWx5QAAAAAABiAgA0AAAAAgAEI2AAAAAAAGICADQAAAACAAZimC4bzcHO0dwmGymvnAwAAACBrELBhuADvQvYuwXAWi0UODg72LgMAAABADsYQcRgqNTVVZrPZ3mUYjnANAAAA4F4I2DAcU6sDAAAAyI8I2AAAAAAAGICADcMxnBoAAABAfkTAhqFcXFzk5uZm7zIYpg4AAAAg2/EVcRhub9JVXTOn2+34Hm6OefJL5gAAAAByNgI2DHfNnK7klFv2LgMAAAAAshVDxAEAAAAAMAABGwAAAAAAAxCwAQAAAAAwAAE7B7h8+bJWrVpl7zIAAAAAAI+AgJ0DTJgwQevXr7d3GQAAAACAR0DAzgGYsxkAAAAAcj8CtkGSk5MVGRmphg0bys/PT507d9bevXut2//73/+qU6dOql69up5//nlNnTpV6enpGjZsmNasWaNvv/1WJpNJkpSenq6FCxcqKChIvr6+CgoK0vLly6197d27VyaTSdu3b1fTpk1Vo0YNhYWFKSkpydrmxRdf1LBhw2xq/Pu66OhoNW3aVNWqVVNgYKA++ugjwj4AAAAAPCTmwTZAenq6wsPDlZaWpokTJ8rT01OLFy9Wz549tWzZMqWnp+vVV1/Vyy+/rA8//FBnz57Vm2++KScnJ73zzju6ceOGfv31V0VFRUmSxo0bp3Xr1mnkyJHy9fXVV199pQ8++EA3b95UWFiY9bjjxo3T6NGj9cQTT2jixInq0aOHtm7dKg8Pj3vW/MUXX2jOnDmaOnWqKlSooO+//15Dhw5VmTJlFBwcnFWXCgAAAADyLAK2AXbv3q1Dhw5pw4YNqly5siQpMjJS8fHxio6OlqOjo6pXr66hQ4dKkry9vfXee+/p4sWL8vDwkKurq5ydnVWiRAldv35dy5cv17Bhw9SmTRtJkpeXl86cOaO5c+fqpZdesh73rbfeUsOGDSVJkyZNUqNGjbRp0yZ17tz5njWfOnVKLi4uKl26tJ588kk9+eST+te//qUnn3zS6MsDAAAAAPkCQ8QNkJiYKA8PD2u4liQHBwfVrl1biYmJSkxMVPXq1W32CQoKUteuXTP19fPPPystLU21atWyWV+3bl1dvHhRFy9etK4LCAiw/i5SpIgqVKigxMTE+6q5bdu2Klq0qIKCgtSqVSt98MEHkkTABgAAAICHRMA2wN3eW7ZYLHJycpKT0/0PFLhbXxkZGZJk09ff+01PT1eBAnf/k966dcv629PTU+vWrdOyZcsUFBSkgwcPqlu3bpo5c+Z91woAAAAA+D8EbAOYTCZdu3bN5umxxWLR/v37ValSJXl7eys+Pt5mn0WLFqlDhw6S/nzafZu3t7ecnZ21f/9+m/b79u1TiRIlVLhwYeu6v/Z56dIlnTx5UlWrVpUkOTs76/r169btGRkZOn36tHV5/fr1Wr58uWrVqqX+/ftr5cqV6tChgzZv3vwolwIAAAAA8i3ewTZAgwYN5OPjozfeeEMjR45UsWLFFBMTo8TERI0ePVqPPfaYQkNDNX36dAUHB+vkyZOaNWuWevToIUlyd3fXb7/9ptOnT6ts2bLq1KmTZsyYoSJFisjX11e7d+/WsmXLNHjwYJswHhkZqTFjxsjDw0Pjx49XiRIl1Lx5c0lSjRo1tGDBAn311VcqX768Fi5cqKtXr1r3vXnzpsaPH6+CBQuqdu3a+vXXX/Xdd9+pdu3a2XvxAAAAACCPIGAbwNHRUZ988onGjx+vfv36KTU1VdWqVdPChQtVo0YNSdJHH32kGTNmaN68efrXv/6lHj16qE+fPpKkdu3aaceOHWrdurW2b9+u4cOHq2jRopo0aZIuXLggLy8vjRo1Sh07drQ5bqdOnTR06FAlJyfrmWee0eLFi+Xm5iZJCg8P16lTpzRgwAC5uLjohRdeUKtWraxD0Dt06KDk5GTNmjVLv/zyiwoXLqygoCANGTIk+y4cAAAAAOQhDhYmPs519u7dqx49emjnzp0qU6aMvcuxuj1k/bxDGSWn3LpH66xTxN1JTasVtdvxkbOlpKToyJEj8vHxkbu7u73LAe6KexW5BfcqcgvuVTys2znH19f3nm15BxsAAAAAAAMQsAEAAAAAMADvYOdCAQEBSkhIsHcZAAAAAIC/4Ak2AAAAAAAGIGADAAAAAGAAhojDcB5ujvn6+AAAAADyJwI2DBfgXcjeJchiscjBwcHeZQAAAADIRxgiDkOlpqbKbDbbuwzCNQAAAIBsR8CG4SwWi71LAAAAAIBsR8AGAAAAAMAABGwYjuHZAAAAAPIjAjYM5eLiIjc3N3uXkQnD1gEAAABkNb4iDsPtTbqqa+Z0e5dh5eHmmCO+bA4AAAAgbyNgw3DXzOlKTrll7zIAAAAAIFsxRBwAAAAAAAMQsAEAAAAAMAABGwAAAAAAAxCwc4moqCgFBgZm6TECAwMVFRWVpccAAAAAgLyKj5zBavXq1XrsscfsXQYAAAAA5EoEbFh5enrauwQAAAAAyLUYIp6DJCcnKzIyUg0bNpSfn586d+6svXv33rHtwoUL5evrq127dkmSzp07p0GDBqlevXqqWrWqnn/+eU2cOFEZGRmSpNjYWD3//PNauXKlGjRoIH9/f/Xt21fnz5+39skQcQAAAAB4eATsHCI9PV3h4eHat2+fJk6cqNjYWFWuXFk9e/bUDz/8YNN26dKlmjJlimbOnKnGjRtLkvr06aNr165pwYIF2rp1q8LDwzV//nx98cUX1v0uXbqkRYsWadq0aVq0aJF++eUX9erVS7duMWc1AAAAADwqAnYOsXv3bh06dEiTJ09W3bp1ValSJUVGRuqpp55SdHS0td3KlSs1YcIEzZo1Sw0bNpQk3bhxQ8HBwRozZoyqVKmismXLKiwsTMWLF1dCQoJ137S0NI0fP161a9eWn5+fJk6cqMTERH399dfZfr4AAAAAkNfwDnYOkZiYKA8PD1WuXNm6zsHBQbVr19bu3btVqVIl/fbbb3r33Xfl7Oys0qVLW9u5urqqe/fu2rp1q3744QedPHlSCQkJunDhgnWIuCQVLFhQ1apVsy57e3urcOHCSkxM1HPPPZc9JwoAAAAAeRRPsHMIi8Vy1/VOTn/+P4iDg4PmzZunypUr6+2337aG55SUFHXu3FmzZ89WoUKF1L59ey1btkxPPPGETV/Ozs6Z+k9PT5ejo6PBZwMAAAAA+Q9PsHMIk8mka9euKTEx0foU22KxaP/+/apUqZIkqUSJEqpfv76KFy+u0NBQLV68WGFhYdbh5Xv27FHx4sUl/fnBtIsXL9oE9+TkZJ0+fVply5aVJP3000+6fv26nn766Ww+WwAAAADIe3iCnUM0aNBAPj4+euONN/Ttt98qKSlJ7733nhITE/XSSy/ZtDWZTOrZs6emTZumU6dOWZ9Ur1+/XmfPntW+ffv02muvKS0tTampqTb7vvnmm/rxxx/1/fffa+jQofL391edOnWy7TwBAAAAIK8iYOcQjo6O+uSTT/T000+rX79+Cg0N1U8//aSFCxeqRo0amdq/9tprKlmypN5++235+vpq+PDhWrx4sVq0aKHhw4erTp06at26teLj4232a9OmjV599VX16tVLTz31lObMmSMHB4dsOksAAAAAyLscLHd7+Rd5SmxsrIYPH27zVXGj3Q7z5x3KKDkl50z9VcTdSU2rFbV3GcghUlJSdOTIEfn4+Mjd3d3e5QB3xb2K3IJ7FbkF9yoe1u2c4+vre8+2PMEGAAAAAMAABGwAAAAAAAxAwM4nQkJCsnR4OAAAAADkdwRsAAAAAAAMwDzYMJyHm6O9S7CR0+oBAAAAkDcRsGG4AO9C9i4hE4vFwnRkAAAAALIUQ8RhqNTUVJnNZnuXkQnhGgAAAEBWI2DDcEytDgAAACA/ImADAAAAAGAAAjYAAAAAAAYgYMNwvO8MAAAAID8iYMNQLi4ucnNzs3cZD4z3xgEAAAA8KqbpguH2Jl3VNXO6vcu4bx5ujjlyajEAAAAAuQsBG4a7Zk5Xcsote5cBAAAAANmKIeIAAAAAABiAgA0AAAAAgAEI2AAAAAAAGICAnY+YTCbFxsbauwwAAAAAyJMI2AAAAAAAGICADQAAAACAAQjYBjOZTFq6dKk6duwoX19ftWnTRjt37rRuz8jI0Jw5cxQUFKRq1aqpZs2a6tWrl06dOmVtc+nSJQ0aNEi1a9dWQECAJk2apB49eigqKsra5ssvv1THjh3l7++vBg0aaOzYsbpx44Z1+6+//qo+ffrI399fzz//vDZs2GBT5/3UAQAAAAC4fwTsLDBp0iQFBwdr3bp1atiwofr166e4uDhJ0uLFixUdHa1hw4Zp27Zt+uijj3TixAmNGzdO0p/Bt3fv3jp58qTmz5+vTz75RN9//72+/fZba/87duxQnz591KhRI8XGxioyMlKbN2/W4MGDJUm3bt1Sr169dPnyZcXExGj69OmKjo62qfFedQAAAAAAHoyTvQvIi0JCQtStWzdJ0pAhQ/Ttt98qJiZGNWvWVLly5TR+/Hg1btxYklS6dGk1b95cW7dulSR9++23+uGHH7RlyxZVrFhRkjRt2jQFBgZa+587d66aNWum1157TZJUoUIFWSwW9e3bV8eOHdMvv/yin376STt27FC5cuUkSWPHjlW7du2sfdyrDgAAAADAgyFgZ4GAgACbZX9/f+3Zs0eSFBgYqIMHD2r69Ok6fvy4jh8/rmPHjqlkyZKSpMOHD6tw4cLWcC1JxYsXV4UKFazLiYmJatWqlc0x6tata932yy+/qHDhwtZwLUk+Pj5ydXW1Lt+rDgAAAADAg2GIeBZwcrL9f4v09HQVKPDnpZ47d6569Oihy5cvq169eoqMjFR4eLi1raOjozIyMv6xf4vFkmnd7X2cnJzk4OBwxz7+Wte96gAAAAAAPBgCdhaIj4+3WT5w4ICqVq0qSZo9e7b69u2rd999V506dVKNGjV04sQJa2iuUqWKrl27pqSkJOv+ly9f1smTJ63LJpPJ+k73bfv27ZMkeXt7y8fHR9euXdNPP/1k3X7ixAldv37dunyvOgAAAAAAD4aAnQUWLVqkDRs26Pjx4xo/frwSEhL00ksvSZJKlSqlPXv26NixY/r55581depUbd++XampqZL+HF5evXp1DR06VN9//72OHj2qIUOGyGw2y8HBQZLUq1cvbd++XbNmzdLx48e1a9cujRkzRo0bN5a3t3emPuLj4zV06FDrU/T7qQMAAAAA8GAI2Fmgc+fOWrhwodq2bat9+/YpOjpaVapUkSRNmDBBN27cUGhoqLp3767ExERFRkbq4sWLOnfunCQpKipKTzzxhMLCwvTSSy/Jz89PTz75pJydnSVJQUFBmjJlirZs2aI2bdpo9OjRatWqlaZNmyZJKlCggObMmaOKFSsqPDxcvXv3VqtWreTp6Wmt8X7qAAAAAADcPwcLY4INZTKZNHbsWIWEhDzU/pcuXdLBgwfVoEEDa6BOTU1VQECARo8ebfMl8Jzm9tD48w5llJxyy87V3L8i7k5qWq2ovctANklJSdGRI0fk4+Mjd3d3e5cD3BX3KnIL7lXkFtyreFi3c46vr+892/IV8RzGyclJgwYNUufOndWlSxelpaUpOjpaLi4uev755+1dHgAAAADgLhginsMUKlRIs2fP1vfff6927dqpU6dOunDhghYvXmwzxBsAAAAAkLPwBNtgCQkJj9zHM888o08//dSAagAAAAAA2YUn2AAAAAAAGIAn2DCch5ujvUt4ILmtXgAAAAA5EwEbhgvwLmTvEh6YxWKxzjMOAAAAAA+DIeIwVGpqqsxms73LeGCEawAAAACPioANwzG1OgAAAID8iIANAAAAAIABCNgAAAAAABiAgA3D8T4zAAAAgPyIgA1Dubi4yM3Nzd5l2OCdcAAAAADZgWm6YLi9SVd1zZxu7zIk/TnHdW6cNgwAAABA7kPAhuGumdOVnHLL3mUAAAAAQLZiiDgAAAAAAAYgYAMAAAAAYAACNgAAAAAABiBg5yNRUVEKDAy0dxkAAAAAkCcRsAEAAAAAMAABGwAAAAAAAxCw7cBkMmnp0qXq2LGjfH191aZNG+3cudO6PSMjQ3PmzFFQUJCqVaummjVrqlevXjp16pRNH6tXr1ZYWJj8/PzUoEEDzZw50+Y4K1asULNmzeTn56eIiAhduXLFZntiYqJ69+6tOnXqqFq1amrSpIk++eSTrD15AAAAAMijCNh2MmnSJAUHB2vdunVq2LCh+vXrp7i4OEnS4sWLFR0drWHDhmnbtm366KOPdOLECY0bN86mj/Hjx6t9+/batGmTunfvrqioKH333XeSpI0bN+q9995TWFiY1q1bp5o1a2rp0qXWfc1ms8LDw1WkSBF9+umn2rhxo5o3b67x48fryJEj2XchAAAAACCPIGDbSUhIiLp166aKFStqyJAh8vX1VUxMjCSpXLlyGj9+vBo3bqzSpUurXr16at68uRITE236aNeunYKDg1W2bFlFRESoUKFC1pC+ZMkStWzZUt26dVOFChX06quvqnHjxtZ9zWazevTooVGjRsnb21teXl7q37+/JCkhISGbrgIAAAAA5B1O9i4gvwoICLBZ9vf31549eyRJgYGBOnjwoKZPn67jx4/r+PHjOnbsmEqWLGmzj7e3t82yh4eH0tLSJP05/LtVq1aZjnH06FFJkqenp7p27aqNGzfq8OHDOnXqlHVbRkaGcScKAAAAAPkET7DtxMnJ9v820tPTVaDAn3+OuXPnqkePHrp8+bLq1aunyMhIhYeHZ+rDxcUl0zqLxWL9/feg7OzsbP39+++/q23btlq1apVKliyprl27as2aNY90TgAAAACQn/EE207i4+Nt5qQ+cOCAqlatKkmaPXu2+vbtq1dffdW6PTo62iY834uPj4/i4uIUFhZmc8zbNm7cqOTkZG3bts0avG8PDX+Q4wAAAAAA/sQTbDtZtGiRNmzYoOPHj2v8+PFKSEjQSy+9JEkqVaqU9uzZo2PHjunnn3/W1KlTtX37dqWmpt53/6+++qp27Nih+fPn68SJE1qyZIm2bdtm3f7EE0/IbDZr69atOnfunHbv3q3BgwdL0gMdBwAAAADwJwK2nXTu3FkLFy5U27ZttW/fPkVHR6tKlSqSpAkTJujGjRsKDQ1V9+7dlZiYqMjISF28eFHnzp27r/4bNWqkyZMn67PPPlObNm20fft2m2HmzZs3V8+ePTVu3Di1aNFCH374oV544QXVqVPH5kk3AAAAAOD+OFgYD5ztTCaTxo4dq5CQEHuXYqjbwfy8Qxklp9yyczV/KuLupKbVitq7DOQgKSkpOnLkiHx8fOTu7m7vcoC74l5FbsG9ityCexUP63bO8fX1vWdbnmADAAAAAGAAAjYAAAAAAAbgK+J2cPtr3QAAAACAvIMn2AAAAAAAGIAn2DCch5ujvUuwykm1AAAAAMjbCNgwXIB3IXuXYMNiscjBwcHeZQAAAADI4xgiDkOlpqbKbDbbuwwbhGsAAAAA2YGADcMxtToAAACA/IiADQAAAACAAQjYAAAAAAAYgIANw/HOMwAAAID8iIANQ7m4uMjNzc3eZdw33hcHAAAAYBSm6YLh9iZd1TVzur3LuCcPN8ccN6UYAAAAgNyLgA3DXTOnKznllr3LAAAAAIBsxRBxAAAAAAAMQMAGAAAAAMAABGwAAAAAAAxAwM4BoqKiFBgYaO8yAAAAAACPgICdA4SHh2v16tX2LgMAAAAA8Aj4ingOULBgQRUsWNDeZQAAAAAAHgFPsLOByWTS0qVL1bFjR/n6+qpNmzbauXOndfvfh4ifOnVKr7zyivz9/fXcc89pwYIFatasmWJjY61tPvvsM7Vo0UJ+fn5q0aKFFi1apIyMDOv2X375RUOGDFH9+vVVo0YN9ezZU0ePHrVuHzZsmIYNG6bx48erXr16ql69unr37q3z589n8dUAAAAAgLyJgJ1NJk2apODgYK1bt04NGzZUv379FBcXl6md2WxWWFiYMjIytHz5ck2dOlWxsbE6ffq0tc2KFSs0YcIE9evXT5s2bdLAgQM1b948TZo0SZJ0/fp1denSRefPn9fHH3+sTz/9VK6ururevbvOnj1r7Wfjxo1KTk5WTEyM5s2bp0OHDmnatGlZfi0AAAAAIC8iYGeTkJAQdevWTRUrVtSQIUPk6+urmJiYTO02b96sS5cuafLkyapSpYpq166tiRMnymKxWNvMmjVLffr0UatWrVS2bFkFBQVp0KBBiomJ0c2bN7V+/XpdvnxZ06dPl5+fn6pUqaLJkyfL1dVVS5cutfbj4eGh9957T97e3qpbt65atmx5x9APAAAAALg33sHOJgEBATbL/v7+2rNnT6Z2hw8fVoUKFVSkSBHruipVqsjDw0OSdOnSJf3666+aMmWKpk+fbm2TkZGhmzdv6syZM0pMTJSXl5c8PT2t211dXeXn56fExETrunLlysnZ2dm67OHhobS0tEc+VwAAAADIjwjY2cTJyfZSp6enq0CBzAMIHB0dbd6l/rvb24YPH65nn3020/ZSpUrZPO3++75/rcPFxeW+agcAAAAA3BtDxLNJfHy8zfKBAwdUtWrVTO2qVKmikydPKjk52bouKSlJ165dkyQVK1ZMnp6eOn36tMqXL2/999f3p00mk06cOKGLFy9a+7h586Z+/PFHVapUyfiTAwAAAAAQsLPLokWLtGHDBh0/flzjx49XQkKCXnrppUztWrduraJFi2rIkCE6evSovv/+e7355puSJAcHBzk4OOiVV17RkiVLFBMTo1OnTmnHjh1699135erqKhcXF7Vp00ZFihTRwIED9cMPP+jo0aMaMmSIUlJS1KlTp+w+dQAAAADIFxgink06d+6shQsXKjExUVWqVFF0dLSqVKmSqZ2Li4vmz5+v9957Tx07dlThwoUVERGhQ4cOWd+XDg8P12OPPaYlS5Zo3LhxKl68uDp27Kj+/ftL+vNd6piYGI0bN05hYWGSpFq1amn58uUqW7Zstp0zAAAAAOQnDpa7vbALw5hMJo0dO1YhISH3bHvmzBmdOHFCDRo0sK47f/68nn/+eS1dulS1a9fOylIfye1h8Ocdyig55Zadq7m3Iu5OalqtqL3LQDZLSUnRkSNH5OPjI3d3d3uXA9wV9ypyC+5V5Bbcq3hYt3OOr6/vPdsyRDyHuXnzpl599VVFR0fr9OnTOnz4sEaOHCkvLy9Vr17d3uUBAAAAAO6CgJ3DeHt7a8qUKdqwYYNat26tl19+We7u7lqwYIHNlFoAAAAAgJyFd7CzQUJCwgO1b968uZo3b55F1QAAAAAAsgJPsAEAAAAAMABPsGE4DzdHe5dwX3JLnQAAAAByBwI2DBfgXcjeJdw3i8UiBwcHe5cBAAAAIA9giDgMlZqaKrPZbO8y7hvhGgAAAIBRCNgwHFOrAwAAAMiPCNgAAAAAABiAgA0AAAAAgAEI2DAc7zUDAAAAyI8I2DCUi4uL3Nzc7F2GYXifHAAAAMD9YpouGG5v0lVdM6fbu4xH5uHmmKumHAMAAABgXwRsGO6aOV3JKbfsXQYAAAAAZCuGiAMAAAAAYAACNgAAAAAABiBgAwAAAABgAAJ2LhMVFaXAwEB7lwEAAAAA+BsCdi4THh6u1atX27sMAAAAAMDf8BXxXKZgwYIqWLCgvcsAAAAAAPwNT7BzGJPJpKVLl6pjx47y9fVVmzZttHPnTuv2vw4RHzZsmEwmU6Z/t7ffaZvJZNLMmTMlSefOndOgQYNUr149Va1aVc8//7wmTpyojIyM7D9xAAAAAMjlCNg50KRJkxQcHKx169apYcOG6tevn+Li4jK1e+edd7R7927rv+nTp8vR0VGvv/66JNls2717t1q2bKl//etf6tChgySpT58+unbtmhYsWKCtW7cqPDxc8+fP1xdffJGt5wsAAAAAeQEBOwcKCQlRt27dVLFiRQ0ZMkS+vr6KiYnJ1M7Dw0MlSpRQiRIlZDabNXr0aIWHh6t9+/aSZN1WokQJbdq0Sbt27dLs2bNVsmRJ3bhxQ8HBwRozZoyqVKmismXLKiwsTMWLF1dCQkJ2nzIAAAAA5Hq8g50DBQQE2Cz7+/trz549d21/5coVvfrqq6pTp47eeOONTNu/+OILTZw4UVOnTlXVqlUlSa6ururevbu2bt2qH374QSdPnlRCQoIuXLjAEHEAAAAAeAgE7BzIycn2z5Kenq4CBe482CAtLU39+vWTm5ubJkyYIAcHB5vtR44c0RtvvKH+/fvr3//+t3V9SkqKunfvrhs3bqh58+Zq3769/Pz81K1bN+NPCAAAAADyAQJ2DhQfH28z1/WBAwesT57/btSoUTp+/LhWr14td3d3m23nz59X79699e9//1u9e/e22bZ7924dOnRIe/bsUfHixSVJycnJunjxoiwWi8FnBAAAAAB5HwE7B1q0aJEqVqyoatWqaeXKlUpISNAHH3yQqd2cOXO0efNmzZkzR87Ozvr999+t2woWLKiIiAg9+eSTeuONN3ThwgVrcHZ2dtYTTzwhSVq/fr2CgoL0yy+/aMqUKUpLS1Nqamr2nCgAAAAA5CEE7Byoc+fOWrhwoRITE1WlShVFR0erSpUqmdqtWLFCN27c0EsvvZRp29ixY3X48GFJ0nPPPWezrW7dulqyZImGDx+uhQsXatq0aSpZsqRatmypUqVKKT4+PmtODAAAAADyMAJ2DlSpUiUNHTr0jttef/116zRc95pOKyQk5B+3h4WFKSws7KFqBAAAAADYYpouAAAAAAAMQMAGAAAAAMAADBHPYRISEuxdAgAAAADgIfAEGwAAAAAAA/AEG4bzcHO0dwmGyCvnAQAAACB7ELBhuADvQvYuwTAWi0UODg72LgMAAABALsAQcRgqNTVVZrPZ3mUYhnANAAAA4H4RsGE4i8Vi7xIAAAAAINsRsAEAAAAAMAABGwAAAAAAAxCwYTjeWwYAAACQHxGwYSgXFxe5ubnZtQbeAQcAAABgD0zTBcPtTbqqa+Z0uxzbw80xT00TBgAAACD3IGDDcNfM6UpOuWXvMgAAAAAgWzFEHAAAAAAAAxCwAQAAAAAwAAEbAAAAAAADELCzSFRUlAIDA++7vcVi0Zo1a3Tx4sUsrAoAAAAAkFUI2DnEd999p2HDhslsNtu7FAAAAADAQyBg5xDM3QwAAAAAuRsB+yGZTCYtXbpUHTt2lK+vr9q0aaOdO3fetX1iYqJ69+6tOnXqqFq1amrSpIk++eQTSdLevXvVo0cPSVKTJk20cuVK1atXTzNnzrTp49NPP1WDBg1069Ytvfjii/rggw80ePBgVa9eXc8//7zmzp1rDep79+6VyWTSmTNnrPv/fd2JEyfUs2dP1apVS/7+/urZs6cSEhIMvU4AAAAAkF8QsB/BpEmTFBwcrHXr1qlhw4bq16+f4uLiMrUzm80KDw9XkSJF9Omnn2rjxo1q3ry5xo8fryNHjsjf319RUVGSpFWrVqlt27Zq27at1q9fb9PP2rVr1bZtWzk5/Tl9+fLly+Xh4aHY2FgNGjRIH330kebNm3ff9Q8ePFglS5bUZ599plWrVqlAgQLq16/fI1wRAAAAAMi/CNiPICQkRN26dVPFihU1ZMgQ+fr6KiYmJlM7s9msHj16aNSoUfL29paXl5f69+8vSUpISJCLi4sKFy4sSfL09JSrq6tCQ0N18uRJHThwQJJ0/PhxHThwQCEhIdZ+K1SooHfffVfe3t5q3769XnzxRS1evPi+h5ufOnVKnp6eKl26tCpVqqQPP/xQ77//vjIyMh710gAAAABAvkPAfgQBAQE2y/7+/kpMTMzUztPTU127dtXGjRs1evRovfzyy2rUqJEk3TXMVq5cWb6+vlq7dq2kP59e+/n5qVKlSjbHd3BwsDn+77//rsuXL99X/YMGDdKCBQsUEBCgiIgIbd++XVWqVFGBAtwWAAAAAPCgSFKP4PZQ7dvS09PvGE5///13tW3bVqtWrVLJkiXVtWtXrVmz5p79h4aGasuWLUpNTdWGDRvUvn37fzz+7bDu6Oh4x/7S09Ntlrt166avvvpKI0aMkIeHh2bMmKFWrVrpwoUL96wNAAAAAGCLgP0I4uPjbZYPHDigqlWrZmq3ceNGJScna/ny5XrttdfUrFkzXblyRdL/fT38r0+ib2vdurVu3rypBQsW6MKFC2rduvU/Hj8uLk5lypRR4cKF5ezsLEm6fv26dfuJEyesvy9evKj33ntPaWlpCgkJ0cSJE7V+/Xr9/vvv+vbbbx/gKgAAAAAAJAL2I1m0aJE2bNig48ePa/z48UpISNBLL72Uqd0TTzwhs9msrVu36ty5c9q9e7cGDx4sSUpNTZUkubu7S5KOHj2qP/74Q5Lk4eGhZs2aadasWWrSpIkKFSpk0+++ffs0Y8YMnThxQqtXr9bSpUvVq1cvSX8OMXd3d9fcuXN16tQp/fe//9WCBQus+xYuXFhffvmlRowYoSNHjuj06dP69NNP5ezsrGrVqhl/sQAAAAAgjyNgP4LOnTtr4cKFatu2rfbt26fo6GhVqVIlU7vmzZurZ8+eGjdunFq0aKEPP/xQL7zwgurUqWN9Cl25cmU1bNhQAwcO1IoVK6z7hoSE6MaNGzYfN7utSZMmSkpKUtu2bTV79mwNHz5cXbp0kSQ9/vjjmjhxog4fPqyWLVtq+vTpeuutt6z7Ojk5ad68eSpQoIDCwsLUqlUr/e9//9PcuXNVrlw5oy8VAAAAAOR5TvdugrupVKmShg4desdtr7/+ul5//XVJfw7/HjJkiIYMGWLT5uWXX7b+dnFx0dy5czP18+uvv+rJJ59U/fr1M20rVKiQxo0bd9f6mjZtqqZNm9qs++s8197e3nc8JgAAAADgwRGwc6hDhw7p559/1owZM9S9e3e+7A0AAAAAORypLYf6/vvvNWLECFWvXv2O73UDAAAAAHIWnmA/pL8Otc4K3bp1U7du3e66fcmSJVl6fAAAAADAg+EJNgAAAAAABuAJNgzn4eaYL48NAAAAIH8jYMNwAd6F7t0oC1ksFjk4ONi1BgAAAAD5D0PEYajU1FSZzWa71kC4BgAAAGAPBGwYzmKx2LsEAAAAAMh2BGwAAAAAAAxAwAYAAAAAwAAEbBiOd6ABAAAA5EcEbBjKxcVFbm5u9i4jy/B+OQAAAIC7YZouGG5v0lVdM6fbuwzDebg52n0KMgAAAAA5FwEbhrtmTldyyi17lwEAAAAA2Yoh4gAAAAAAGICADQAAAACAAQjYAAAAAAAYgICdjwwbNkwvvvjiXbfv3btXJpNJZ86cycaqAAAAACBv4CNn+cg777yj9PS893VvAAAAAMgJCNj5iIeHh71LAAAAAIA8iyHiBjCZTFq6dKk6duwoX19ftWnTRjt37pQkXbp0SdWqVdPatWtt9pk8ebJCQ0MlSYGBgRo/frxatmypgIAAffvtt7py5YpGjBih5557TlWrVlW9evU0YsQImc1mSX8O53766ae1Y8cOBQUFyc/PTz169NAvv/yi999/X7Vr11a9evX08ccfW4/59yHi+/btU4cOHeTn56e2bdvq6NGjWXylAAAAACDvImAbZNKkSQoODta6devUsGFD9evXT3FxcfL09FSjRo1sAnZGRobWr1+vkJAQ67qYmBiNGDFC8+fPV40aNTRs2DAdPnxYM2fO1LZt2zR8+HCtXbtWK1assO6Tnp6ujz/+WJMmTdKiRYt09OhRBQcHy9nZWatWrVLnzp01bdo0JSQkZKr39OnTCg8Pl4+Pj9asWaO+fftq1qxZWXqNAAAAACAvI2AbJCQkRN26dVPFihU1ZMgQ+fr6KiYmRpIUGhqqvXv36vz585Kkr7/+WpcuXVLr1q2t+zds2FDPPvusfH195eLiovr162vs2LGqXr26ypQpo7Zt2+rpp59WYmKizXEHDBggX19f+fv765lnnpGbm5uGDh2qChUqqHfv3pKkn376KVO9K1euVPHixTV69Gh5e3srKChIffr0yarLAwAAAAB5HgHbIAEBATbL/v7+1jD8/PPPq1ixYlq3bp0kac2aNWrSpIkKFy5sbV++fHmb/bt27arTp09r3LhxioiIUNOmTfXDDz8oIyPDpt1f93N3d1eZMmXk4OAgSXJ1dZUkpaamZqo3MTFRTz/9tBwdHa3ratas+cDnDQAAAAD4EwHbIE5Ott+LS09PV4ECf15eR0dHtWvXThs2bFBKSoo+//xztW/f3qb97TAs/TmEvHfv3nr//ffl5OSkli1bas6cOXcMwH8/7u1j3ouDg0OmsP73vgAAAAAA94+AbZD4+Hib5QMHDqhq1arW5dDQUCUmJmrJkiXy8PBQgwYN7trXkSNH9NVXX2n69OkaMmSI2rZtq3LlyunUqVOyWCyG1FulShX9+OOPNk+3f/zxR0P6BgAAAID8iIBtkEWLFmnDhg06fvy4xo8fr4SEBL300kvW7RUqVFDNmjU1a9YsBQcH2wzN/rvixYvLyclJW7Zs0enTpxUfH6+BAwfq999/v+Nw74fRpUsXmc1mvf3220pKStKuXbsUFRVlSN8AAAAAkB8RsA3SuXNnLVy4UG3bttW+ffsUHR2tKlWq2LQJCQnRjRs3Mg0P/7uSJUtq3Lhx+uKLL9SyZUsNGDBAJUuWVFhYmGFPmUuWLKlFixbp119/Vfv27TVu3Dg+cgYAAAAAj8DBYtSY43zMZDJp7NixNtNu3UlUVJT+97//afny5dlUWfa6PUz+vEMZJafcsnM1xivi7qSm1Yrauww8opSUFB05ckQ+Pj5yd3e3dznAXXGvIrfgXkVuwb2Kh3U75/j6+t6zLV+1ygb79+/X8ePHtXjxYr333nv2LgcAAAAAkAUI2Nlg165diomJUWhoqFq0aGHvcgAAAAAAWYCAbYCEhIR/3D5kyBANGTIkm6oBAAAAANgDHzkDAAAAAMAAPMGG4Tzc7j4FWW6WV88LAAAAgDEI2DBcgHche5eQZSwWixwcHOxdBgAAAIAciCHiMFRqaqrMZrO9y8gyhGsAAAAAd0PAhuGYWh0AAABAfkTABgAAAADAAARsGI5h1AAAAADyIwI2DOXi4iI3Nzd7l5FrMbweAAAAyL34ijgMtzfpqq6Z0+1dRq7j4eaYp7/ADgAAAOR1BGwY7po5Xckpt+xdBgAAAABkK4aIAwAAAABgAAI2AAAAAAAGIGADAAAAAGAAAnYutXfvXplMJp05c8bepQAAAAAARMAGAAAAAMAQBGwAAAAAAAxAwDaAyWTSjBkz1LhxYzVo0EAnTpxQamqqJk6cqOeee07+/v7q2LGjdu/eLUn6448/5O/vr2XLltn0M3PmTDVq1EgZGRlKT0/XwoULFRQUJF9fXwUFBWn58uV3PH5sbKx8fX119epVm/VNmzbV1KlTJUnnz5/XoEGDVLt2bQUEBCgiIkInTpywth02bJj69++v8PBw1axZU/PmzTPwCgEAAABA3kfANsiyZcs0Y8YMzZw5U15eXho+fLj27NmjSZMmac2aNWrRooUiIiL05ZdfqmDBgmrevLk2btxo08eGDRsUHBysAgUKaNy4cZo1a5b69eunDRs2qFu3bvrggw+0cOHCTMdu3ry5nJyctG3bNuu6uLg4nT59WiEhIUpJSdGLL74oSYqJidGSJUtUtGhRdezYUefPn7fus23bNj377LP67LPP1Lp166y5UAAAAACQRxGwDRIcHCxfX1/VqFFDJ0+e1MaNGzV27FgFBATIy8tLL7/8slq1aqXo6GhJUvv27RUXF6ezZ89Kkn744QedOHFCISEhun79upYvX67+/furTZs28vLyUo8ePdS1a1fNnTtXFovF5tju7u5q3ry5NmzYYF23YcMG1axZU+XLl9emTZt09epVTZw4UVWqVFHlypX1wQcf6PHHH9fKlSut+xQuXFi9evVShQoVVKpUqWy4agAAAACQdzjZu4C8onz58tbfhw8fliR17drVpk1aWpoKFSokSapTp47KlCmjjRs3qnfv3lq/fr01EP/www9KS0tTrVq1bPavW7euFi1apIsXL2Y6fkhIiHr06KHz58/L09NTW7Zs0RtvvGGt58qVK6pTp47NPjdv3lRSUtIdzwEAAAAA8GAI2AZxdXW1/r79hHnp0qUqWLCgTbsCBf4cNODg4KB27dppw4YN6tWrl7Zs2aKBAwfa7P93GRkZkiQnp8x/ttq1a6t06dLauHGjKlasqBs3bqhFixbW/SpUqKCPP/44037u7u53PAcAAAAAwINhiHgWeOqppyRJv//+u8qXL2/9Fxsbq9jYWGu79u3b69ixY/r000/1xx9/WAOxt7e3nJ2dtX//fpt+9+3bpxIlSqhw4cKZjung4KD27dtr+/bt2rRpk5o2barHH39cklS5cmWdO3dOHh4e1lqefPJJTZ48Wd99911WXQYAAAAAyFcI2FngqaeeUuPGjTV69Gh98cUXOn36tObNm6c5c+aoXLly1nalS5dWQECAJk+ebBOIH3/8cXXq1EkzZszQxo0bdfLkSS1dulTLli1TeHi4HBwc7njc9u3bKz4+Xjt37lRISIh1fdu2bVW4cGH1799fBw8eVFJSkoYNG6avvvpKJpMpay8GAAAAAOQTDBHPIlOnTtXUqVM1atQoXblyReXKldMHH3yg9u3b27QLCQnRN998YxOIJWn48OEqWrSoJk2apAsXLsjLy0ujRo1Sx44d73rMJ598UnXr1tWJEyf0zDPPWNd7eHgoJiZGEyZMUM+ePZWenq6qVavqk08+kbe3t7EnDgAAAAD5lIPlbi/8Ag8oPj5eknTeoYySU27ZuZrcp4i7k5pWK2rvMvK8lJQUHTlyRD4+PjbfIAByGu5V5Bbcq8gtuFfxsG7nHF9f33u2ZYg4AAAAAAAGIGADAAAAAGAAAjYAAAAAAAYgYAMAAAAAYAACNgAAAAAABmCaLhjOw83R3iXkSlw3AAAAIHcjYMNwAd6F7F1CrmWxWOTg4GDvMgAAAAA8BIaIw1Cpqakym832LiPXIlwDAAAAuRcBG4azWCz2LgEAAAAAsh0BGwAAAAAAAxCwYTiGOQMAAADIjwjYMJSLi4vc3NzsXUaWYxg8AAAAgL/jK+Iw3N6kq7pmTrd3GVnGw82RL6UDAAAAyISADcNdM6crOeWWvcsAAAAAgGzFEHEAAAAAAAxAwAYAAAAAwAAEbAAAAAAADEDAziUCAwMVFRV11+2xsbEymUzZWBEAAAAA4K8I2HlEy5YttXv3bnuXAQAAAAD5Fl8RzyNcXV3l6upq7zIAAAAAIN/iCXYOZDKZNGPGDDVu3FgNGjTQiRMnJEm///67+vXrpxo1aiggIEBjx45Vevqf803/fYi4yWTS6tWrFRYWJj8/PzVo0EAzZ860Oc6XX36pjh07yt/fXw0aNNDYsWN148aNbDtPAAAAAMhLCNg51LJlyzRjxgzNnDlTXl5ekqTVq1erTp062rBhg958800tXLhQa9asuWsf48ePV/v27bVp0yZ1795dUVFR+u677yRJO3bsUJ8+fdSoUSPFxsYqMjJSmzdv1uDBg7Pj9AAAAAAgz2GIeA4VHBwsX19fm3X//ve/9dJLL0mSypYtq8WLF+vHH3/UCy+8cMc+2rVrp+DgYElSRESEoqOjFRcXpzp16mju3Llq1qyZXnvtNUlShQoVZLFY1LdvXx07dkyVKlXKwrMDAAAAgLyHJ9g5VPny5TOtu/0k+7bChQvr5s2bd+3D29vbZtnDw0NpaWmSpMTERNWsWdNme926da3bAAAAAAAPhoCdQ93pg2WOjo6Z1lkslrv24eLictf2d9ovIyNDkuTkxMAGAAAAAHhQBOx8ymQyKS4uzmbdvn37JGV+8g0AAAAAuDcCdj7Vq1cvbd++XbNmzdLx48e1a9cujRkzRo0bNyZgAwAAAMBDYCxwPhUUFKQpU6bo448/1qxZs+Tp6anWrVurf//+9i4NAAAAAHIlAnYOlJCQkGndF198kWndkiVLrL9DQkIUEhLyQH20bNlSLVu2fJRSAQAAAAD/H0PEAQAAAAAwAAEbAAAAAAADELABAAAAADAAARsAAAAAAAPwkTMYzsPN0d4lZKm8fn4AAAAAHg4BG4YL8C5k7xKynMVikYODg73LAAAAAJCDMEQchkpNTZXZbLZ3GVmOcA0AAADg7wjYMJzFYrF3CQAAAACQ7QjYAAAAAAAYgIANAAAAAIABCNgwHO8nAwAAAMiPCNgwlIuLi9zc3OxdxkPj/XEAAAAAD4tpumC4vUlXdc2cbu8yHpiHm2O+mGIMAAAAQNYgYMNw18zpSk65Ze8yAAAAACBbMUQcAAAAAAADELABAAAAADAAARsAAAAAAAMQsPOon376SV9++aW9ywAAAACAfIOAnUf17t1b8fHx9i4DAAAAAPINAjYAAAAAAAYgYGcxk8mkGTNmqHHjxmrQoIFOnDihGzduaNq0aWrSpIl8fX0VHBysbdu22ex34MAB9ejRQ7Vq1VJAQICGDx+uy5cvW7f/8MMP6tq1q/z9/VWnTh29/vrrOnfunCQpMDBQZ8+e1cyZM/Xiiy9Kkq5du6aRI0fqmWeeUa1atdSjRw+bJ9xRUVHq3r27Bg0apJo1a2rMmDHZcHUAAAAAIO8gYGeDZcuWacaMGZo5c6a8vLw0ePBgrV27ViNHjtT69evVtGlTDRgwQJ9//rmkP8Pziy++qKeeekorV67U9OnTdfDgQfXs2VPp6elKT09X7969VadOHa1fv14LFy7UuXPn9Pbbb0uSVq9erSeeeELh4eGKioqSxWLRK6+8otOnT2vOnDlauXKlatSooS5duujw4cPWOr/77jsVL15c69atswZzAAAAAMD9cbJ3AflBcHCwfH19JUlJSUnauXOnZs+erUaNGkmSXn/9dR09elSzZ89W06ZN9cknn8hkMmnkyJGSJG9vb02ZMkXBwcHavXu3atSoocuXL+tf//qXSpcurbJly2ratGm6ePGiJMnT01OOjo5yd3dXkSJF9PXXX+v777/XN998oyJFikiSBg8erLi4OC1evFjjxo2z1tq/f395eHhk38UBAAAAgDyCgJ0Nypcvb/2dkJAgSapVq5ZNmzp16mjKlCmSpMTERNWvX99me5UqVeTh4aGEhAQ1bNhQvXr10pgxYzRjxgw988wzatiwoVq0aHHH4x86dEgWi0WNGze2WZ+amqqbN29al4sVK0a4BgAAAICHRMDOBq6urvdsY7FY5OTkZP19tzbOzs6SpCFDhqhr1676z3/+o6+//lpjxozR/PnztXbtWrm4uNjsl5GRoccff1yxsbGZ+vxr2/upEwAAAABwZ7yDnc1MJpMkaf/+/Tbr9+3bp0qVKlnb/H370aNHdf36dXl7e+vnn3/W6NGjVaxYMXXp0kUzZszQ/PnzlZSUpKNHj2Y6ZuXKlXX9+nWlpaWpfPny1n/z5s3Tzp07s+hMAQAAACB/IWBnM29vbzVu3FiRkZH68ssvdfz4cc2cOVM7d+5UeHi4JOnll19WQkKCxowZo6SkJO3du1dDhgzR008/rXr16qlo0aLatGmTRo0apaSkJB0/flxr1qxR4cKFVbFiRUlSwYIFdeLECV24cEHPPfecfHx8NGjQIH3zzTc6efKkxo4dq9jYWHl7e9vzcgAAAABAnkHAtoMpU6aoadOmeuedd9S2bVvt2rVLUVFRat68uSSpevXqmj9/vn788Ue1a9dOAwcOlL+/vxYsWCBnZ2cVLVpU8+bN09mzZ9WxY0e1b99eZ86c0YIFC/T4449Lkl588UV9+eWXCg8Pl6Ojoz755BNVq1ZNAwcOVNu2bfXdd99p5syZqlevnj0vBQAAAADkGQ6Wu73wCzyg2/Nqn3coo+SUW3au5sEVcXdS02pF7V0GslhKSoqOHDkiHx8fubu727sc4K64V5FbcK8it+BexcO6nXNuzwz1T3iCDQAAAACAAQjYAAAAAAAYgIANAAAAAIABCNgAAAAAABjAyd4FIO/xcHO0dwkPJbfWDQAAACBnIGDDcAHehexdwkOzWCxycHCwdxkAAAAAciGGiMNQqampMpvN9i7joRGuAQAAADwsAjYMx9TqAAAAAPIjAjYAAAAAAAYgYAMAAAAAYAACNgzHe8wAAAAA8iMCNgzl4uIiNzc3e5dxR7wbDgAAACArMU0XDLc36aqumdPtXYYNDzfHXD19GAAAAICcj4ANw10zpys55Za9ywAAAACAbMUQcQAAAAAADEDABgAAAADAAARsAAAAAAAMQMDOYc6cOSOTyaS9e/fauxQAAAAAwAMgYAMAAAAAYAACNgAAAAAABsiXAfs///mPQkJCVL16ddWrV0/Dhg3TlStXJEmff/65OnTooBo1asjX11chISH673//K0k6ffq0atasqTFjxlj7WrFihapWraqDBw9Kkn755RcNGTJE9evXV40aNdSzZ08dPXrU2n7YsGEaPHiw3nvvPdWsWVP16tXTuHHjlJqaalPjwYMH1aFDB1WrVk1NmjTRZ599ZrN97dq1atu2rfz8/BQYGKhZs2YpPf3PuadvDzPftm2btY/AwECtWLHCpo/PPvtMLVq0kJ+fn1q0aKFFixYpIyPDoKsMAAAAAPlLvgvYly5dUr9+/RQaGqrNmzdr5syZ+u677zRhwgT9+OOPev3119WqVStt2LBBK1eulKenp4YOHarU1FSVLVtWb7/9tpYtW6b9+/frxIkTGjdunPr376/q1avr+vXr6tKli86fP6+PP/5Yn376qVxdXdW9e3edPXvWWsP27dv122+/6dNPP9X777+vtWvX6oMPPrCpc9GiRerTp482b96s5557TiNGjNDJkyclSQsXLtTIkSPVqVMnrV+/XgMGDFB0dLTGjRtn08fYsWMVERGhLVu2qFGjRnr33Xd1+vRpSX/+x8CECRPUr18/bdq0SQMHDtS8efM0adKkLP4LAAAAAEDe5GTvArLb+fPnlZqaqieffFKlS5dW6dKlNXv2bKWnp8tisWjkyJHq2rWrtX2PHj30yiuv6OLFiypVqpReeOEF7dq1S6NHj5a7u7v8/Pz0yiuvSJLWr1+vy5cvKzY2Vp6enpKkyZMnq2nTplq6dKmGDh0qSSpUqJAmTpwoNzc3Va5cWb/99ps++OADvfnmm9bj9u3bV4GBgZKkQYMGafny5Tp06JDKlSunefPmqXv37urWrZskycvLS8nJyZo4caL69+9v7SMsLExNmjSx9rF06VIdPHhQZcuW1axZs9SnTx+1atVKklS2bFldv35dkZGRGjBggB577LGs+hMAAAAAQJ6U7wK2j4+PWrdurYiICJUoUUL169dXo0aN1KxZMzk5Oalw4cKaO3eufv75Z508edI6vPv28GtJGjNmjFq0aKGbN29q27ZtKlDgz4EAiYmJ8vLysoZrSXJ1dZWfn58SExOt6/z8/OTm5mZd9vf3V1pamo4fP66iRYtKkipUqGDdXrhwYUnSzZs3denSJV24cEG1atWyOa+6desqLS1NP//8s4oVKyZJ8vb2tm738PCQJKWlpenSpUv69ddfNWXKFE2fPt3aJiMjQzdv3tSZM2ds9gUAAAAA3Fu+C9jSn0+V+/btq6+++kr/+9//9Oabb6pWrVrq27evevbsqUaNGqlWrVpq06aNzGaz+vbta7P/qVOndO3aNUlSXFycWrRoIUmyWCx3PF5GRoacnP7vUjs7O2faLkmOjo7WdbdD+19ZLJZ/PIYkm+O4uLjcsY/bbYcPH65nn302U5tSpUrd8RgAAAAAgLvLd+9gHzx4UB9++KEqVqyosLAwzZ07Vx9++KG++eYbzZs3TwEBAYqKilJYWJjq16+vX375RdL/heeUlBQNHTpUbdq0Ue/evfXuu+/qt99+kySZTCadOHFCFy9etB7v5s2b+vHHH1WpUiXrukOHDtk8ET9w4IDc3NxsnlrfTfHixVW8eHHt37/fZv2+ffvk7OyscuXK3bOPYsWKydPTU6dPn1b58uWt/w4dOqRp06bdc38AAAAAQGb5LmA//vjjWrZsmSZOnKiTJ08qMTFRmzdvlpeXl5588kklJCRo3759OnPmjD777DPrEOrbX/keN26cUlJS9Pbbb6tPnz4qXry43n77bUlSmzZtVKRIEQ0cOFA//PCDjh49qiFDhiglJUWdOnWy1nD27FlFRkYqKSlJ27dv14wZM9S9e3ebYeP/pGfPnoqJidGyZct08uRJbdiwQTNnzlSnTp2sQ8H/iYODg1555RUtWbJEMTExOnXqlHbs2KF3331Xrq6ud3zyDQAAAAD4Z/luiLi3t7eioqI0c+ZMLVu2TAUKFNAzzzyjefPmycPDQ5cuXVJERIQkqVKlSvrwww/15ptvKj4+XqdPn9aKFSv00UcfWd+L/vDDD9W5c2ctXbpU3bp1U0xMjMaNG6ewsDBJUq1atbR8+XKVLVvWWkONGjVUoEABvfDCC/Lw8FCPHj3Up0+f+z6H8PBwubi4aNGiRfrwww/1xBNP6JVXXlHPnj0fqI/HHntMS5Ys0bhx41S8eHF17NjR5iNpAAAAAID752C520u9yBLDhg3T2bNntWTJEnuXYrj4+HhJ0nmHMkpOuWXnamwVcXdS02pF7V0GcoCUlBQdOXJEPj4+cnd3t3c5wF1xryK34F5FbsG9iod1O+f4+vres22+GyIOAAAAAEBWIGADAAAAAGCAfPcOtr2NGzfO3iUAAAAAALIAT7ABAAAAADAAT7BhOA83R3uXkElOrAkAAABA3kLAhuECvAvZu4Q7slgscnBwsHcZAAAAAPIohojDUKmpqTKbzfYu444I1wAAAACyEgEbhmNqdQAAAAD5EQEbAAAAAAADELABAAAAADAAARuG411nAAAAAPkRARuGcnFxkZubm73LyFa8cw4AAABAYpouZIG9SVd1zZxu7zKyhYebY46dlgwAAABA9iJgw3DXzOlKTrll7zIAAAAAIFsxRBwAAAAAAAMQsAEAAAAAMAABGwAAAAAAAxCws9CwYcP04osv2rsMAAAAAEA2IGADAAAAAGAAAjYAAAAAAAYgYN+H//znPwoJCVH16tVVr149DRs2TFeuXJEknTx5Un369FGtWrUUEBCgwYMH6+LFi9Z909LSNH78eD3zzDOqUaOGXnvtNV24cMG6/ZdfftGQIUNUv3591ahRQz179tTRo0dtjr927Vq1bdtWfn5+CgwM1KxZs5Se/uc802fOnJHJZNK2bdvUoUMHVatWTYGBgVqxYoVNH5999platGghPz8/tWjRQosWLVJGRoZNH3PmzFH9+vXVpEkTXb9+PUuuJQAAAADkVQTse7h06ZL69eun0NBQbd68WTNnztR3332nCRMm6OrVq+rWrZtSU1O1aNEiLViwQKdOndLAgQOt+x84cEBXr17VsmXLNGfOHH3//feaMGGCJOn69evq0qWLzp8/r48//liffvqpXF1d1b17d509e1aStHDhQo0cOVKdOnXS+vXrNWDAAEVHR2vcuHE2dY4dO1YRERHasmWLGjVqpHfffVenT5+WJK1YsUITJkxQv379tGnTJg0cOFDz5s3TpEmTbPpYs2aNFi1apGnTpunxxx/PwqsKAAAAAHmPk70LyOnOnz+v1NRUPfnkkypdurRKly6t2bNnKz09XZs3b9Yff/yhKVOmqHDhwpKk999/X5s2bVJqaqokqUSJEhozZowKFCigihUrqmXLlvrf//4nSVq/fr0uX76s2NhYeXp6SpImT56spk2baunSpXrzzTc1b948de/eXd26dZMkeXl5KTk5WRMnTlT//v2tdYaFhalJkyaSpEGDBmnp0qU6ePCgypYtq1mzZqlPnz5q1aqVJKls2bK6fv26IiMjNWDAAGsfXbt2VaVKlbL4igIAAABA3kTAvgcfHx+1bt1aERERKlGihOrXr69GjRqpWbNmWrlypby8vKzhWpKqVKmiKlWqWJfLlSunAgX+b6BA4cKFdePGDUlSYmKivLy8rOFaklxdXeXn56fExERdunRJFy5cUK1atWxqqlu3rtLS0vT/2LvzsCzq/f/jL0AQSFxIcsEFxURSUEJDXEpBj/sSpqaph1xOamZqLrhVnlxQNE3ISDOXCMsM0Qy1zNTcSC2VVKRIIbU8hrsgt8L9+6Of9zdy14Fb4fm4Lq+LmfnM5/OeYfzjxXxm5tdff9Wjjz4qSfL09LRsd3FxkfTX9PTTp0/rjz/+0Ntvv6133nnH0iY3N1fZ2dk6duyYihcvLkmqWrXqfZ8vAAAAACiqCNh3YNasWXr55Ze1ZcsWbd++XaNGjZK/v7+8vLxuu6+dnd1Nt5nN5huuz83NVbFixW65XZKKFfu/X5+Dg8MN+7/WduzYsWrUqNF1bSpUqKD//e9/kv4K9wAAAACAe8Mz2Lexb98+TZ06VdWrV1doaKjmz5+vqVOnaufOnSpbtqyOHj2qCxcuWNofOHBAgYGB+uOPP27bt5eXl44ePZrnpWjZ2dn66aefVKNGDZUtW1Zly5bVnj178uy3e/du2dvbq0qVKrcd49FHH5Wrq6t+++03Va1a1fLvwIEDmjNnzp2fCAAAAADALRGwb6NEiRKKjY1VRESE0tLSlJKSooSEBHl4eKh3794qVaqURo0apeTkZP3000964403VLNmTZUvX/62fXfo0EGlS5fWsGHDtH//fiUnJ2vkyJHKzMxU9+7dJUn9+vVTTEyMYmNjlZaWpi+++EJRUVHq3r27ZSr4rdjY2GjAgAH66KOPFBMTo/T0dH399dd688035ejoeMM73wAAAACAu8cU8dvw9PRUZGSkoqKiFBsbK1tbWzVs2FALFiyQk5OTFi5cqGnTpun555+Xo6OjmjVrpjFjxtxR3y4uLoqJiVF4eLhCQ0MlSf7+/lq2bJkqV64sSerbt68cHBy0ZMkSTZ06VeXLl9eAAQPUr1+/Oz6Gvn37qnjx4vroo48UHh6usmXLqlu3bnlekgYAAAAAuD825ps96AvcpaSkJEnSSZtKOpt51crVFIzSzsXUok4Za5eBu5CZmalDhw7J29tbzs7O1i4HuCmuVTwsuFbxsOBaxb26lnN8fHxu25Yp4gAAAAAAGICADQAAAACAAQjYAAAAAAAYgIANAAAAAIABeIs4DOfiZGftEgpMUTpWAAAAALdGwIbhAjxLWruEAmU2m2VjY2PtMgAAAABYGVPEYSiTyaSsrCxrl1GgCNcAAAAAJAI28gGfVgcAAABQFBGwAQAAAAAwAAEbAAAAAAADELBhOJ5JBgAAAFAUEbBhKAcHBzk5OVm7jOvwXDgAAACA/MZnumC4xNTzupCVY+0yLFyc7Ircp8MAAAAAFDwCNgx3IStHZzOvWrsMAAAAAChQTBEHAAAAAMAABGwAAAAAAAxAwAYAAAAAwAAEbCsJCwtT7969rV0GAAAAAMAgvOTMSsaPH6+cnAfnTdsAAAAAgPtDwLYSFxcXa5cAAAAAADAQU8Tv0+bNmxUSEqK6desqMDBQYWFhOnfunCQpLS1NgwYNkr+/vwICAjRixAhlZGRIun6K+MKFC9WiRQvVqVNHQUFBevfdd2U2myVJWVlZGj9+vBo3biwfHx917txZX331lWXfnJwcLV68WK1atZKPj49atWqlZcuWWbYnJibqiSee0Pz58xUQEKCQkBDl5uYqPj5e7dq1k4+Pj5o2baopU6bIZDIVxGkDAAAAgEKHO9j34fTp0xoyZIjCwsLUrFkz/fHHHxo9erRmzJihMWPG6IUXXpCXl5eWLFkiW1tbvf766xo2bJg++uijPP1s3LhR77//vmbPnq1q1app7969Gj16tCpVqqROnTrpnXfe0eHDhzV//nyVLFlSn332mYYPH67169erUqVKCg8P16pVqzRx4kT5+Phoy5YtmjJlirKzsxUaGirprxC+efNmffrpp8rKylJKSoomTJigmTNnytfXV6mpqXrttddUpkwZDR482ApnEwAAAAAebgTs+3Dy5EmZTCZVrFhR7u7ucnd3V3R0tHJycpSQkKBLly7p7bffVqlSpSRJkydP1pdffnndXeL09HQ5ODjI3d1dFStWVMWKFfXYY4+pYsWKlu2PPPKIKleurJIlS+rVV19VgwYNVKpUKV28eFHLli1TWFiYOnToIEny8PDQsWPHNH/+fP373/+2jNO3b195eHhIkjZs2CAbG5s8Yy5cuFAlSpQogDMHAAAAAIUPU8Tvg7e3t9q3b6+BAweqSZMmGjNmjH755RfVqFFDKSkp8vDwsIRrSapVq5Zee+01OTg45OmnY8eOKlOmjFq1aqV27dppypQpkmQJ2AMGDFBycrICAwPVo0cPvffee6pSpYpcXFz066+/6sqVK/L398/T51NPPaWMjAzLlHRJlnAtSU2bNpWfn5+ee+45BQcH6/XXX9fp06fztAEAAAAA3DkC9n2aNWuW1q5dq/79++vMmTMaNWqU+vXrp2LF7nxygKurq1atWqXY2Fi1atVK+/bt0wsvvKCoqChJkp+fnzZv3qy5c+eqdu3aio+PV9u2bbVjxw7Lc9r/lJubK0l56ihevHien5cuXaqVK1eqe/fuOnr0qAYOHKhx48bdy2kAAAAAgCKPgH0f9u3bp6lTp6p69eoKDQ3V/PnzNXXqVO3cuVNly5bV0aNHdeHCBUv7AwcOKDAwUH/88UeeflavXq1ly5bJ399fQ4cO1fLly9W1a1clJCRIkubOnas9e/YoODhYEyZM0Pr161W5cmWtX79enp6esre31549e/L0uXv3brm5ueW5g/53mzdvVlRUlJ544gn95z//0dKlSzV06FDLmAAAAACAu8Mz2PehRIkSio2Nlb29vbp166bs7GwlJCTIw8NDvXv3VmxsrEaNGqVhw4bp6tWrevPNN1WzZk2VL18+Tz/Z2dmaPn26HnnkEdWvX19//PGHdu3apfr160uSfvvtN61evVpvvfWWqlSpon379unEiRPy8/NTiRIl1L17d82dO1elS5eWj4+Ptm7dqtjYWI0YMUI2NjY3rN3e3l7vvvuuSpQooeDgYJ07d06bNm2Sn59fvp83AAAAACiMCNj3wdPTU5GRkYqKilJsbKxsbW3VsGFDLViwQE5OTlq4cKGmTZum559/Xo6OjmrWrJnGjBlzXT9du3bV2bNnNW/ePP3+++8qVaqUWrVqpZEjR0qS3njjDU2fPl2jRo3S2bNn5e7urpEjR6pTp06SpLFjx6pMmTKaOXOm/vzzT3l4eOj1119Xt27dblp7o0aNNGXKFH344YeaPXu2HB0d9cwzzygsLCx/ThYAAAAAFHI25ps9xAvcpaSkJEnSSZtKOpt51crV/J/SzsXUok4Za5eBB0RmZqYOHTokb29vOTs7W7sc4Ka4VvGw4FrFw4JrFffqWs7x8fG5bVuewQYAAAAAwAAEbAAAAAAADEDABgAAAADAAARsAAAAAAAMwFvEYTgXJztrl5DHg1YPAAAAgMKJgA3DBXiWtHYJ1zGbzTf9JjgAAAAAGIEp4jCUyWRSVlaWtcu4DuEaAAAAQH4jYMNwfFodAAAAQFFEwAYAAAAAwAAEbAAAAAAADEDAhuF43hkAAABAUUTAhqEcHBzk5ORk7TIeejzHDgAAADx8+EwXDJeYel4XsnKsXcZDy8XJ7oH81BkAAACAWyNgw3AXsnJ0NvOqtcsAAAAAgALFFHEAAAAAAAxAwAYAAAAAwAAEbAAAAAAADEDALiQiIyMVFBRk7TIAAAAAoMgiYBcSffv21YoVK6xdBgAAAAAUWbxFvJB45JFH9Mgjj1i7DAAAAAAosriDfY82b96skJAQ1a1bV4GBgQoLC9O5c+ckSWlpaRo0aJD8/f0VEBCgESNGKCMjw7JvfHy8OnbsKF9fXwUFBWnevHnKyfnru9HHjh2Tl5eX3n//fTVu3FjBwcG6ePGivLy89PHHH6tbt27y8fFRhw4d9M0331j6/OcU8d9//10jR45U48aNVa9ePfXr10/JycmW7WFhYQoLC9P06dMVGBiounXr6qWXXtLJkyfz+9QBAAAAQKFEwL4Hp0+f1pAhQ9SlSxclJCQoKipKu3bt0owZM3T+/Hm98MILMplMWrJkiRYtWqT09HQNGzZMkrR48WJNnDhR3bt31+rVq/Xqq69q4cKFCg8PzzPGypUrtWTJEs2ZM0clSpSQJM2cOVOdOnXSqlWr9Mwzz2jIkCH64Ycfrqvv4sWL6tGjh06ePKn33ntPn3zyiRwdHdWrVy8dP37c0m7NmjU6e/asYmJitGDBAh04cEBz5szJt/MGAAAAAIUZU8TvwcmTJ2UymVSxYkW5u7vL3d1d0dHRysnJUUJCgi5duqS3335bpUqVkiRNnjxZX375pUwmkxYsWKBevXrphRdekCR5eHjo7NmzioiI0NChQy1j9OzZUzVq1MgzbkhIiGW/kSNH6vvvv1dMTIyefPLJPO1Wr16tM2fOKC4uTq6urpKkWbNmqUWLFvr44481evRoSZKLi4v++9//yt7eXp6enmrbtq02b96cPycNAAAAAAo5AvY98Pb2Vvv27TVw4EC5ubmpcePGatasmVq2bKnly5fLw8PDEq4lqVatWqpVq5YyMjL0559/yt/fP09/Tz31lK5cuaJff/1Vjz76qCSpatWq140bEBCQZ9nPz0/btm27rl1KSoo8PDws4VqSHB0d5evrq5SUFMu6KlWqyN7e3rLs4uKiK1eu3OXZAAAAAABITBG/Z7NmzdLatWvVv39/nTlzRqNGjVK/fv1UrNjN/2ZhNptvuD43N1eS8uzr6Oh4Xbt/9p2TkyNb2+t/hbca5+99ODg43LRWAAAAAMDdIWDfg3379mnq1KmqXr26QkNDNX/+fE2dOlU7d+5U2bJldfToUV24cMHS/sCBAwoMDNTVq1dVtmxZ7dmzJ09/u3fvlr29vapUqXLLcZOSkvIs//jjj6pdu/Z17by8vHT06NE8L1bLzs7WTz/9dN20cwAAAACAMQjY96BEiRKKjY1VRESE0tLSlJKSooSEBHl4eKh3794qVaqURo0apeTkZP3000964403VLNmTZUvX179+vVTTEyMYmNjlZaWpi+++EJRUVHq3r27XFxcbjnukiVL9MUXX+jIkSOaPn26Dh8+rH//+9/XtevQoYNKly6tYcOGaf/+/UpOTtbIkSOVmZmp7t2759dpAQAAAIAijWew74Gnp6ciIyMVFRWl2NhY2draqmHDhlqwYIGcnJy0cOFCTZs2Tc8//7wcHR3VrFkzjRkzRpLUt29fOTg4aMmSJZo6darKly+vAQMGqF+/frcd9/nnn9fixYuVkpKiWrVqaeHChapVq9Z17VxcXBQTE6Pw8HCFhoZKkvz9/bVs2TJVrlzZ0HMBAAAAAPiLjflmD+zigeLl5aVp06YpJCTE2qXc1LUp7CdtKuls5lUrV/PwKu1cTC3qlLF2GYVWZmamDh06JG9vbzk7O1u7HOCmuFbxsOBaxcOCaxX36lrO8fHxuW1bpogDAAAAAGAAAjYAAAAAAAbgGeyHxOHDh61dAgAAAADgFriDDQAAAACAAbiDDcO5ONlZu4SHGucPAAAAeDgRsGG4AM+S1i7hoWc2m2VjY2PtMgAAAADcBaaIw1Amk0lZWVnWLuOhR7gGAAAAHj4EbBiOT6sDAAAAKIoI2AAAAAAAGICADQAAAACAAQjYMBzPDwMAAAAoigjYMJSDg4OcnJysXUa+4flyAAAAADfDZ7pguMTU87qQlWPtMgzn4mTHJ8gAAAAA3BQBG4a7kJWjs5lXrV0GAAAAABQopogDAAAAAGAAAjYAAAAAAAYgYAMAAAAAYAACtpX17t1bYWFh1i4DAAAAAHCfCNgAAAAAABiAgA0AAAAAgAGKfMDevHmzQkJCVLduXQUGBiosLEznzp2TJKWmpmrAgAHy8/NTkyZN9Nprr+nUqVOWfc+dO6cJEyaoadOmql27tgIDAzVhwgRlZWXdVQ2XLl3S2LFjVb9+ffn7+yssLEyZmZmW7ampqRo4cKACAgLk7++voUOH6vjx45btvXv31sSJE9W1a1fVr19fq1evVkZGhoYOHaqAgAD5+vrq+eef1/fff2/Zx2QyKSIiQk2bNpWfn5+6deumrVu33utpBAAAAIAir0gH7NOnT2vIkCHq0qWLEhISFBUVpV27dmnGjBk6efKkevbsqapVq2rFihWKjo7WxYsX1b17d0v4DQsL08GDBxUVFaX169dr7Nixio+P16effnpXdXz11Vd67LHHFBcXpxkzZighIUELFiyQJB0/flzdu3eXg4ODlixZog8//FCnTp1Sr169dPHiRUsfn332mfr06aPY2Fg1bdpUb775prKzsxUTE6MvvvhC1apV0+DBgy21jx07Vtu2bdPMmTO1cuVKtWnTRgMHDtSmTZuMObkAAAAAUMQUs3YB1nTy5EmZTCZVrFhR7u7ucnd3V3R0tHJycrRs2TKVL19eEyZMsLSfM2eOGjZsqHXr1ikkJESNGzdWgwYN5OXlJUmqVKmSYmJilJKScld1+Pr6avjw4ZKkKlWqqHHjxvrpp58kSbGxsXJ2dtbMmTPl4OAgSZo7d66Cg4O1atUqvfDCC5Ikb29vdejQwdJnenq6atasqcqVK8vR0VHjx49Xhw4dZGdnp7S0NK1Zs0bx8fHy9vaWJL344otKTk7WwoUL1axZs3s7oQAAAABQhBXpgO3t7a327dtr4MCBcnNzU+PGjdWsWTO1bNlSBw8e1M8//yw/P788+2RnZys1NVWS1LNnT23cuFErV67U0aNH9csvv+jYsWOqXr36XdXh4eGRZ7lUqVKWKeApKSmqU6eOJVxLkpubm6pVq5YnyFetWjVPH0OGDNGoUaO0fv16+fv7q0mTJmrfvr2KFy+ugwcPWur/uytXrqhkyZJ3VTsAAAAA4C9FOmBL0qxZs/Tyyy9ry5Yt2r59u0aNGiV/f3/Z29urYcOGeuONN67bx8XFRbm5uXrppZf0888/q3379mrbtq1q166tiRMn3nUNdnZ2N91mNptvuD43N1f29vaWZUdHxzzbW7Zsqe+++07fffedtm/frkWLFikqKkrLly+39Pnxxx/rkUceybOfrW2RfmoAAAAAAO5ZkU5T+/bt09SpU1W9enWFhoZq/vz5mjp1qnbu3Ck3NzelpqaqQoUKqlq1qqpWrapSpUpp6tSpSklJ0aFDh7Rlyxa98847GjlypDp27KgqVaooPT39pqH4Xnh5eSkpKUkmk8my7s8//1RaWpo8PT1vuI/JZNK0adP022+/qW3btpo8ebI2bNggW1tbbdq0SY8//rgk6dSpU5Zjq1q1quLi4hQXF2dY7QAAAABQlBTpgF2iRAnFxsYqIiJCaWlpSklJUUJCgjw8PDRo0CBduHBBI0eOVHJyspKTkzV8+HAlJSWpZs2aKlu2rIoVK6a1a9fqt99+U1JSkoYNG6ZTp07lCcP3q0ePHrp06ZJGjRql5ORk7d+/X6+++qrKlCmjdu3a3XAfBwcHJSUlaeLEidq7d6+OHTumuLg4ZWZmys/PT48//riaN2+uN954Qxs3btRvv/2mBQsW6P3331eVKlUMqx0AAAAAipIiHbA9PT0VGRmpnTt3qnPnzurRo4fs7Oy0YMECValSRTExMbp06ZJ69OihXr16yd7eXkuXLpWrq6vKlSun8PBwbdy4UW3bttWrr76qcuXKKTQ01PKCMiNce3Ha+fPn1b17d/Xr109ubm5atmzZLZ+Xnj17tipXrqxBgwapdevW+uSTTzRz5kzVr1/fsv1f//qXXn/9dbVt21bx8fGaMmWKnn32WcNqBwAAAICixMZs5HxmFGlJSUmSpJM2lXQ286qVqzFeaedialGnjLXLwH3KzMzUoUOH5O3tLWdnZ2uXA9wU1yoeFlyreFhwreJeXcs5Pj4+t21bpO9gAwAAAABglCL/FvH8smDBAs2bN++WbcaNG6euXbsWUEUAAAAAgPxEwM4n3bp107/+9a9btnn00UcLqBoAAAAAQH4jYOeTUqVKqVSpUtYuAwAAAABQQAjYMJyLk521S8gXhfW4AAAAABiDgA3DBXje/PNhDzuz2SwbGxtrlwEAAADgAcRbxGEok8mkrKwsa5eRbwjXAAAAAG6GgA3D8Wl1AAAAAEURARsAAAAAAAMQsGE4plEDAAAAKIoI2DCUg4ODnJycrF0G09QBAAAAFDjeIg7DJaae14WsHKuN7+JkV6jfZA4AAADgwUTAhuEuZOXobOZVa5cBAAAAAAWKKeIAAAAAABiAgA0AAAAAgAEI2AAAAAAAGICADQAAAACAAQjYAAAAAAAYgIANAAAAAIABCNj5ZPPmzQoJCVHdunUVGBiosLAwnTt3TomJiXriiSe0efNmtW/fXnXq1FHr1q21YcMGy745OTlavHixWrVqJR8fH7Vq1UrLli3L039qaqoGDhyogIAA+fv7a+jQoTp+/Lhle+/evTVlyhSNGDFCdevW1dNPP6358+fLbDZLkjp37qyxY8fm6fO7776Tj4+Pzp49m38nBgAAAAAKKQJ2Pjh9+rSGDBmiLl26KCEhQVFRUdq1a5dmzJgh6a8AHRERofHjx2vNmjWqWbOmxowZo0uXLkmSwsPDNW/ePA0ZMkRffPGFXnjhBU2ZMkWLFy+WJB0/flzdu3eXg4ODlixZog8//FCnTp1Sr169dPHiRUsdy5Ytk4uLi+Li4jR8+HC9++67WrBggSQpJCRE69ev1+XLly3t4+PjFRQUpNKlSxfMiQIAAACAQoSAnQ9Onjwpk8mkihUryt3dXf7+/oqOjlbv3r0tbYYNG6bAwEB5eHho8ODBunjxolJSUnTx4kUtW7ZMQ4cOVYcOHeTh4aE+ffqoZ8+eljvQsbGxcnZ21syZM1WrVi3VrVtXc+fOVUZGhlatWmUZo1q1anrzzTfl6empZ599Vr1799bSpUtlNpvVoUMHmUwmy53zixcvasOGDQoJCSnw8wUAAAAAhQEBOx94e3urffv2GjhwoJo0aaIxY8bol19+UY0aNSxtqlevbvm5RIkSkqQrV67o119/1ZUrV+Tv75+nz6eeekoZGRnKyMhQSkqK6tSpIwcHB8t2Nzc3VatWTSkpKZZ1AQEBsrGxsSz7+fnp1KlTOnPmjMqUKaPg4GDFx8dLktauXSsXFxc1adLE0HMBAAAAAEUFATufzJo1S2vXrlX//v115swZjRo1Sv369bNs/3s4vsZsNluekf6n3NxcSVKxYsVu2cbe3t6yXKxYsRv2YWdnJ0nq0qWLtm/froyMDK1evVqdOnWybAMAAAAA3B0Cdj7Yt2+fpk6dqurVqys0NFTz58/X1KlTtXPnTmVkZNxyX09PT9nb22vPnj151u/evVtubm4qVaqUvLy8lJSUJJPJZNn+559/Ki0tTZ6enpZ1SUlJefr44YcfVKlSJZUqVUqS1KRJE7m5uWn58uXavXs308MBAAAA4D4Uu30T3K0SJUooNjZW9vb26tatm7Kzs5WQkCAPDw+VKVPmtvt2795dc+fOVenSpeXj46OtW7cqNjZWI0aMkI2NjXr06KFly5Zp1KhRGjRokEwmk6ZPn64yZcqoXbt2lr52796tuXPnqmPHjtq9e7c+/vjjPG8Ot7W1VefOnRUdHS0fH5884RwAAAAAcHcI2PnA09NTkZGRioqKUmxsrGxtbdWwYUMtWLBAv//++233Hzt2rMqUKaOZM2fqzz//lIeHh15//XV169ZNklSpUiXFxMQoIiLC8jbxxo0bKyIiQiVLlrT0ExwcrNTUVHXs2FGPPfaYxo4dqx49euQZKyQkRNHR0dy9BgAAAID7RMDOJ82bN1fz5s2vW1+lShUdPnw4z7pKlSrlWVesWDENGTJEQ4YMuWn/TzzxhBYtWnTLGkqWLKnw8PBbtvnjjz/k5OSU5843AAAAAODuEbCLqNTUVKWkpCg6OlrPPvusXFxcrF0SAAAAADzUeMlZEZWWlqaxY8eqdOnSGj58uLXLAQAAAICHHnewC6mPPvroltuDgoK0d+/egikGAAAAAIoA7mADAAAAAGAAAjYAAAAAAAZgijgM5+JkV6THBwAAAFA0EbBhuADPkrdvlM/MZrNsbGysXQYAAACAIoQp4jCUyWRSVlaWtcsgXAMAAAAocARsGM5sNlu7BAAAAAAocARsAAAAAAAMQMCG4ZieDQAAAKAoImDDUA4ODnJycrJ2GQWOafEAAAAAeIs4DJeYel4XsnKsXUaBcXGyeyDenA4AAADAugjYMNyFrBydzbxq7TIAAAAAoEAxRRwAAAAAAAMQsAEAAAAAMAABGwAAAAAAAxCwH1JxcXHy8vIytI+goCBFRkbeb2kAAAAAUCQRsAEAAAAAMAABGwAAAAAAAxSZgL1582aFhISobt26CgwMVFhYmM6dOydJSk1N1cCBAxUQECB/f38NHTpUx48ft+xrNpu1ZMkStWrVSr6+vmrXrp3WrFlj2f7nn39q9OjRlv1feuklpaWlWbZ/++23CgkJka+vr1q2bKk5c+bIZDJZtnt5eWnu3Llq3ry5mjRpoqNHj97xcS1fvlxNmzZV3bp1NXDgwDx1nzhxQsOHD1dgYKBq166tp59+WhEREcrNzb2XUwgAAAAAuIUiEbBPnz6tIUOGqEuXLkpISFBUVJR27dqlGTNm6Pjx4+revbscHBy0ZMkSffjhhzp16pR69eqlixcvSpI++OADzZ49W/3799eaNWv0/PPPa/To0dq5c6euXr2qvn376pdfftG8efO0fPly5ebmqn///srJydGWLVs0bNgwdevWTWvWrNEbb7yhtWvXatSoUXlqjI2N1dy5cxUVFSUPD487PraPPvpI77zzjj7++GOdOXNGL7/8ssxmsyRp0KBBunDhghYtWqR169apb9+++uCDD7Rx40bDzi0AAAAA4C/FrF1AQTh58qRMJpMqVqwod3d3ubu7Kzo6Wjk5OYqNjZWzs7NmzpwpBwcHSdLcuXMVHBysVatWqWfPnlqyZIn69Omjrl27SpJ69+6ty5cv6+rVq9qxY4cOHz6sdevWqVq1apKkyZMna/HixTp37pyio6PVrVs3Pf/885KkKlWqaNKkSfr3v/+tY8eOqVKlSpKkTp06ycfH566PLSIiQrVq1ZIkTZ8+Xa1atdKOHTv05JNPqlOnTmrTpo0qVKggSQoNDdWCBQt0+PBhtWjR4v5OKgAAAAAgjyIRsL29vdW+fXsNHDhQbm5uaty4sZo1a6aWLVsqJSVFderUsYRrSXJzc1O1atWUkpKiM2fO6NSpU6pbt26ePgcMGCBJWrhwoUqVKmUJ15JUrlw5jRkzRpJ08OBB7d+/XytWrLBsv3aHOTU11RKwq1atetfH9cgjj1jCtSR5eHioVKlSSklJUaNGjdSrVy+tW7dO+/fvV1pamg4fPqw///yTKeIAAAAAkA+KRMCWpFmzZunll1/Wli1btH37do0aNUr+/v6yt7e/Yfvc3FzZ29vfdPs1xYrd+hRemy7+7LPPXrfNzc3N8rOjo+MdHEVednZ2NxzPwcFBmZmZ6tWrly5fvqzWrVvr2Wefla+vr1544YW7HgcAAAAAcHtF4hnsffv2aerUqapevbpCQ0M1f/58TZ06VTt37pSbm5uSkpLyvHTszz//VFpamjw9PeXi4qLHHntMSUlJefocOnSopk2bpho1aujcuXN5Xmp2+vRpBQQEaO/evXr88cd15MgRVa1a1fLvjz/+0IwZM3Tp0qX7Oq7z588rPT3dsnz48GFduHBBNWvW1NatW3XgwAEtXbpUQ4cOVdu2bVWiRAllZGRY7qADAAAAAIxTJAJ2iRIlFBsbq4iICKWlpSklJUUJCQny8PDQ4MGDdenSJY0aNUrJycnav3+/Xn31VZUpU0bt2rWTJP3nP//RkiVLtGrVKqWnp2vp0qX65ptvFBwcrMDAQNWpU0djxozR/v379fPPP2vMmDFydXVV7dq1NWDAAK1fv15RUVE6cuSIduzYobFjx+rChQt57mDfC1tbWw0bNkx79+7V3r17NXr0aD311FOqX7++ypcvL0lavXq1jh8/rt27d2vw4MG6cuVKnj8mAAAAAACMUSSmiHt6eioyMlJRUVGKjY2Vra2tGjZsqAULFqhy5cqKiYlRRESE5W3ijRs3VkREhEqWLClJlqnW77zzjk6dOiUPDw/Nnj1bTz31lCRp3rx5mjZtml588UXZ2NioYcOG+uCDD2Rvb6/WrVtr9uzZev/99xUdHa3SpUsrKChII0eOvO/jcnV1VadOnTR48GBlZWWpefPmmjBhgiTJ19dXY8eO1eLFizVnzhyVK1dObdu2VYUKFa67Gw8AAAAAuH82ZuYLwyDXgvtJm0o6m3nVytUUnNLOxdSiThlrl4E7lJmZqUOHDsnb21vOzs7WLge4Ka5VPCy4VvGw4FrFvbqWc+7kq09FYoo4AAAAAAD5rUhMEX+YnDx5Uq1bt75lGx8fHy1durSAKgIAAAAA3AkC9gOmbNmyio+Pv2Wb4sWLF0wxAAAAAIA7RsB+wNjZ2alq1arWLgMAAAAAcJcI2DCci5OdtUsoUEXteAEAAADcGAEbhgvwLGntEgqc2WyWjY2NtcsAAAAAYEW8RRyGMplMysrKsnYZBY5wDQAAAICADcPxaXUAAAAARREBGwAAAAAAAxCwAQAAAAAwAAEbhuN5ZAAAAABFEQEbhnJwcJCTk5O1y7hjPC8OAAAAwCh8pguGS0w9rwtZOdYu47ZcnOyK5CfFAAAAAOQPAjYMdyErR2czr1q7DAAAAAAoUEwRBwAAAADAAARsAAAAAAAMQMAGAAAAAMAABOwHwJ49e7R7927D+jt27Ji8vLyUmJhoWJ8AAAAAgFsjYD8AevbsqfT0dGuXAQAAAAC4DwRsAAAAAAAMQMAuIJs3b1ZISIjq1q2rwMBAhYWF6dy5c/Ly8pIkjR07VmFhYZKk3bt3q0+fPnryySdVp04dtWnTRqtWrbL0FRYWphEjRui///2vnnzySQUGBio8PFwmk+mm43/++edq06aNfH191aZNGy1ZskS5ubmS/m9K+fvvv6/GjRsrODhYFy9ezMezAQAAAACFDwG7AJw+fVpDhgxRly5dlJCQoKioKO3atUszZszQ1q1bJUnjxo3T+PHjdfLkSfXr108+Pj5auXKl4uPj5evrq/Hjx+vPP/+09PnVV1/pf//7nz755BNNnjxZ8fHxmjJlyg3H//TTTzVjxgwNGTJEX375pYYNG6YFCxZo5syZedqtXLlSS5Ys0Zw5c1SiRIn8OyEAAAAAUAgVs3YBRcHJkydlMplUsWJFubu7y93dXdHR0crJyZGbm5skycXFRS4uLjpz5oxeeeUV9evXTzY2NpKk//znP4qPj9fRo0dVtmxZSVLJkiUVEREhJycn1axZU//73/80ZcoUjRo16rrx582bp0GDBqldu3aSpMqVK+vixYuaNGmSXn31VUu7nj17qkaNGvl9OgAAAACgUCJgFwBvb4ymfAMAAG9MSURBVG+1b99eAwcOlJubmxo3bqxmzZqpZcuW17WtUqWKQkJCtHTpUqWkpCg9PV3JycmSpJycHEs7X19fOTk5WZb9/Px05coVHTlyRGXKlLGsP336tP744w+9/fbbeueddyzrc3NzlZ2drWPHjql48eKSpKpVqxp+7AAAAABQVBCwC8isWbP08ssva8uWLdq+fbtGjRolf39/LVmyJE+7X375RT179lTt2rXVqFEj/etf/1KZMmXUtWvXPO3s7e3zLF97ntrOzu6G68eOHatGjRpdV1eFChX0v//9T5Lk6Oh4fwcJAAAAAEUYAbsA7Nu3T19++aXGjRun6tWrKzQ0VKtXr9aoUaOUkZGRp+0nn3yiRx99VIsWLbKs27hxoyTJbDZb1h04cEA5OTmWQP3jjz/KyclJ1apVy9Pno48+KldXV/3222957lAnJCTo66+/1vTp0/PlmAEAAACgqCFgF4ASJUooNjZW9vb26tatm7Kzs5WQkCAPDw+VKVNGzs7OSk1N1ZkzZ1S+fHn98ccf2rx5s2rUqKEDBw5o8uTJkpTnLeHHjx/XpEmT9O9//1upqamaO3euevXqlWfauCTZ2NhowIABmj17tipWrKinn35ahw8f1ptvvqng4GA5ODgU6LkAAAAAgMKKgF0APD09FRkZqaioKMXGxsrW1lYNGzbUggULZGtrq759++qDDz6wBOVff/1Vo0ePlslkkoeHh0aMGKG5c+cqKSlJTz/9tCSpXr16srW11XPPPScXFxf16dNHgwYNuuH4ffv2VfHixfXRRx8pPDxcZcuWVbdu3TR06NCCPA0AAAAAUKjZmP8+7xgPhbCwMB0/flwfffSRtUvJIykpSZJ00qaSzmZetXI1t1fauZha1Clz+4YoVDIzM3Xo0CF5e3vL2dnZ2uUAN8W1iocF1yoeFlyruFfXco6Pj89t2/IdbAAAAAAADEDABgAAAADAADyD/RAKDw+3dgkAAAAAgH/gDjYAAAAAAAbgDjYM5+JkZ+0S7sjDUicAAACAhwMBG4YL8Cxp7RLumNlslo2NjbXLAAAAAFAIMEUchjKZTMrKyrJ2GXeMcA0AAADAKARsGI5PqwMAAAAoigjYAAAAAAAYgIANAAAAAIABCNgwHM81AwAAACiKCNgwlIODg5ycnKxdRqHB8+wAAADAw4PPdMFwianndSErx9plPPRcnOweqk+eAQAAAEUdARuGu5CVo7OZV61dBgAAAAAUKKaIAwAAAABgAAI2AAAAAAAGIGADAAAAAGAAArYV7NmzR7t3777vfiZNmiQ/Pz/5+/srISFBXl5eOnbs2G33O3bsmLy8vJSYmHjfNQAAAAAA/kLAtoKePXsqPT39vvpITk5WbGysxowZo1WrVqlFixbaunWrKlSoYFCVAAAAAIC7wVvEH1Lnz5+XJDVu3FiVKlWSJLm5uVmzJAAAAAAo0riDnU82b96skJAQ1a1bV4GBgQoLC9O5c+fk5eUlSRo7dqzCwsIkSbt371afPn305JNPqk6dOmrTpo1WrVpl6SssLExDhw5V37599eSTT2rBggXq3bu3JKlFixYKCwtTYmJinini+/fvV8+ePeXn56cGDRrolVde0YkTJ/LUuG/fPnXt2lV16tRRcHCwPv/884I4NQAAAABQKBGw88Hp06c1ZMgQdenSRQkJCYqKitKuXbs0Y8YMbd26VZI0btw4jR8/XidPnlS/fv3k4+OjlStXKj4+Xr6+vho/frz+/PNPS5/r169Xo0aN9Pnnn6t9+/aKjIyUJH322WcaP358nvFzcnL00ksvqUGDBlq9erUWL16sEydOaNy4cXnaLVmyRIMGDVJCQoKaNm2qCRMmKC0tLZ/PDgAAAAAUTkwRzwcnT56UyWRSxYoV5e7uLnd3d0VHRysnJ8cyjdvFxUUuLi46c+aMXnnlFfXr1082NjaSpP/85z+Kj4/X0aNHVbZsWUlSqVKl1L9/f8sY157hdnV1lYuLS57xL168qDNnzuixxx6Tu7u7KleurDlz5igjIyNPu5dffllBQUGSpOHDh2vZsmU6cOCAqlatmj8nBgAAAAAKMQJ2PvD29lb79u01cOBAubm5qXHjxmrWrJlatmx5XdsqVaooJCRES5cuVUpKitLT05WcnCzprzvR19xN6L0Wxt966y3NnTtXDRs21DPPPKM2bdrkaVetWrU8+0hSdnb2XR0rAAAAAOAvTBHPJ7NmzdLatWvVv39/nTlzRqNGjVK/fv2ua/fLL7+odevW2rRpkzw8PNS/f38tXLjwunaOjo53Nf7IkSO1ceNGDRs2TGazWW+99Za6dOkik8lkaWNre/2v32w239U4AAAAAIC/cAc7H+zbt09ffvmlxo0bp+rVqys0NFSrV6/WqFGjrpum/cknn+jRRx/VokWLLOs2btwo6d7D7q+//qolS5Zo3Lhx6tGjh3r06KE9e/aoZ8+eSk5Olqur670fHAAAAADghgjY+aBEiRKKjY2Vvb29unXrpuzsbCUkJMjDw0NlypSRs7OzUlNTdebMGZUvX15//PGHNm/erBo1aujAgQOaPHmyJOW523w3ypQpoy+//FKXL1/Wf/7zH9na2mrlypUqVaqUqlevrrNnzxp4tAAAAAAAiYCdLzw9PRUZGamoqCjFxsbK1tZWDRs21IIFC2Rra6u+ffvqgw8+UGpqqubOnatff/1Vo0ePlslkkoeHh0aMGKG5c+cqKSlJTz/99F2PX6ZMGS1YsECzZs1St27dlJOTo3r16mnRokUqUaIEARsAAAAA8oGNmYduYZCkpCRJ0kmbSjqbedXK1Tz8SjsXU4s6ZaxdRqGTmZmpQ4cOydvbW87OztYuB7gprlU8LLhW8bDgWsW9upZzfHx8btuWl5wBAAAAAGAAAjYAAAAAAAYgYAMAAAAAYAACNgAAAAAABuAt4jCci5OdtUsoFDiPAAAAwMOFgA3DBXiWtHYJhYbZbJaNjY21ywAAAABwB5giDkOZTCZlZWVZu4xCg3ANAAAAPDwI2DAcn1YHAAAAUBQRsAEAAAAAMAABGwAAAAAAAxCwYTieGwYAAABQFBGwYSgHBwc5OTlZu4x8x3PmAAAAAP6Jz3TBcImp53UhK8faZeQbFyc7PkUGAAAA4DoEbBjuQlaOzmZetXYZAAAAAFCgmCIOAAAAAIABCNgAAAAAABiAgA0AAAAAgAGKVMDes2ePdu/ebe0yAAAAAACFUJEK2D179lR6erq1ywAAAAAAFEJFKmADAAAAAJBfCl3A3rx5s0JCQlS3bl0FBgYqLCxM586dk5eXlyRp7NixCgsLkySdPHlSw4cPV/369RUQEKCBAwfq6NGjefpbvHixgoKC5OvrqxdffFFRUVEKCgqybP/99981cuRINW7cWPXq1VO/fv2UnJxs2Z6RkaGhQ4cqICBAvr6+ev755/X9999btp84cULDhw9XYGCgateuraeffloRERHKzc2VJMXFxVlqv+af64KCgjR9+nS1bdtWAQEB+v7779W7d2/LcV7zz3ULFy5UixYtVKdOHQUFBendd9+V2Wy+l9MOAAAAAEVeoQrYp0+f1pAhQ9SlSxclJCQoKipKu3bt0owZM7R161ZJ0rhx4zR+/HhlZmaqd+/ekqSYmBh99NFHKlOmjLp166aTJ09Kkj7++GPNnj1bgwcP1qpVq/TUU0/p3XfftYx38eJF9ejRQydPntR7772nTz75RI6OjurVq5eOHz8uSXrzzTeVnZ2tmJgYffHFF6pWrZoGDx6szMxMSdKgQYN04cIFLVq0SOvWrVPfvn31wQcfaOPGjXd17DExMZowYYI++OAD1atX77btN27cqPfff1+TJk3SV199pZEjR+q9997T6tWr72pcAAAAAMBfilm7ACOdPHlSJpNJFStWlLu7u9zd3RUdHa2cnBy5ublJklxcXOTi4qLPPvtM58+fV0REhIoV++s0TJkyRYmJiVq+fLleeeUVLVy4UH369NFzzz0n6a8wfODAAR08eFCStHr1ap05c0ZxcXFydXWVJM2aNUstWrTQxx9/rNGjRys9PV01a9ZU5cqV5ejoqPHjx6tDhw6ys7PT5cuX1alTJ7Vp00YVKlSQJIWGhmrBggU6fPiwWrRoccfH/swzz6hRo0Z33D49PV0ODg5yd3dXxYoVVbFiRT322GOqWLHiHfcBAAAAAPg/hSpge3t7q3379ho4cKDc3NzUuHFjNWvWTC1btryu7cGDB3Xu3Dk1aNAgz/rs7GylpqbqzJkzOn78+HV3g+vXr28J2CkpKfLw8LCEa0lydHSUr6+vUlJSJElDhgzRqFGjtH79evn7+6tJkyZq3769ihcvLknq1auX1q1bp/379ystLU2HDx/Wn3/+aZkifqeqVq16V+07duyozz//XK1atVKNGjXUqFEjtWrVioANAAAAAPeoUAVs6a87yC+//LK2bNmi7du3a9SoUfL399eSJUvytMvNzVW1atX03nvvXdeHs7Oz5a72rZ5Jvtm23Nxcy/4tW7bUd999p++++07bt2/XokWLFBUVpeXLl8vd3V29evXS5cuX1bp1az377LPy9fXVCy+8cMtjzMnJuW6do6PjLfeRpKtXr1p+dnV11apVq/Tjjz9q27Zt2rp1q5YuXapXXnlFQ4YMuW1fAAAAAIC8CtUz2Pv27dPUqVNVvXp1hYaGav78+Zo6dap27typjIyMPG1r1qypEydOyMXFRVWrVlXVqlVVsWJFzZo1S7t27ZKLi4vc3d21d+/ePPv9fdnLy0tHjx7N03d2drZ++ukn1ahRQyaTSdOmTdNvv/2mtm3bavLkydqwYYNsbW21adMmbd26VQcOHNDSpUs1dOhQtW3bViVKlFBGRoYlvNvb20v663nva/75IrYbsbe3z7NPbm6ufvvtN8vy6tWrtWzZMvn7+2vo0KFavny5unbtqoSEhNv2DQAAAAC4XqEK2CVKlFBsbKwiIiKUlpamlJQUJSQkyMPDQ2XKlJGzs7Nl+nfHjh1VqlQpDR06VPv27VNqaqrCwsK0ZcsWyxu6BwwYoJiYGMXFxSktLU0LFy7U+vXrLeN16NBBpUuX1rBhw7R//34lJydr5MiRyszMVPfu3eXg4KCkpCRNnDhRe/fu1bFjxxQXF6fMzEz5+fmpfPnykv4Ku8ePH9fu3bs1ePBgXblyRSaTSZJUr1492djYKDIyUseOHdPatWu1cuXK256LevXqadu2bdqyZYvS0tL01ltv6fz585bt2dnZmj59uuLj43Xs2DHt3r1bu3btkp+fn5G/EgAAAAAoMgrVFHFPT09FRkYqKipKsbGxsrW1VcOGDbVgwQLZ2tpa3tCdmpqq6OhoxcTEaMaMGerXr59ycnJUu3Ztffjhh/L09JQk9ejRQ+fOndOcOXN05swZPfXUU3r22We1Z88eSX+9MC0mJkbh4eEKDQ2VJPn7+2vZsmWqXLmyJGn27NmaNm2a5W3h1atX18yZM1W/fn1Jf302bPHixZozZ47KlSuntm3bqkKFCkpKSpIkVa5cWZMmTdL777+v2NhY+fv7a/To0RozZswtz0Xfvn2Vnp6uV199VQ4ODnruuefUrl07y53xrl276uzZs5o3b55+//13lSpVSq1atdLIkSMN/70AAAAAQFFgY+bDxze1ZcsW1ahRI8+LvyZOnKj09PTrnumGLH8UOGlTSWczr96m9cOrtHMxtahTxtpl4B5lZmbq0KFD8vb2lrOzs7XLAW6KaxUPC65VPCy4VnGvruUcHx+f27YtVFPEjbZq1SoNHjxYe/fu1fHjxxUfH6/Vq1erU6dO1i4NAAAAAPCAKVRTxI02ceJEhYeH6+WXX9b58+dVtWpVjRs3TiEhIdYuDQAAAADwgCFg30Lp0qUVHh5u7TIAAAAAAA8BpogDAAAAAGAA7mDDcC5OdtYuIV8V9uMDAAAAcG8I2DBcgGdJa5eQ78xms2xsbKxdBgAAAIAHCFPEYSiTyaSsrCxrl5HvCNcAAAAA/omADcPxaXUAAAAARREBGwAAAAAAAxCwAQAAAAAwAAEbhuP5ZAAAAABFEQEbhnJwcJCTk5O1yyhwPHcOAAAAgM90wXCJqed1ISvH2mUUGBcnuyLxaTIAAAAAt0bAhuEuZOXobOZVa5cBAAAAAAWKKeIAAAAAABiAgA0AAAAAgAEI2AAAAAAAGICAfQ/27Nmj3bt3W7uMPIKCghQZGWntMgAAAACgyCJg34OePXsqPT3d2mXksWLFCvXt29faZQAAAABAkcVbxAsJV1dXa5cAAAAAAEUad7BvYvPmzQoJCVHdunUVGBiosLAwnTt3Tl5eXpKksWPHKiwsTJL0+++/a+TIkWrcuLHq1aunfv36KTk52dJXWFiYRowYof/+97968sknFRgYqPDwcJlMpjuuJyMjQ0OHDlVAQIB8fX31/PPP6/vvv7ds/+cU8S+++EJt2rSRj4+PunbtqqVLl1pqlyQvLy+tWLFCoaGh8vX1VZMmTRQVFXXP5wsAAAAAijoC9g2cPn1aQ4YMUZcuXZSQkKCoqCjt2rVLM2bM0NatWyVJ48aN0/jx43Xx4kX16NFDJ0+e1HvvvadPPvlEjo6O6tWrl44fP27p86uvvtL//vc/ffLJJ5o8ebLi4+M1ZcqUO67pzTffVHZ2tmJiYvTFF1+oWrVqGjx4sDIzM69r++2332rMmDF67rnntHr1aoWEhGjmzJnXtZs+fbqeffZZffnll+rVq5ciIyO1a9euezhjAAAAAAAC9g2cPHlSJpNJFStWlLu7u/z9/RUdHa3evXvLzc1NkuTi4iIXFxetXr1aZ86c0TvvvCNfX1/VqlVLs2bNkqOjoz7++GNLnyVLllRERIRq1qyp4OBgvfrqq/r888918eLFO6opPT1dJUuWVOXKlVW1alWNHz9ec+fOlZ2d3XVtFy5cqNatW6tfv36qVq2aevTooR49elzXrnPnzurUqZMqV66sgQMHqmTJkvrhhx/u8awBAAAAQNFGwL4Bb29vtW/fXgMHDlSTJk00ZswY/fLLL6pRo8Z1bVNSUuTh4ZHnGWhHR0f5+voqJSXFss7X11dOTk6WZT8/P125ckVHjhy5o5qGDBmir7/+Wk899ZRefPFFffrpp/L09FTx4sWva3vgwAHVq1cvz7oGDRpc187T0zPPsouLi65cuXJH9QAAAAAA8iJg38SsWbO0du1a9e/fX2fOnNGoUaPUr1+/69qZzeYb7p+bm6tixf7vHXL29vbXbZd0wzvQN9KyZUt99913Cg8Pl7u7uxYtWqTWrVvr559/vq5tsWLFLP3fioODw3XrbnY8AAAAAIBbI2DfwL59+zR16lRVr15doaGhmj9/vqZOnaqdO3cqIyMjT1svLy8dPXo0z/rs7Gz99NNPee54HzhwQDk5OZblH3/8UU5OTqpWrdpt6zGZTJo2bZp+++03tW3bVpMnT9aGDRtka2urTZs2Xde+Vq1a2rdvX551P/74450ePgAAAADgHhCwb6BEiRKKjY1VRESE0tLSlJKSooSEBHl4eKhMmTJydnZWamqqzpw5ow4dOqh06dIaNmyY9u/fr+TkZI0cOVKZmZnq3r27pc/jx49r0qRJSk1N1VdffaW5c+eqV69eeaaN34yDg4OSkpI0ceJE7d27V8eOHVNcXJwyMzPl5+d3XfsBAwZo3bp1WrRokY4eParPP/9cMTExhp4jAAAAAEBeBOwb8PT0VGRkpHbu3KnOnTurR48esrOz04IFC2Rra6u+ffsqJiZGY8eOlYuLi2JiYlSyZEmFhoaqZ8+eunz5spYtW6bKlStb+qxXr55sbW313HPPafLkyerTp49GjBhxxzXNnj1blStX1qBBg9S6dWt98sknmjlzpurXr39d26efflr//e9/9fHHH6t9+/b67LPP1KNHj+umqQMAAAAAjGNj5qHbfBcWFqbjx4/ro48+KpDxvv/+e5UtW1bVq1e3rIuOjtaKFSu0YcOGfBs3KSlJknTSppLOZl7Nt3EeNKWdi6lFnTLWLgN3KDMzU4cOHZK3t7ecnZ2tXQ5wU1yreFhwreJhwbWKe3Ut5/j4+Ny2LXewC6GtW7eqX79+2rlzp06cOKFvvvlGS5YsUadOnaxdGgAAAAAUWsVu3wT5KSEhQePHj79lmxdffFFDhw694z6HDBmizMxMjR49WqdPn1aFChUUGhqq/v3732+5AAAAAICbIGAXgPDw8Jtue+aZZxQfH3/L/UuWLHlX4zk4OGjChAmaMGHCXe0HAAAAALh3BGwre+SRR/TII49YuwwAAAAAwH0iYMNwLk521i6hQBW14wUAAABwYwRsGC7A8+6mtBcGZrNZNjY21i4DAAAAgBXxFnEYymQyKSsry9plFDjCNQAAAAACNgzHp9UBAAAAFEUEbAAAAAAADEDABgAAAADAAARsGI7nkQEAAAAURQRsGMrBwUFOTk7WLoPnwAEAAAAUOD7TBcMlpp7Xhawcq43v4mRXJD8VBgAAAMC6CNgw3IWsHJ3NvGrtMgAAAACgQDFFHAAAAAAAAxCwAQAAAAAwAAEbAAAAAAADELBvYc+ePdq9e3eBjRcZGamgoKACGw8AAAAAYBwC9i307NlT6enp1i4DAAAAAPAQIGADAAAAAGCAIh+wN2/erJCQENWtW1eBgYEKCwvTuXPn5OXlJUkaO3aswsLCdOzYMXl5een9999X48aNFRwcrIsXLyolJUUvvfSSGjRooDp16ig4OFgffvihJGnjxo2qVauWTp8+bRmvc+fOat++vWX53LlzeuKJJ/JMRX/33XcVEBCgJ598UiNHjtTZs2ct2y5cuKCJEyeqYcOG8vf3V58+fZSUlGTZHhkZqV69emn48OF68skn9dZbbykuLk4tW7bU5MmT5e/vr8GDB6tz584aO3ZsnnPx3XffycfHJ894AAAAAIA7U6QD9unTpzVkyBB16dJFCQkJioqK0q5duzRjxgxt3bpVkjRu3DiNHz/ess/KlSu1ZMkSzZkzR3Z2durbt69Kly6tTz75RGvWrFHr1q01ffp0HTp0SI0aNVLx4sW1c+dOy3iHDx/Wzz//rIyMDEnS1q1bVapUKT355JOSpOPHj2vnzp1atGiRoqOjlZSUZAnCZrNZAwYM0G+//ab3339fy5cvV7169dSjRw8dPHjQUuOuXbtUtmxZrVq1Sr1795Ykpaen63//+5/i4+M1fPhwhYSEaP369bp8+bJlv/j4eAUFBal06dL5d9IBAAAAoJAq0gH75MmTMplMqlixotzd3eXv76/o6Gj17t1bbm5ukiQXFxe5uLhY9unZs6dq1KghHx8fZWVlqU+fPnr99dfl6ekpDw8PDR06VJJ0+PBhOTo6KjAw0BLWt2/frieeeELlypVTYmKiJGnTpk1q1qyZbG3/+lUUL15cs2fP1hNPPKGnnnpKr7/+ujZu3Ki0tDTt3LlTe/fu1Zw5c1S3bl15enpqxIgRqlevnpYuXZrn2IYOHarKlSvLw8PDsm7w4MGqXLmyHn/8cXXo0EEmk0kbNmyQJF28eFEbNmxQSEhI/pxsAAAAACjkilm7AGvy9vZW+/btNXDgQLm5ualx48Zq1qyZWrZsedN9qlatavnZ1dVVPXv21Jo1a3Tw4EGlp6crOTlZkpSbmytJCgoK0rx58yRJ27ZtU2BgoOUudevWrfXdd99p8uTJefovW7asZblu3bqSpJ9//llHjx6V2WxW8+bN89RkMpmUnZ1tWX700Ufz/FHgmr+H7TJlyig4OFjx8fFq37691q5dKxcXFzVp0uS25w0AAAAAcL0iHbAladasWXr55Ze1ZcsWbd++XaNGjZK/v7+WLFlyw/aOjo6Wn0+dOqXu3bvL1dVVQUFBatKkiXx8fPTMM89Y2jRr1kyvv/66UlNTtWPHDk2ZMkXHjx/XwoULtW/fPmVlZalx48aW9nZ2dnnGy8nJkSTZ29srNzdXJUqUUFxc3HV1OTg43LDGm9UuSV26dNHAgQOVkZGh1atXq1OnTteNDwAAAAC4M0U6YO/bt09ffvmlxo0bp+rVqys0NFSrV6/WqFGjLM9I38qaNWt09uxZrV+/Xvb29pL+mhou/fW8tCQ99thjqlOnjpYtW6aMjAz5+/urSpUqmjhxoj799FM1atRITk5Olj6PHj2qixcvqkSJEpL++ha3jY2NatSoIbPZrIsXL+rKlSuqUaOGZZ8JEyaoVq1a6tWr110df5MmTeTm5qbly5dr9+7devPNN+9qfwAAAADA/ynSz2CXKFFCsbGxioiIUFpamlJSUpSQkCAPDw+VKVNGzs7OSk1N1ZkzZ264f/ny5ZWVlaV169bpxIkT2rp1q0aMGCHpr2nb1wQFBenTTz9VvXr15OjoqMqVK6tSpUpatWqVgoOD8/SZnZ2tYcOG6eDBg9q2bZveeustde7cWe7u7mratKm8vb01fPhw7dy5U2lpaZo2bZri4uLk6el518dva2urzp07Kzo6Wj4+PvfUBwAAAADgL0U6YHt6eioyMlI7d+5U586d1aNHD9nZ2WnBggWytbVV3759FRMTc93nrK5p3bq1+vXrp/DwcLVp00ZTp07Vc889pwYNGuT5dFZQUJBMJpMaNmxoWdeoUSNJuu556jp16sjb21t9+vTRsGHD9PTTT+uNN96Q9Nf08Q8//FB16tTRsGHD1LFjR+3atUtRUVEKDAy8p3MQEhKiy5cv83IzAAAAALhPNuZrc5lRJCUmJuqll17Sd999d8MXo92Na39UOGlTSWczrxpR3j0p7VxMLeqUsdr4eLBlZmbq0KFD8vb2lrOzs7XLAW6KaxUPC65VPCy4VnGvruUcHx+f27Yt0s9gF2WpqalKSUlRdHS0nn322fsO1wAAAABQ1BXpKeJFWVpamsaOHavSpUtr+PDh1i4HAAAAAB563MEuooKCgrR3715rlwEAAAAAhQZ3sAEAAAAAMAB3sGE4Fye7Ij0+AAAAgKKJgA3DBXiWtHYJMpvNsrGxsXYZAAAAAIoQpojDUCaTSVlZWdYug3ANAAAAoMARsGE4Pq0OAAAAoCgiYAMAAAAAYAACNgAAAAAABiBgw3A8/wwAAACgKCJgw1AODg5ycnKydhmFAs+yAwAAAA8XPtMFwyWmnteFrBxrl/FQc3GyeyA+dwYAAADgzhGwYbgLWTk6m3nV2mUAAAAAQIFiijgAAAAAAAYgYAMAAAAAYAACNgAAAAAABiBgW8nnn3+uJk2ayNfXV19//bW8vLwUFxdn7bIAAAAAAPeIl5xZyfTp0xUcHKwhQ4bI1dXV2uUAAAAAAO4TAdtKzp07p/r168vd3d3apQAAAAAADMAU8ZvYvHmzQkJCVLduXQUGBiosLEznzp1TYmKivLy8dOzYMUvbf67r3bu3Zs6cqXHjxql+/fp68skn9dprr+nixYs6duyYvLy8JEnjxo1TUFDQDcfftGmTunXrJj8/PzVp0kTTpk3T5cuXJUkhISGaPHmype2GDRvk5eWldevWWdaFh4crNDRUknThwgVNnDhRDRs2lL+/v/r06aOkpCRL28jISPXq1UvDhw/Xk08+qbfeesuYkwgAAAAARQgB+wZOnz6tIUOGqEuXLkpISFBUVJR27dqlGTNm3HEfixcvVtmyZbVixQpFRETom2++0eLFi1WhQgVt3bpV0l8Be8WKFdft+/XXX2vQoEFq1qyZ4uLiNGnSJCUkJGjEiBGSpObNm2vbtm2W9tu3b5eNjY0SExMt6zZt2qTg4GCZzWYNGDBAv/32m95//30tX75c9erVU48ePXTw4EFL+127dqls2bJatWqVevfufdfnDAAAAACKOqaI38DJkydlMplUsWJFubu7y93dXdHR0crJydG5c+fuqI8aNWpYArGHh4caN26sH3/8UXZ2dnJzc5Mkubi43PD56/nz56tly5YaPHiwJKlatWoym816+eWX9csvvygoKEhRUVH6/fffVaFCBW3btk3BwcGWgJ2enq4jR44oKChIO3fu1N69e7Vz506VLl1akjRixAj98MMPWrp0qcLDwy3jDh06VC4uLvd83gAAAACgKCNg34C3t7fat2+vgQMHys3NTY0bN1azZs3UsmVL7dmz5476qF69ep5lFxcXnT9//o72TUlJUbt27fKse+qppyzb2rZtq3Llymnbtm1q1KiRjh07poiICHXt2lWnTp3Spk2b5O3tLXd3d61du1Zms1nNmzfP05/JZFJ2drZl+dFHHyVcAwAAAMB9IGDfxKxZs/Tyyy9ry5Yt2r59u0aNGiV/f3/LXeW/y8nJuW6dg4PDPY9tNpuvW5ebmytJKlbsr1/Z36eJ+/j4yNfXV+XKlVNiYqI2b96s4OBgy34lSpS44SfA/l6jo6PjPdcLAAAAAOAZ7Bvat2+fpk6dqurVqys0NFTz58/X1KlTtXPnTtna/nXKLl68aGl/9OhRQ8f38vLSDz/8kGfd7t27JUmenp6SpKCgIO3YsUM7duxQYGCgJCkwMFAbN25UYmKiJWDXrFlTFy9e1JUrV1S1alXLvwULFuibb74xtG4AAAAAKMoI2DdQokQJxcbGKiIiQmlpaUpJSVFCQoI8PDxUq1YtOTs7a/78+UpPT9d3332nRYsWGTp+//799dVXX2nevHk6cuSIvv32W7311ltq3ry5JWAHBgYqOztbX331VZ6AvXbtWrm5uemJJ56QJDVt2lTe3t4aPny4du7cqbS0NE2bNk1xcXGWvgAAAAAA94+AfQOenp6KjIzUzp071blzZ/Xo0UN2dnZasGCBXFxcFBERoYMHD6pt27Z65513NGbMGEPHb9Wqld5++22tXbtWHTp00BtvvKF27dppzpw5ljYODg5q1KiRbG1tVa9ePUl/Bezc3Nw8n/6ys7PThx9+qDp16mjYsGHq2LGjdu3apaioKEswBwAAAADcPxvzjR74Be7BtW9rn7SppLOZV61czcOttHMxtahTxtplFEqZmZk6dOiQvL295ezsbO1ygJviWsXDgmsVDwuuVdyraznHx8fntm25gw0AAAAAgAEI2AAAAAAAGICADQAAAACAAQjYAAAAAAAYoJi1C0Dh4+JkZ+0SHnqcQwAAAODhQ8CG4QI8S1q7hELBbDbLxsbG2mUAAAAAuENMEYehTCaTsrKyrF1GoUC4BgAAAB4uBGwYjk+rAwAAACiKCNgAAAAAABiAgA3DMbUZAAAAQFFEwIahHBwc5OTkZO0y7hnT2wEAAADcK94iDsMlpp7Xhawca5dx11yc7HgDOgAAAIB7RsCG4S5k5ehs5lVrlwEAAAAABYop4gAAAAAAGICADQAAAACAAQjYAAAAAAAYgIBdCJw4cUJffvmlJCkoKEiRkZF3tN/dtAUAAAAA3BovOSsExowZI3d3d7Vr104rVqxQ8eLFrV0SAAAAABQ5BOxCxtXV1dolAAAAAECRxBTxh1zv3r31/fffa+XKlQoKCrpu2vd3332n7t27q27dunr66ac1e/Zs5eRc/43qS5cuqUePHurYsaNOnz5dkIcAAAAAAIUCAfshFxkZKT8/P7Vp00YrVqzIs+3HH3/Uf/7zH/n7+ysuLk6TJ0/WJ598onnz5uVpl5WVpYEDB+ry5ctaunQpd8EBAAAA4B4wRfwhV7p0adnb28vR0fG6YPzRRx+pbt26Gj16tCTJ09NT//3vf5WRkWFpk52drUGDBunSpUtavHixSpUqVaD1AwAAAEBhQcAuxFJSUtS4ceM861q1apVnecmSJbpy5YoaNmxIuAYAAACA+8AU8UKsWLHb//2kZs2aWrp0qXbt2qVPP/20AKoCAAAAgMKJgF2IeXp6KikpKc+6JUuWqGvXrpblZs2a6amnntKLL76oGTNm6Pfffy/oMgEAAACgUCBgFwKPPPKIjh8/rj/++CPP+v79+2vv3r165513dPToUW3evFnz5s1Ts2bNrutjyJAhcnV11YQJEwqoagAAAAAoXAjYhcDzzz+vlJQUdezYMc8nuLy9vfXuu+9q06ZNat++vSZNmqQ+ffpo0KBB1/Xh6Oio//73v9q6das+++yzgiwfAAAAAAoFXnJWCDRr1kyJiYk33Na8eXM1b978hts2btyYZzkwMFCHDx82vD4AAAAAKAq4gw0AAAAAgAEI2AAAAAAAGICADQAAAACAAQjYAAAAAAAYgJecwXAuTnbWLuGePKx1AwAAAHgwELBhuADPktYu4Z6ZzWbZ2NhYuwwAAAAADyGmiMNQJpNJWVlZ1i7jnhGuAQAAANwrAjYMZzabrV0CAAAAABQ4AjYAAAAAAAYgYAMAAAAAYAACNgzHc8wAAAAAiiICNgzl4OAgJycna5dRaPA8OwAAAPDw4DNdMFxi6nldyMqxdhkPPRcnu4f6k2cAAABAUUPAhuEuZOXobOZVa5cBAAAAAAWKKeIAAAAAABiAgA0AAAAAgAEI2AAAAAAAGICAnU9OnDihL7/88qbbe/furbCwMElSXFycvLy87rjvO2kfFBSkyMhISX+9iXrlypXKyMi44zEAAAAAAHeHl5zlkzFjxsjd3V3t2rW74fbIyEjZ2dnl2/grVqxQ8eLFJUm7du1SWFiYvvnmm3wbDwAAAACKOgK2lZQuXTpf+3d1dbX8zLeUAQAAACD/MUU8H/Tu3Vvff/+9Vq5cqaCgIAUFBWn69Olq27atAgIC9P333+eZIv5Ply9f1pw5cxQcHCwfHx916tRJ69evv67d8uXL1bRpU9WtW1cDBw7U8ePHLduuTRFPTExUnz59JEnBwcGKi4uTJP3www964YUX5Ovrq2bNmmnSpEm6ePFiPpwNAAAAACgaCNj5IDIyUn5+fmrTpo1WrFghSYqJidGECRP0wQcfqF69erfcf8SIEYqPj9fEiRO1evVqtWjRQq+++qo2bNiQp91HH32kd955Rx9//LHOnDmjl19++bq71X5+fpZnsT/77DO1bdtWycnJevHFF9W0aVOtXr1aM2fO1IEDB9S3b1/udgMAAADAPWKKeD4oXbq07O3t5ejoaJmq/cwzz6hRo0a33Tc1NVXffPONoqOj1axZM0nSK6+8ouTkZEVHR6tFixaWthEREapVq5Ykafr06WrVqpV27NiRZxwHBweVKlVK0l/Txh0dHbVw4UI1btxYAwcOlCR5eHho1qxZatGihb7//nsFBAQYch4AAAAAoCghYBeQqlWr3lG7w4cPS5L8/f3zrG/QoIHefvtty/IjjzxiCdfSXyG5VKlSSklJuW2QP3jwoNLS0uTn53fdttTUVAI2AAAAANwDAnYBcXR0vK/9zWazihX7v1/Xjd5AnpubKwcHh9v2lZubqw4dOljuYP/d31+OBgAAAAC4czyD/YC59n3rPXv25Fm/e/du1ahRw7J8/vx5paenW5YPHz6sCxcuqGbNmtf1aWNjk2f58ccf1y+//KKqVata/l29elXTpk3T77//buThAAAAAECRQcDOJ4888oiOHz+uP/7446728/T0VPPmzTVp0iRt2rRJR44cUVRUlL755hv17dvX0s7W1lbDhg3T3r17tXfvXo0ePVpPPfWU6tevf12fzs7OkqTk5GRdunRJffv21cGDBzVp0iSlpqbqxx9/1GuvvaajR4/Kw8Pjvo4bAAAAAIoqAnY+ef7555WSkqKOHTsqJyfnrvZ9++231aJFC40fP14dO3bUt99+q8jISLVu3drSxtXVVZ06ddLgwYP14osvytPTU++8884N+6tZs6aeeeYZDRs2TJ9++qnq1aunDz74QIcOHdKzzz6rQYMGqVq1alq8ePEdTTEHAAAAAFzPxsx3mWCQpKQkSdJJm0o6m3nVytU8/Eo7F1OLOmWsXUahk5mZqUOHDsnb29syuwN4EHGt4mHBtYqHBdcq7tW1nOPj43PbttzBBgAAAADAAARsAAAAAAAMQMAGAAAAAMAABGwAAAAAAAxQzNoFoPBxcbKzdgmFAucRAAAAeLgQsGG4AM+S1i6h0DCbzbKxsbF2GQAAAADuAFPEYSiTyaSsrCxrl1FoEK4BAACAhwcBG4bj0+oAAAAAiiICNgAAAAAABiBgAwAAAABgAAI2DMdzwwAAAACKIgI2DOXg4CAnJydrl/FA4xl1AAAAoHDiM10wXGLqeV3IyrF2GQ8kFyc7PmMGAAAAFFIEbBjuQlaOzmZetXYZAAAAAFCgmCIOAAAAAIABCNgAAAAAABiAgA0AAAAAgAEI2A+IoKAgRUZGGt5v7969FRYWJklKTEyUl5eXjh07Zvg4AAAAAFDUEbABAAAAADAAARsAAAAAAAMQsO+Bl5eX4uLibrouMjJSoaGhioqKUqNGjeTn56fXX39dv//+u1566SXVrVtXLVu21KZNm/L0cerUKfXv318+Pj4KCgrSxx9/bNkWFxenli1bavLkyfL399fgwYMlSampqRowYID8/PzUpEkTvfbaazp16tQdHce5c+c0YcIENW3aVLVr11ZgYKAmTJigrKys+zg7AAAAAFA0EbDzye7du3XkyBF9/PHHmjBhgj799FM999xzatOmjeLi4uTp6amwsDCZzWbLPsuXL1f9+vW1evVqvfjii5oyZYq+/vpry/b09HT973//U3x8vIYPH66TJ0+qZ8+eqlq1qlasWKHo6GhdvHhR3bt3V2Zm5m1rDAsL08GDBxUVFaX169dr7Nixio+P16effpov5wQAAAAACrNi1i6gsMrNzdWkSZNUokQJVatWTREREWrYsKE6d+4sSerRo4e+/fZbnTp1So899pgkqUWLFho4cKAkqVq1atq7d68+/PBDtWzZ0tLv4MGDVblyZUnSnDlzVL58eU2YMMGyfc6cOWrYsKHWrVunkJCQW9bYuHFjNWjQQF5eXpKkSpUqKSYmRikpKYadBwAAAAAoKgjY+eTRRx9ViRIlLMvOzs6qUqWKZdnR0VGSZDKZLOv8/f3z9FG3bl1t3rw5zzoPDw/LzwcPHtTPP/8sPz+/PG2ys7OVmpp62xp79uypjRs3auXKlTp69Kh++eUXHTt2TNWrV7/9AQIAAAAA8iBgG+Dq1avXrbO3t79una3trWfk/3N7bm6uHBwc8qy7FsyvbW/YsKHeeOON6/pycXG55Vi5ubl66aWX9PPPP6t9+/Zq27atateurYkTJ95yPwAAAADAjRGw74G9vb0uXrxoWU5LSzOk3wMHDuRZ3rNnjx5//PGbtn/88ceVkJCgChUqWIL42bNnNWbMGL344otq2LDhTfc9dOiQtmzZouXLl6tu3bqSpCtXrig9Pd0yBR0AAAAAcOcI2PegXr16+uyzz9SgQQOZzWZNmzbtujvN9+LLL79UrVq11KxZM23YsEFff/21lixZctP2PXv21KeffqqRI0da3io+ffp0HT58WDVr1rzlWGXLllWxYsW0du1aubq66uzZs4qOjtapU6fyTFsHAAAAANwZ3iJ+D958802VKlVK3bp10yuvvKKuXbuqfPny991vv3799O2336pjx476/PPPNWvWLAUEBNy0feXKlRUTE6NLly6pR48e6tWrl+zt7bV06VK5urrecqxy5copPDxcGzduVNu2bfXqq6+qXLlyCg0N1U8//XTfxwIAAAAARY2N+e/fiQLuQ1JSkiTppE0lnc28/rl0SKWdi6lFnTLWLqNIy8zM1KFDh+Tt7S1nZ2drlwPcFNcqHhZcq3hYcK3iXl3LOT4+Prdtyx1sAAAAAAAMQMAGAAAAAMAABGwAAAAAAAxAwAYAAAAAwAB8pguGc3Gys3YJDyzODQAAAFB4EbBhuADPktYu4YFmNptlY2Nj7TIAAAAAGIwp4jCUyWRSVlaWtct4oBGuAQAAgMKJgA3D8Wl1AAAAAEURARsAAAAAAAMQsAEAAAAAMAABG4bjGWM8yGxsbOTk5MR1CgAAAMPxFnEYysHBQU5OTtYuA7gpJycnPfHEE9Yuw+p4mz0AAIDxCNgwXGLqeV3IyrF2GQBuwsXJjs/pAQAA5AMCNgx3IStHZzOvWrsMAAAAAChQPIMNAAAAAIABCNgAAAAAABiAgA0AAAAAgAEI2IWE2WzWypUrlZGRcUfte/furbCwsHyuCgAAAACKDgJ2IbFr1y6FhYUpKyvL2qUAAAAAQJFEwC4kzGaztUsAAAAAgCKNgG1FISEhmjx5smV5w4YN8vLy0rp16yzrwsPDFRoaqpSUFL300ktq0KCB6tSpo+DgYH344YeSpMTERPXp00eSFBwcrLi4OEnS/v37FRoaKj8/PzVq1EhvvPFGnjvcly5d0tixY1W/fn35+/srLCxMmZmZBXHoAAAAAFDoELCtqHnz5tq2bZtlefv27bKxsVFiYqJl3aZNm9S8eXP17dtXpUuX1ieffKI1a9aodevWmj59ug4dOiQ/Pz9FRkZKkj777DO1bdtWv/32m/7973/rscce06effqrIyEht27ZNkyZNsvT91Vdf6bHHHlNcXJxmzJihhIQELViwoOBOAAAAAAAUIsWsXUBRFhQUpKioKP3++++qUKGCtm3bpuDgYEvATk9P15EjR9SiRQtlZ2frhRde0COPPCJJGjp0qD744AMdPnxY3t7eKlWqlCTJ1dVVjo6OWr58uUqXLq2pU6eqWLG/fs2TJ0/Wjz/+aBnf19dXw4cPlyRVqVJFjRs31k8//VSQpwAAAAAACg0CthXVrl1b5cqV07Zt29SoUSMdO3ZMERER6tq1q06dOqVNmzbJ29tb7u7u6tmzp9asWaODBw8qPT1dycnJkqTc3Nwb9p2SkqLatWtbwrUkNWzYUA0bNrQse3h45NmnVKlSOn78uPEHCgAAAABFAAHbyv4+TdzHx0e+vr4qV66cEhMTtXnzZgUHB+vUqVPq3r27XF1dFRQUpCZNmsjHx0fPPPPMTfv9e7C+GTs7O8OOAwAAAACKOp7BtrKgoCDt2LFDO3bsUGBgoCQpMDBQGzduVGJiooKDg7VmzRqdPXtWy5Yt0+DBg9WyZUudO3dO0v+9PdzGxiZPvzVq1NDBgweVk5NjWff1118rKChI2dnZBXR0AAAAAFB0ELCtLDAwUNnZ2frqq6/yBOy1a9fKzc1NTzzxhMqXL6+srCytW7dOJ06c0NatWzVixAhJkslkkiQ5OztLkpKTk3Xp0iX17NlTZ86c0RtvvKHU1FTt2rVLM2bMUMOGDVW8eHHrHCwAAAAAFGIEbCtzcHBQo0aNZGtrq3r16kn6K2Dn5uYqKChIktS6dWv169dP4eHhatOmjaZOnarnnntODRo0UFJSkiSpZs2aeuaZZzRs2DB9+umnKleunD788EP9+uuv6ty5s4YPH67mzZvr9ddft9ahAgAAAEChZmO+NscYuE/Xwv5Jm0o6m3nVytUAuJnSzsXUok4Za5eB28jMzNShQ4fk7e1tmaUEPIi4VvGw4FrFvbqWc3x8fG7bljvYAAAAAAAYgIANAAAAAIABCNgAAAAAABiAgA0AAAAAgAGKWbsAFD4uTnbWLgHALfB/FAAAIH8QsGG4AM+S1i4BwG2YzWbZ2NhYuwwAAIBChSniMJTJZFJWVpa1ywBuKisrSwcPHizy1ynhGgAAwHgEbBiOT6vjQWY2m5WVlcV1CgAAAMMRsAEAAAAAMAABGwAAAAAAAxCwYTie7QQAAABQFBGwYSgHBwc5OTlZuwwLnrMFAAAAUFD4TBcMl5h6Xheycqxdhlyc7PhkGAAAAIACQ8CG4S5k5ehs5lVrlwEAAAAABYop4gAAAAAAGICADQAAAACAAQjYAAAAAAAYgICdT8xms1auXKmMjIx8HScxMVFeXl46duyYJKl3794KCwuTJMXFxcnLy8vSNigoSJGRkflaDwAAAAAUVbzkLJ/s2rVLYWFh+uabbwp03MjISNnZ2RXomAAAAAAAAna+sdb3l0uXLm2VcQEAAACgqGOK+N+EhIRo8uTJluUNGzbIy8tL69ats6wLDw9XaGioUlJS9NJLL6lBgwaqU6eOgoOD9eGHH0r6a9p2nz59JEnBwcGKi4uTJP3www964YUX5Ovrq2bNmmnSpEm6ePGipe+goCBNnz5dbdu2VUBAgL7//vu7Poa/TxG/mStXrigwMFBRUVF51n/yySdq0qSJrl7lE1sAAAAAcLcI2H/TvHlzbdu2zbK8fft22djYKDEx0bJu06ZNat68ufr27avSpUvrk08+0Zo1a9S6dWtNnz5dhw4dkp+fn+VZ588++0xt27ZVcnKyXnzxRTVt2lSrV6/WzJkzdeDAAfXt2zfP3e6YmBhNmDBBH3zwgerVq5cvx2lvb6+OHTtq9erVedbHx8erY8eOKlaMiQ0AAAAAcLcI2H8TFBSkX3/9Vb///rskadu2bQoODrYE7PT0dB05ckQtWrRQnz599Prrr8vT01MeHh4aOnSoJOnw4cNycHBQqVKlJEmurq5ydHTUwoUL1bhxYw0cOFAeHh6qX7++Zs2apX379uW5U/3MM8+oUaNG8vHxkYODQ74da5cuXZSWlqYff/xRknTkyBH9+OOPCgkJybcxAQAAAKAw41bl39SuXVvlypXTtm3b1KhRIx07dkwRERHq2rWrTp06pU2bNsnb21vu7u7q2bOn1qxZo4MHDyo9PV3JycmSpNzc3Bv2ffDgQaWlpcnPz++6bampqQoICJAkVa1aNf8O8G9q1qwpHx8fxcfHy8/PT/Hx8fL19VWNGjUKZHwAAAAAKGwI2P/w92niPj4+8vX1Vbly5ZSYmKjNmzcrODhYp06dUvfu3eXq6qqgoCA1adJEPj4+euaZZ27ab25urjp06KCBAwdet83V1dXys6Ojo/EHdRNdunTR7NmzNX78eH3xxRfq379/gY0NAAAAAIUNU8T/ISgoSDt27NCOHTsUGBgoSQoMDNTGjRuVmJio4OBgrVmzRmfPntWyZcs0ePBgtWzZUufOnZP0f28Pt7GxydPv448/rl9++UVVq1a1/Lt69aqmTZtmmZJe0Nq3b6/s7GwtWrRIf/75p9q3b2+VOgAAAACgMCBg/0NgYKCys7P11Vdf5QnYa9eulZubm5544gmVL19eWVlZWrdunU6cOKGtW7dqxIgRkiSTySRJcnZ2liQlJyfr0qVL6tu3rw4ePKhJkyYpNTVVP/74o1577TUdPXpUHh4eVjlWFxcXtWzZUvPmzVNwcLBKlixplToAAAAAoDAgYP+Dg4ODGjVqJFtbW8tbvAMDA5Wbm6ugoCBJUuvWrdWvXz+Fh4erTZs2mjp1qp577jk1aNBASUlJkv56xvmZZ57RsGHD9Omnn6pevXr64IMPdOjQIT377LMaNGiQqlWrpsWLF+fry8xuJyQkRJcvX+blZgAAAABwn2zMf/9GFIqcuLg4RUZG6ptvvpGt7f39veXaHxdO2lTS2Uzrf0u7tHMxtahTxtpl4AGTmZmpQ4cOydvb2zLTBHgQca3iYcG1iocF1yru1bWc4+Pjc9u2vOSsiDpw4IB+/fVXzZ07V7169brvcA0AAAAARR0B+wFWv3595eTk3HT7o48+qg0bNtxT33v37tWMGTPUrFkz/fvf/77XEgEAAAAA/x8B+wEWFxenW83gt7Ozu+e+X3jhBb3wwgv3vD8AAAAAIC8C9gOsSpUq1i4BAAAAAHCHCNgwnIvTvd9ZN9KDUgcAAACAooGADcMFeD4439M2m82ysbGxdhkAAAAAigBeHQ1DmUwmZWVlWbsMC8I1AAAAgIJCwIbh+LQ6AAAAgKKIgA0AAAAAgAEI2AAAAAAAGICADcPx3DMAAACAooiADUM5ODjIycnJ2mXkO54zBwAAAPBPfKYLhktMPa8LWTnWLiPfuDjZPVCfIgMAAADwYCBgw3AXsnJ0NvOqtcsAAAAAgALFFHEAAAAAAAxAwAYAAAAAwAAEbAAAAAAADEDAvg0vLy/FxcXl6xiRkZEKCgq6o7ZxcXHy8vK6r/GM6AMAAAAAkBcBuwhq27attm7dau0yAAAAAKBQ4S3iRZCjo6McHR2tXQYAAAAAFCpF8g52SEiIJk+ebFnesGGDvLy8tG7dOsu68PBwhYaGSpKOHDmi0NBQ+fj4qGnTpnr//ffz9Pftt98qJCREvr6+atmypebMmSOTyWTZfuHCBU2cOFENGzaUv7+/+vTpo6SkpJvWd+nSJb311ltq0qSJ/Pz81KtXL/3000952sTFxalFixby8fFRSEiI9u3bZ9l24sQJDR8+XIGBgapdu7aefvppRUREKDc317Lv36eIe3l5ae7cuWrevLmaNGmio0eP3vnJBAAAAABIKqIBu3nz5tq2bZtlefv27bKxsVFiYqJl3aZNmxQcHCxJiomJUefOnZWQkKAePXro7bff1o4dOyRJW7Zs0bBhw9StWzetWbNGb7zxhtauXatRo0ZJksxmswYMGKDffvtN77//vpYvX6569eqpR48eOnjw4A3rGzZsmLZs2aJp06YpPj5elStXVt++fXXu3DlLm+XLl+vtt9/W559/LgcHBw0bNsyybdCgQbpw4YIWLVqkdevWqW/fvvrggw+0cePGm56T2NhYzZ07V1FRUfLw8LjrcwoAAAAARV2RDNhBQUH69ddf9fvvv0uStm3bpuDgYEvATk9P15EjRywvHuvZs6c6d+6sypUra/DgwXJxcbHcUY6Ojla3bt30/PPPq0qVKmrSpIkmTZqkdevW6dixY9q5c6f27t2rOXPmqG7duvL09NSIESNUr149LV269Lrafv31V23ZskVvvPGGmjZtqqpVq+rNN9/Us88+qzNnzljaTZkyRb6+vqpZs6b69eunEydOKCMjQ5cvX1anTp301ltvqVatWqpcubJCQ0NVtmxZHT58+KbnpFOnTvLx8VG9evWMOs0AAAAAUKQUyWewa9eurXLlymnbtm1q1KiRjh07poiICHXt2lWnTp3Spk2b5O3tLXd3d0m67o5uyZIllZ2dLUk6ePCg9u/frxUrVli2m81mSVJqaqp+/vlnmc1mNW/ePE8fJpPJ0sffpaSkSFKeoFu8eHGNHTtWkvTDDz9cV1PJkiUlSZcvX9ajjz6qXr16ad26ddq/f7/S0tJ0+PBh/fnnn5Yp4jdStWrVm24DAAAAANxekQzYUt5p4j4+PvL19VW5cuWUmJiozZs3W6aHS5Kdnd11+18L0bm5uerfv7+effbZ69q4ubnp8OHDKlGixA0/9eXg4HDdumLF7uxXcrOaMjMz1atXL12+fFmtW7fWs88+K19fX73wwgu37I+XngEAAADA/SmSU8Slv6aJ79ixQzt27FBgYKAkKTAwUBs3blRiYmKegH0rjz/+uI4cOaKqVata/v3xxx+aMWOGLl26pJo1a+rixYu6cuVKnjYLFizQN998c11/np6ekpTnJWhXr15VUFBQnpew3czWrVt14MABLV26VEOHDlXbtm1VokQJZWRkWP4oAAAAAAAwXpEN2IGBgcrOztZXX32VJ2CvXbtWbm5ueuKJJ+6onwEDBmj9+vWKiorSkSNHtGPHDo0dO1YXLlyQm5ubmjZtKm9vbw0fPlw7d+5UWlqapk2bpri4OEuY/rtq1arpX//6lyZNmqSdO3fqyJEjmjhxorKzs/XUU0/dtp7y5ctLklavXq3jx49r9+7dGjx4sK5cuZLnzeYAAAAAAGMV2SniDg4OatSokbZu3Wp53jkwMFC5ubmWl5vdidatW2v27Nl6//33FR0drdKlSysoKEgjR46U9NdU7g8//FAREREaNmyYsrKy5OnpqaioKEuw/6epU6dqxowZevXVV2UymVS3bl0tXLhQrq6ut63H19dXY8eO1eLFizVnzhyVK1dObdu2VYUKFW75aTAAAAAAwP2xMTNvGAa5FuBP2lTS2cyrVq4m/5R2LqYWdcpYuwzco8zMTB06dEje3t5ydna2djnATXGt4mHBtYqHBdcq7tW1nOPj43PbtkV2ijgAAAAAAEYiYAMAAAAAYAACNgAAAAAABiBgAwAAAABggCL7FnHkHxcnO2uXkK8K+/EBAAAAuDcEbBguwLOktUvId2azWTY2NtYuAwAAAMADhCniMJTJZFJWVpa1y8h3hGsAAAAA/0TAhuH4tDoAAACAooiADQAAAACAAQjYAAAAAAAYgIANw/F8MgAAAICiiIANQzk4OMjJycmqNfAMOAAAAABr4DNdMFxi6nldyMqxytguTnZF4jNhAAAAAB48BGwY7kJWjs5mXrV2GQAAAABQoJgiDgAAAACAAQjYAAAAAAAYgIANAAAAAIABCNgFxMvLS3FxcZKksLAw9e7d+6Ztjx07Ji8vLyUmJhZUeTpx4oS+/PLLAhsPAAAAAAobXnJWQLZu3SoXFxdrl3FTY8aMkbu7u9q1a2ftUgAAAADgoUTALiBubm7WLgEAAAAAkI+YIn4fQkJCNHnyZMvyhg0b5OXlpXXr1lnWhYeHKzQ0NM8U8X9KSUlRnz59VK9ePbVs2VI7duy461r+/PNPjR49WgEBAfL399dLL72ktLQ0SVJubq7ef/99tWrVSnXq1NGTTz6p/v37Kz09XZLUu3dvff/991q5cqWCgoLuemwAAAAAAAH7vjRv3lzbtm2zLG/fvl02NjZ5np3etGmTgoODb9rHhQsXFBoaKhcXF3322Wd688039d57791VHVevXlXfvn31yy+/aN68eVq+fLlyc3PVv39/5eTkaOnSpVq4cKHCwsK0fv16vfvuuzp69KjCw8MlSZGRkfLz81ObNm20YsWKuzwLAAAAAACJgH1fgoKC9Ouvv+r333+XJG3btk3BwcGWgJ2enq4jR47c8q7wl19+qaysLIWHh+vxxx9X48aNNW7cuLuqY8eOHTp8+LBmzZolf39/eXp6avLkyWrRooXOnTunKlWqaPr06WrevLnc3d0VGBio1q1bKyUlRZJUunRp2dvby9HRUa6urvd4NgAAAACgaOMZ7PtQu3ZtlStXTtu2bVOjRo107NgxRUREqGvXrjp16pQ2bdokb29vubu737SPlJQUeXh45HkBmp+f313VkZKSolKlSqlatWqWdeXKldOYMWMk/fWHgH379umdd97RkSNHdOTIEf3yyy8qV67cXR4xAAAAAOBmuIN9n65NE9++fbt8fHzk6+urcuXKKTExUZs3b77l9HBJsrGxUW5ubp51xYrd3d89btd+/vz56tOnj86cOaPAwEBNmjRJffv2vasxAAAAAAC3RsC+T0FBQdqxY4d27NihwMBASVJgYKA2btyoxMTE2wbsWrVq6ejRozp9+rRl3U8//XRXNdSoUUPnzp2zvNRMkk6fPq2AgADt3btX0dHRevnll/Xmm2+qe/fuqlevno4ePSqz2XxX4wAAAAAAbo6AfZ8CAwOVnZ2tr776Kk/AXrt2rdzc3PTEE0/ccv927drp0Ucf1Wuvvabk5GR9//33mjJlyl3XUKdOHY0ZM0b79+/Xzz//rDFjxsjV1VW1a9dWhQoVtG3bNv3yyy/69ddfNXv2bH311VcymUyWPh555BEdP35cf/zxx92fBAAAAAAAAft+OTg4qFGjRrK1tVW9evUk/RV4c3Nz7+iTV87OzlqyZIns7e3Vo0cPjR49Wv3797+rGmxtbTVv3jyVL19eL774onr06KHixYvrgw8+kL29vWbMmKHLly+rS5cu6tWrl1JSUjRp0iRlZGToxIkTkqTnn39eKSkp6tixo3Jycu76PAAAAABAUWdjZp4wDJKUlCRJOmlTSWczr1qlhtLOxdSiThmrjI2HQ2Zmpg4dOiRvb285OztbuxzgprhW8bDgWsXDgmsV9+pazvHx8bltW+5gAwAAAABgAD7T9YDr2LGjfvvtt1u2SUxMlIODQwFVBAAAAAC4EQL2Ay46OlpXrly5ZRt7e/sCqgYAAAAAcDME7AdcxYoVrV0CAAAAAOAOELBhOBcnuyI5NgAAAICijYANwwV4lrTq+GazWTY2NlatAQAAAEDRw1vEYSiTyaSsrCyr1kC4BgAAAGANBGwYjk+rAwAAACiKCNgAAAAAABiAgA0AAAAAgAEI2DAcz0ADAAAAKIoI2DCUg4ODnJycrF1GvuDZcgAAAAC3wme6YLjE1PO6kJVj7TIM5eJkZ/XPjwEAAAB4sBGwYbgLWTk6m3nV2mUAAAAAQIFiijgAAAAAAAYgYAMAAAAAYAACNgAAAAAABihUAdvLy0txcXH3vP+xY8fk5eWlxMREA6sylhE1PgzHCQAAAAAPm0L1krOtW7fKxcXF2mU88CpUqKCtW7eqVKlS1i4FAAAAAAqNQhWw3dzcrF3CQ8HOzo5zBQAAAAAGe+CniIeEhGjy5MmW5Q0bNsjLy0vr1q2zrAsPD1doaGieKeJhYWEKCwvT9OnTFRgYqLp16+qll17SyZMnLfulpKSoT58+qlevnlq2bKkdO3bkGTsjI0NDhw5VQECAfH199fzzz+v777+3bL98+bLmzJmj4OBg+fj4qFOnTlq/fr1le1xcnFq2bKnJkyfL399fgwcPvqNjNpvNWrJkiVq1aiVfX1+1a9dOa9asydNm37596tq1q+rUqaPg4GB9/vnnlm0mk0nTp09XUFCQ6tSpo6eeekqvvvqqTp8+Len6KeK9e/fWxIkT1bVrV9WvX1+rV6++ozoBAAAAAP/ngQ/YzZs317Zt2yzL27dvl42NTZ7nhzdt2qTg4ODr9l2zZo3Onj2rmJgYLViwQAcOHNCcOXMkSRcuXFBoaKhcXFz02Wef6c0339R7772XZ/8333xT2dnZiomJ0RdffKFq1app8ODByszMlCSNGDFC8fHx/6+9O4+qqtz/OP45GAQolHoNi1TUFAmZLPWHSQIO10T0CuqqNAvFeSjT5ZCp13IWJXBKSyWH0lsiYmaGIJZIlFpqqVFKIl1LGhxBQDm/P7ycOiGKevQgvl9rsS7n2c9+nu8+dy9aH/ez99bEiROVmJiodu3a6cUXX9S2bdtMY2RnZ+vkyZNKSEjQyJEjy3XMb7/9tqKjoxUZGakPP/xQTz/9tMaMGaPPP//c1Oedd97R4MGD9dFHHykgIECvvvqqjh07JkmaPXu2PvnkE82cOVNbt27VzJkz9fnnn5c6vr96//331adPH7377rsKCAgoV50AAAAAgD9V+CXiwcHBWrBggU6cOKEHH3xQaWlpatu2rSlgZ2dnKysrS8HBwWZXuiXJyclJr732mmxtbdWwYUN16tRJO3bskCRt3rxZ+fn5mjlzppycnNSoUSO98sorGjp0qGn/7OxsNW7cWHXq1JG9vb0mTJig0NBQValSRUeOHFFycrLefPNNBQYGSpKGDx+uw4cP680331S7du1M4wwZMkR16tQp1/GWXL3u06ePevToIenyFeYLFy7o4sWLpn5Dhw5VcHCwJGnkyJF677339O2336pevXry8vJSx44d9fjjj0uSXF1d1apVK2VmZpY5r4eHh0JDQ8tVIwAAAACgtAp/BdvT01MuLi5KS0vTf//7X+Xk5GjgwIE6cuSIcnNzlZqaKg8PD7m6upbat27durK1tTV9dnJyUlFRkaTLy8Pd3NzMHorm5+dntv+wYcOUlJSkFi1aKCIiQuvWrVPDhg1177336rvvvpMkPfbYY2b7NG/evFSQdXNzK/fx/vHHH8rNzZWPj49Ze//+/dW6dWvT5/r165t+L3lYWUFBgSSpa9euKiwsVFRUlIYNG6ZOnTrp448/VnFxcZnz1qtXr9w1AgAAAABKq/ABW/pzmfiuXbvk5eUlb29vubi4KCMjQzt27Lji8nBJsrOzK3NMg8FQKnDec4/5Bf327dvrs88+08yZM+Xq6qoVK1aoY8eO+v7778sc12g0lhrH3t7+Wodo8td/ELgaG5vS/9cZjUZJ0qRJkzRy5EgVFRUpODhYc+fOVUhIyFXHu54aAQAAAACl3REBOzg4WOnp6UpPT5e/v78kyd/fXykpKcrIyCgzYF9NkyZN9OOPP5oe/CVJ33zzjen3wsJCzZgxQ8ePH1enTp00depUbdu2TTY2NkpNTZW7u7skac+ePWbj7t69W4888siNHKaky1fZH3jgAR04cMCsfcSIEZoxY8Y19//jjz+0bt06TZ48WePHj1dYWJg8PDx09OhRUwAHAAAAAFjeHRGw/f39VVBQoE8++cQsYG/ZskW1atXSo48+et1jhoSEqGbNmho1apQOHz6sL774QtOmTTNtt7Oz04EDBzRx4kR9/fXXysnJUXx8vPLy8uTn56eGDRsqKChIU6ZMUWpqqrKysrRgwQIlJyerb9++N3W8AwYM0DvvvKONGzcqOztbK1euVHJycrn+IaFatWpycnJScnKyjh07pu+++04TJ07Ut99+q8LCwpuqCwAAAABQtjsiYNvZ2alVq1aysbGRr6+vpMsBu7i42PSgr+vl6Oiod955R7a2tnrmmWc0ZswYRUZGmvWJjo5WnTp1NHjwYHXs2FFr165VVFSU6eFh8+bNU7t27TRhwgR16dJF27dv1/z589WxY8ebOt7evXtryJAhiomJUUhIiN5//31FR0erRYsW19zX1tZWMTExyszMVGhoqCIjI5Wfn6+XX35ZP/zwg/Lz82+qNgAAAADAlRmMrBuGhZQsa//F8LBO5V28Ru87y/2O96hd0+rWLgMWkJeXp0OHDsnDw0OOjo7WLgcoE+cq7hScq7hTcK7iRpXkHC8vr2v2vSOuYAMAAAAAUNFV+PdgVyZvvfWWFi1adNU+r7zyiun91wAAAACAOwcB+zbq2bOnOnTocNU+NWvWvE3VAAAAAAAsiYB9G91333267777rF0GAAAAAOAWIGDD4pwcqli7BIurjMcEAAAAwLII2LC4lg2drV3CLWE0GmUwGKxdBgAAAIAKiqeIw6IKCwsr7bu2CdcAAAAAroaADYvj1eoAAAAA7kYEbAAAAAAALICADYtjKTUAAACAuxEBGxZlZ2cnBwcHa5dRCsvWAQAAANxqPEUcFpdx5IzO5l+ydhkmTg5VKu2TzQEAAABUHARsWNzZ/Es6lXfR2mUAAAAAwG3FEnEAAAAAACyAgA0AAAAAgAUQsAEAAAAAsAAC9l0oIyND7u7uysnJsXYpAAAAAFBpELABAAAAALAAAjYAAAAAABZAwL4FwsLCNHXqVNPnbdu2yd3dXR9//LGpbebMmXrhhRfk7u6u2NhYBQUFqXXr1vrxxx9VWFioOXPmKCAgQH5+furZs6d27txp2jc+Pl7t27c3/W/Tpk0VFhamPXv2mPoUFRUpJiZGQUFB8vHxUVhYmNLS0szq3LFjhzp37qymTZsqJCREqampt+5LAQAAAIBKjoB9CwQFBZmF2V27dslgMCgjI8PUlpqaqrZt20qS3n33XcXGxmrBggVyc3PT+PHjlZaWpqioKG3YsEFPPfWUBg0aZBaAT5w4obVr12rOnDnasGGDHBwcNG7cOBmNRknStGnTtHbtWo0dO1abNm1SQECABg0apKNHj5rGWLlypSZOnKhNmzbJzc1NL730ks6fP3+Lvx0AAAAAqJwI2LdAcHCwjh49qhMnTkiS0tLS1LZtW1PAzs7OVlZWloKDgyVJXbt2lZeXl3x9fXXs2DF9+OGHmjFjhlq2bCk3NzdFREQoJCREy5YtM81RVFSkKVOmyNfXV40aNVJERISys7OVm5urc+fO6YMPPtBLL72kjh07qm7duho5cqQiIiJ07tw50xivvPKKWrZsqfr162vo0KHKz8/XkSNHbuM3BQAAAACVxz3WLqAy8vT0lIuLi9LS0tSqVSvl5ORozpw56tGjh3Jzc5WamioPDw+5urpKkurVq2fa9+DBg5KkZ5991mzMoqIiOTs7m7U1bNjQ9LuTk5OpX1ZWloqKiuTj42PW/+WXX5YkU9CvX7++aVvJ2BcuXLjxAwcAAACAuxgB+xb56zJxLy8veXt7y8XFRRkZGdqxY4dpebgk2dvbm34vWeK9Zs0aVa1a1WxMGxvzBQd2dnal5jUajbK1tS1XjX8f76/zAwAAAACuD0vEb5Hg4GClp6crPT1d/v7+kiR/f3+lpKQoIyPDLGD/VaNGjSRJubm5qlevnuknPj5e8fHx5Zq7Xr16srW11YEDB8zae/bsqbi4uBs/KAAAAABAmQjYt4i/v78KCgr0ySefmAXsLVu2qFatWnr00UevuF+jRo0UFBSkyZMnKyUlRcePH9dbb72lJUuWqG7duuWa28HBQb1791ZMTIySk5OVnZ2tefPmKTMzU08++aTFjhEAAAAA8CeWiN8idnZ2atWqlXbu3ClfX19JlwN2cXGx6eFmZYmOjlZ0dLQmTZqk06dPq27dupo2bZq6detW7vlffvllValSRZMnT9bZs2fVpEkTLV26VA0aNFBubu7NHBoAAAAA4AoMRm66hYWULEn/xfCwTuVdtHI1f7rf8R61a1rd2mWggsjLy9OhQ4fk4eEhR0dHa5cDlIlzFXcKzlXcKThXcaNKco6Xl9c1+7JEHAAAAAAACyBgAwAAAABgAQRsAAAAAAAsgIANAAAAAIAF8BRxWJyTQxVrl2CmotUDAAAAoHIiYMPiWjZ0tnYJpRiNRhkMBmuXAQAAAKASY4k4LKqwsFD5+fnWLqMUwjUAAACAW42ADYvj1eoAAAAA7kYEbAAAAAAALICADQAAAACABRCwYXHc7wwAAADgbkTAhkXZ2dnJwcHB2mXcFtxrDgAAAOCveE0XLC7jyBmdzb9k7TJuKSeHKhXydWQAAAAArIeADYs7m39Jp/IuWrsMAAAAALitWCIOAAAAAIAFELABAAAAALAAAjYAAAAAABZAwL5J8fHxcnd3t3YZAAAAAAArI2DfpE6dOmnnzp3WLgMAAAAAYGU8Rfwm2dvby97e3tplAAAAAACsjCvY5TB9+nS1a9fOrO3s2bPy9vbWmjVrzJaIu7u764MPPtALL7wgb29vtW7dWgsWLLDIXKmpqZKk999/X6GhofL29pavr6+effZZHThwwNQ/ODhYy5Yt0/Dhw+Xn56eWLVtq6tSpunjxz1dn7dy5U926dZOXl5c6d+6s9evXy93dXTk5Odfz1QAAAAAA/oeAXQ5hYWE6fvy4du/ebWr76KOP5OzsLDs7u1L9Z82apW7dumnz5s3q3bu35s+fry+//PKm5woICFBSUpJee+01RUZGasuWLYqLi1NBQYFeffVVs3FiYmLUvHlzJSYmasyYMVq9erU+/PBDSdKhQ4c0cOBA+fv7a+PGjRo8eLBmzZp1I18NAAAAAOB/CNjl0KRJE3l6eioxMdHUtmHDBnXp0kVVqlQp1f9f//qXunbtqjp16mjQoEFydnbW3r17LTLX/fffr2nTpqlr165ydXWVr6+vunfvrszMTLNxWrdurT59+qhOnToKDw9XkyZNTDXExcWpadOmGjNmjBo0aKCQkBANGzbsRr4aAAAAAMD/ELDLKTw8XFu2bFFhYaGOHTumr776SuHh4Vfs27BhQ7PPTk5OKioqsshczZs3l6enpxYuXKhRo0ape/fumj59uoqLi8tdw8GDB+Xr62u2vXnz5uWuDwAAAABQGgG7nEJDQ1VQUKDt27crMTFR3t7epUJsiSstGzcajRaZa9OmTerSpYuOHz+uZs2aaezYsRo3btx11VClSpVSgRwAAAAAcHN4ing5OTs7q3379kpKStLhw4fVq1cvq8y1dOlSde/eXVOmTDG1JScnS7ocoA0GwzXHb9Kkifbv32/W9tVXX1moegAAAAC4O3EF+zqEh4crKSlJ2dnZCgkJscpcDz74oPbu3atvv/1W2dnZiouL0+rVqyVJhYWF5Rq7b9++OnDggKKiopSVlaWkpCTFxsZKUrkCOgAAAACgNAL2dfD391f16tXVrl07OTs7W2WuiRMn6h//+Id69+6tHj16aPv27Zo9e7Ykmb2q62oaN26sBQsWKDU1VaGhoYqNjVXv3r0lSba2tpY/GAAAAAC4C7BE/Drk5eXp9OnT6t69u6ktLCxMYWFhps/fffddqf1SUlIsMpck1alTRytWrCjVv1OnTledb9WqVabf9+/fr9q1a5te2yVdvrfbzs5ONWrUuO5aAQAAAAAE7HI5ffq0Pv/8c23ZskWurq7y9/e/o+c6dOiQ5syZo1mzZsnDw0PHjh3T/PnzFRISonvu4ZQAAAAAgBtBmiqHS5cuacKECapRo4beeOONG75PedCgQcrIyLhqn7i4OIvMdTU9e/ZUbm6upk+frl9++UU1a9ZUSEiIRowYYfG5AAAAAOBuQcAuhxo1amj37t03Pc6UKVN04cKFq/Z56KGHLDLX1RgMBg0bNkzDhg27pfMAAAAAwN2EgH0bubi4WLsEAAAAAMAtQsCGxTk5VLF2Cbfc3XCMAAAAAK4PARsW17LhrX2FWUVhNBp5bzgAAAAAE96DDYsqLCxUfn6+tcu4LQjXAAAAAP7KYDQajdYuApXD3r17ZTQaZWtrS/hEhWU0GlVUVMR5igqPcxV3Cs5V3Ck4V3GjCgsLZTAY1KxZs2v2ZYk4LKbkDxV/sFCRGQwG2dnZWbsM4Jo4V3Gn4FzFnYJzFTfKYDCUO+NwBRsAAAAAAAvgHmwAAAAAACyAgA0AAAAAgAUQsAEAAAAAsAACNgAAAAAAFkDABgAAAADAAgjYAAAAAABYAAEbAAAAAAALIGADAAAAAGABBGwAAAAAACyAgA0AAAAAgAUQsAEAAAAAsAACNm5acXGxYmNjFRAQIF9fX/Xv31/Hjx+3dlmAmVOnTmnSpEl68skn1axZMz3zzDPavXu3tcsCriorK0t+fn6Kj4+3dinAFSUkJKhTp07y8vJSSEiItmzZYu2SgFIuXryomJgYBQUFyc/PT7169dLXX39t7bJQSRGwcdMWLVqkd999V6+//rrWrl2r4uJiRUZGqrCw0NqlASYvv/yyvvrqK82bN0/r16+Xh4eH+vXrp6NHj1q7NOCKioqKNHr0aOXl5Vm7FOCKNm7cqAkTJqhXr17avHmzOnfubPpbC1Qkixcv1vvvv6/XX39dCQkJql+/viIjI3Xy5Elrl4ZKiICNm1JYWKjly5drxIgRCgwMVJMmTRQdHa2ff/5Zn3zyibXLAyRJx44dU1pamv7973/r8ccfV/369TVx4kQ98MAD2rRpk7XLA65o/vz5qlatmrXLAK7IaDQqJiZGffr0Ua9evVS3bl0NHjxYrVq10hdffGHt8gAz27ZtU+fOndW6dWvVq1dP48aN09mzZ7mKjVuCgI2bcvjwYZ0/f17+/v6mNmdnZz366KP68ssvrVgZ8Kfq1atr6dKl8vLyMrUZDAYZDAadOXPGipUBV/bll19q3bp1mjlzprVLAa4oKytLP/30k0JDQ83aly1bpoEDB1qpKuDKatasqe3btysnJ0eXLl3SunXrZGdnpyZNmli7NFRCBGzclJ9//lmS9OCDD5q1P/DAA6ZtgLU5OzurTZs2srOzM7Vt3bpVx44dU0BAgBUrA0o7c+aMxowZo1dffbXU31agosjKypIk5eXlqV+/fvL391ePHj2UkpJi5cqA0iZMmCBbW1u1bdtWXl5eio6OVmxsrOrWrWvt0lAJEbBxU/Lz8yXJLLhI0r333quCggJrlARc0969ezV+/Hh16NBBgYGB1i4HMPPvf/9bfn5+pa4MAhXJuXPnJEljx45V586dtXz5cj3xxBMaMmSI0tPTrVwdYO6HH36Qk5OTFi5cqHXr1iksLEyjR4/WoUOHrF0aKqF7rF0A7mz29vaSLt+LXfK7JBUUFMjBwcFaZQFl2rZtm0aPHq1mzZopKirK2uUAZhISErR7926eDYAKz9bWVpLUr18/devWTZLk4eGhgwcPasWKFWa3jgHWdOLECY0aNUpxcXF6/PHHJUleXl764YcfNH/+fC1atMjKFaKy4Qo2bkrJ8sW/P4Xx5MmTcnFxsUZJQJlWr16t4cOHKygoSG+++abuvfdea5cEmFm/fr1+++03BQYGys/PT35+fpKkyZMnKzIy0srVAX8q+W9848aNzdofeeQR5eTkWKMk4Ir27dunoqIis+ewSJKPj4+OHTtmpapQmXEFGzelSZMmqlatmjIyMkz3sZw5c0YHDx5U7969rVwd8KeSV8k999xzmjBhggwGg7VLAkqJiorShQsXzNo6dOigESNGqEuXLlaqCijN09NTVatW1b59+0xXBSUpMzOT+1pRodSuXVuS9N1338nb29vUnpmZKTc3NytVhcqMgI2bYmdnp969eysqKko1atSQq6ur5syZo9q1a6tDhw7WLg+QdPlhPNOnT1f79u01cOBA/frrr6Zt9vb2cnJysmJ1wJ/KWvlTs2ZNVgWhQrG3t1dkZKQWLlwoFxcXeXt7a/PmzUpLS1NcXJy1ywNMvL299dhjj2ns2LGaPHmyateurYSEBKWnp+u9996zdnmohAjYuGkjRozQxYsX9eqrr+rChQtq3ry5li1bZro/C7C2rVu3qqioSElJSUpKSjLb1q1bN16FBAA3YMiQIXJwcFB0dLR++eUXNWzYUPPnz1fLli2tXRpgYmNjo8WLF+uNN97Q+PHjdfr0aTVu3FhxcXHy8fGxdnmohAxGo9Fo7SIAAAAAALjT8ZAzAAAAAAAsgIANAAAAAIAFELABAAAAALAAAjYAAAAAABZAwAYAAAAAwAII2AAAAAAAWAABGwAAAAAACyBgAwAAAABgAQRsAAAquXHjxsnd3b3Mn48//tjaJd5xcnJyFBQUpN9//12SdOTIEfXo0UPNmjXToEGD9Ouvv5r1T05O1lNPPaVLly6ZtR89elTBwcE6c+bMbasdAHDrGIxGo9HaRQAAgFtn3Lhx2rlzpxYsWHDF7W5ubrr//vtvb1F3MKPRqD59+qht27Z64YUXJEnh4eGqVauWnnvuOcXGxsrV1VXz5s2TJF26dEmhoaEaOXKk2rdvX2q8adOm6fTp05o9e/btPAwAwC1wj7ULAAAAt56dnZ18fX2tXUalkJSUpMzMTC1btkySdPbsWX3zzTdav369mjZtqry8PE2cONHUPz4+XtWqVbtiuJakAQMGKDAwUM8//7w8PT1vyzEAAG4NlogDAABJ0nPPPafRo0drxIgR8vX1VUREhCSpoKBAs2fPVps2bdS0aVOFhobqo48+Mtu3uLhYCxcuVGBgoHx8fDRo0CBt2bJF7u7uysnJkXT5SnpwcLDZfjk5OXJ3d1d8fLyp7dSpU5o0aZJatWolLy8v9ezZU+np6Wb7ubu7a82aNZowYYJatGghPz8/vfjii6WWZickJKhbt27y8fFRYGCg5s6dq8LCQn3//fdyd3fXunXrzPqfOHFCHh4eSkxMLPN7WrJkif75z3/Kzs5OkmQwGCRJ9vb2kiRbW1sVFxdLkvLz8xUbG6vRo0eXOV6tWrX0f//3f1qyZEmZfQAAdwYCNgAAd4mLFy+W+vn7nWJbtmxR1apVtXjxYkVGRspoNGro0KFau3atIiIitHjxYvn5+WnkyJFKSEgw7Td79mwtWrRI4eHhmj9/vpydnTV58uTrrrGgoEDPP/+8kpOTNXLkSC1YsEC1a9dWZGRkqZAdHR2t4uJizZs3T2PGjNH27ds1ffp00/Y1a9Zo7Nix8vT01IIFCzRgwACtWrVKU6dOVaNGjeTj46ONGzeajZmQkCBHR0d16NDhivUdPXpU33zzjdn2atWq6ZFHHlF8fLzOnDmjxMRENWvWTJIUFxcnDw8PtWjR4qrH3bFjR6WkpOj8+fPX9X0BACoWlogDAHAX+Omnn664/HjUqFEaMGCA6bOtra2mTJliujqblpamzz77TNHR0erUqZMkKSAgQPn5+YqKilLnzp11/vx5rV69Wn369NHw4cMlSU8++aQiIiK0a9eu66pz48aNOnz4sP7zn//Ix8fHNNZzzz2nqKgorV+/3tS3cePGmjFjhunz/v37TQ9sK7mi3q5dO02dOtXUJz8/X5s3b1ZRUZHCw8M1efJkHT9+XHXq1JF0OWCHhISYrkb/3eeffy5J8vb2NmufMWOGXnrpJS1btkxNmzZVTEyMfv/9dy1fvlyrVq3Svn37NGPGDF24cEF9+/ZVly5dzPb38vJSUVGRdu/erTZt2lzXdwYAqDgI2AAA3AVq1aqlxYsXl2qvXbu22ecGDRqYwrUkpaeny2AwqE2bNrp48aKpPTg4WImJifr+++918uRJFRUVqW3btmZjdenS5boDdnp6umrVqiVPT0+z+YKCgjR79mydPn1a9913nySVuqe8du3ays/PlyRlZWXpt99+K3Xfc79+/dSvXz9JUkhIiGbMmKGNGzdq2LBh2rt3r3788UfNnDmzzPqOHz8uZ2dnOTs7m7V7e3srJSVFeXl5cnR0lCRNnTpVgYGBatCggYKDgzVw4EC5u7trwIABpie4l3B1dZUk03J6AMCdiYANAMBdwM7OTl5eXtfsV7VqVbPPp06dktFoNC15/ruTJ0/q9OnTkqQaNWqYbXNxcbnuOk+dOqXc3NwyH/aVm5trCtgODg5m22xsbExL3k+dOiVJqlmzZplzVatWTR07dlRiYqKGDRumhIQE1a9fX35+fmXuc+7cuVLz/lVJuM7Oztb69eu1adMm7dmzR+fPn1evXr1kY2Oj5s2bKykpySxgl4x57ty5MscGAFR8BGwAAFAmJycnOTo6auXKlVfcXq9ePe3bt0+S9Ntvv6lBgwambSUht4TBYCj1Hui8vLxS87m5uSkqKuqK8z388MPlqrvkCnPJe6pL/PHHHzp48KD8/Pzk6Oio8PBwbdiwQfv379fWrVtNV7fLUr16dZ09e/aa80dHR6t79+56+OGHtW/fPjk5OcnGxsZUW25urln/kvdgV69evVzHBwComHjIGQAAKFOLFi2Ul5cno9EoLy8v009mZqYWLlyoixcvys/PTw4ODqb7n0ukpKSYfa5atar++OMPFRQUmNr27NlTar4TJ06oZs2aZvOlpaXp7bffVpUqVcpVd4MGDVS9enVt377drH3jxo0aMGCAioqKJEnNmzeXm5ub5syZo7Nnz6pr165XHfehhx5SXl6e6ar9lezfv1+fffaZBg8eLOnylf3Tp0+b5szNzS11Zf3nn382jQ8AuHNxBRsAAJSpTZs2at68uYYMGaIhQ4aoYcOG2r9/v2JjYxUQEGBaFj506FDNmzdP9vb28vf312effVbqVV5BQUFatWqVJkyYoO7duyszM1MrVqwwC81hYWFavXq1IiIiNGjQID344IPatWuX3nrrLfXu3Vu2trblqrtKlSoaPny4XnvtNdWsWVPBwcHKyspSbGysevXqZVpmLknh4eGaO3eunnzyyWsua3/iiSckXf6Hgb+/cqzEnDlzFBERYfpufH195eDgoHnz5qlx48bau3evxowZY7bPnj175ODgoMcff7xcxwcAqJgI2AAAoEw2NjZaunSpYmJitGTJEv32229ycXFRRESEhg4daurXv39/Va1aVcuXL9fKlSv12GOPadCgQVq4cKGpzxNPPKGxY8dq1apV2rp1q+n1WU8//bSpj6Ojo9asWaO5c+eariq7urpq1KhR6tu373XV3qtXLzk6OmrZsmVat26dateurf79+6t///5m/dq0aaO5c+cqLCzsmmPWqVNHnp6e2rFjxxUD9o4dO3T06FGzd1qXhOvJkycrMTFRY8eOVdOmTc32+/TTTxUYGFjm08sBAHcGg/HvL8AEAACwgPj4eI0fP17JycnlvnfaGpYuXaq4uDilpqaaPUG9LFu3btUrr7yiTz/9tNRD4W7ETz/9pPbt2+uDDz7Qo48+etPjAQCsh3uwAQDAXWnDhg2aNWuWFi5cqOeff75c4VqSOnTooEaNGum9996zSB3Lly9Xx44dCdcAUAkQsAEAwF3p8OHDevfdd9W+ffvrWn5uMBg0e/ZsrVy5stRTyq/XkSNHlJKSokmTJt3UOACAioEl4gAAAAAAWABXsAEAAAAAsAACNgAAAAAAFkDABgAAAADAAgjYAAAAAABYAAEbAAAAAAALIGADAAAAAGABBGwAAAAAACyAgA0AAAAAgAUQsAEAAAAAsID/B4myHcOQYEN+AAAAAElFTkSuQmCC\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAuoCAYAAAAZ5xLXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xV9eHG8c/dKzc7hCSEIShDhojaArZa6JBqa0eqFKu1WHHWWSzUSkVrxYV1W4T+KlirFQcWBWq1DmydOJA9EwIkZI+71++PcI8JBAhwIQGe9+t1eu4959xzvudyTPPku0yJRCKBiIiIiIiIiBwUc2cXQERERERERORooIAtIiIiIiIikgIK2CIiIiIiIiIpoIAtIiIiIiIikgIK2CIiIiIiIiIpoIAtIiIiIiIikgIK2CIiIiIiIiIpoIAtIiIiIiIikgLWzi6AHD0++eQTEokENputs4siIiIiIiKSEpFIBJPJxPDhw/d5rGqwJWUSiQSJRKKziyHtSCQShMNh/ftIl6NnU7oiPZfSFem5lK7oWHku9yfnqAZbUiZZcz1kyJBOLonsyu/3s2rVKvr164fb7e7s4ogY9GxKV6TnUroiPZfSFR0rz+Xy5cs7fKxqsEVERERERERSQAFbREREREREJAUUsEVERERERERSQAFbREREREREJAUUsEVERERERERSQAFbREREREREJAUUsEVERERERERSQPNgd5ILL7yQDz74oN19EydO5De/+c1hLpGIiIiIiIgcDAXsTjRu3Dhuvvnm3ba7XK5OKI2IiMjRIxwOU1tbSyKRIBqNEo1GicViu72OxWLGkkgkiMVi+P1+ysvL2bZtGzabjXg8TiKRaLPsiclkarOYzWZjbTabsVgsWCwWTCaT8dpqtbZ5nXyfXJvNh7fBYXZ2Nna7/bBeU0TkaKGA3YmcTid5eXmdXQwREZHDIhaLEQ6HCQaDhMNhQqGQ8ToYDBIKhXbbn9zW+vWelkgkQigUoqGhgWg02tm3e8Sy2WyccsopXHPNNXi9Xmw2GyaTqbOLJSJyRFDA7qIaGhq45557eOutt6itrSU9PZ2xY8dy8803GzXcpaWlzJgxgw8++ACr1cro0aO5+eabycnJAeD5559n9uzZbN26laKiIsaPH8+FF15o/CX8pZde4oknnqCsrIzMzEzOOussJk+erL9ai4h0MYlEgmAwmNJzRiIRI5Qm18nXrbfv+j4UChGNRtsE3+QxoVDICLmt9yXDsULvkSESifC///2P//3vf8Y2m82G3W431lar1Xhvs9nafd96bbPZjFr55PZda+5b1+C3ru1vb0nuT7YM2Nf7o+EPBK3/GLWv+3E6nUfFPYsciRSwu6gpU6ZQWVnJww8/TE5ODsuWLeO3v/0t/fr14+KLL6axsZELLriA/v378+STT2I2m5k2bRrXXXcd8+bN49lnn2XmzJlMmzaNoUOHsnLlSm6//XYqKyu56aabWL16Nb/73e+49957GTp0KBs2bODGG28kKyuLK6+8srNvX0SOUA0NDWzfvn237XtqUhsKhSgrK8NiseBwOABS9kvh3prxHmrJZsTxeHyPSywWM9a7vk42Y47H40QiEV599VWqqqo67X7kwIwbN46SkhLmz5/P4sWLO/WZPFjJP8DIkSE/P5+zzz7b6KrQ2q7bWr9vb518naygSXZ5SG7btVvErl0kWn+2dZeJ1se13re31+2VNakj/3119P9f9ve/1Y6cN1Xl64yfI3v7rtv7//GDPb/ZbKZv375YLJYDOl9nU8DuRP/85z9ZsmRJm20jRoxg9uzZjB49mlNPPZX+/fsD0KNHD5566inWrl0LwKuvvorP52PmzJlkZGQA8Ic//IFXXnmFcDjMo48+yhVXXMHZZ58NQHFxMc3NzUyfPp1rr72W8vJyTCYTRUVFFBYWUlhYyJw5c0hLSzuM34CIHE02bdrEFVdcQTwe7+yiiHQJJSUlFBcXU1JSwqJFizq7OHIMqays5C9/+UtnF0PkgA0ZMoT77ruvs4txQBSwO9GYMWP49a9/3Wab0+kEYMKECbzxxhu8+OKLbN68mfXr11NeXs5xxx0HwNq1a+ndu7cRrgEGDBjAgAEDqK2tpaKigpkzZ/LAAw8Y++PxOKFQiPLycr72ta8xfPhwSkpK6NGjB6NHj2bs2LEMHjz4MNy5iByNnE4nbreb5ubmzi6KHCSLyYTNbMFmsey2tlss2CxmbCYrNosZu8W6c1vL2m42Y7NasZssOKxW7GZLy/tWx9rNVmwWCw6LFbvFisWcuqasj3/8Lh9uK0vZ+Q7G/PnzjRpsk8l0xNVgD+lWwI8GDCMSjxGJxYjG40RiMSLxVq8TMaKxGJF4vNX+OLF4nGjyuHiMWDxOLNFyTCyRINpqfyweJ75zWyzR0sIjmkgQT8SJxRPEObK+NxE5eN26devsIhwwBexO5PF46NWr127b4/E4l112GevWreOcc87hu9/9LieeeCK33HKLcYzVuud/umTt0dSpUxk1atRu+wsKCrDb7cydO5eVK1eydOlSli5dyuWXX84PfvAD7rzzzhTcnYgcawoKCnjhhRf26zN+v59Vq1YxcOBA3G73ISpZ+03qWm/bdX/yfXvr9kaTbj3KdPJncLIpeHJk6uS+ZHPwvTUPT67j8XibUa8jkYixTm5Pvk424W3vfeuldX/r1v2sW38HsUSCWCxKMHZ4+kybTSbsFisOi+XLEG6sW4K4bec2m9libE++t1nMxh8ATivoSWMoyIa6aqKd3Jpi8eLFLFq06IgM1wDLd2xn+Y7du3x0JcnR2PfWB3vX7R3ZtqfXB3Le1v3AkyPI7zrCfOvm1O01wYaWZvrbtm2jqKioTZeavTUBb2/frtv31ER81+0HsuypKXl7TcD3tbRX1j3d/57u9WDsz3/Dezp2T2Vpb/uu/0Yd2b+34zpyzP5cP+lw/f/4kUQBuwtatWoVb7/9Nv/4xz8YNmwY0PJDtaysjOLiYgD69evHc889R1NTE16vF4AVK1bwy1/+khdeeIHs7Gy2bNnSJsC/+uqrvPbaa9x111289dZbLF++nKuvvppBgwYxadIkHnvsMR5//HEFbBE56nT0F4pjVfKPAK0HKmsdvpODlbUewGzXQcxaD2a2p9HAd12MP1AkEgSjEYLRzu3ja6Kl9t5sMoPJhDm50OqX052vv3wH7KxhTQAtt5QgATtrbROYjH07a2UTiS5fJ+twONoMamaz2XA4HG3e7+31roOdtR7YbNdBzloPgNZ64LNdpzBrHWyTr4+l/44VZESODArYXVBubi5Wq5VFixaRnZ1NfX09jz/+OFVVVYTDYQC+973v8eijjzJ58mSuu+46otEot956KyeccAIFBQVceuml3H///RQWFvL1r3+dNWvWcOuttzJ27Fjj/wAfeeQR0tLSGDt2LA0NDbz55psMHz68k+9eREQON5PJZISbw/WLeyKRaBPYk9N0tRfQWwf11iObJ/8Y0N50Xe0trWv/223VAEQTCUjEDst3sKvkv8OuYXTXoNp6sdvtxrLrSN/t7UsurcNy8n3rgHwsBVcRkVRSwO6C8vPzmTFjBg899BB/+9vfyMvL48wzz+Tiiy/mjTfeAMDlcjFnzhzuvPNOxo8fj9Pp5Mwzz+Q3v/kNABMnTsThcDBv3jxmzJhBbm4u5513Htdccw0Ao0aN4o477uAvf/kL999/P06nkzPOOIMpU6Z02n2LiMixw2QyGeHucEs2149EIkYz/GRT/Wg0is/nY926dfTp0weHw2E06YcvuwMkz9Ne89TWTV7ba0LcuiZ211pbERE5spkSR2KnIOmSli9fDrSM+iddi5qVSVelZ1O6Ij2X0hXpuZSu6Fh5Lvcn55gPdWFEREREREREjgUK2CIiIiIiIiIpoIAtIiIiIiIikgIK2CIiIiIiIiIpoIAtIiIiIiIikgIK2CIiIiIiIiIpoIAtIiIiIiIikgIK2CIiIiIiIiIpoIAtIiIiIiIikgIK2CIiIiIiIiIpoIAtIiIiIiIikgIK2CIiIiIiIiIpoIAtIiIiIiIikgIK2CIiIiIiIiIpYO3sAoiISNfW2NhIZWUlO3bsoKGhgcbGRkKhEOFwGACz2YzNZsPpdOJ2u0lLS8Pr9ZKenk5GRgbp6ek4nc5OvgsRERGRQ08BW0REAAiFQmzcuJENGzawceNGNm/eTFlZGY2NjQd9brvdTnp6Ounp6Xi9XmNxuVwEAgG2bt1KXl4eWVlZZGdnk52djdWq/4sSERGRI4t+exEROQYFg0E2bNjA+vXrWbduHevWraO0tJR4PN7u8ZkOJzluDxkOJ2l2Bw6rBavZggmIJxJE4jFC0SiBaBR/JExTOERzOExzOEQ0HiccDlNdXU11dXWHymcymcjKyqJ79+50796dwsJCevToQXFxMT169MDlcqXw2xARERFJjaMyYF944YV88MEH7e6bOHEiv/nNbw5ziUREOk9jY6MRptevX8+GDRsoLy9vN0yn2x30zsymV0YWxRmZFHkzKEjz4jjA2uREIkEoFqUp1BK4m8JBfJEwTeEwvp0B3BduCeSNoSANoSD1wQCxRILa2lpqa2tZuXLlbufNz8+nZ8+e9OrVi+LiYnr27ElxcTHp6ekHVE4RERGRVDgqAzbAuHHjuPnmm3fbrloPETma1dTUsGHDBtatW2cE6srKynaPzXQ46Z2ZTZ/M7JZ1VjbZThcmkwmAcCxGQzBAYygIoYMvW5rdTprdvs/j4okEvkiYukCA2qCfar+PKr+P2oCfyuYmGsMhKisrqays5MMPP2zzWa/XS1FREQUFBRQUFJCfn0+3bt3Iy8sjNzcXt9t98DciIiIisgdHbcB2Op3k5eV1djFERA6JSCRCeXk5mzdvNvpNb9iwgbq6unaPz3N7jJrpPplZ9MrMJsvZ/h8cQ9Eos5a9x8fbtxKJxw7lbewXm9nCiIIiJgw+iSq/n61NDWxraqS8sYHtzY3UBPw0NTWxevVqVq9e3e453G432dnZ5OTkkJmZSXZ2NpmZmWRlZRlLZmYmGRkZOByOw3yHIiIicqQ7agP23jQ0NHDPPffw1ltvUVtbS3p6OmPHjuXmm282arhLS0uZMWMGH3zwAVarldGjR3PzzTeTk5MDwPPPP8/s2bPZunUrRUVFjB8/ngsvvBCzuWXms5deeoknnniCsrIyMjMzOeuss5g8eTL2DtTeAITDYR544AFefvllmpubOf7447nmmms4/fTTjWOee+455s6dS2lpKWazmUGDBjF16lSGDBkCwOeff86MGTNYtWoVVquVr371q0ydOpXCwkKuuuoqmpqamDt3rnG+jRs3Mm7cOBYuXMjxxx+fku9aRPYskUgQDAbb3RePx6mvr6euro6amhp27NhBZWUl27dvZ9u2bWzfvn2P/aUL0tLplZFJ78wsitOz6Jmeibudnz3BaLTdzz/+8f/4cNuWA7+xQyQSj/He1jJiiQSXjxhJ78zsNvtD0Qg7/M1UNjdT5W+m2u+jOuCjxh+gLuAnGIvi9/vx+/2Ul5fv83rJgdm8Xi9paWmkpaXhdrvxeDy43W4cDgdOp9NYJ18nR1R3OBzY7XZjn9vtNloHiIiIyNHpmAzYU6ZMobKykocffpicnByWLVvGb3/7W/r168fFF19MY2MjF1xwAf379+fJJ5/EbDYzbdo0rrvuOubNm8ezzz7LzJkzmTZtGkOHDmXlypXcfvvtVFZWctNNN7F69Wp+97vfce+99zJ06FA2bNjAjTfeSFZWFldeeWWHyjh16lQ2bNjAvffeS35+Pv/5z3+4/PLLefjhhznzzDN57bXXuO222/jDH/7AKaecQlVVFbfffju/+93vWLBgAbFYjMsuu4zzzjuPu+66i8bGRqZNm8Zvf/tb/vrXv/KjH/2Iq666iu3bt1NQUAC0/FFgyJAhCtdyTEkkErz//vuUlpZ26FjACEnJ96237evz8Z0DfoVCId5444091jgfjO3NjWxvbuS9rWUpP/f+GDduHCUlJcyfP5/Fixe3+b4OxofbthyWPwDs78Bs+2IymYyR051OJy6Xy3jdOqDb7Xbsdjs2m834o+3B2tOz2t6zvLdz7PqcJz/ndDr51re+hcfjSUVxRUREjlhHbcD+5z//yZIlS9psGzFiBLNnz2b06NGceuqp9O/fH4AePXrw1FNPsXbtWgBeffVVfD4fM2fOJCMjA4A//OEPvPLKK4TDYR599FGuuOIKzj77bACKi4tpbm5m+vTpXHvttZSXl2MymSgqKqKwsJDCwkLmzJlDWlpah8peWlrKwoULeemllxg4cCAAv/jFL1i9ejVz5szhzDPPJDMzkzvuuIPvf//7ABQVFVFSUsJtt90GQHNzM3V1dXTr1o2ioiKKi4v505/+RE1NDQBnnHEGubm5vPzyy1x22WXE43EWLFjApEmTDuZrFzniPP/888yaNauzi3FUKikpobi4mJKSEhYtWtTZxel0iUSCxsbGlEx71hW98sorPPHEE51dDBERkU511AbsMWPG8Otf/7rNNqfTCcCECRN44403ePHFF9m8eTPr16+nvLyc4447DoC1a9fSu3dvI1wDDBgwgAEDBlBbW0tFRQUzZ87kgQceMPbH43FCoRDl5eV87WtfY/jw4ZSUlNCjRw9Gjx7N2LFjGTx4cIfKnhwxd8KECW22RyIRY4TcU089lQ0bNvDII4+wceNGSktLWbNmjdFkNCMjg1/+8pfcfvvtPPjgg3z1q1/ljDPOYNy4cQBYrVa+//3vs2DBAi677DLee+89amtrOeecczr8HYscDU444QTsdjvhcLizi7JPLquVfI+XfE8a3b3pFKWlU5SeTjePF7MpNTWdkLom4vPnzzdqsE0mU8pqsE8tLObyESNTci5o+fndFA7RGA7SGArRFArSFA7RFA7THArhi4SNJRiJEIhECESjRBPtN9E/Vn31q1/t7CKIiIh0uqM2YHs8Hnr16rXb9ng8zmWXXca6des455xz+O53v8uJJ57ILbfcYhxj3ct0NMkAO3XqVEaNGrXb/oKCAux2O3PnzmXlypUsXbqUpUuXcvnll/ODH/yAO++8c59lT/4S+re//W235nbJ5oL//Oc/mTJlCt/73vc4+eSTGT9+PGvXrjVqsAF+/etfM2HCBN566y3+97//cfvttzN79mxeeukl7HY7P/7xj5kzZw5ffPEFL7/8MmPHjm3zRwWRY8HQoUNZuHDhITt/PB4nFosRjUaJRCJEIhHC4bDRTDwYDBIIBPD7/fh8Ppqbm2lsbKShoYG6ujpqa2upqqqiqamJQDTK5oY6Nje0bVZuM1sozsigV0YWvTOy6Z2ZRc+MTOyWA/sRf8WIkVhMpoMe5Gzx4sUsWrQoZeE6OcjZpJO/2qFpw+KJBI2hIDV+HzUBP7XBlr7Y9cEA9aEgDcEgDcEATeEQB1M6s9mM0+nEbrfjcDiMPtmt+1+3bha+t22tm4gnm4lbrVasVisWi0V9uEVERLq4ozZg78mqVat4++23+cc//sGwYcOAlprhsrIyiouLAejXrx/PPfccTU1NeL1eAFasWMEvf/lLXnjhBbKzs9myZUubAP/qq6/y2muvcdddd/HWW2+xfPlyrr76agYNGsSkSZN47LHHePzxxzsUsJN9oKuqqhg0aJCx/f7778dsNnPttdcya9YsSkpKmD59urH/9ddfB1oC+qZNm3jyySf57W9/y09/+lN++tOf8vHHHzNhwgRWr17N0KFD6du3L8OHD2fRokW8/vrr3HfffQf57YrIrsxmM2azGZvNdlDTBAYCASoqKti2bRvl5eWUlZVRWlpKaWkpoVCIjXW1bKyrBTa0XNdkotCbTu+MLHpntoTuXhlZuG37HmjRYbXyq9NON6bpOlD1wQBVfh95bg+ZexixfH9kOF3YLZY22xKJBLXBANubGtnW1ECFr4mK5iZ2+HxU+5uJ7GEguF2ZzWbS09ONEcUzMjLIyMjA6/WSnp5OWlqaMdiZ2+02+k+7XC5sNpuCr4iIiADHYMDOzc3FarWyaNEisrOzqa+v5/HHH6eqqspoIvq9732PRx99lMmTJ3PdddcRjUa59dZbOeGEEygoKODSSy/l/vvvp7CwkK9//eusWbOGW2+9lbFjxxo1Do888ghpaWmMHTuWhoYG3nzzTYYPH96hMh5//PF84xvf4Pe//z3Tpk3j+OOPZ/Hixfz5z382AnpBQQHLli1jxYoVeL1e3njjDZ566imgZWCerKwsXnnlFYLBIJMmTcJsNvPiiy+SkZFhNIUH+PGPf8wf/vAH0tPTGT16dIq/bRFJFZfLRZ8+fejTp0+b7bFYjO3bt7Nx40Zj3uv169dTX19PeWMD5Y0NLN2y2Ti+mydt51RdLaG7d2Y2GQ5nu9e0WyzkeTo2dkR78jxpHJ+TmukSY/E4VX4f23YG6a1NjWxtamBrU8MeR0OHluCcnZ1tzIOdk5NDTk4O2dnZxrRc2dnZpKenY9klvIuIiIjsL1MiVZ3iupALL7yQoqIiZsyY0e7+f/7znzz00ENs376dvLw8zjzzTGw2G2+88QavvfYaABs2bODOO+/ko48+wul0cuaZZ/Kb3/yGrKwsoKX59rx58ygvLyc3N5dzzjmHa665xpiG64UXXuAvf/kLW7Zswel0csYZZzBlyhSys7PbLdOuAoEA999/P6+++ioNDQ307NmTiRMn8uMf/xiALVu2MG3aND799FPsdjsDBgzg/PPP5/rrr+dvf/sbp5xyCp988gn33Xcfq1atIhaLcdJJJzF58mROPPFE4zrNzc2MGjWKn//859x4440H/J0DLF++HMCYJky6Dr/fz6pVqxg4cCBut7uziyOHWCKRoKampk3gXr9+PTt27Gj3+GyXm94ZWfTJyt4ZvLPJdDgPW61sNB7HFw7REArRGApSt7Mpd03AT5W/mR2+Znb4fMT20OfZbDZTWFhIcXGxMbhkUVER3bt3Jy8vb6/dfkTao5+Z0hXpuZSu6Fh5Lvcn5xyVAVs6bsuWLXz7299m0aJF9O7d+6DOpYDddR0rP/xk7xobG9mwYYMRuNetW8fWrVvb7R+dbndQnJFJkTeDAm863dxp5Lo9ZDgceOz2dgdVi8XjBKIR/JEIzeEQTeHQznXLYGHJ982RML5wmOZwywBi/kikQ+W32+306NGD4uJievXqRc+ePenVqxeFhYXYbLaD/n5EkvQzU7oiPZfSFR0rz+X+5Bz9Wf8YtX37dj7//HOefvppvva1rx10uBaRri89PZ3hw4e36a7i9/vZsGED69atM5by8nIawyFWVFWyoqqy3XPZLRZsZgsmIE6CSCzW4f7O7TGZTEYf6OzsbHJycsjLy6N79+50796doqIicnNzUzYvtIiIiMihoIB9mN122228+OKLez3mkUceaXeE8lSqq6tjypQp9O7dm4cffviQXktEui63282QIUPa/EU2GAxSWlrK5s2bKSsro7y8nMrKSmM0c4BwLEY41v4I4w6HwxgcLD09nYyMDON160HD0tPTsVqtVFRUMHz4cGNQSREREZEjlQL2YXb11Vfz85//fK/HdOvW7ZCXY9CgQXzyySeH/DoicuRxOp3079+f/v3777YvGo3S1NREKBQyBoY0m83GlFTJUbU7yu/309TUpAHGRERE5KiggH2YZWdnd3igMxGRrsZqtRqDPYqIiIhIW+rMJiIiIiIiIpICCtgiIiIiIiIiKaCALSIiIiIiIpICCtgiIiIiIiIiKaCALSIiIiIiIpICCthyVEskEiQSic4uhoiIiIiIHAMUsOWolUgkuP7667nhhhsUskVERERE5JDTPNhy1AoGg6xcudJ47XK5OrlEIiIiIiJyNFMNtoiIiIiIiEgKKGCLiIiIiIiIpIACtoiIiIiIiEgKKGCLiIiIiIiIpIACtoiIiIiIiEgKKGDvw5gxY3jooYc6uxgp8dBDDzFmzJjOLoaIiIiIiMhRSQFbREREREREJAUUsEVERERERERSwNrZBTjSPf/888yePZutW7dSVFTE+PHjufDCCzGbW/52sX37du677z7+97//4fP5GDFiBJMnT2bAgAEATJkyhXA4TGZmJi+99BIOh4Nzzz2XG264AbvdDsBHH33Egw8+yBdffEE4HKa4uJjLL7+cc8891ziH3++nubmZTz/9lCuuuIJLL72UZ599ltmzZ1NZWcmoUaPo0aNHm7K/9dZbPPDAA2zYsAG3280ZZ5zB1KlTycjIOIzfoIiIiIiIyNFBNdgH4dlnn+Xuu+/m6quv5pVXXuG6667jiSee4N577wWgubmZn/70p1RWVvLYY4/xzDPP4HQ6+dnPfsbWrVuN8/zrX/9ix44dPPPMM/zhD3/gpZde4o477gCgsrKSSy65hCFDhvDiiy/y0ksvMXToUG6++Waqq6uNcyxZsoRRo0bx/PPPc84557Bw4UJuu+02Lr74YhYsWMDJJ5/M3/72N+P42tparr76an784x/z6quv8vDDD/Phhx9y9913H6ZvT0RERERE5OiiGuyD8Oijj3LFFVdw9tlnA1BcXExzczPTp0/n2muv5eWXX6auro4XXniB7OxsAO677z6++c1v8re//Y2bbroJgPT0dO655x5cLhcnnHACO3bs4I477mDy5MmEQiF+9atfcckll2AymQCYNGkSL730Eps3byY3NxeAjIwMfvnLXxplmzdvHt/97ne54IILjM98+umnrF69GmgJ7uFwmMLCQoqKiigqKuLxxx8nFosdni9PRERERETkKKOAfYBqa2upqKhg5syZPPDAA8b2eDxOKBSivLyctWvX0rt3byNcAzidToYOHcratWuNbUOHDsXlchnvhw8fTiQSYdOmTQwZMoQf/ehHzJ07l7Vr11JWVmaE5NZhuFevXm3Kt3btWiP4tz5v8rMDBw7knHPO4fLLLycvL4/Ro0dz5pln8q1vfSsF346IiIiIiMixRwH7AMXjcQCmTp3KqFGjdttfUFBAIpHY42et1i+/epvN1u65LRYL69evZ8KECZx44omMGjWKb3/722RlZfGTn/ykzWecTucey7in69x3331cddVVvP322/z3v/9l8uTJjBgxgieffHJPty0iIiIiIiJ7oD7YBygnJ4fs7Gy2bNlCr169jGXFihX86U9/AqB///5s3ryZmpoa43OhUIgvvviCfv36GdtWrFjRpjb6k08+weVy0adPH5555hlycnL4v//7Py699FLOOOMMo+/1ngI8tNRQL1u2rM225cuXG68/++wz/vjHP3Lcccdx8cUXM2vWLP74xz/y3nvvtSmviIiIiIiIdIxqsDugtLSUt99+u802p9PJpZdeyv33309hYSFf//rXWbNmDbfeeitjx47Fbrfzve99jz//+c9cd911TJ48GbvdziOPPILf7+f88883zrV161amT5/Oz3/+czZs2MCDDz7Iz372M1wuF927d6eiooK33nqLfv36sWLFCv7whz8AEA6H91jmSZMmccUVVzB79my++c1v8s4777BkyRK6desGQFpaGk8//TQ2m43zzjuPUCjEq6++Su/evcnKyjoE36KIiIiIiMjRTQG7A/75z3/yz3/+s822oqIi3njjDRwOB/PmzWPGjBnk5uZy3nnncc011wDg9Xp56qmnmDFjBhdffDEAI0aM4O9//zvFxcXGuU466STMZjMlJSV4vV4uuugirrjiCgAuuugiNm7cyE033UQ4HKZ3797ccMMNPPjggyxfvpyvf/3r7Zb5zDPP5L777uOhhx7igQce4KSTTmLixIksXLgQgL59+/LQQw/x8MMP8/TTT2M2m/nqV7/KE088YUwxJiIiIiIiIh1nSuytnbEcclOmTGHr1q3Mmzevs4ty0JJN0IcMGdLJJWkRCASMucIXLFjQZiC5Y43f72fVqlUMHDgQt9vd2cURMejZlK5Iz6V0RXoupSs6Vp7L/ck5qqoUERERERERSQEFbBEREREREZEUUB/sTjZjxozOLoKIiIiIiIikgGqwRURERERERFJAAVtEREREREQkBdREXI5aTqeTE0880XgtIiIiIiJyKClgy1HLZDIxc+ZM47WIiIiIiMihpIAtRzUFaxEREREROVzUB1tEREREREQkBRSwRWSv4vE4sViss4shIiIiItLlqYm4iLQRCAR45513eOedd1izZg319fUAZGRk0KtXL/r160f//v3p06cPeXl5WCwWGhoaKC0tZfXq1axevZrNmzdTX1+P2+2mT58+jBkzhrFjx2K32zv35kREREREDiEFbBEBIBaL8fLLL/P000/T0NCw2/6GhgY+//xzPv/88w6fs7Gxkc8++4zPPvuM5557juuvv54hQ4akstgiIiIiIl2GAraIsGnTJu655x7Wr18PQJ7bzRm9ezK4Wx7dPG4AagNByhoa2FRXz8a6BrY2NRGMRgGwmEzkp3nok5lJv+wsemdmkOVy4gtHWL5jB4vWbaS8vJzJkyczadIkfvjDH2oAOhERERE56ihgixzDEokEL730ErNnzyYSieCx2TjvxIGc0bsnVnPbIRrSHQ56Z2bw9V49jW3hWIx4IoHdYsHcTmDOdUOvzAzG9OnNk58u590t5Tz++OOUl5dz1VVXYbFYDvk9ioiIiIgcLgrYIseouro6Zs6cyfvvvw/ASd3z+eXJw8h0Ojt8DnsHA7LbZuPyU4bTOzODp5evYOHChVRVVTF16lTcbvcBlV9EREREpKvRKOIix6ClS5dy2WWX8f7772Mzm7lo2BBuHHnafoXr/WUymRh3fF9+9ZVTsJnNvP/++1x77bVs2rTpkF1TRERERORwUg22yDFky5YtPPXUU0atdY90L1eeejI9MzIOWxlOKyok2+Xi/v99QGlpKVdddRXnnHMO3/3ud+nVqxcmk4l4PE5NTQ07duygsbERk8lEfn4+PXr0wGazHbayioiIiIjsj2MyYI8ZM4atW7cyZcoUfvGLX+y2f9q0aTz77LNcffXV/OpXv9rn+erq6vj3v//NT37ykwMuU3l5OWPHjmXu3Ll85StfafeYKVOmsHXrVubNm8f777/PRRddxOuvv06PHj0O+Lpy9IvH4yxfvpxnn32WFStWkEgksJhMnH1CP34w4IQON/NOpX7ZWfxx7JnMXvYpn1RU8tJLL/HSSy/hcDhwuVz4fD4ikchun/N4PIwcOZLvf//7DBgw4LCXW0RERERkb47JgA1gs9lYsmTJbgE7Go3yr3/9a79GOL777rspLy8/qIDdETfffDOxWOyQXkOODqFQiC+++IIPPviAd999lx07dhj7RhR05/zBAyn0evf4+XAsRkMwlNIyZTgdbcJ8htPBjaO+wvLKHSzZsIkVO6oIhUKEQi3XNZtM5LhceB12EokElT4fPp+Pf//73/z73//mpJNO4qKLLmLw4MEpLaeIiIiIyIE6ZgP2yJEjeeedd6ioqKB79+7G9vfeew+3243L5erwuRKJxKEo4m68ewlEcuxKJBJUVFSwfv161q5dy4oVK1izZk2bGmCn1crIHkV8u28fijPS93iuUDTKE8s+5eNtFUTi8ZSW02Y2M6KwO5eefBIO65c/eobkd2NIfjfCsRh1gSDBaBSP3UaW04ml1Ujm8USC9bW1vLGplP9t2cqnn37Kp59+ytChQ/nhD3/IV7/6VY1KLiIiIiKd6pgN2EOHDmXDhg0sXryYiy++2Nj+6quvMm7cOBYtWmRs++STT7j//vtZsWIFVquVMWPGcNNNN5GVlcWUKVN48cUXAejfvz9r1qwhFosxb948/v73v7Nt2zYKCwu5+OKL+elPfwrA+++/zy9+8Quuu+465syZQ1FREQ888IBxrT/84Q9s2rSJE044gZtuuomvfvWrQNsm4rv66KOPuPTSS7nooou4/vrrAXj++eeZPXs2W7dupaioiPHjx3PhhRdi3hlaXnrpJZ544gnKysrIzMzkrLPOYvLkydjt9tR/4XLQYrEYVVVVbNzYMqd0WVkZZWVllJaWEggEdjs+0+HgxG65DMvPZ0h+Hrad4TM5d3V7/vzRJ3y4bfshKX8kHue98m3E4gkuO2V4u8dkOB1k4DCO3zXk98zI4OKThvK9E47nlbXrWVq2hc8//5zPP/8cr9fLiBEj6N+/Pz169KB79+54PB7MZjPxeJxwOEwkEjFagdjtdlwuF16vV8+8iIiIiKTEMRuwAcaNG9cmYIfDYf7973/z17/+1QjYn3/+ORdeeCHnn38+v//976mqquK2227jkksu4bnnnuPmm28mGAxSUVHBQw89BMCMGTNYsGABt9xyC0OGDOHtt9/mjjvuIBQKGdeKxWK89dZbPPvsswQCAaNJ+pw5c5g+fTr9+/fn//7v/7jsssv417/+RX5+/h7v49NPP2XSpEn84he/4JprrgHg2WefZebMmUybNo2hQ4eycuVKbr/9diorK7nppptYvXo1v/vd77j33nuNPzbceOONZGVlceWVVx6ib1z2JhQK8eyzz/Lss88CX7aMSCQSJBIJ4vtZo1wfCvHulq28u2VrysuaNG7cOEpKSpg/fz6LFy/uUGuOD7dt58OXUx/im5qaePPNN3nzzTf3+7MWi8X4bzC5TiQS+9VV5FA5+eSTueKKKygsLOzsooiIiIjIPhzzAXvOnDlUVlaSn5/Pu+++S3Z2NoMGDTKO+ctf/kL//v255ZZbAOjbty8zZ87k3HPPZenSpZxxxhk4nU5sNht5eXk0Nzfz97//nSlTpvC9730PgN69e1NeXs6sWbP4+c9/bpx74sSJ9O7dG2gZ5AzgV7/6Fd/97ncBuPXWW/nvf//L008/bdRK7+qLL77gd7/7HZdccglXXXWVsf3RRx/liiuu4OyzzwaguLiY5uZmpk+fzrXXXkt5eTkmk4mioiIKCwspLCxkzpw5pKWlpejblf31wQcf8NRTT3V2MfZLSUkJxcXFlJSUtGn1caTpymMbvP/++zidTm6++ebOLoqIiIiI7MMxHbAHDx5McXExS5Ys4aKLLuLVV181AmnS2rVrGT16dJttAwYMwOv1smbNGs4444w2+zZu3EgkEmHEiBFttp922mk8+eST1NTUGNuS4bq11p+zWq0MGjSIdevW7fEeJk+eTCQSoaioyNhWW1tLRUUFM2fONJqeQ8to0qFQiPLycr72ta8xfPhwSkpK6NGjB6NHj2bs2LEaMKoTDR8+nO985zssWbJkvz+b7XTSMyOd3lmZHJeVyXGZmTht+/+f9/42EZ8/f75Rg20ymTpUg31qYcEem4jvr2Akyn+3bOXtsjLKG5tScs6upmfPnod8AEURERERSY1jOmDDl83Ezz//fF5//XWee+65Nvv3FBgSiUS78/Hu6fhk815rq8GdHA7HbsftOkhTLBZr97ikq666ioaGBu68805Gjx5NXl6eca2pU6cyatSo3T5TUFCA3W5n7ty5rFy5kqVLl7J06VIuv/xyfvCDH3DnnXfu8Xpy6KSlpXHjjTdy44037rYvHo9TV1fH9u3b2bJlC1u2bGHz5s2UlpZSVVVFbTBIbTDIp5Uto4WbTSb6ZGYyND+P4QXd6ZOZ0aHmzpefMhzLMlOHBzlbvHgxixYt6lC43tMgZwfCH4nwrw2bWLx+A83hlsHczGYzgwcPZuDAgRQXF5OTk4PL5cJisRCLxYhEIkQiEaLRKCaTqU0f7KysLFwuV5doEi4iIiIiRy4F7HHjmDVrFs8//zzFxcX07du3zf7+/fvz8ccft9m2evVqmpubjWNb/1Let29fbDYbH3/8MQMHDjS2f/TRR+Tl5ZGRkbHX8nzxxRfG/L7hcJgvvviC8ePH7/H4c845h5ycHP71r39x66238sgjj5CTk0N2djZbtmyhV69exrGvvvoqr732GnfddRdvvfUWy5cv5+qrr2bQoEFMmjSJxx57jMcff1wBuwsym83k5OSQk5OzWyuDpqYmNm3axLp161i7di0rV66ksrKSDXV1bKir48XVa+nmcfO1nsWM6dOLDKdzj9dxWK1cfdopHZ6mqz4YpNrvJ9ftJnMv54Xdp+lqTyQWIxyL4bLZMLcTdqv9fv6zqZR/b9yMb+co6UVFRZx77rmMGTOG9PQ9j5AuIiIiInKoHfMBe+DAgfTq1Yv77ruPyy67bLf9v/jFL5gwYQK33347EyZMoLq6mttvv51BgwYxcuRIANxuNzt27GDLli0UFxdz/vnn8+CDD5KZmcmQIUNYunQpTz/9NDfccMM+a8juu+8+MjMz6d27N48++ijhcJgLLrhgr59xuVxMnz6dSy65hIULF3LOOedw6aWXcv/991NYWMjXv/511qxZw6233srYsWOx2+3YbDYeeeQR0tLSGDt2LA0NDbz55psMH56aprty+Hi9XoYOHcrQoUONbTt27GDZsmV88MEHfPjhh+zw+Xl+1RpeXrOOb/TpxQ8GnED6XlpG2C0W8jzufV47z+Pm+Jzsgyr/1sYm/rVhI59UVFIbCAJgArJdLnLdLtIdDuI758Fu3Qy8uLiYn/3sZ3z961/X9FwiIiIi0iUc8wEbWmqxH3vsMWNwsdaGDRvG7Nmz+dOf/sQPfvAD0tLS+OY3v8mNN95oNBH/wQ9+wGuvvcY555zDv/71L6ZOnUpWVhb33nsv1dXV9O7dm2nTpnHeeeftsyy/+tWvuPfeeykvL2fo0KH83//9H5mZmfv83Omnn865557L7bffzsiRI5k4cSIOh4N58+YxY8YMcnNzOe+884xRxkeNGsUdd9zBX/7yF+6//36cTidnnHEGU6ZM2b8vT7qkbt26cdZZZ3HWWWcRCAR44403eP755ykvL+dfGzaxtGwL5584iG/06dVuTfHhEIpG+fsXK3l902Z2bV2eAGoCAWp2mX7MZDIxdOhQzj33XEaOHKlgLSIiIiJdiinRkVGJRDpg+fLlAAwZMqSTSyK78vv9rFy5kkgkwrx581i/fj0AJ+blMmnEcHLcrsNanormZu7/34dsbWqpkR41ahRnn302/fv3x+l00tzcTEVFBTt27KCxsRGA7t27c/zxx5OVlXVYyyqHlt/vZ9WqVQwcOBC3e9+tJkQOBz2X0hXpuZSu6Fh5Lvcn56gGW+QYYTKZGDZsGKeddhovv/wyf/nLX1hRVc3Nb7zJpSefxIjCgsNSjjXVNdz/3oc0h8NkZ2dz0003cfLJJ7c5Jjs7e7cp80REREREujpzZxdARA4vi8XCD3/4Qx599FGOP/54msMR7n/vQ/7vk88IRqOH9Nrvl29jxtL/0RwO079/fx599NHdwrWIiIiIyJFKAVvkGFVcXMyf/vQnSkpKAHh9UylT//0mn1ZUdmg+6/0Rjcd59otVPPTBR0TicUaOHMk999xDdvbBDZAmIiIiItKVqIm4yDHMZrMxadIkRowYwcyZM6mqquLe/77P8dlZjOnTm8Hd8shyOUkkEjSHw5Q1NLKxrp5N9fVsa2qmIRgilojjttnonpZGn8wM+mVn0ycrg0ynE38kwueVO3h5zTpjBPAf/ehHXHrppRqgTERERESOOgrYIsKIESN44okneOqpp1iwYAHrautYV1sHgM3c0tAlEo/v8fP+SJRqf4AvdlTt8ZiMjAyuuuoqzjzzzJSWXURERESkq1DAFhGgZT73SZMm8aMf/YjFixezdOlSNm/e3CZYFxQU0K9fP/r370+fPn3Izc3FYrHQ2NhIWVkZq1atYvXq1WzZsoX4zs8VFBQwZswYfvjDH5Kent5ZtyciIiIicsgpYItIG7m5ufzsZz/jZz/7GcFgkMbGRuLxOFlZWTgcjj1+bvDgwcZc8rFYjMbGRlwuF06n83AVXURERESkUylgi8geOZ3OAwrIFotF81WLiIiIyDFHo4iLiIiIiIiIpIACtoiIiIiIiEgKKGCLiIiIiIiIpIACtoiIiIiIiEgKKGCLiIiIiIiIpIACtoiIiIiIiEgKaJouEZHDKBwOU1lZSWVlJdXV1dTV1dHY2EhzczPBYJBIJEI8HgfAarVis9lwOp24XC48Hg9paWl4vV68Xi/p6emkp6fj9XrxeDxYLJZOvjsRERGRY5sCtojIIRCJRCgrK2Pjxo1s2rSJ0tJStmzZQmVlJYlE4pBcMxnAPR4Pbrcbl8tlLMk5zZNhvXVgT0tLIzMzk4yMDBwOxyEpm4iIiMixQAH7CDZlyhS2bt3KvHnzKC8vZ+zYscydO5evfOUrnV00kWNKOBxm8+bNrF27lnXr1rFu3To2b95MNBpt93iHxUKux0WOy0mGw47XYcdts+K0WrGazZhNLcfF4gki8TihWIxQNIY/EsEXidIcjuALR2gOh2kORwhGYwD4fD58Pt9B3Yvb7SYnJ4fc3Fy6detGfn4+3bt3p7CwkMLCQjIyMjCZTAd1DREREZGjlQL2UaKgoIClS5eSkZHR2UUROapFIhE2b97MunXrjEC9adOmdsO022alOMNLcXoaxeleCtM9FKR5SHfYUxpSo/E4vnAEfySKLxIhEIkSjEYJRGMEo1FC0RjBaGxnUI8SjMYIRKIEotGWz4QjNIXDROMJ/H4/fr+fLVu2tHstj8dDUVERRUVF9OjRw1iKiopwu90puycRERGRI5EC9lHCYrGQl5fX2cUQOaoEg0E2bdrEhg0bWL9+PevXr2fTpk1EIpHdjk2z2+iTmU7vzHR6Z7Ws89yuvQbpcCxGQzCcsvJazWYyHA4y9qOZd4bTjt1iIZFI4I9EaQiFqAuEqA0EqfEHqfIHqPL52eELUBMI4vP5WLt2LWvXrt3tXNnZ2UbYLioqorCw0Fir6bmIiIgcCxSw92Dt2rXcd999LFu2jEAgQH5+PhdccAETJ04E4J133uHhhx9m9erVZGRk8MMf/pBrrrkGi8VCJBLh0Ucf5aWXXqK2tpa+ffty4403Mnr0aAA2bNjAPffcwyeffEI0GmX06NH85je/oaioCIALL7yQ3r17s3r1ajZt2sS0adP43ve+x2OPPcYzzzxDY2Mj48aNIxQKGeXdtYl4LBZj3rx5/P3vf2fbtm0UFhZy8cUX89Of/hSA999/n1/84hc89thj3HPPPWzevJkePXrw61//mm9+85uH+dsW6VzhcJht27ZRVlZGWVkZmzZtYtOmTWzbts0YcKw1t83aEqaz0umTmUGfrH2H6dZC0RhPLPuCZdt2EGnn/IeTzWzm5MJuXHryYDx2Gx67jUJvWrvHhmMxKpv9VDb72d7so6LZT0Wzj+1NPprCEWpra6mtreXzzz/f7bO5ubkUFRVRUFBAQUEBhYWFFBQUkJ6efsj6pIuIiIgcbgrY7QgEAkycOJHRo0fzzDPPYLFYeO6557jrrrsYOXIkwWCQSZMm8Ytf/II//vGPbN26lcmTJ2O1WvnVr37FHXfcwZIlS/j973/PoEGDeP7557n88stZsGABDoeD888/n1GjRvHkk08SCoWYMWMGP/vZz/jnP/9JWlrLL7bPPfcc99xzD/379ycvL49Zs2Yxe/ZsbrvtNgYNGsSzzz7LCy+8wGmnndbuPcyYMYMFCxZwyy23MGTIEN5++23uuOMOQqEQF198MQCxWIx77rmHm2++mYKCAmbOnMlvfvMb3n77bTwez+H6ukUOqVAoRGNjIw0NDdTV1VFbW0tVVRU7duygsrKSbdu2UVVV1W6QBvDabfTM8FKc4aVXhpdemenkuZ2wS5gOxWIdLtOsj5bz4bYdB3VfqRKJx3m/vIJ4PM6kU4bs8/g8j4s8j4vB+TlttvvDUSp9PiqbA1T6/Oxo9lHpC7DD5ycQjVFdXU11dTWfffbZbud0OBxGX++8vDxyc3PJzs4mKyuLrKwsY7R0t9ut/t8iIiLSpSlgtyMQCHDRRRdxwQUXGEHzmmuuYfbs2axZs4a3336bYcOGcdNNNwHQt29fbrvtNmpqamhubmb+/PnccsstnHXWWQBcf/31JBIJmpubef7553G73dx7773Y7XYAHnzwQcaOHcuCBQu44IILABg4cCDf+973AEgkEsybN4+LLrqIc845B4CpU6fy/vvvt1v+5uZm/v73vzNlyhTjHL1796a8vJxZs2bx85//3Dj2uuuuY+TIkQBceeWVLFmyhLVr1zJ8+PCUfqcih8rSpUu588472222vT9cVivd01zU+IM0hr88V1M4woqqWlZU1R5sUVNi3LhxlJSUMH/+fBYvXpyy2t8Pt+3gw5dfT8m59sXrsJPvdlHlD9AQChMKhYzWAwfqm9/8Jtdee62aoouIiEinUsBuR3Z2NhMmTGDhwoWsXLmSsrIyVq9eDUA8Hmft2rVGc++k73znOwAsX76cSCTCsGHD2uy/4YYbAHjooYcYPHiwEa4B8vLy6NOnT5s+jb169TJe19XVUVVVxZAhbWuXTjrpJDZs2LBb+Tdu3EgkEmHEiBFttp922mk8+eST1NTUGNuOO+4443Wy9vxgg4rI4fTcc88d8DOb63ZyYl4Ow7rn0T83C6/dxh/e/oDGmvrUFjKFSkpKKC4upqSkhEWLFnV2cQ5IQZqb3339NEKxGNuafKyurmN1VS1ra+rwRdofeX1f/v3vf/Pd736XwYMHp7i0IiIiIh2ngN2Oqqoqzj//fLKzsxkzZgynn346Q4YM4YwzzgDAat3z12az2fZ67j3VNsXj8TafdTqdxutkk8hdP7uncuztGrt+rnXQ39fnRbqiyy67jEcffdQY9dpkMpFIJIzn2GQyEY1G2w3h1f4gb5Vu5a3SrUDLQGUFaW7O6FVEkTeNHhkto387bZaUlvlgmojPnz/fqMFO3msqnFrYrUNNxPdLIkFzOMoOv58dzQF2+P1UNfup8gf51atv0hDq2ABvZrMZu33PI69bLBZ++MMfMnDgwFSWXkRERGS/KWC3Y+HChdTX17NkyRIj9K5ZswZoCZ99+/Zl+fLlbT7z5JNPsnDhQubOnYvNZmP58uUMGDDA2H/eeefx3e9+l/79+/Pyyy8TDoeNcFtdXU1paSkTJkxotzxZWVkUFBTw8ccftxmA7Isvvmg30Pft2xebzcbHH3/c5hfOjz76iLy8PE3lJUeVQYMG8fDDD+/1mEQiQSAQoK6ujpqaGqqrq6msrKSyspLt27ezdetWqqqqaA5HWFfbwLrahjaf7+ZxtYwO3mrxOnb/41RHXXbKUMwHOMjZ4sWLWbRoUcrCdetBzhzWA/tDQiASpWLnoGfbm31U7hz8rKLZj38fNdIej4f09HSKi4spLCw0+mDn5OSQmZlJZmYmaWlpmM3mAyqbiIiIyOGkgN2O7t27EwgEWLx4MSNGjGDjxo3ceeedQMtow7/85S/58Y9/zAMPPMC5555LaWkpjz76KBdddBEul4uf/exnPPDAA2RnZ3P88cczf/581q5dy4wZM7Db7fz9739n8uTJXHHFFYTDYe666y6ysrI4++yz91imSy+9lLvuuovjjjuOU045hQULFvD555/v1gwcWpp6n3/++Tz44INkZmYyZMgQli5dytNPP80NN9ygQYLkmGMymXC73bjdbmO0/l0Fg0HKy8spLS1l8+bNbN68mQ0bNlBdXc0OX4AdvgAfbK00js91O40RxPtkZdAnMx2Pfe8tWJIcVgtXnzbsgKbpqg+GqPYHyHW7yHQefH/j5DRd+xKOxajyBYyRw1uPIL6vmujc3Fxjyq7kKOLJxWKxsGrVKgYOHKh5tEVEROSIp4DdjrPOOosVK1YwY8YMmpubKSoq4ic/+Qmvv/46y5cv56c//SmPPPIIDz74IE888QTdunXjoosu4oorrgBa+ltbLBZ+//vf09TUxIABA5g1a5bR3/mpp57innvu4fzzz8dutzN69Gjuuece0tPT91imCy64gHg8zmOPPUZ1dTVf+9rXKCkpYdOmTe0eP3XqVLKysrj33nuprq6md+/eTJs2jfPOOy/1X5jIUcDpdNKvXz/69evXZntDQ4MxD/a6detYt24d27Zto9ofpNof5MNtX4bubh4XfTIzjHmwe2V491rTbbdYyPO49quceR4Xx+dk7tdn9iUci9EUCtMYCtMQDFMbDFLrD1ITSM6DHaAuEGRv9eVZWVnG/Net58IuKCho0+VlV36/P6X3IiIiItKZTAl1uJUUSTab33UwNul8fr9ftYQp1NzcbITtdevWsXbtWrZv397usVlOB8UZXnqkp1HkTaO71003j5sMx577FHdULB6nORzBF4nQHI7gD0fxRSIEolGCkSiBaIxQNEowGiMYixHeuQ5GWrYFolH8kQjhWMeaqbvdbqMmuri42AjTPXr0OOCp/fRsSlek51K6Ij2X0hUdK8/l/uQc1WCLiOyntLQ0hg8f3mY6u8bGRtavX8/atWtZv34969evZ9u2bdQFQ9QFQ3xeWd3mHDazmWyXk0ynA6/Dhttmw2G1YDObMZtMJEgQjyeIxOOEojGC0Rj+aBR/uCVMN4dbgnSqWK1WMjIyyMrKIicnh9zcXLp162bMT11YWEhGRoa6mIiIiIjshQK2iEgKpKenc/LJJ3PyyScb23w+H5s3b2bTpk2UlpayZcsWysvLqaqqIhKPU+nzU+k7+CbSaWlpxuL1enG73Xg8HlwuF06nE7fbjdPpNBaXy2X0SU8OMuZ2uxWeRURERA6SAraIyCHi8Xg48cQTOfHEE9tsj0QiVFdXU1VVRV1dHQ0NDfh8PoLBIJFIhFgshslkwmKx4HA4cDgcRij2er2kpaWRnp6O1+vF6/Vi6cAgZSIiIiJy6Clgi4gcZjabzRhFW0RERESOHppYVERERERERCQFFLBFREREREREUkABW0RERERERCQFFLBFREREREREUkABW0RERERERCQFFLBFREREREREUkABW0RERERERCQFFLBFREREREREUkABW0RERERERCQFrJ1dABER2X/RaJTy8nLKysooLS2lvLycpqYmmpubaW5uJhKJYLFYsFgsWK1WPB4PXq8Xr9dLZmYm3bp1Iz8/n/z8fAoLC7Hb7Z19SyIiIiJHPAVsEZEjRHl5OR9//DEff/wxn332GYFAICXnNZvNFBcXc9xxx9G3b18GDhzICSecgMPhSMn5RURERI4VCtgiIl1YRUUF//nPf3jzzTfZtGlTm31Oq4Uir5uidDcFaW7SHTbcNiseuxWr2Uw8kSCeSBCNJ/BHovjCUZrDERpCYar9Iar9Qap8QQLRGKWlpZSWlvKf//wHAIvFQr9+/Rg8eDBDhgxh8ODBpKend8ZXICIiInLEUMAWEelifD4fb731Fq+99horVqwwtltMJvrnZjC4WxaDu2XRM8OD2WQ6qGslEgnqgmG2NPgoa2hmc30za2saaQiFWbNmDWvWrOH5558HoFevXgwePJgTTzyRE088ke7du2M6yOuLiIiIHE0UsFPgoYce4sUXX+SNN97o1HOIyJErHA7z8ccf85///If//ve/hMNhAEzAwLxMvtojj1MLc/HYbSm9rslkItvlINvlYFj3bKAldFf7Q6yrbWBNdSNrahrY1uQ3arlfeeUVALKzsxk4cCADBw7kxBNP5Pjjj1dfbhERETmmKWCnwMSJE7ngggs6uxgicoTx+Xx8+umnvPvuu/z3v//F7/cb+4q8bk7vmc/I4m5kuw5vX2iTyUSex0mex8mo4nwAGkNh1tU0sramkbU1DWyub6a2tpZ3332Xd999FwCr1crxxx/PoEGDGDhwIIMGDSI3N/ewll1ERESkMylgp4DH48Hj8XR2MUSkiwsEAqxbt44vvviCjz76iFWrVhGLxYz9WU47pxblMaq4G30y0/ba/Doci9MQDB+OYhuG5GczojB35/VjbKprZn1to7E0hCKsWrWKVatWGZ/Jy8tjwIAB9O3blz59+tC3b1/y8vLUtFxERESOSgrYHbR27Vruu+8+li1bRiAQID8/nwsuuICJEye2ad5dXl7O2LFjueGGG5g7dy5Op5MFCxYwYsQIpk2bxoIFC1i1ahW9e/fmuuuuY+zYsft9PWhpUv7xxx8zatQonnrqKerq6hg2bBjTp0+nb9++ADQ1NXH33Xfz2muvEYlEOPHEE5k8eTJDhgwBWn7Z/8Mf/sCbb75JY2Mjffv25corr+Tb3/724flSRY5SiUSCuro6SktL2bx5M5s3b2bdunVs3LiReDze5th8j5Nh3XM4rSiXftnp++xTHYrGmL1sLcu21xDZ5VyHms1s5uSCHH558gk4rBb652bQPzcDaLnnKn+QdTWNrNsZuLc0+KiqqqKqqop33nnHOI/dbqdbt25069aNrKwswuEwK1asIDs7G7fbjcPhwOl04nQ6sdvtOBwOY51cLBbLYb13ERERkY5QwO6AQCDAxIkTGT16NM888wwWi4XnnnuOu+66i5EjR7b7mRdffJEnn3ySQCBAWloaAPfeey+//vWvmTFjBi+88AJXX301f/vb3zj55JP363oDBw4E4KOPPsLhcDBr1iwikQg33XQT06dPZ+7cuSQSCS699FKcTid//vOfSUtLY8GCBfz0pz/lH//4B4MGDeKBBx5gzZo1zJo1i/T0dJ577jmuv/56lixZQo8ePQ7tlyrSxSUSCYLBYJttoVAIn8+H3+835pyur6+nrq6Ouro6qqqqqKyspLKyklAo1O55Mx02jstKZ2BeBoPyMunmcRn7IrF9B+ZZH6/hw23VB3dzBygSj/P+1iriiQSTRvTfbX+Gw84phbmcsrOWOxiNsam+mdL6Jsob/ZQ3+tje5CccDlNeXk55ebnx2dYBvCMsFosRxO12uxHInU4nbrcbl8uFy+XC6XTu9rr1unVodzgcWK1WbDYbVqtVtewiIiKy3xSwOyAQCHDRRRdxwQUXGE3Br7nmGmbPns2aNWva/cyECRPo169fm20/+tGPjL7av/71r/nggw946qmn2g3Ye7teMmBHo1HuvvtuMjJaapDGjx/PPffcA8B7773Hp59+ynvvvUdmZiYAN9xwA8uWLWPu3LnMmDGDsrIyPB4PxcXFpKenc+2113Lqqaca5xM5Wvz3v//l1ltv7exiAFAfirCsooZlFTWH/drjxo2jpKSE+fPns3jxYhKJxAGd58Nt1Z0W8pNisRh+v79Nv3UR6Rrsdju33Xbbbr/fiIgcCxSwOyA7O5sJEyawcOFCVq5cSVlZGatXrwbYrblnUq9evXbb9pWvfKXN++HDhxuDAx3I9XJzc9uEYa/XSyQSAWDFihUkEgm+8Y1vtDl3OBw2atYuvfRSLr/8ckaOHMnQoUMZPXo03/ve9/B6vfv8TkSOJEuWLOnsInQJJSUlFBcXU1JSwqJFizq7OCJylAqHw/znP/9RwBaRY5ICdgdUVVVx/vnnk52dzZgxYzj99NMZMmQIZ5xxxh4/43Q6d9tmtbb9umOxGGaz+YCvt7fpcOLxOGlpabzwwgu77Ut+bvjw4bz11lu8++67/O9//+Oll17iscceY/bs2Xts+i5yJLrxxht59tlnjSbJiUSiTfPf1u+Tr+PxOPF43HhvMplIJBLEYjECgQDNzc00NTXR0NCwz5pgr91Kz4w0+mSlcVxmOn2y0kg7wOm2DqaJ+Pz5840a7OT9HIhTC3PbbSK+N6FojK1NPsob/VT5g9T4Q9QGQtQHQ/jCUYIdaB6fCjabrU2T8WT/bqfTicViMf6tof3noj0deZ4O9nOp2rerAz1ne+fYn7LsqTxdRSwWo7m5mbS0tCO6v39H/y1a299npvUxyX19+vThJz/5SWpuQkTkCKOA3QELFy6kvr6eJUuWYLO1/FKcbBq+P78gLF++nDFjxhjvP/nkE0488cRDcr0TTjiB5uZmIpFIm6bqv/vd7xgwYAA/+9nPePDBBxkxYgRjx45l7NixTJ06lbPPPpslS5YoYMtRJT09nUsvvfSQnDsWi9HY2EhtbS07duygoqKCiooKtm3bRmlpKRUVFTSFo6yoqmdFVb3xud6ZaQzplsXgblkcn5OOtZ0/trVn0oj+mE2mAxrkbPHixSxatOiAw/Wug5ztSTQep6zBx4adg51tqm+msjlAR66Y7Avdun/0rgOctQ7FyeNa98F2OBy43W7jvcvlMt4fyWFJDh+/38+qVasYOHAgbre7s4sjIiJHEAXsDujevTuBQIDFixczYsQINm7cyJ133gm0NIPqqCeffJLjjjuOwYMH849//IM1a9Zwxx13HJLrfe1rX2PgwIFcf/313HzzzRQUFPD000/zwgsvMGfOHAC2bNnCyy+/zO23307Pnj357LPP2LZtG8OHD+/wPYkc6ywWC1lZWWRlZRkj+LcWCAQoLS1l7dq1rF69mtWrV1NeXs7m+mY21zfzz7VbcNusjCjI4bSiPE7slrnXsO2wWrjqtIEHNE1XfTBMtT9IrttJpnPPLWD2JMNpx27ZvWxNoYgxVdfamkY21TcRbqdGOjMzk+OOO44ePXrQrVs3unfvTlpaGjt27GDYsGHk5eXt1tJHRERE5Eii32Q64KyzzmLFihXMmDGD5uZmioqK+MlPfsLrr7/O8uXLKSgo6NB5xo8fz1//+lfWrl3LgAEDmDNnDgMGDNjv6/30pz/d57UsFgt/+ctfuOeee7juuusIBAL07duXhx9+2Kid/v3vf89dd93F5MmTqa+vp6ioiF//+tece+65+/cFicgeuVwuBgwYwIABA/j+978PQG1tLcuWLePjjz/m448/pr6+nnfKKnmnrBKPzcppRXmc3jOfftnePTbjtFvM5Hl274qyN3keJ8fnpB/U/cQTCbY1+dtMx1XRHNjtuLS0NAYMGMCgQYOMebCzsrJ2O87v95NIJMjIyFC4FhERkSOeKdGVO0EdRfr378+dd97Jj370o84uyiGzfPlyAGOebek61Nyx64rH46xYsYK3336bd955h9raWmNfvsfF6J7dGNmjG/lprr2c5dCJxuNsqmtidXUDa3eGan8kuttxPXr04MQTT2TQoEEMGjSI4uLidseY2JWeTemK9FxKV6TnUrqiY+W53J+co+oCEZFOZDabGTJkCEOGDOHyyy/n888/57XXXuOdd96h0hfghVWlvLCqlL5ZXr7aoxvDC7LbzJ2das3hCBtqm1hX28C6mkbW1zbt1tfb4XAwcOBAI0wPGDCA9PSDqxkXERERORooYIuIdBEWi4Xhw4czfPhwrr76apYuXcobb7zBp59+yoa6JjbUNfG35Rvo5nEyuFsWA3Iz6JHuId/jwtZO3+g9SSQSNIejVPuDVPmDlDf62NLgY0ujjx2+4G7HZ2RkMGTIEAYPHszgwYM57rjj1JxbREREpB36DekwSY4CLiLSEW63m29/+9t8+9vfpra21mhCvnLlSnb4gryxaTtvbNoOgNkE3TwuvHYbbpsVj92KzWwmlkgQTySIxhP4I1H8kSjN4QgNwTChvUyL1aNHD6N2evDgwRQXF++xL7iIiIiIfEkBW0Ski8vOzuYHP/gBP/jBD/D7/Xz22WcsW7aMtWvXUlpait/vp6I5QAW7Dza2r/Pm5+fTs2dP+vTpQ58+fejbt6+ae4uIiIgcIAVsEZEjiNvtZuTIkcZsAIlEgpqaGrZs2UJzczPNzc34fD7C4TBWqxWz2YzFYiEtLQ2v14vX6yUzM5O8vDzs9v2fqktERERE9kwBW0TkCGYymcjNzSU3N7eziyIiIiJyzOv4qDgiIiIiIiIiskcK2CIiIiIiIiIpoIAtIiIiIiIikgIK2CIiIiIiIiIpoIAtIiIiIiIikgIK2CIiIiIiIiIpoIAtIiIiIiIikgIK2CIiIiIiIiIpoIAtIiIiIiIikgIK2CIiIiIiIiIpYO3sAoiISPsSiQShUAifz0dzczN+vx+fz0cgEGizBINBQqEQoVCIYDBIJBIhHA4TiUSIxWLEYjHi8TgAZrMZi8WC1WrF4XDgcDhwu92kpaXh9XrJzMwkKyuLnJwccnNz8Xg8mEymTv4mRERERI4MCthHuBdeeIGpU6eyZs2azi6KiHRAOBymtraWmpoaamtrqauro66ujvr6eurr62loaKCxsZGmpiaampqIRqOdWl632023bt3o3r07BQUFFBQUUFhYSGFhIfn5+dhstk4tn4iIiEhXooAtIpICsViM+vp6amtrjQBdXV1NTU1Nm9cNDQ37fW4T4LZZcNksuKwWnFYLTqsZR3JtaVnsVgsOixmbxYzVbMJqMmE1mzCbTUZ/oDgQTySIxhKE43FC0TiBSAx/JEZzJEpTKEJDKEpdIIwvEsPv97N582Y2b968W7nMZjPdunUzAncyhHfv3p38/Hy8Xq9qv0VEROSYooAtIse0WCxGOBwmFAoZ6+SSbH4dCATw+/34/X6amprw+Xw0NjYaS319PY2NjSQSiQ5d02Y2keG0ke6w4rZa8DpspNmteO1WPHYLHpsVl9WCx94Sph1WMyYOfVDNcNqwW74cmiMUjVETCFPtD1PlD1HlC7HDF6Jy5zoci1NRUUFFRQXLli3b7XxOp5P8/Hzy8vLIy8szmp3n5uaSk5NDdna2asBFRETkqKKAfRisXbuW++67j2XLlhEIBMjPz+eCCy5g4sSJPPTQQ3z88ceMGjWKp556irq6OoYNG8b06dPp27cvAD6fj5kzZ7JkyRJ8Ph8nnngiU6ZMYfDgwcY1XnjhBR599FEqKys5/vjj+f3vf8+wYcMACAaDPP744/zzn/9kx44dHHfccVx55ZV85zvfMT772GOPccYZZ/Diiy/yla98hUcfffTwf1EiHRCLxfD5fDQ1NdHc3GwE3ubmZnw+nxGEk6E4GZJb91NOhulwOEwsFktZ2Uy0hNQMh41MZ8uS5bKT5bSR7bKTuXNtNZn4y6ebWba9nki8Y6H8cLCZTZxckMklw3vjsFpwWC0Uel0Uel27HZtIJKgPRozAXeULUeVvCd7V/hANoSjBYJDS0lJKS0v3eE2z2YzH4yEvL4/c3FyysrJ2WzIzM8nMzMTr9WI2a2xOERER6boUsA+xQCDAxIkTGT16NM888wwWi4XnnnuOu+66i5EjRwLw0Ucf4XA4mDVrFpFIhJtuuonp06czd+5cAK677jo2b97MnXfeSc+ePXn88ceZOHEir732mnGdf/zjH8ycOROn08m0adO47rrr+M9//gPADTfcwMqVK7n11lvp1asXCxcu5Nprr+Xhhx/mm9/8JgBlZWXs2LGDl156iWAweJi/JTlaJRIJYrEYkUjEWHatJW5dQxwIBPD5fG2WZIBOBmqfz3fIymsxgd1sxm41Y7e0LA6ruaUW2WLBbW1ppu22m/HYrKTZrHgcVjIcNtJsFrwOK+YONImetWwTH22rP2T3caAi8QTvb60jlkgw6eQ++zzebbPQO9NN70z3bvvCsTi1gQi1gTC1gTD1wTB1wQh1wQj1wTANwQhN4ZbB15L9zTdu3LjX65nNZmMgNq/XS3p6Ol6vF6/XS1paGh6PB7fbbSxOp9MYyM3hcGC327HZbNjtdiwWywF/TyIiIiJ7ooB9iAUCAS666CIuuOACPB4PANdccw2zZ882BiaLRqPcfffdZGRkADB+/HjuueceADZu3Mjbb7/NnDlzOP300wG49dZbSU9Pp66uzrjOHXfcYdR4X3LJJVx99dXU1NRQX1/P66+/zuOPP86ZZ54JwK9+9StWr17N448/bgRsgCuvvJLi4uJD+4XIUW/p0qXcdttth/w6TqsZl9WCLxIjHIun5JyxBARicQIpOt/hMm7cOEpKSpg/fz6LFy/ucFP1PfloWz0fbfskRaXbt+J0Fz8eWEhjKEpDKEJDsGXdGIrQGIrSGIrgi7SE8YaGhgPqx76rmTNntmkFJCIiIpIKCtiHWHZ2NhMmTGDhwoWsXLmSsrIyVq9eDWBMm5Obm2uEawCv10skEgFampcDnHTSScZ+h8PB1KlTAYx+j7179zb2p6enAy1Nw5MhfsSIEW3KdeqppzJz5sw221qfQ+RArV+//pCd22k1083tIM/jIN1hw2U188G2Oqr94UN2zSNBSUkJxcXFlJSUsGjRos4uzn5zWi2c1D2TSDxBQzBihOuGneG6KRSlNhBme3OQbU2paWGzZcsWBWwRERFJOQXsQ6yqqorzzz+f7OxsxowZw+mnn86QIUM444wzjGPsdvseP2+1duyfqL3mjnurxUokErud2+l0duhaInszYcIEevXqRV1dnfEMmkwmEokE8Xi8zWBiyb7RwWCw3SbiyT80JQWjccoaA5Q1BvarTBYTLaNs71ysyddm084Rt83YzGbsFpNxjN1iwm4147C0jMztslpw2iy4bRbcNiseW8u2AxklO9VNxOfPn2/UYCe/64NxSmFmh5qId1Q4Fqc+FKEu8GXz8PpglPpghMZwhMZghCtf+RR/dP/7w9tsNqOJuNvtNpqJu1wuXC5Xm+bhFosFs9lMdna20SJIREREJJUUsA+xhQsXUl9fz5IlS4zRcpO1yh35JTjZ7Hv58uVGn+1oNMq3v/1tbrrppn1+vn///gB8/PHHfOMb3zC2f/TRR/Tr12//bkakA+x2e5tn7WCEw2Gj73VyQLPkunXf7F0HOfP5fAQCAWMO6VgC/NE4/mhqm35bTCbS7FbSHcnFRobTRqbDRqbLRpazZYCzLJe9zejck07ug8WUukHOFi9ezKJFiw46XO86yFlHRWLxL0cZ94ep3jnQWU0gTE0gTGOo43N522y23QY5y8jIMAY6S75O9sHWHwZFRESkK1HAPsS6d+9OIBBg8eLFjBgxgo0bN3LnnXcCLeFhX/r06cO3v/1tpk+fzq233kp+fj6zZs0iFApx2mmn8eabb+7183379uUb3/gG06dPx2Qy0atXL1555RVef/11/vSnP6XgDkUOHbvdTk5ODjk5OQf0+XA43KaWPPm+dS16JBJp87517Xpyqq7kIGzJIN/c3NwyAnki0dJnOBTZZ1k8NosxoniW0043j5OfDOqBzWIypuhKs7eM3L2/U3LVByNU+0Pkuh1kOg982qtdp+lqLRCJsWPn9Fw7/EEqm7+csqsuEGZfsd7hcBjTdCX/TbOzs/F4PDQ1NXHSSSdRVFSE2+3W3NkiIiJyxFLAPsTOOussVqxYwYwZM2hubqaoqIif/OQnvP766yxfvpyCgoJ9nuOPf/wjd999N9deey3hcJhhw4YxZ84csrOzO1SGmTNnMnPmTG6++WYaGxs54YQTeOihh/jWt751sLcn0qXZ7XbsdrsxLkEqhUIhGhoajHmw6+vrqauro7a2ltraWmpqaqiurqampoZQKIQvEsMXCVC+j+btFpMJr8OKx2bBY7e2zIlt+3IEc5etZVRzp9WC02I25skuSnfhsJixmFuaudvMJqxmM2YTuwXWRCJBPNHSdDsUixGIxPFFomxtChiDitUHW0YAr/aHqfa3lH9vXC4XBQUFdO/enYKCAvLz88nPz6dbt27k5eXh9XrbDc5+v59Vq1bRo0cP3O7dRyMXEREROZKYEgfbWU9kp+XLlwMwZMiQTi6J7CoZYgYOHKgQc5glEgl8Ph/V1dVG4E4utbW11NXVUVdXR319PYHA/vUt7yiLyYTJ1DJPdzwBsQP8sZ+RkUFBQQEFBQUUFhZSWFhIUVERBQUFZGZmHlDNs55N6Yr0XEpXpOdSuqJj5bncn5yjGmwRkUPIZDKRlpZGWlraPkfqb10r3tjYaPQ3bz3wW3IwuOS6vSbwyRkKkmKJBHtqw20ymXC73aSlpRlzTGdmZhpNubt162bURienGhQRERGR9ilgi4h0EQ6Hg27dutGtW7eDOk8sFiMUChGNRonFYkSj0TYjulutViwWC06nE5vNpj7PIiIiIimigC0icpSxWCxHdTMtERERka6q/eFiRURERERERGS/KGCLiIiIiIiIpIACtoiIiIiIiEgKKGCLiIiIiIiIpIACtoiIiIiIiEgKKGCLiIiIiIiIpIACtoiIiIiIiEgKKGCLiIiIiIiIpIACtoiIiIiIiEgKKGCLiIiIiIiIpIACtoiIiIiIiEgKKGCLiIiIiIiIpIACtoiIiIiIiEgKKGCLiIiIiIiIpIC1swsgXce2bdv45JNPOPvsszu7KCIpFQ6HaWpqorGxkaamJpqamvD5fMYSCAQIBAIEg0FjCYVCRCIRwuEw0Wi0zRKPx0kkEsTj8TbXMZvNmEwmLBYLFosFq9WK1WrFZrNht9ux2+04HA4cDgdOpxOXy2Usbrcbj8eDx+MhLS3NWKelpeF2uzGZTJ307YmIiIhIRylgi+E3v/kNRUVFCthyRIjFYtTX11NTU2MstbW11NbWUldXR319PfX19TQ0NOD3+zu7uAfFbDbj9Xrxer2kpaUZ6/T0dCOEe71ePB6PsU4GdrfbjdWqH/UiIiIih4N+6xKRLicQCFBTU0N1dTXV1dXU1tZSVVVlvE+G6V1rkPfGBLhsZtw2C26rCafNgtNixmUz47CYsFvNOCxm7BYzNrMJm8WE3WLCYjJjNZswm8FiMmE2tfStMZtMmEwt5wVIAIkExEmQSEAsAbFEgng8QSSeIBpPEIklCMfiROIQicUJx+KEonGCsQShaJxANE4wGiMQTRCKxvBH4sQSEI/HaWhooKGh4YC+T7vd3qa23Ol0GkuyRr117Xrytd1ux+l0GutkzbvD4WhzLrvdfkDlEhERETnaKGAfRdauXct9993HsmXLCAQC5Ofnc8EFFzBx4kQeeughPv74Y0aNGsVTTz1FXV0dw4YNY/r06fTt25cLL7yQDz74AIAPPviAN954o5PvRo4W0WgUv9+Pz+ejubnZaKrd2NhohMa6ujpjqa2tJRAIdOjcZhNkOKxkOq1kOHeuHRYyHFbSHVbSHRYcVjML1lSzvNKHPxLHH+l4KO+qLCYo9DoY3M1DMBrHH4nhi7SsA8l1NE44lgBamsiHw+EDDuj7YrVajWbuySXZtD1Zw966yXvrxWw2E4vFDkm5RERERA43BeyjRCAQYOLEiYwePZpnnnkGi8XCc889x1133cXIkSMB+Oijj3A4HMyaNYtIJMJNN93E9OnTmTt3Lg899BCXX3453bt3Z9q0aZ18N0enRCJBJBIx+u8CRg1sclssFjP69ra3xGKxNuvW23fd13odDAYpLy9n69atbc6/6/VanzdZntbnj8ViRKNRY51cwuGw0V852X85GAwSCASIRCIH9H05LCYynFaynFYyHVYyXFaynDYyHRYyXTu3Oa2Y99E3efay7Szb3nxAZeiqYgnY0hgi32PnlycX7PG4aDxBMBonFIsRjO58Hf2y5jwcTxCOfVmzHo4ndtast1rHd9a6xxKEYnEisTihWMu5duZ3otGo0bf9QDmdTiOIJ5u2J0N769ryZC166xp3m81mLMl+71arFYvFgt1uJzs7+4DLJSIiIrI/FLCPEoFAgIsuuogLLrgAj8cDwDXXXMPs2bNZs2YN0PJL8N13301GRgYA48eP55577gEgMzMTm82G0+nUL6OHQCKR4Le//S0ff/xxZxfliBGKJdjhi7DDd2ABvbOMGzeOkpIS5s+fz+LFi40/phwKH21v4qNXDjzUHmq5bhsji7z4o3ECkTi+SGxnK4Iv16GdKT05uFx1dXXKy1FSUsKkSZNSfl4RERGRXSlgHyWys7OZMGECCxcuZOXKlZSVlbF69Wrgy1rS3NxcI1wDeL3eA65dlP1XX1/f2UWQw6CkpITi4mJKSkpYtGhRZxenU1lNJjJdVhzRBA5LDLvVjN0Sw24x47DEcFjMNIWj+A5xs/3m5qOrBYOIiIh0XQrYR4mqqirOP/98srOzGTNmDKeffjpDhgzhjDPOMI7RQESdx2Qy8dBDD1FaWgq01Gi3nnYp+T6RSOxXE/F9rZOvQ6EQFRUV5OTktJlial/nTx7Xuon43pqHRyIRo3n4wfSrdVpMpO/sU525s491lstKhqNl3dHm4dDSRPyj7Yevlnf+/PlGDXby3/RQOaXAu9cm4klfNhVvaRoe2jnAWjiWILyzr3Z452BsySbgkZ3NwiOxBOH4l83GQzv3h3eeJxhtGbStPRW+MPM+39Hh+zGbzcbo5637dDudTtxud5tB1nYdjG1PTcRtNht9+/btcBlEREREDoYC9lFi4cKF1NfXs2TJEmw2G4DRNPxQ/oIvHWe1WjvtF32/38+qVasYOHAgbrf7sFwzGo0a80snBzhLDnKWHOisoaHBmE4rOeVWKBQiGEsQ3Efz8NYDnLVeMnYObpbusJLhtHDRsHzMZvhkezOR+KH/b2Hx4sUsWrTokIZrq8lEr0wHx+e4+NeGWmOAs9ZNrwM7m2UHonGih+G+4cvBzlrP5d16bu/WA54lpxOzWq1s376dYcOGkZOTo/m+RURE5IimgH2U6N69O4FAgMWLFzNixAg2btzInXfeCbSMINwRHo+HrVu3UlFRQffu3Q9lceUYYLVajbmb94ff76e2ttaYpqumpoaqqqrdpu2Kx+PUBaPUBaP7PKfdYsJjM+OyWVqm6rKacdosuKwmnDun53JYzdgtJuwWM3azGZulZaoui8mE1WzCYjZhMbVMz2XeOV1X6yiYjLB1wSg1/giZTgseu4VYHCLxONE4LTXC8fiXg4rtnJ4rWRMcjCUI7gzHwZ0B2R9tGaCstWgiwYa6IBvqgvv13dpstt0GC2tv0LD2pu1q7zPJ2uVkbfOBtJLx+/0EAgHcbrfCtYiIiBzxFLCPEmeddRYrVqxgxowZNDc3U1RUxE9+8hNef/11li9fTkHBvpuRjh8/nt/85jd8//vf53//+x8Wi+UwlFykrWSz4B49euzxmFgsZtR4JwN3cm7s2tpaY8qv+vr6lubrsQThWIz60JE9HVRypO309HTjjxfJWuFkjfCuNcfJ79PlcmG16ke+iIiIyKFkSqj9sKTI8uXLARgyZEgnl0R21RlNxLuCRCJBIBCgoaGBpqYmGhoajGbqPp8Pn89nzNGdHMU6EAgY040l+5ZHo1EikQjRaNQYNHBfzGYzNpvNmCrKZrPtVhvcehqq1vNH79qkOhmkk90/jibH6rMpXZueS+mK9FxKV3SsPJf7k3NUnSEiRy2TyWQE14604uiI5MBvyXVym8lkwmQyYTabMZvNau4sIiIicgxSwBYR2Q8mk0ndJ0RERESkXebOLoCIiIiIiIjI0UABW0RERERERCQFFLBFREREREREUkABW0RERERERCQFFLBFREREREREUkABW0RERERERCQFFLBFREREREREUkABW0RERERERCQFFLBFREREREREUkABW0RERERERCQFFLBFREREREREUkABW0RERERERCQFFLBFREREREREUsDa2QUQETmaJBIJwuEwoVCISCRCLBYDwGQyYbVasVqtOBwObDYbJpOpk0srIiIiIqmkgC0i0kGNjY1s27aN7du3U1lZSVVVFdXV1dTX11NfX09zczM+n494PL7Pc5nNZtxuNx6Ph7S0NLxeLxkZGW2WrKwsMjMzjbXH41EoFxEREenCFLA7Wf/+/bnzzjv50Y9+1NlF4f333+eiiy7i9ddfp0ePHp1dHJFO09jYyKZNm9i0aRObN2+mrKyMLVu20NDQsF/nMQGWnR1xEgmIJb7cF4/HaW5uprm5mcrKyg6dz2q1kp6eTkZGBunp6Xi9XtLS0khLS8Pj8eB2u3G5XDidTpxOJw6HA4fDgd1ux2azYbPZsFqt2Gw2LBaLsbZarZjN6jEkIiIicrAUsEXkmBWLxdi+fTsbN25kw4YNxrq6unqPn8l0mslzW8hzW8hyWchymvHYTJhM4LGacdpM2C0mbGYTFnPb2uZEIkEsAZFYgnA8QTiaIBBN4I/GCYQT+CIJfJE4vkicplACXzhOcyROUzhOOAbRaJTa2lpqa2tT/l2YzWYjbFutVuN1MpjbbDajaXsywDudTlwuF263G7fbbYT9XWvjrVb9X42IiIgcG/Rbj4gc9WKxGDt27GDLli2UlZVRWlrKpk2bKC0tJRQKtfuZXLeFHl4rRV4rhV4LBWlWuqdZcVi/DM2haIL/+6yBTytCRPbdKrxLi8fjxONxIpFIys/t9XrJzs4mOzubnJwccnJyyMvLIycnB6/XS1NTU4ea1YuIiIh0dQrYXcDGjRsZP348X3zxBcXFxVxzzTWMGzcOaPml94knnuCFF15g69at2O12Tj75ZKZNm0bPnj2BlmbmV111FS+++CKRSISnnnqKiRMn8p3vfIe33nqLmpoaHnroIU499VRmz57NM888Q3V1Nb179+aSSy7h+9//fmfevshBCwQC1NbWsn37dmpqaqiurqa6uprKykoqKiqoqKggGo22+1mbCQrTLfTw2uiRngzUVty29ptMh6JftvOe82kDH29vP6AfSYZ2szN+sJd4HGKJBLGd62gcovEv15FYgkg8QTgGkXiCYDRBKJogGI0bNfH+8M5a+HCc5p1ZvampiaamJkpLS/dYBqvVagTv3NxccnNzycnJMUJ5dnY2WVlZuN1u9UMXERGRLksBuwt48sknufnmm7nzzjtZsGAB119/PcXFxQwePJi5c+cyZ84c7rrrLk444QTKysq45ZZbmDFjBo8++qhxjqeffponnniCWCxG7969AXjqqaf485//jNfrpX///tx///0sXLiQadOmcdxxx/Hhhx9y66230tTUxAUXXNBJdy9Hu4aGBrZs2dLuvng8TiwWIxaLEYlE2izhcJhwOEwwGCQUChEIBPD7/fj9fnw+nxHaGhsb91gL3RGRBJQ2xChtiB3wOQ7GuHHjKCkpYf78+SxevJhEIrHvD6XY5zvCfP5GzWG/bmvRaJTKysp99ke32Wxt+qB7vV6j/3nrPujJvuet+5/b7Xb69++vJusiIiJyyOi3jC5gwoQJjB8/HoDrrruO9957j7/+9a/ce++99OzZk7vuuotvfOMbABQVFXHWWWexePHiNuc499xzGTJkSJttZ5xxBqNGjQLA7/fz17/+lZkzZ3LmmWcC0LNnT7Zu3cqcOXMUsOWQqKqq4uc///kea48FSkpKKC4upqSkhEWLFnV2cTpF3ywbk4anUx+KUxuIUxeMUR9svY5T7W/5A0gkEjFaKByIb33rW0yePDmVxRcRERExKGB3ASNGjGjzftiwYbz33nsAjBkzhs8++4wHHnjAGNV4/fr15Ofnt/lMr169djtv623r168nFApx4403thktOBqNGrWEIqnmcDhIT08/JINy7YnXbiLLaSbLaSFn52BkeW4L3dKsZDvNmFPYvDgVTcTnz59v1GCbTKZOqcEeUeDgkpMyDvt1AYLRlubklf4YdTvDdV0wTn2w5X19KE5TKHX9s7Ozs1N2LhEREZFdKWB3AbtOjxOLxbDb7QDMmjWLRx55hB/+8IeMHDmSiy++mNdff51XXnmlzWecTudu5229LflL+5/+9CeOO+643Y5NXk8kldLT0/n73/9OLBYzBtFKNgtPrqPRqNFEPLlONg8PhUKEw2ECgYCx+P1+Y3qrxsZGGhsbjXmo4/E4TeEETeEYZY27N/m2maF7Wksf6yKvlR7pVnp4rWS7zAfUr/eSkzIwmw5ukLPFixezaNGiTgnXNjOc1N3BL4ZltBm87WAlEi2jozeF4zSGWpaGUJyG4O610/5Ix+7ZbDaTnp5OZmam0UQ8PT3dmKLM4/HgcrnaNBFvPUWZ1WrFbreTmZmZsvsUERER2ZUCdhewYsUKvvnNbxrvly1bxoABAwB4/PHHueqqq5g0aZKxf86cOfv9i/hxxx2H1Wpl27ZtRnNzgLlz57J+/Xpuu+22g7wLkfaZTKbD0uc1Ho/T0NBATU0NVVVVxgBn27dvZ9u2bWzbto1IJMKWxihbGts2WXfbTBSntwTu4nQbxTsHO7NZ9h46HVYTl4/IJBJL0HCAtaz1wRg1gRg5LguZTssBnWNvYvFEy0BlieTrlnUs0XLfJpOJLY0RY2Cz1gOcxRIJInGIxlretwxw9uUSirUMdBaMJghEEvgjLYHZF4m3mfN7XxwOB/n5+cYAZ8kRxnNzc41BzjIyMrBYUv/9iIiIiKSSAnYX8Ne//pWePXsybNgwnnnmGdauXct9990HQEFBAe+++y5jxozBbDazYMEC/vWvf5Gbm7tf1/B6vYwfP54HHniAtLQ0Tj75ZN5//33uueceLrvsskNxWyKHldlsJisri6ysLPr167fb/lgsRkVFRZtpujZv3kxZWRn+SIw1NRHW1ESAQMv5TJDvsRi13QVpVvLTLOR7LDitbVud2Cwmct0HFv5y3RZ2L22rcscTLXNh76wJbgp/OT+2b+eI3f5I3Ai5wVjLyN7JELw/QTfVXC4XmZmZxr9Lcqqu5AjheXl5eDweSktLGThwIG63u/MKKyIiIpICCthdwJVXXsm8efO45ZZb6NevH7NmzaJPnz4A3H333dx22238+Mc/xuPxMGzYMKZPn86tt97Ktm3bKCws7PB1pk6dSlZWFg888AA7duygoKCAa665hl/+8peH6tZEugyLxUJRURFFRUWMHDnS2B4Oh9myZQsbNmxg48aNbNy4kQ0bNtDU1MT25hjbm2O79bNOd5jJdVnIdrX09U53mkm3m/HYTbisZpxWE3aLCauZNn2+YztrksOxL6e38kcS+COJnYE5TlP4yzDdGG4J0anKyGazGZvNhsViMdZWqxWr1Wq8tlgsxv7kvmQz6+So3A6HA6fTidPpNEbvdrvdpKWlkZaWhtfrJSMjo0NdT/x+f4ruTkRERKTzmRKdMaKOHJWWL18OsNto5tL5/H4/q1atUi1hByUSCWpra41a7tLSUrZs2UJ5eTmNjY2HvTwmk8nof5yent5uH+S0tDRcLhdut9sIv8l+yMlw3BWbWOvZlK5Iz6V0RXoupSs6Vp7L/ck5qsEWEdmFyWQiJyeHnJwcTjnllDb7mpub2bZtGzt27KCqqorq6mrq6uqor6+nqakJv99PIBAwBmqLxVoGWzObzUbNsN1uNwbkal3rmwzPyYG8ks2r09PTu2Q4FhEREZG2FLBFRPZDWloaJ5xwAieccEJnF0VEREREuhjzvg8RERERERERkX1RwBYRERERERFJAQVsERERERERkRRQwBYRERERERFJAQVsERERERERkRRQwBYRERERERFJAQVsERERERERkRRQwBYRERERERFJAQVsERERERERkRRQwBYRERERERFJAQVsERERERERkRRQwBYRERERERFJAQVsERERERERkRRQwBYRERERERFJAWtnF0BEjk3RaJSGhgYaGhpobm7G5/MRCoUIhUJEIhFisRiJRAIAs9mM2WzGarVis9mw2+04HA5jcTqdxpLcZjbr74ciIiIicngpYHdh/fv358477+RHP/pRZxdFZL+Fw2G2b9/O1q1b2bZtGxUVFVRWVlJVVUVNTQ0NDQ2H9PrJEG6z2YzFarVitVqxWCyYTCbMZjMmkwmTyWR8btfXyaV1yN816LtcLpxOJx6PB4/Hg9frxev1kp6eTkZGBmlpaQr8IiIiIscABWwROShNTU2UlZVRVlbGli1bjHVlZSXxeHyvnzUBaXZw20w4LGAxg80CFpMJswnMO7NuPJFcEkTiEItDJA7hWIJIDMIxiMQgmvjy3OFwmHA4fOhufD9YLBYyMjLIzs4mKyuL7OxssrOzycnJMdY5OTlkZWVhs9k6u7giIiIicoAUsEVkn2KxGDt27GDr1q1s2bKF8vJyI0jX1tbu8XNOK3TzmMnzmMh1m8hxmch2mcl0mchwmPDYIRqDuZ+F+awiRsTI44k9nrOrMpsgw2EiPw0CURO+cAJfOEEg2vL91dbW7vW7SkpPT28TxLOyssjMzCQzM5OMjAzS09NJT0/H6/Xi8XiwWCyH4e5EREREpCMUsLu4jRs3Mn78eL744guKi4u55pprGDduHADxeJwnnniCF154ga1bt2K32zn55JOZNm0aPXv2BOCtt97igQceYMOGDbjdbs444wymTp1KRkYGAHPmzOHvf/87FRUVdOvWjR//+MdceeWVbZrJytEtHo/T1NRkBMCamhqqqqrYsWMHlZWVVFRUsGPHDqLR6B7PkemA/DQT3dPM5KeZyPeY6ZZmxmtnr89SJAZ//TTMJ9tjh+LWDqt4AuqCCXpnWbjiVLuxPRpP0BxO0BSCplCChlCCxuQSTNAQ3rkOQhxobGyksbGRzZs3d+i6brcbj8eD2+3G7XbjdDqNJuut+6nbbDYcDgd2u91oLr9r0/lk8/nWa5fLhc1mw2w2Y7FYjCX5PrnWzwwRERERBewu78knn+Tmm2/mzjvvZMGCBVx//fUUFxczePBg5s6dy5w5c7jrrrs44YQTKCsr45ZbbmHGjBk8+uij1NbWcvXVVzNlyhTOPPNMKioquOmmm7j77ru54447eOONN/jzn//M/fffT58+ffj000+56aab6NGjB+eee25n37rsh0QiwSeffMLKlSt32x4Oh2lubqayshK73W68b25upqmpiaampn025QawmiHPbaJbmpnuO8N09zQT+R4TD38QZk1NnDU1R0ZQHjduHCUlJcyfP5/Fixcbg6mlwifbY3yyPZCy8+2L3+/H7/cftuvtSet+6q3D965LewE9HA6TlpaGzWYz9rcO+cnXyf2t/yBgtVqN/u0mk8n4t2z9etdyAsa+4uJiTj/9dLUEEBERkZRQwO7iJkyYwPjx4wG47rrreO+99/jrX//KvffeS8+ePbnrrrv4xje+AUBRURFnnXUWixcvBqCyspJwOExhYSFFRUUUFRXx+OOPE4u1hKCysjLsdjtFRUUUFhZSWFhIt27dKCws7JyblQO2ceNGpkyZkpJz5XtM9Mpsadad4zKT6zaR6zGR6TRhbqeWMpFIcKTVXZaUlFBcXExJSQmLFi3q7OIcFRKJBLFYzPj5ciS55JJLOP/88zu7GCIiInIUUMDu4kaMGNHm/bBhw3jvvfcAGDNmDJ999hkPPPAAmzZtYtOmTaxfv578/HwABg4cyDnnnMPll19OXl4eo0eP5swzz+Rb3/oWAN///vd5/vnn+c53vkO/fv0YNWoU3/nOdxSwj0C5ubnk5+dTWVl50Oeq9CWo9MVId0COe2fAdpvI85jptrMGu3XTb5PJxK9HOwgfYK7qjCbi8+fPN2qw91TTeaCGF1i4+CT7vg/cD+FYS3/upjD4wy1NzgPRBL4IBCMJ/JEEwSiEYjvX0QThnYO/JZcjr1f74dO/f//OLoKIiIgcJRSwu7hdp/aJxWLY7S2/vM+aNYtHHnmEH/7wh4wcOZKLL76Y119/nVdeecU4/r777uOqq67i7bff5r///S+TJ09mxIgRPPnkk2RnZ7NgwQI++eQT3n33XZYuXcrcuXP51a9+xdVXX31Y71MOTkZGBvPmzQNa+lRHo1EikYgxr3RDQwOrV68mPz+fWCyGz+czmoc3NjZSX19PXV2d0Qc7EonQGILGUJxNdbtfz23DaCLe3WumIM1MgddEtqv9Wu69+cVJdiymXQc5O7QWL17MokWLUhqubWYY1t3CRcPs2K37/g4SiQS+MDSEEtQHEzQEd65b9c9O9tUOpfjvD7v2v042vd51KrPkem99r3fdtq9m4rt+Nh6PU1lZSY8ePXC5XO32A9/19a5L62blyanUklOwiYiIiBxOCthd3IoVK/jmN79pvF+2bBkDBgwA4PHHH+eqq65i0qRJxv45c+YYgeGzzz7jlVde4be//S3HHXccF198MS+//DKTJ0+mpqaGd999l6amJi644AJGjBjBNddcw+9+9zteffVVBewjmNlsxm63Y7fb8Xg8QEsA9/l8DBw4ELfbvdfPJxIJGhoa2gxylpzPeuvWrVRVVeGPJNhYF2djHcCX6c9uaWli3t1rpnuamW4ekzGKuNvWftixW038coSDSKwlXB4ODcEENYE4OS4zGc7UhDCvHaJxE43hBH5fwhhFvDncEpKbQtC4c5Czhp3hObYft2uz2Yx5tZNzbKelpRmjiXs8HlwuV5vF4XAYg521nhe8K83J7ff7WbVqVYeeTREREZGuTgG7i/vrX/9Kz549GTZsGM888wxr167lvvvuA6CgoIB3332XMWPGYDabWbBgAf/617/Izc0FIC0tjaeffhqbzcZ5551HKBTi1VdfpXfv3mRlZREKhbjrrrvweDyccsopVFRU8OGHH3LKKad05i1LJzOZTMa0UCeccMJu+0OhEOXl5W3mvC4tLWXr1q2EIxG2NCbY0hijdfAG8Ngge5dpurwOkzEPtmvnXNh2C1jMJiztzIMdjSeI7pwDu2X+65am0F82iW7dNLrldTT+5eei8bZzaicSMRJAshJ717yb2Pk/iVZliMUhmkgQjSXL0dIs+0Br3zMyMtrMh73rFF3Z2dlkZmbidrtVIysiIiLSxSlgd3FXXnkl8+bN45ZbbqFfv37MmjWLPn36AHD33Xdz22238eMf/xiPx8OwYcOYPn06t956K9u2baNv37489NBDPPzwwzz99NOYzWa++tWv8sQTT2A2m/nJT35CfX09jz76KNu3bycjI4PvfOc7/PrXv+7ku5auzOFw0LdvX/r27dtmeywWo6KigrKyMsrKyigvL2fr1q2Ul5dTX1+PLwK+SDJ8H73sdjter5e0tDRj3urkHyxah+acnByysrKw2WydXWQRERERSRFTIpWj+8gxbfny5QAMGTKkk0siu+rsZriBQICKigoqKyvZsWOH0de7oaGBhoYGmpub8fl8hEIhgsHgHkeiTvYTTjaBTzaBTi6tm0Q7nU7juPbmek720W09xVNrJpPJ2JY8NtnXN9l/uXUZXC4XHo9HgXk/dfazKdIePZfSFem5lK7oWHku9yfnqAZbRA45l8tFnz59jNYX+5JIJIhGo8Z4Aq0DsYiIiIhIV6WALSJdjslkUk2wiIiIiBxxus5QsiIiIiIiIiJHMAVsERERERERkRRQwBYRERERERFJAQVsERERERERkRRQwBYRERERERFJAQVsERERERERkRRQwBYRERERERFJAQVsERERERERkRRQwBYREREREfl/9u48zsq64P//6zr7nHV21hlFUMBAXDDXXyVaSqamTbck5q20W5K2GEYoi4biluKWSiF6l37lTkkLrFtLb7tTM7QQFVSUffY5M2dfr98fZ87FDPtyYAZ5Px+Pj9dZruVzHQ447/lsIiWggC0iIiIiIiJSAgrYIiIiIiIiIiWggC0iIiIiIiJSAgrYIiIiIiIiIiXg6OsKiIgczEzTJJ1Ok8lkyGQy5HI58vm89b7dbsdut+N0OnG5XDidzj6srYiIiIjsTwrYIiIUgnI8Hqe9vZ2Ojg7C4TDhcJjOzk66urro6uoiEokQiUSIxWLE43Hi8TipVArTNHf7Ona7nbKyMrxeLz6fj0AgQCAQIBQKEQqFKC8vp6qqisrKSqqqqqiqqsLlcu3HOxcRERGRUlHAPgBGjhzJ3Llzueiii/q6KiKHnFwuR2dnJ+3t7bS1tfXaFktHRwft7e1kMpl9vp7NKBQDMIG8WSg96xONRolGo7t9zlAoRE1NDTU1NdTW1m6zraysxG6373PdRURERGTfKGCLyEHJNE26urpobW2lra3NKsUAXSwdHR29umzviscBAbeBz1V47HMZ+FwGHgd4nQZlzsJjt8PA5QCXHRw2cNq7g7VhbHPOvGmSz0MmB5k8pLKQzkEyY5LImiQyEEubxNIm0bRJNAXRlEkkBVkTOjs76ezs5P33399unW02G5WVldTU1Fit3lVVVVRUVFBRUUEwGCQUChEIBPB6vdhsmn5DREREZH9QwBaRficej1theesA3dbWRmtr6x61OBuA3w0hj0HQYxByF7ZbHkPQYxBwG2DCf72ZYcXmHJk8FNqh+xcD8LnAaYPOFOTzeVpbW2ltbd2t471eLx6Ph7KyMtxuN06n0yp2ux2bzYbNZsMwjF4FCr9AKL5XHF/ec4y5y+XC7XZTVlbWqyu83++3usP7fL7t/iJCRERE5GCngH2ArFmzhkmTJvHWW29RV1fH1KlTmThxovX+X/7yF+bPn8/777/PgAEDOPfcc7nyyiutsZerV6/m9ttvZ/ny5SQSCQYMGMDkyZOZMmUK69ev57Of/Sy//OUv+fSnP22d87rrruOjjz7it7/9Lel0mrvuuovf//73RKNRjjzySKZOncrpp58OwO9+9zvuv/9+Pv3pT/PUU09x0kkncd999x3YD0k+lopjm4vdoovjmTs7O61xzuFwmI6ODqurdjKZ3O3z+5wQ9ECozCDoMgiWdYfmYoh2G/jdYLftOtCZJjy2PM2bm3e/xbsvmEA0DccOsnHJcU6iSQgnTcJJk86kSSRV2BZaw01iaYil6f6FAdb48b5is9msVnW/3w/A0KFDqaqqIhQK9WpxDwaD+P1+fD6fWt5FRESk31PAPkAeeeQRpk+fzty5c1myZAnXXHMNdXV1jBkzhpdeeomrr76a6667jlNPPZV169YxZ84cPvzwQ+666y4SiQRTpkzhtNNO4/HHH8dut/Pkk09yyy23cMoppzB69GhOPPFEnn32WStgp1Ip/vSnPzFt2jSgELY/+OADbrvtNgYMGMBf/vIXvv3tb3PPPffwmc98BoB169bR3NzM008/vUcBRz7e/va3v/H73/++10ReO5vUK5VKkUgkSCQSVpDbky7aeyqWKZTNEZP+2No8ceJEGhoaWLx4McuWLdujCdF25c3Ned7cnCrZ+fYnuwGGAdl8ocW9+IuVopUrV+70eMMwerWIF1vfe76/tZqaGi655BKGDBlSsvsQERER2RkF7APkkksuYdKkSQBcffXVvPLKKyxcuJDbbruNBx54gP/4j/+w3q+vr2fWrFn853/+Jxs2bMDr9XLZZZcxefJkfD4fAFOnTuXhhx9m1apVjB49mosuuojZs2eTSCQoKyvjhRdeIJfLMXHiRNauXcuzzz7L008/zejRowG44oorePfdd1mwYIEVsAGuvPJK6urqDuyHI/1WU1MTs2bN2m/nH+A3GBQ0GBSwMTDQ3eLsgkffyPBRR/8Ly3ujoaGBuro6GhoaWLp0aV9Xp88cVmHj6tNdZPOF1vRo95jzSMqkOWrSFDVpiuRpippkt/P7mGJPiHg8vttd4QE6Ojr4+c9/XsI7EREREdkxBewD5IQTTuj1fNy4cbzyyisAvP322/z73/9m8eLF1vvFVq4PPviAT3/601xyySU8++yzvP3226xbt453330XwGoZPPvss5k9ezbPP/88X/jCF/j973/PWWedhd/v53//93+BQsjvKZPJEAwGe712+OGHl+6m5aBXXV3Npz/9aV588cX9cv6m7mD1JnlsBgTdhQnGgh44uc5GYDvjpX1usO3H8bul7iK+ePFiqwXbMIyStmAfO8jGpceXbgkv0zTJdc96bnZ3CLD6BZhb+geYPfbJYZLLF1qmC8UknS1M5JbKmiS7J3NLZeE3b2aIp81Cr4OU2R2y92+/gwkTJuzHs4uIiIj0poB9gGw9djCXy1njq/P5PF//+te58MILtzmupqaGlpYWLr74YiorK5kwYQKnn346Y8eO7TXe2uv1cs455/DMM89w+umn87//+788+OCDwJaw/l//9V9WC/iO6uXxePb9ZuVjw263M336dKZPn77T/XK5HOl0mmQyaXURj8fjJBIJotEosViMSCTSawx2V1eX1U04Go2SNyHcPZaYTthR7LIbhQnJQh4o9xiEPAahsu5tj+JxbL/b8K589XgXtl6TnO2bZcuWsXTp0pKGa6cNxg6yM/lYJy7Hlns0zUJg7UyadKVMurrHY0fTdAdbk2QGEhmTVA7SWZN098zmuXzv5cQONK/XS3l5uTUGu1gCgYA1QZrP57O6hxeL2+3G7XZrfLaIiIj0CwrYB8jKlSs566yzrOfLly9n1KhRABx55JF8+OGHHHbYYdb7r776KosWLWLmzJk8++yzhMNhnnvuOZxOJwCrVq0Ceo+F/dKXvsTll1/O008/TXV1NSeffLJ1foCWlhaOPvpoa/8777wTm83G97///f1013KosNvtVuDZG+l0utdEZz3Xqe45i3g4HCZnmnQkTDoSsLO2T5e9x6zhHoOge+vnhW2Zs3cQdzkMrhjvIpMrhNR91Zk0aY+bVHoL19tbpmmSzEJnAjL5whJey1Zn6UiYhBOFz6Qzuf3u1fuLzWazZhB3OBy4XC6cTqc1Q/nWs4j7/X4rNBeDtMvlYuPGjYwdOxav13vgKi8iIiKyHyhgHyALFy6kvr6ecePG8fjjj1uzggN84xvf4Oqrr+aee+7h3HPPpbGxkenTpzN06FBqamoYOHAgiUSCZcuWccIJJ7BmzRrmzp0LFIJJ0fjx4xk0aBB33303X/3qV60WnSOPPJIzzjiDG264geuvv54jjzySZcuW8ctf/tI6j0hfcrlc1NbWUltbu9P9stlsr3Wut17Cq/g8Ho+TzkFLzKQltvOQ7LDRPeN4d/d0d2G5rkD37ON+l4HfXVgL2+sEp33PQnKVF46o3PH7ebPQqhztHo8cSUFXdwt0uDs0F0N0Krd71wyFQlRWVlJRUUF5eTnl5eXWbNzFtbDLysrweDy43W5reS2Hw2GF5p7LcW29TFfxvVKIx+M0NTWV5FwiIiIifU0B+wC58sorefTRR5kxYwYjRozgwQcfZNiwYQCcc8453Hnnnfzyl7/kgQceoLy8nAkTJvCjH/3Ien/lypXcfPPNRKNRhgwZwpe//GWef/55VqxYwVe+8hXrOhdeeCF33XUXF110Ua/r33nnndx5551cf/31dHZ2Ul9fz0033bTdbuki/ZXD4ditIJ5MJq1W8K23PUskEiGbh/aESfsuWsSLXHbwOMDjLHRDd9kNXI5Ct227zbBmyza6z5Y3C92vc3mTTB7Sue6xyRmIZ0wSmT0bgxwKhaipqaGmpoba2tpej6urq6msrLR6uoiIiIjIgWWYpZxxRw5pK1asAGDs2LF9XBPZWjwe55133mH06NHqhttDOp22wnZxDe6Ojo5e63OHw2EikQiRSGS/Ljfm9XoJhUJUVFRQUVFBZWUl1dXVVFVVWSG6urr6YzdPgr6b0h/peyn9kb6X0h8dKt/LPck5asEWkUOWy+Vi4MCBDBw4cJf75vN5YrGYNWlbccmo4sRumUyGTCZDNpvFNE1M07S6UjscDmuMssfjwePxWBN2BQIBAoGANemhiIiIiBy8FLBFRHaDzWazwrCIiIiIyPZoXRMRERERERGRElDAFhERERERESkBBWwRERERERGRElDAFhERERERESkBBWwRERERERGRElDAFhERERERESkBBWwRERERERGRElDAFhERERERESkBBWwRERERERGRElDAFhERERERESkBBWwRERERERGRElDAFhERERERESkBBWwRERERERGRElDAFhERERERESkBBWwRERERERGREnD0dQUOBiNHjmTu3LlcdNFF231//vz5PPXUU7zwwgsHuGY7tqs6i0j/kMvliMfjVkkmkySTSVKpFOl02iqZTIZMJkM+nyeXy5HL5cjn8+TzeUzTxDTNbc7d87XiPsXXeh5fPF82m7VK8XrbK8X3t65Hkc1mw2az4XA4cDqduN1u3G43Xq8Xr9eLz+cjEAgQCoUoKysjHo+Tz+cZMmQIVVVVuN3u/f/Bi4iIiOwHCtglMGXKFCZPntzX1RCRPpDP50kkEsRiMaLRKNFolEgkYj3e3ms9902lUn19C/1OKBSipqaG2tpaBgwYwIABAxg4cKC19fl8fV1FERERke1SwC4Bn8+nH/hE+gHTNMnn81brarE1dnuts9lstlfLcLGluNhyXGxFLrYoJxIJ4vG4tY3FYtZ2e63H0pvdBnXlBuPr7WRyEE+bxNIQTZlEUiZdSehMmGTz0NnZSWdnJ++///52zxUIBHqF7mIQr6mpoaamhlAohGEYB/gORURERBSwd9uaNWuYNGkSb731FnV1dUydOpWJEycCvbuIb9iwgTPPPJO7776bhx9+mHfeeYfa2lq+9a1vcfHFF1vne/rpp/nVr37FRx99RHV1NQ0NDXzrW9/CbrcD0Nrayrx583jxxRfJZrOMHz+en/70pxx22GHb7ZK+s27q+Xyehx56iN/97nds3LgRl8vF8ccfz/XXX099fT1Q6FL+3e9+l6eeeopMJsNjjz3G4Ycfvh8/Ufk4Mk2TXC5HKpWySjG07qhsHWrj8XivwLujLspbB+Zid+W+YgPKXFDmBI8TvE4DjxPKnAZeJ3icBmXdzz1OeOn9HO+1HjrBPJeHj9pNAp48Xzne2es9lx0Mw8A0TRIZCCdMwgmTjrhJe3zLtj1eCOWRSIRIJLLDAO50OqmurqaqqorKykoqKioIhUKUl5cTDAYJBoMEAgH8fj9+vx+Px2P92ysiIiKyLxSwd9MjjzzC9OnTmTt3LkuWLOGaa66hrq6OMWPGbHf/uXPnMmPGDI466ih+/etfM3PmTE499VTq6upYuHAht99+O9OmTeO0007jX//6F7Nnz6ajo4Pp06eTzWaZMmUKDoeD++67j/Lycm6++Wa+/vWvs2zZsj2u+6JFi1iwYAG33HILRx11FOvWrWPGjBncfPPN3HfffdZ+v/nNb3jooYfI5XIK14eAf//739x9992sX79+h/sYhkE+n9+mNbDn861bbw/V1tw8EEsXSoG51Xb/mThxIg0NDSxevJhly5b16z+DFZvyrNjUu1v84ZUG3/v/XBiGgdcFXpfB4ND2j09lu8N2bEv47ugO4+GESSQFmUyGzZs3s3nz5t2u19bf8ZEjR3LdddcxaNCgPb5HEREROXQpYO+mSy65hEmTJgFw9dVX88orr7Bw4UJuu+227e5/+eWXc+aZZwJwzTXX8F//9V/861//YujQoTz00ENceuml1rjtww8/nHA4zK233srUqVN58803WbVqFcuWLWPYsGEA3HjjjSxcuJDOzs49rnt9fT233HILZ5xxBgBDhgzhnHPO2SasX3DBBYwdO3aPzy8Hp3vvvZd169btdJ9iUDtQIdrgQMTRj5+Ghgbq6upoaGhg6dKlfV2d/crtMBgUNBgU3P772ZxJW9xkXYfJhnCeDeE8m7tMUtmdn3fr7/S7777L3/72NxoaGkpUcxERETkUKGDvphNOOKHX83HjxvHKK6/scP/hw4dbjwOBAFBoVWlvb6e1tXWb833yk58kk8mwZs0aVq9eTSgUssI1wIABA/jJT36yV3WfMGEC//rXv7jrrrv48MMP+fDDD3n//fcZMGBAr/0OO+ywvTq/HJwuu+wybr755n41yVYpwrWNwnhfm1HY2m1g7/HYZgNH92OHzcBuA6cBdnvhudMOTnuh27LTbuBygMsGLoeB21EIeMVtmQPczm1bP3fHb5dnWLEpv+sdd8PixYutFuxiV+v+auxg2w67iO8O0yx0E+/ZdbzYih3ubsWOZ/a9ntXV1YwfP37fTyQiIiKHFAXs3WSz9V4yPJfL4XK5drj/9t7b0VI6gLXEjcPhwOHY8z+WbHbHzTMPPvgg9957LxdeeCGnnHIKl19+Oc8//zx/+MMfeu3n8Xj2+Lpy8DrttNN45pln9vk8pmla46BTqZQ1fnp746+TyaQ11nrr93pOMtbzPD3P23OJqOLkZVvLA9aKUbsckr3138e9C6YeR3Hs9Zbx1l5XYcy112l0j83uPRb7C0c7gCzvNObJ7mPOXrZsGUuXLu3X4dphgzGDbFx8nBOXY8dhOm+axFJYY7A7Er27hLfHTdK7MdTe7Xb3GoNdXl5ujcMOBAIEAgFrgkqfz4fX68Xtdm/zb72IiIjInlDA3k0rV67krLPOsp4vX76cUaNG7fF5qqurqa6u5p///Gev873++us4nU7q6+sJh8N0dnaydu1aq1W5vb2diRMn8stf/hKn00ksFut13rVr1+7wmg888ADf/e53+eY3v2m9tmDBgn77g7gcXAzDwOl04nQ68Xq9B/Ta+Xy+12Rn25s5PJfLWZOgbR3Qe84g3jPI95xBPJVKWetTJxIJa0mu4mRsAMlsoZDY83HXBoWA7rKDy1loLXfat7SkF1rbDexG4bHR3SJvM8DAwDAglTNJpLuDvMO27QV6PDQAwygU6G7Vp3A+W3eLvs0AR3ervt1mFOpgbGn5t9uMQg8Bo9AjwDC6L9N9TtMslFy+UDJ5E5cd8qbBmrY8icz2ZhEvzCTelTR36xcOlZWV1izixZnEa2trrZnEfT6fZhIXERGRA04BezctXLiQ+vp6xo0bx+OPP87q1au5/fbb9+pcX/va17jzzjupq6vjtNNO49///jf33HMPF198MYFAgFNOOYUxY8bwk5/8hJ/+9KeUlZUxb948Kisr+cQnPkEymSQcDrNgwQLOPvtsXn75ZV566SXKy8u3e71Bgwbxt7/9jQkTJmCz2ViyZAl/+tOfqK6u3odPRKTv2Ww2XC7XTnuT7E/pdJpYLGaVnmtd72gt7OIa2LFYjHw+j0mPgG711i9Ny/rByjAMKioqrODccw3sYqDuqz9zERERkZ1RwN5NV155JY8++igzZsxgxIgRPPjgg73GSO+JKVOm4HK5eOSRR/j5z3/OwIED+cY3vsHXvvY1oBAa7rvvPubOncsVV1yBYRicfPLJPPzwwzidTk4++WSuuuoqfvWrX3H33XfzqU99iqlTp7Jo0aLtXm/evHnMnj2bL33pS/h8PsaNG8esWbOYOXMmmzZtYvDgwXv9uYgcyorhvqKiYo+PNU3TWlO7WBKJhNVSvnXX+Z7d4osln89ba39vfe7tPS9uc7mcdVyxF8DWLf5bL4u29fPdXRLNMAxcLhcej4eysjK8Xq+1RFYwGMTr9ZJOpxk5ciRDhgyhqqqKqqoqnE7nrk8uIiIi0s8YpvoJS4msWLECQDOR90PxeJx33nmH0aNHH/Bu3PLxlM/nrVBeDPpQCPE2m83qXWCz2XbaVVvfTemP9L2U/kjfS+mPDpXv5Z7kHLVgi4jIHiuGaLU0i4iIiGyh6VJFRERERERESkABW0RERERERKQEFLBFRERERERESkABW0RERERERKQEFLBFRERERERESkABW0RERERERKQEFLBFRERERERESkABW0RERERERKQEFLBFRERERERESkABW0RERERERKQEFLBFRERERERESkABW0RERERERKQEFLBFRERERERESkABW0RERERERKQEHH1dARGRQ41pmkQiETo6OgiHw0QiEeLxOMlkknQ6TS6XI5/PW/sbhoHNZsNms2EYRq9imiYA+Xwe0zTJ5/PkcjnrcZHdbsdut+NwOHC5XHg8HjweDz6fj2AwSCAQIBQK4Xa7D/jnISIiIvJxoYB9gIwcOZK5c+dy0UUX9XVVdujVV1/lsssu4/nnn2fo0KF9XR2Rg1o6naaxsZH169ezceNGNm3axObNm2lqaqKlpYVMJtPXVdwuj8dDZWUlFRUVVFZWUlVVRVVVlfW4+HogEMBmUycoERERkZ4UsMVy3HHH8fLLL1NZWdnXVRE5KJimSXt7Oxs3bmTDhg1s2LCB9evXs379ehobG3u1IG+P1wU+l0GZCzwOcDoMnHawG2B0l+4GavJm4bFJ99YEjMJ7Bt37s+U4m2G9bR2fNyGXh0wOMjmTVBaSGUikTeJpyJmQTCbZtGkTmzZt2mndbTYb5eXllJeXEwqFKC8vJxgMEgqFrFJeXm4Fcq/Xi2EYOz2niIiIyMFOAVssLpeLmpqavq6GSL+STCZpbm6mqamJxsZGNm/eTGNjoxVCk8nkDo91O6Dab1DtN6jyG1T5DCq8BuVeg6AHHHaDTM4ksuNTHDimSSoH8bRJLAW5fCF0dyUhkjTpShbqGUkWXs/n87S3t9Pe3r5bp/d4PFRXV1NbW8uAAQMYNGgQgwcPprq6ut+25ouIiIjsKQXsA2jNmjVMmjSJt956i7q6OqZOncrEiROt9//6179y33338d577+Hz+Tj33HO55ppr8Hg8QKGb+U033cSzzz7L8uXLCQaDTJo0ie9973sAJBIJbrzxRv7617/S1dXF8OHDufLKK/nc5z4HQGdnJ7feeisvvvgi7e3tBINBzjzzTKZPn05ZWZm6iMshpTgOuhgS29raaG1tpa2tjZaWFqt0dnbu9DwGUOmDKr9Bjd9GTaAQqGsDBgEPO2y1TWdNfvNahrc35cnuvKG7TzhscPRgGw3HO3A5et9DNm8SS0I0ZRJNFUJ5NFUI5vG0SSwNse73IsnulvJk0mrl35phGNTW1lJfX89hhx1GXV0d9fX11NXVEQwGD9Qti4iIiOwzBewD6JFHHmH69OnMnTuXJUuWcM0111BXV8eYMWP485//zNSpU7nqqqu45ZZbWLNmDTNnzmT9+vXcd9991jluueUWfvaznzFnzhz+8Ic/cOedd3LSSSdx4oknctddd7Fq1SoefPBBgsEgTz75JNdccw3PPfccQ4cOZdq0aTQ1NXHPPfdQVVXF8uXL+elPf8qIESO4/PLL++6DEdkNpmmSTCbJZrNkMhmy2SzpdJpMJkMqlSKdTpNKpUgmk9aEYbFYjFgsRjQaJRqN0tnZSSQSobOzk3A4vMsu3EUuO5R7oaLMoMJnUO6DKm+hVbrca+CwbT9EZ3JQ6NS9rf/3epa3NvXDZN0tm4d/b8iTz2f5j/Hb/q+izAVlLoOaAPTujL6tdLbQAt6ZgM6ESThu0hYzaY+ZtEYhlTVpamqiqamJf/zjH72ODQaDDB48mEGDBjFw4EBqa2uprq6msrLS6p7ucrlKeOciIiIie08B+wC65JJLmDRpEgBXX301r7zyCgsXLuS2227jwQcf5LOf/SxXXnklAMOGDcM0Tb773e/y/vvvM2LECAC++MUvcsEFFwDw7W9/mwULFrB8+XJOPPFE1q1bh8/ns1p9vv/973PiiScSCoUAOO200zjxxBMZOXIkAEOHDuWxxx5j9erVB/qjkI+5RCLBAw88wNKlS/u6KiWRzkFzBJojJjsKzH1t4sSJNDQ0sHjxYpYtW2bNLr6v3tqU563fp0tyrh0ZWmEwcYyd1u7PuDmSpzlSCORdXV10dXXx7rvv7vb5Bg8ezIwZMxg+fPh+rLWIiIjIthSwD6ATTjih1/Nx48bxyiuvALB69WrOPffcXu9/8pOftN4rBuytf2AMBALW+MVvfOMbfPvb3+aUU07hmGOO4bTTTuO8884jEAgAhYD/wgsv8NRTT/HRRx/x/vvvs2HDBo444ojS36wc0lauXPmxCdcHi4aGBurq6mhoaDjoPnu7DY6otjG8ZktLeCprsils8m5jntVNeTZ37v4vDDZt2sRf//pXBWwRERE54BSwD6Ctl7TJ5XJW18bttTYVu686HFv+mLbXFbJ47HHHHceLL77I3/72N/7+97/z9NNPc//99/Pwww9z0kkn8a1vfYv33nuPL3zhC3z+85/nE5/4BDNmzCjZ/YkUHXvssXzzm9/kiSeesL7HxTWbe67d3NOu3odt/57kcjlSqdRud/XeEQMIeAol6DEIlhkEy6DcYxDyGpSXGfg9YCvhLNil7iK+ePFiqwV7Z5/hnhoz2LbdLuKlYJqFcdsdCZPXPsxv03q9Kx6PB4fD0et+DcPgmGOO4Qtf+MJ+qbOIiIjIzihgH0ArV67krLPOsp4vX76cUaNGAYUJzJYvX95rLPTrr78ObNtqvSN33303J5xwAmeeeSZnnnkm1113Heeeey7PPfccwWCQl156if/3//4f48aNAyCTybBu3Trq6upKdIciBQ6Hg4aGBhoaGg7I9XK5HOl0mmQyaY3BLpZIJEIsFrPGXnd1dREOh+no6KCjo4Ouri5M06QrWZgxeyPb7wZut0GF16DCC5W+wozgVd0zhFf6DJz2PQvf/zHegW15tmSTnC1btoylS5eWLFzvbJKz3ZXLFwJ0V9KkK1EIzeGESUesMAa7LWaS3MkE4qFQiKFDhzJkyBBrDHZNTY01Brs4AaSIiIhIf6GAfQAtXLiQ+vp6xo0bx+OPP87q1au5/fbbAfj617/O97//fe677z4mTpzIRx99xJw5czjjjDN2O2CvX7+e3//+98yZM4f6+nr+9a9/sWnTJo477jiqq6txOBwsXbqUyspKwuEwDzzwAC0tLaTT+3d8pcj+ZrfbKSsro6ysbI+PzWazhMPhbWYRb25utratra3k8nlao4VJubYO4AaFSdCq/QY1ARs1foOaQKEEdzCTuMthcMknnSVbpiuSNOmIm1R4DQKefW9pD3jY5pcGebOwRFc0aRJJFbbRVOG1WGrL7OHFbSK96xHrhmFQXl7OsGHDGDZsGPX19ZpBXERERA5aCtgH0JVXXsmjjz7KjBkzGDFiBA8++CDDhg0D4Oyzz+aOO+7g/vvv57777qOyspIvfOELTJ06dbfPf8MNN3DLLbfw4x//mHA4zJAhQ/jRj35kTYp28803M3/+fP7rv/6LmpoaPvOZz3D55Zfzwgsv7Jf7FTkYOBwOqqurqa6utiYA3Foul6O1tdVaA3vz5s1s3ryZjRs3snHjRuLxOB1x6IibvNec63Wsy06vlu5iK3iwzCDgNvC6Cy3i+6rSZ3BY1Z4fZ5qFZbS2LK1lEk3Sve61uWUd7ERh2a38HjaO22w2ysvLqaqqorq6mgEDBvRaB7u8vJwPPviA0aNH4/V69/wGRERERPoRwyzVQD055K1YsQKAsWPH9nFNZGvxeJx33nlHIWY/ME2TcDjMxo0bWb9+vVU2bNjA5s2bdzk+3ADcTvA4Cq3aDluhO7rN6H7TLLQCm2ah5IvPtzqHQeEYo2fpWU8gny8sv5XNQTpXCNapzJ7Pix4MBqmoqKC8vNwqoVCIYDBIeXm5tS2+Zrfbd3gufTelP9L3UvojfS+lPzpUvpd7knPUgi0isg8Mw6CiooKKigrGjBnT671MJmO1dG/atInNmzfT3NxMc3MzbW1tdHZ2YgLJDN1jkfvu951ut5tQKER5eTkVFRVUVlZapaqqytpWVFT0mnhRRERERLbQT0kiIvuJ0+m0xhRvTy6Xo6uri0gkQjweJ5lMkk6nyWazvVq+bTYbhmFgs9msx7BlbLdpmpimST6f71V6dlCy2WzY7XacTiculwuPx4PH48Hn8xEIBLa7QoGIiIiI7BkFbBGRPmK3263WbxERERE5+Nl2vYuIiIiIiIiI7IoCtoiIiIiIiEgJKGCLiIiIiIiIlIACtoiIiIiIiEgJKGCLiIiIiIiIlIACtoiIiIiIiEgJKGCLiIiIiIiIlIACtoiIiIiIiEgJKGCLiIiIiIiIlIACtoiIiIiIiEgJKGCLiIiIiIiIlICjrysgIiJ7LhaL8dFHH7Fu3To2bNhAY2Mjra2tdHR0kEgkyGazGIaB2+0mEAhQWVnJwIEDGTp0KIcffjgjRoygvLy8r29DRERE5GNFAVtEpB8zTZOmpiY+/PBDPvjgA9asWcMHH3zA5s2bd+v4aDRKW1sbH3300Tbv1dbWMmrUKEaPHs3RRx/N8OHDcblcJb4DERERkUOHAraISD+QSCTYvHkzmzZtYuPGjaxfv55169axbt064vH4do8JlkFtwKAmYKPSD6EyA5/bwOMEuw1ME9I5SKShK2HSHjNpiZg0dZq0RU2am5tpbm7mpZdeAsDpdHLkkUcyevRoRo0axVFHHcXAgQMxDONAfhQiIiIiBy0F7H5o5MiRzJ07l4suuqik550wYQIXXnghV111VUnPKyK7lkgkaGlpobm5maamJpqammhsbLRKOBze4bF2A2qCBgNDhTKo3MagkIHXvffBN5Ux2dhhsr49z7q2wjaezvD222/z9ttvW/sFAgFGjBjB8OHDOeKIIxg2bBh1dXVq6RYRERHZDgXsQ8jixYtxu919XQ2Rj5V0Ok1bWxvt7e3blLa2Ntra2mhtbSUSiezyXGUuqPQZVPsNqgIGNQGDAUGDKr+B3VbaVmS30+CIWoMjagtzXZpmoVV7XbvJhvY8G9oLLd2RSIQ33niDN954wzrWZrMxePBgDj/8cOrq6qivr6euro6hQ4fi9XpLWk8RERGRg4kC9iGksrKyr6sgctDJ5XI0Nzezfv16Nm3axObNm2lsbKS5uZmWlha6urp2+1xuB5R7je4CFT6DYBm47AYhr4HHuf0Q3ZUAMEtzQ9vh94DTblAdMKgOwPGH2QHI5kyaukw2h00aO/M0dhZCdyKTZ8OGDWzYsGGbc1VWVjJ48GAGDRrEwIEDGTBgALW1tdTU1FBdXa1f8omIiMjHmgJ2P7VmzRomTZrEW2+9RV1dHVOnTmXixIkAzJ8/n1dffZWamhpefPFFLrzwQmbMmMGTTz7JokWLWLt2LTabjaOPPprrrruOsWPHAr27iM+fP59//vOfnHrqqTz22GN0dHQwbtw4Zs2axfDhw/vy1kX6RCKRYNOmTaxfv94a/7x+/Xo2bNhAOp3e6bEOGwQ8ECgz8LsNAh7wewyCZQZBj0HQWxgf3TNAp7MmT/0zy/+szJPN7++72zmHDUYPtnHhCQ5cji11dNgNhlQYDKkAKIRu0zSJJKG5y6S5K09zpDCuuzViEkthtd6/9dZb271WcUbzqqoqqqqqCAaDpNNpwuEwgwcPprq6msrKSux2+wG4cxEREZHSUsDupx555BGmT5/O3LlzWbJkCddccw11dXWMGTMGgH/84x9cdtllLFmyhFwux5///Gdmz57NjTfeyPjx42lpaWHOnDn87Gc/Y8mSJdu9xuuvv47b7ebBBx8kk8lw7bXXMmvWLBYtWnQgb1WkJEzTJJ/Pk8lkiMVipNNpMpkM6XSaRCJBMpkkFosRjUbp7Oyko6OD9vZ2WlpaaGpq2uUY6Eo/VPkMKnyFFuiQF0Jeg4DHoMzJbk0Els5uaYX+79ezrNzYx8m6WzYPKzbkyZtZvjR+1/9b8Dihvsqgvqp3CE6kCxOpdcRMOuKFbWfCpCsOnYnCdSKRCJFIhLVr1/Y69plnnrEe22w2ysvLqa6utoJ4ZWUlFRUVlJeXEwqFCAaD+P1+fD4fLpdLE7GJiIhIv6CA3U9dcsklTJo0CYCrr76aV155hYULF3LbbbdZ+0ydOpVAIABAS0sLN910E+effz4AQ4YMoaGhgdmzZ+/wGtlslnnz5hEKhQCYNGkSt9566/66JZEdWrt2LbNnz2b9+vV9XZXtypnQEoGWiMn+7KpdChMnTqShoYHFixezbNkyTHP367tyY56VG3feWr8/lLmgygeRFEQSkM/nrZbwPXXddddxxhln7IdaioiIiOyaAnY/dcIJJ/R6Pm7cOF555RXreVVVlRWuAU488UQ++OAD7r33XtasWcPatWtZtWoV+fyOW8iqq6utcA2FrpuZTKaEdyGye958881+G64PNg0NDdTV1dHQ0MDSpUv7ujq7pcpncP5xdiLJQkv35nBhkrXNnXv+y4xXX31VAVtERET6jAJ2P2Wz2Xo9z+VyvZbF8Xg8vd5/5plnmDZtGueddx7HH388kyZNYvXq1TttwdYyO9JfTJw4EcMwePPNN/f5XMWu4qZpkslkSKVSpFIpEokEsViMSCRCNpvd5XnKy+ie9GvLrN6VPgO/e/e6g+/K/uoivnjxYqsF2zCMPWrB/sQQ2251Ed9d2ZxJVwLCCZNIwqQrWdhGkhBJmUQTEEnChg6T+17Y9Z9Jset4MBgkFArh9Xp7jdWurq6moaGhZPUXERER2VMK2P3UypUrOeuss6zny5cvZ9SoUTvc/8EHH6ShoYFZs2ZZrz3//PNAIXBofKL0Zy6Xi/PPP98a4rA/maZJIpGgo6ODtrY2mpubaWxsZNOmTdYkZ5FIhHB3MHy/uXdAddnZMg67DILd47ALBQIeA68bbLv4O/el8Q5sRpZ3NpV2krNly5axdOnSPQrXO5rkbHdk8ybt0S0TnbVFTdpihdeiyd3vUB8KhaipqaGqqsoae11TU2NNiFZZWUkwGNzml48iIiIi/YkCdj+1cOFC6uvrGTduHI8//jirV6/m9ttv3+H+gwYNYvny5axcuZJAIMALL7zAY489BhTW6dXSOCIFhmHg9Xrxer0MGTJkm/dN0yQcDlszifecTby5uZl099JVTV07jo42A3xuCJYVgncxiJeXFZbjKvcWlue6+CQnmVwhiJZKJGkSjpmU+wrX3h3FZbp2JpcvhOemzsK9N3eX9phJficp2u12U1NTY5Wek5ZVVVXh9XppbGxk7NixWkNbREREDnoK2P3UlVdeyaOPPsqMGTMYMWIEDz74IMOGDdvh/jNmzOD666/n0ksvxeVyMWrUKObNm8c111zDihUrGD9+/AGsvcjByzAMKioqqKio4Jhjjun1Xjqdtlq8m5qaaGlpoa2tjba2NmtSrs7OTvLdS1lFkjueFM1uQNALFd7CzOSVPoNKv0FV93ZHa2LvSoXPoL5qrw61ZHMmjZ0mGztMNoXzbA4XwvSOWtq9Xi9Dhw61ypAhQxg4cCCDBg0iFArttAdNPB6ntbV13yosIiIi0k8Y5p4M0BPZiRUrVgBY625L/xGPx3nnnXcYPXq0Wgn3s2w2Szgcpr29nba2NlpbW2ltbaWlpYWWlhaam5tpbm4ml8vt9Dx+D9QEDGoDBgNCNgaGDAYEDdx7Gbx3pjNusr49z7q2wnZT2CS3nTBdVlbG4YcfbpX6+noOO+wwqqqq9noYir6b0h/peyn9kb6X0h8dKt/LPck5asEWESkhh8NBdXU11dXVO9wnl8vR1tZmtYRv3ry51zjwcDhMNAnRpMmHLSawJe1W+QwGlhsMDBndodtGuW/XY76LYqlC6/SmjjwbOkw2tOfpTGy7XzAY5KijjuLII49kxIgRDB8+nIEDB2oMtIiIiMhOKGCLiBxgdrud2tpaamtrt/t+LBZjw4YNrF27lrVr1/Lhhx/y4YcfFrqjxwqTiK3cuGV/h63QNTxYBn63gdsJDpuBCaSzJvE0RBKF8dLx7SxzbbPZGDZsGEcffTSjR4/m6KOPZtCgQZocUURERGQPKWCLiPQzPp+PkSNHMnLkyF6vd3Z28sEHH1jlo48+Yv369WQyGVoiJi0R2J15uwcNGsSIESM48sgjGTVqFCNHjqSsrGz/3IyIiIjIIUQBW0TkIBEKhTj++OM5/vjjrddyuZw18VpLSwudnZ0kEgkymQyGYeDxePD7/VRWVjJo0CAGDx6sMC0iIiKynyhgi4gcxOx2O4MGDWLQoEF9XRURERGRQ55mqxEREREREREpAQVsERERERERkRJQwBYREREREREpAQVsERERERERkRJQwBYREREREREpAQVsERERERERkRJQwBYREREREREpAQVsERERERERkRJQwBYREREREREpAQVsERERERERkRJQwBYREREREREpAUdfV0BE5GCVTqcJh8NW6ezspKuri66uLqLRKNFolHg8TjweJ5lMkkqlyGQyZLNZTNMEwGazYbfbcblcuFwuysrK8Hq9+P1+AoEAwWCQUChERUUFlZWV1tblcvXx3YuIiIjI1g7agD1y5Ejmzp3LRRdddMCv/Ze//IW6ujpGjBhxwK8tIvtXKpWio6NjlyUcDhOPx/usnsFgkKqqKqqqqqiurqa6uprKykqqq6ut10KhEDabOiqJiIiIHCgHbcDuKxs3buTb3/42ixYtUsAWOUjk83m6urpob2+3SkdHx3af72lottvA5wav28DrKmzLXFDmAo/TwOMEl9PAZQeHHRw2sNnAZoAJmCbk85DNQyYH6axJKgPJDCTSJvEUxFMm0RREkybRJOTyWC3lH3744Q7rZrPZrBbvYik+Ly8vt56Xl5fj9XoxDGMfP2kRERGRQ5sC9h4qdusUkb6XTqd7tSr3DMttbW29nmez2d0+r90Gfg/43QZlbhO3Y0t4LpTCY58LXA5KHEx3fi7TNElmIJoyyechnoKuBESSJpGESSQBXQmTWKrwi4W2tjba2tp2eVWXy2WF7R1ti48DgYBaxkVERES246AO2GvWrGHSpEm89dZb1NXVMXXqVCZOnAjA/PnzefXVV6mpqeHFF1/kwgsvZMaMGbzxxhvceeedrFy5EofDwYQJE7j22mupqKgAYMKECUyePJk333yTl19+GZfLxXnnnce0adNobGzkzDPPBOCyyy7je9/7HldddRUffPABt956K2+88QbZbJbTTjuNn/zkJwwZMgSAjz76iDlz5vDmm2+Sz+c5/vjjufbaaxk5ciQAq1ev5vbbb2f58uUkEgkGDBjA5MmTmTJlinUvTz31FC+88IJ171u/NnLkSL773e/y1FNPkclkeOyxx5gyZQoXXnghV111lXXchAkTrNdyuRx33HEHzz77LG1tbQwdOpT//M//5Ctf+cp+/pMT6S2XyxGLxYjFYsTjcSKRCNFolEgkQiQSsVprOzs76ezstMY872lrs9cF/jKDgAf8HqMQootbt4HfY+DzgMcJ2RwseT3Hqk0m2XzxF2v96xdsDhuMHGzjgvF2nI7ewTyf7271TphEkltav6Mpk1jxcbIQxNPZwi8rmpqaaGpq2uV1bTYboVDICt2hUMgqxTHjwWCQYDBIIBAgEAjg8XjUQi4iIiIfewd1wH7kkUeYPn06c+fOZcmSJVxzzTXU1dUxZswYAP7xj39w2WWXsWTJEnK5HP/+97/56le/ysUXX8wNN9xAS0sLs2fP5mtf+xpPPvkkdrsdgLvuuosf/ehHXHvttbz22mtMnz6dMWPGcN555/Hkk0/y5S9/mfnz53PaaaexceNGLr74Yk499VQeeeQRUqkUN998M5deeinPPPMMfr+fH/zgB4waNYr//u//JpvNcsstt/C9732PP//5zyQSCaZMmcJpp53G448/jt1u58knn+SWW27hlFNOYfTo0bv9efzmN7/hoYceIpfLcfjhh+/W/suWLePOO+9kwIAB/OUvf2HmzJkceeSRjB8/fq/+TOTgk8/nyeVyvUo2myWbzfZ6XJycK5vNkk6nrdeKJZ1OE4/HSafT1vNUKkU6nbYeFyf6SiaTJBIJksmkdczeshmFLto+D/jd4OsZmMu2PPZ5wG7bvYCXycHT/8jyzsb+Fai3ls3Dyg158qbJF0/c9p9zj7PQTb06CDtrGU9nC13RY6lC4I51B+9YauvXIZUtfGeKvQZ2l81mw+/34/P58Pv9+P1+vF4vLpeLZDLJ66+/TjAYxOPxWMXtduNyuXC73bjdbpxOJy6XC4fDgdPptLZ2ux273Y7NZlOIFxERkT51UAfsSy65hEmTJgFw9dVX88orr7Bw4UJuu+02a5+pU6cSCASsfUaOHMmMGTMAGD58OHfccQcXXHABL7/8Mp/+9KcBOP3007nssssAqKur49FHH2X58uV88YtfpLKyEoBQKITP5+O+++7D6/Vy2223WbP63n333Zx55pksWbKEyZMns27dOk499VSGDBmC0+nk5z//OWvWrCGfz5NIJLjsssuYPHkyPp/PqvPDDz/MqlWr9ihgX3DBBYwdO3a391+3bh1er5ehQ4dSW1vLpZdeyhFHHMGwYcN2+xzSfzU3N/PDH/5wt1okD2Z5EyLJQinon63NPU2cOJGGhgYWL17MsmXL9nnoyTsbTd7ZmClR7faP4jj4rq6uPrn+2WefzQ9/+MM+ubaIiIgcOg7qQXQnnHBCr+fjxo3jvffes55XVVVZ4RoKXbGPP/74XseMGjWKQCDAqlWrrNeGDx/ea59AIEAms/0fXlevXs2YMWN6LZlTU1PDsGHDWL16NQDXXHMNv/71rznppJP49re/zZ/+9CdGjRqFzWajsrKSSy65hGeffZYbbriBK664gs985jNA4QfSPXHYYYft0f6TJ08mGo3y6U9/mosuuojbb7+dyspKqqqq9ug80j81Nzd/7MP1waqhoYG6ujoaGho0r8MB8sYbb+izFhERkf3uoG7B3nqSnVwu1yvoejyeXu/v6Icr0zRxOp3W8+2tL7uzY7cnn89b55w8eTLnnHMOL774In//+9+5++67uf/++3n66acxTZOLL76YyspKJkyYwOmnn87YsWOt1vQd2d6ETVvf766OO/zww/nTn/7Ea6+9xt/+9jf++te/8tBDDzF37lwuvPDCXZ5L+rcxY8Zwzz338O6775JKpWhqamLAgAG43W5M08QwjB1ut+4qXuwu3rNreM8u4j27gWcyGWtbfJxKpcjlciW5LwPwuoszdxe6f3vdhbHUvh5dxH3ds3nvbZfh/dlFfPHixVYLdvFz3xejhxjb7SK+N0yzMIt5zy7i0aRJPF3oJh5PmsTSdHcdL4zf3hfF9b+LXcY9Hg9lZWVWt/Ce3cPdbrfVLdzpdFr/D9jRd7nIbrfzqU99St3HRUREZL87qAP2ypUrOeuss6zny5cvZ9SoUTvcf+TIkfzzn//s9dq7775LNBrdptV6R7b+AW3kyJH8/ve/J51OW8G8tbWVtWvXcskll9DW1sa9997LN7/5TS666CIuuugimpqa+NSnPsVrr71GU1MT4XCY5557zgrkxdb04g+ITqeTWCzW67pr167dZV2dTifRaNR6Ho1Ge80mvGjRIqqqqjj33HM57bTTuPbaa7niiiv44x//qID9MXHUUUdx1FFHEY/Heeeddxg9ejRer7dP6pLNZq3x18Wx14lEwtoWJzmLRqPEYjFrorNit+Kuri4SiQQmxfBXPPOOu4QXZwMPFMdllxlbHnu2THbmc4Ntq/HZF57owGbkWLUpT3bPOpPs0rJly1i6dOk+h+udTXLWk2mapLJYE5tFkyax4uMeY66Lk57l9vB+bTZbr8nNek5y5vf7rW2x+Hw+q6RSqT7/boqIiIiUykEdsBcuXEh9fT3jxo3j8ccft2bj3pErrriCSy65hDlz5nDJJZfQ2trKnDlzOProoznllFN265rFHwBXr17N0UcfzVe+8hV++9vf8uMf/5jvfOc7pNNpbrnlFioqKjj33HPxer389a9/Zd26dfzwhz/E7/fzu9/9DqfTyZgxYzAMg0QiwbJlyzjhhBNYs2YNc+fOBbAmfjr22GMJh8MsWLCAs88+m5dffpmXXnqJ8vLyndb12GOP5Y9//CNnn302wWCQu+++25rIDaC9vZ17770Xj8fDqFGjWLNmDe+88441/lyklBwOBw6Hw5prYG+k02nC4XCvmcQ7OjoIh8O0tbURDoetpbkikQi5PHTGoTO+63HZxVZwv3vLzOKDKw2GD7BhtxmUucHnMvC4wLaPLaGRhEln3CTkNQiU7f25/J7CGPTOBEQSeSIJ01qyqzh7eKR7xvDsHnYg8Hq91rJcPZfp6lkqKioIhUL4/X4t2yUiIiLCQR6wr7zySh599FFmzJjBiBEjePDBB3c6Qde4ceN4+OGH+cUvfsEXv/hF/H4/Z511Fj/84Q97dRHfmYqKCr70pS8xb9481q5dy89+9jMee+wxbr31Vi6++GJcLhennXYat956K8FgEICHHnqIW265hcsvv5xEIsHo0aN58MEHqa+vp66ujpUrV3LzzTcTjUYZMmQIX/7yl3n++edZsWIFX/nKVzj55JO56qqr+NWvfsXdd9/Npz71KaZOncqiRYt2Wtcf/OAHhMNhrrjiCgKBAFOmTOk1wdD3vvc9MpkMN954Iy0tLdTU1PCVr3yFb33rW7v1WYgcaC6Xi9raWmpra3e5b3GN7Pb29l5rYm9dwuEw+XyeeAriKZNmYGdBvNhFvdjy7fcY3V3Wu9fHdhW6ppe5wOMycDu2XSu73GdQt4Pz502TdBaSaUiku2fxTvdocU5uWfO6K7FnXbS9Xi+VlZWUl5dTWVlpheee610XH7vd7t0/sYiIiIgAYJia9UVKZMWKFQB7NJO5HBj9oYt4f5XL5ejq6qK9vd0K5MWW8OJSVMVW8q6urr3u0u20F4rdXui6Xozbpgk5s9DCnM0VlgjbU16vl6qqKqqrq6mqqrJKcdLCYpjenXkaDjR9N6U/0vdS+iN9L6U/OlS+l3uScw7qFmwRkX1lt9utlttdyWazdHZ2WoG7uC12W+/s7LTGixfHkBdXA8jsYXguTvwVCoUIhUJWy3LP4FwM1R/n/6GJiIiIHEwUsEVEdpPD4bCC7e4wTZNUKkU8HrcmeCvOym6aJqZpYrfbsdlsuFwu3G43ZWVleL3e7a5mICIiIiL9mwK2iMh+YhgGHo+nX3bNFhEREZHS07SvIiIiIiIiIiWggC0iIiIiIiJSAgrYIiIiIiIiIiWggC0iIiIiIiJSAgrYIiIiIiIiIiWggC0iIiIiIiJSAgrYIiIiIiIiIiWggC0iIiIiIiJSAgrYIiIiIiIiIiWggC0iIiIiIiJSAgrYIiIiIiIiIiWggC0iIiIiIiJSAgrYIiIiIiIiIiXg6OsKiIgc7NLpNG1tbbS3t9Pe3k5nZyednZ1EIhFisRjxeJxkMkk6nSabzZLP5zFNE8MwsNvtOJ1OXC4XHo8Hr9eLz+fD5/MRCAQIBAIEg0FCoZC1dbvdfX3LIiIiIrIdCtglNnLkSObOnctFF110QM87f/58nnrqKV544YX9Wg+RQ1Eul6OpqYlNmzaxefNmNm/eTFNTE01NTTQ3NxMOhw9ofdxuN8FgkGAwSCAQwO/34/f78fl8lJWV4fV68Xg8uN1u3G43TqfTKg6HA7vdjs1ms7Y2mw3DMKxtsfTcr+cvAux2+wG9XxEREZGDhQK2iAhgmibt7e1s3LiRDRs29CqNjY1ks9mdHm+3QaAMfB4DnxvK3OB1Gbid4HKCy2HgsBX2M4xCMc1CyeYgk4NMziSdgWQGkhmTZBoSaUikTOKpwuO8CalUipaWFlpaWg7Qp9Obw+HA7XZbYb5na3soFKKiooKKigqqqqqorq6muroan8/XJ3UVEREROZAUsEXkkJHP52lvb7daoTdt2sSmTZvYuHEjGzduJB6P7/BYhw3K/VDhMyj3G5T7oNxnEPQaBMugzAWGYVj7Z3Mm0eSe1tDY6bumaZLOUgjeGZNUGlJZSKVNUllIZyGdKQT1YmjPdpe8Cbk85POFx6ZZ2MKW54WLFKpRfL/nfta9ZbNks1lisdhu35nf76e2tpba2loGDBjAwIEDGThwIOXl5SSTe/xBiYiIiPRLCtj7wZo1a5g0aRJvvfUWdXV1TJ06lYkTJwLbduXe3muNjY3MmjWLV155hUAgwI9//ONtrvHEE0/w8MMP09TUxKmnnsrQoUO32efDDz/k8ssv55///Cfl5eVceumlfOtb3wIKQeOhhx7id7/7HRs3bsTlcnH88cdz/fXXU19fvz8+FpH9Jp/PE41G6ezsJBwO09HRYY2Hbm1ttVp7W1payGQyOzyPAYR8UBUwqAwYVPq3PA6W9Q7QO5LJmjz7eo7VG02y+RLe5AHisMFRgw2+MN6O01G4X9M0rYBeDOyZXDHQmyQzPVra0xBLFn65EE2YdCUglYFoNEo0GmXNmjXbvW4gELBC94ABA6wwXl1dTU1NDaFQCJtN83KKiIhI/6aAvR888sgjTJ8+nblz57JkyRKuueYa6urqGDNmzC6PzWazfP3rX8fv9/PYY4+RTqeZNWtWr32effZZZs+ezU9/+lNOPfVU/vznP3PnnXcyaNCgXvs99thj3HDDDcyZM4dnnnmGO+64g2OOOYZTTjmFRYsWsWDBAm655RaOOuoo1q1bx4wZM7j55pu57777Svp5yKGp54Re+XyeXC5nbXO5nNUKmslkrJJOp62SSqVIJpNWSSQSJBIJYrGYFdaKJRaLYZrmrivVLeQtBOlyXyFEF7YGIR847NsP0ZkcFJp3d+6Z13K8u3H369LfZPPw9nqTfD7HeZ/cdqy1w14oHuuVnp/X9j+7dNYkEofOuEln3KQrDp0xk3AcOmOFLvGRSIRIJMJ777233XPY7Xar63koFKK8vNzqll6cFK6srIyysrJeY89dLhc1NTW4XK59+lxEREREdocC9n5wySWXMGnSJACuvvpqXnnlFRYuXMhtt922y2P//ve/89577/HnP//ZakmeO3cuX/ziF619Hn30UT7/+c8zefJkAL75zW/y5ptv8u67725Tj+JxV155Jb/61a946623OOWUU6ivr+eWW27hjDPOAGDIkCGcc845LFu2bF9vX4T/+7//Y+bMmX1djR3qjBfKupae/aL7j4kTJ9LQ0MDixYtZtmzZHv3yoFTe3Wjy7lM7H3deKkMq4Zzj7XTGoStuEo5hBfGuhEksWZhorrW1ldbW1j0+/8CBA/n1r3+tydlERERkv1N/u/3ghBNO6PV83LhxO2yV2drq1asJhUK9ummPHj0aj8fTa5+xY8f2Ou64447b5lyHH354r+fBYJBUKgXAhAkTqKys5K677uLqq6/mggsu4Ne//jX5/EHYp1X6nUQi0ddVOKg1NDRQV1dHQ0NDn4TrA80wwOsGnwe8bgOfB3xuo/CaG9z7+KvgRCKhf9tERETkgFAL9n6w9TjBXC630+6JPWcnNgxjuz8IOhy9/6i23sfpdG5zzPZaa4o/rD/44IPce++9XHjhhZxyyilcfvnlPP/88/zhD3/YYT1FdteZZ57JuHHjrK7bxe/djrqIF7epVGqnXcTj8TjxeJxYLEYsFiMSiexxmC9zdXcP90K536DCZ1ARgEqfQZl712Osd6UUXcQXL15stWAbhtEnIXvUEGO7XcT3hmmaJNLQlYCuWKGbeDhW6CbeFYfN7TD/D7ldnsfpdFJeXk55eTmhUMhaI9zn8+H1eq3lyTweDy6XC5fLhdPppL6+frv/RoqIiIiUmgL2frBy5UrOOuss6/ny5csZNWoUUPgBceuZd9euXWs9Hj16tDUO8cgjjwTgo48+IhqN9tpn+fLlXH755dZrK1as2KM6PvDAA3z3u9/lm9/8pvXaggULDonWMjkwissz7W+5XM6a4KxY2tvb6ejooK2trdckZ/F4vDAZVxoaO6DQNXzLd77MBZV+g8oAVAaMwgRn/sI47eKEX7ty/ift2PZxkrNly5axdOnSPgnXDhscNaT3JGc9maZJLt+9rFi2MIFZMmNan2s8VejSHUuaRBIQ6Z7oLLuL/Gyz2aiurmbgwIHWTOM1NTXU1NRQXV1NVVUVgUBgtyaaExEREekrCtj7wcKFC6mvr2fcuHE8/vjjrF69mttvvx2AY489lnA4zIIFCzj77LN5+eWXeemllygvLwfgpJNOYty4cVx77bXccMMN2O125syZ06tV/Jvf/Cbf+c53ePjhhznrrLP43//9X5577jlqa2t3u46DBg3ib3/7GxMmTMBms7FkyRL+9Kc/HZBAJFJKdrudUChEKBTa5b7RaJTGxsZey3Rt3ryZDRs20NLSQiING9tNNrbD1uOyA2VQ4Teo8G1p+Q75IOQtdGm2dQc/p8PgwpMde7lMV3c9E4VW3pDXwF/WO1CapkkmW1wruxBu093LdaWzZvcyXcUlugrLdeXyW5boyvVYpstky1rcxccGsKnd5JfPZa0luvLmlmOzub0fsV5ZWcmAAQO2WaYrGo1y8sknEwwG9/LMIiIiIv2DAvZ+cOWVV/Loo48yY8YMRowYwYMPPsiwYcMAOPnkk7nqqqv41a9+xd13382nPvUppk6dyqJFi4BCK84vf/lLbrzxRqZMmYLH4+Fb3/oWGzdutM7/mc98httvv5358+dz1113ceyxxzJlyhSeffbZ3a7jvHnzmD17Nl/60pfw+XyMGzeOWbNmMXPmTDZt2sTgwYNL+6GI9AN+v58RI0YwYsSIbd5LJpNs2rSJDRs29CobN24szHDd3Rq7rgW2jpg2A/we8JcZ+D2F8cRet0GZCzwuA5cDnA5w2gv72myFIFsMsNl8oTU4kysse5XqXut6bYtJIp0nkYJE2iSegnhq23Wp+4rT6aSsrAy/32/N6F2c4buyspKqqiqqqqqsVujtDZWJx+O888472wyDERERETkYGab6BEuJFLupbz0Bm/S9YogZPXo0Xq+3r6tz0Onq6mLjxo1s2rSJTZs20djYSGNjI01NTbS2tvbJBFoul8sKtYFAAL/f32upKo/HYy1X5XK5cDgcuFwubDYbDocDu92OzWbDZrNhGMY2j4vb4n4Oh8M6R3GMcynGNeu7Kf2RvpfSH+l7Kf3RofK93JOcoyYDEZFdCAaDBINBRo8evc17uVyO9vZ2WltbaWtrIxwOEw6H6ezsJBKJEIvFiMfjpFIpUqmUtTa4aZpWqC1OyOXxeCgrK8Pn8+H3+/H7/da1i6W8vJxgMNhrZQERERER6R8UsEVE9oHdbrcm4xIRERGRQ5vWwRYREREREREpAQVsERERERERkRJQwBYREREREREpAQVsERERERERkRJQwBYREREREREpAQVsERERERERkRJQwBYREREREREpAQVsERERERERkRJQwBYREREREREpAQVsERERERERkRJQwBYREREREREpAQVsERERERERkRJQwBYREREREREpAQVsERERERERkRJw9HUFREQ+rvL5PMlkklQqRSqVIp1Ok81myefz5PN5AGw2G3a7HYfDgdvtxuPx4PF4cDqdGIbRx3cApmmSy+XI5XKYpolhGBiGgcPhwGbT72hFREREelLALoGRI0cyd+5cLrroor0+x6ZNm3jjjTc499xzAejo6OB//ud/+PKXv7xPdXvxxReZNWsWLS0t/PjHP2bhwoVceOGFXHXVVft0XpFDTS6Xo6Ojg7a2Ntrb2wmHw1aJRCJWiUajRKNR4vE4yWRyr6/ncDjw+Xz4fD78fn+v4vP58Hq9eL1ePB4Pbrcbl8tlhd5i8M3n82SzWbLZLOl0mmQyaZV4PE4ikSAej1slkUhYpfgLgUwms8M6Op1O3G43Xq8Xn89HIBAgFApRUVFBVVUV1dXV1NbWMmDAAGpqarDb7Xv9eYiIiIgcDBSw+4mf/OQnDBkyxArY8+bNY8OGDfscsH/xi18wbNgwFi1aRHl5OQsXLixBbUU+fvL5PK2trWzatInNmzezefNmmpqaaGpqorm5mfb2dqvVeW/YbWC3g90AwwADwADThLwJ+Txkc4XHANlsls7OTjo7O0tyf/tDJpMhk8kQjUZ3ua/dbmfAgAEMGTKEoUOHUldXR319PbW1tQegpiIiIiIHhgJ2P2WaZknO09nZyRlnnMHQoUNLcj6Rg5lpmnR2drJx40Y2bNjAhg0b2LhxI+vXr2fz5s2k0+mdHm8Y4POA32Pg9YDXDT63QZkbPC6DMhe4XeB2GthtJv+7Is+aRpNcHqsczOw2GD7I4KzjbNhsBrk8ZLKQypikMpBIQyJlEktCNGHSlYCumElXvNADYNOmTWzatIl//OMfvc7r8/kYNmwYw4YN47DDDuOwww6jvr6e8vLyftFNXkRERGR3KWCXyJo1a5g0aRJvvfUWdXV1TJ06lYkTJwIwf/58nnrqKV544QVr/56vffWrX+W1114D4LXXXuOTn/wkTz31FFDofr5q1SpM0+Thhx/m8ccfp7W1lcMPP5yvfe1rnH/++QC8+uqrXHHFFVx99dUsWLCAIUOGsHLlSgDuvfde7r33XlatWmVdP5PJ8KlPfYrJkyfzve99z3r98ccf55577uGvf/0rDoe+HnJwMU2TWCxGS0sLLS0tNDc309TUxObNm61wF4/Hd3i8AZT7IeiFkM+g3AcBr0HQBwFPIUjbbLsX+P7wWp73NpXmF2X9RS4PqzeaYOQ595N2nIDHBQF6fibbfj6maRJNQGfMpD1i0hGF9i6TtghEEhCLxXjrrbd46623eh0XCAQYOnQoQ4YMYfDgwQwaNIiBAwdSW1tLZWWlupyLiIhIv6MEVSKPPPII06dPZ+7cuSxZsoRrrrmGuro6xowZs8tj58+fz7e//W0GDhzI9ddfj9PpJJlM0tjYyPz58wG48847efbZZ7n++us54ogj+Mc//sHMmTOJRCJMnjwZKLQQvfjiizzxxBMkEgmqq6tpaGjg85//PFOmTOl1TafTyfnnn8/vf//7XgH76aef5vzzz1e4lj7R1tbG+vXrrefZbNbqhlycLKw4bjgWixGNRolEInR2dhIOh+no6NhlK/TOmEBHtFAKz3pu+5eJEyfS0NDA4sWLWbZsWcl6veyO1RtMVm/Ilux8tSEYf5SNti5o7TJp7TLpjEEkEuGdd97hnXfe2eYYm81GRUUFFRUVlJeXEwqFCAQC+P1+vF4vZWVl1vj0o446Sl3RRURE5IBQiiqRSy65hEmTJgFw9dVX88orr7Bw4UJuu+22XR5bXl6O0+nE4/FQWVkJYM0iXFNTQzweZ+HChdxxxx185jOfAaC+vp6NGzeyYMECK2ADTJkyhcMPP9x6brfb8Xq91NTUbHPdL33pSyxcuJA33niD4447jg8//JA33niDG2+8cR8+CZG909zczGWXXbZP45x7qgkVWqFDXoOg1+TfHxZaTD8uGhoaqKuro6GhgaVLl/Z1dfaJ02kw5nBbr+7gmWx3S3ek0OodjpmEo4UAnkgVxsy3tbXR1ta2y/P7/X6eeOIJnE7n/rwNEREREQXsUjnhhBN6PR83bhyvvPJKSc79/vvvk0ql+OEPf9hrWZyeMwMX9QzXu3LUUUcxduxYnn76aY477jiefvppjjnmGEaMGFGSeovsCY/HQzAYJBwOl+R8bRFIZ03SWUjn4Oh6g4DPoNxvUOEDl3P/ju39w2s5Vm/Yf63KixcvtlqwDcM4oC3YRw01OPeTpeue7bTTK1ynsyYdEWiLmLR1mYSjhbAdjhXC9Z4KBAJaUkxEREQOCAXsEtn6h7dcLofL5drh/tns7nevLP7g/Itf/IIjjjhim/d7Xsftdu/2eaHQin3nnXcyffp0nnnmGb7+9a/v0fEipRIMBvntb39LJpMhl8uRyWSsLuLFJaOSyeR2u4h3dXURDodpb2+nra2NcDhMPp+nM1YY97vFlsd+D1QEDCoDUOE3qAwYVAQK464d9n0P31/4pJ0/Gjne32SSze3z6baxbNkyli5dekDDtcMOIwYbfP5EO07Hvn9G6YxJW8SktQtaO/O09egevjPFXjlVVVVUVlZSXl5OMBi0uoj7fL5eXcRra2s1XltEREQOCAXsElm5ciVnnXWW9Xz58uWMGjUKKIx3jsV6/8S4du3anZ6vZ2vOEUccgcPhYNOmTZxxxhnW64sWLeL9999n9uzZe13vL3zhC9x88838+te/prW1lS984Qt7fS6RfWW320sShHK5HG1tbdYyW42NjdYkZxs3bqSzs5NoEqJJk/UtsPU464AXKnwGIR8EfQZBr0HQC/4yg0AZuBzscnZrp8PgglMcZHOFWbVLLZow6YybhLwG/rIDM9O2z7Pnv3zI5gqziBdaobe0TLdHCq/vSCgUoq6ujqFDhzJ06FBrkrMBAwbg9/v38U5ERERE9g8F7BJZuHAh9fX1jBs3jscff5zVq1dz++23A3DssccSDodZsGABZ599Ni+//DIvvfQS5eXl1vE+n4+NGzfS2NjIwIED8Xq9NDc3s379eurq6pg0aRJ33XUXfr+f448/nldffZVbb72Vb33rW/tU70AgwGc/+1nuu+8+zjzzTILB4D6dT6Q/sNvt1NbWUltby9ixY7d5PxqNWst0FZfq2rhxozXLeCQOkbgJ2wnfUGjJ9XnA6zbwuqHMBR63gcdZmFXb4zJwOcDlLIRxp93AYe9eB9sGtu61sKF7Hew8ZPOQy0Em1921PQOp7pJMmyQzkEpDsntJrFSmsF8mW1g/O5srzPJtmltqbDMKpbgGt9MOTkch/LscWHV0OwyrroXXCvV12nuv3R1Lgom5pc7F+nbXsbBMF8SSJtFk4TOM7uKXC6FQiKqqKkaNGsXw4cN7LdElIiIicrBRwC6RK6+8kkcffZQZM2YwYsQIHnzwQYYNGwbAySefzFVXXcWvfvUr7r77bj71qU8xdepUFi1aZB0/adIkfvKTn3D++efz97//nS9+8Yv8+c9/5gtf+AJ/+tOfuO6666ioqOCuu+6iubmZQYMGMXXq1JJ06b7ooot45plnuOiii/b5XCIHA7/fz6hRo6xeJkWmaRIOh61lvZqammhubqa5uZmWlhba2tqIxWJkc+y0+3l/sePp4rau6/6tu9vtZuDAgQwePJghQ4ZQV1dHXV0d9fX1OBwO3nnnHUaPHo3X692v9RARERHZ3wzzQM6MI/3S7373O+bPn8/zzz+/TxMBrVixAmC7LYbSt+LxuEJMiSSTSTo6Oujo6CAcDtPZ2UlXVxddXV1Eo1Gi0SixWIxYLEYikSCRSJBKpaxx5Dv6J9dut+NyuXC73dYyUz6fD5/Ph9/v71V8Ph9er9faz+1243Q6cTgc2O12bDYbpmmSz+et8ezpdJpUKkUymSSZTBKPx4nH49aY9p6Pi0uipVIpayx8LpfDNE0Mw8Bms+FwOHC5XHg8HquugUCAUChEZWUlFRUV1NTUUFtbSygU2mGXen03pT/S91L6I30vpT86VL6Xe5Jz1IJ9CFu5ciVr1qzh7rvv5tJLL9UsuyK7wePxMGjQIAYNGrRXxxdDbz6fxzAMDMOwQrGIiIiIHNwUsA9hb775JvPmzeMzn/kM//mf/9nX1RE5JNhsNoVpERERkY8pBexD2OTJk5k8eXJfV0NERERERORjQc0oIiIiIiIiIiWggC0iIiIiIiJSAgrYIiIiIiIiIiWggC0iIiIiIiJSAgrYIiIiIiIiIiWggC0iIiIiIiJSAgrYIiIiIiIiIiWggC0iIiIiIiJSAgrYIiIiIiIiIiWggC0iIiIiIiJSAgrYIiIiIiIiIiWggC0iIiIiIiJSAgrYIiIiIiIiIiXg6OsKiIgcykzTJJlMEg6HiUQiRCIR4vE4yWSSVCpFNpslm81imiYAhmFgs9lwOBw4HA6cTiculwuXy2U9djqdVnE4HNjtdmw2G3a73TpH8Xz5fJ58Pk8ul7O2xVJ8r6fieRwOBy6XC7fbjcfjwePxWOcXEREROVQpYIuI7EfpdJrm5mYaGxtpbGykubmZ5uZmWlpaaGtro62tjVQq1dfVLAmv10sgECAUChEKhaisrKSyspLq6mpqamqora1l4MCBeL3evq6qiIiIyH6hgC0ispdM0yQej9Pa2kpLSwstLS00NTVZpbGxkba2Nqu1eGfsNnA7we0CpwOcdnDYC68bNjCK1wTMPJgm5PKFkjchmy08zuYhn4dcDnJmYd+8WShbV8Po/o/NAKN7iwH27udW6XHtwn1vuXY2t+W88XiceDxOU1PTTu81GAwyaNAgBg8eTG1tLQAOh4MRI0bg8/l2/cGLiIiI9FMK2CJySMvn8ySTSZLJJIlEgkQiQTwet7axWIxoNGp13+7s7CQcDhMOh2lvb9+t1meHHUI+CPkMAj4Ieg28bpO318KmVtMKq/FUoRwoZvd/crvO/xaHHYYPNjj7kzacjkJX82wO0llIZSCZgkTKJJ6CWBJiCZNIAiIxk644JNPQ1dVFV1cXq1atss77xBNPAFBZWcmQIUMYOnQoQ4YMscqgQYNwu92l/QBERERESkwBez+IxWLccccdPPfcc8RiMT7xiU8wbdo0xowZw5NPPsmiRYtYu3YtNpuNo48+muuuu46xY8cCMGHCBCZNmsTrr7/Oq6++SlVVFT/96U8BuPXWW2lqauKEE05g3rx5VFVVAfDBBx9w88038/rrr+Pz+TjppJOYNm0aNTU1AHz1q1/l8MMP59133+XDDz/k+uuv55xzzuHOO+/kueeeo7m5Ga/XyymnnMINN9xAZWVl33xwIttRHKMMW8JwIpHYZrt12To0F59vXdLp9D7X0e0Ef1mhBLwQ9BkEvIVAHfRCmbsw7rmnpa+arG/eg2TbT2RzsGq9Sd7MM/GkLfNkuhyFEiiDLW3eWz+GVMakMwqdMZPOGIQjhW1HFOJJaG9vp729nRUrVmxz7erqagYOHMjAgQOtLufV1dVUVVVRWVlJKBTSOHARERHpUwrY+8HVV1/NRx99xNy5c6mvr+eBBx5gypQp3HTTTcyePZsbb7yR8ePH09LSwpw5c/jZz37GkiVLrOPvu+8+Zs6cyc9+9jNuvvlmrr32Wo444ghuvfVW4vE4U6dO5aGHHmLatGk0NTVxySWXcN555zFt2jQSiQTz58/n4osv5tlnn7XGOj755JPceuutjBw5kpqaGubNm8df/vIXbr75ZoYMGcKqVau47rrruP/++5k+fXpffXRyEMjlcvzf//0fa9assV7bOjz27BJdfK/na7lcjkwmY5V0Ot2rpFIpUqkUyWSSpqYmstnsfr6rfZPKFEpbV/EVc6vt/jVx4kQaGhpYvHgxy5Yt260u6fvqvQ0m723IleRcg6vh2+fbSWegIwIdEZP2qElHF4SjJh1RSGegtbWV1tZW3nrrre2exzAMAoEAwWCQQCCAz+fD5/Ph9Xp7TcQ2duxYjjvuuJLUXURERKQnBewSW7NmDS+99BILFizg9NNPB2DmzJkEg0FCoRA33XQT559/PgBDhgyhoaGB2bNn9zrHZz7zGb74xS8C8B//8R88//zzXHPNNRxzzDEAnHrqqbz33nsA/Pa3v2XgwIH87Gc/s47/xS9+wcknn8yyZcu46KKLABg9ejTnnXeetc/YsWM555xzGD9+vFWXU089ldWrV++HT0U+Tv7whz9wzz339HU1pIeGhgbq6upoaGhg6dKlfV2dveZ2GQysgoFV2/7CJpGmV8t3Z9Sksd2kJdx7v2L3851xOBwsXrxYk62JiIhIySlgl1gxoB577LHWa263m+uuuw4odOe+9957WbNmDWvXrmXVqlXbLINz2GGHWY/LysoAqK+vt17zeDy0tbUB8Pbbb/Pee+9t0xqTSqX44IMPtntOgAsuuID/+7//47bbbuOjjz5izZo1fPjhh1bgFtmRI488Eq/XSzwe7+uq7JTNAJezMGGYywGO7q3T3j2JWPdrhQnFDFz27n2sYwxczu6Jx5yFscdbt9Tvi6Wv5nlvQ2lamhcvXmy1YPdcgmt/OnKo0auL+L7Y0WebSJl0RAqt2OFooWt5OGbSFYNoYu+vd9hhh2k8t4iIiOwXCtgl5nDs+CN95plnmDZtGueddx7HH388kyZNYvXq1du0YG/vHDv6wT6fz3PyySdzww03bPNeIBCwHns8nl7vXX/99Tz33HN88YtfZMKECXz3u99lwYIFu5z9V2T06NE8/fTTu72/aZrk83lrPedsNture3jPLuKZTIZUKkU6nbbGRxfHSqdSKWssdXGd6J7jq4sTkxW7k+fNwoRayd0aYr29QNr7NbsNPK7CeOoyt4HXAz4P+MuMwtjrssK4a38Z2O27DuITT7JhM/J8sKkwSdi+WLZsGUuXLj0g4XrrSc72VSZr0toJHZH8lu7hkUKw3tWfncPhoKqqyhqDXV5eTnl5udVF3O/34/P5KCsro6yszFqzu6ysDJutNL8cEBEREelJAbvEhg8fDsCKFSs45ZRTAMhms3zuc5/D4/HQ0NDArFmzrP2ff/55oBBC9qZ17Mgjj+SPf/wjgwYNwuVyARAOh/nJT37CFVdcwcknn7zNMR0dHTzxxBPceeedfP7zn7deX7NmjbpMSskZhoHdbsdutx+QVsNiKO8Zwns+7jnBWfH1rV8rHlOcRTyfz5PLd8+KnYTe4XvbQOsvK8waHvQZ1uzhIX/35GdlYLMZOB0GXzjVTjZndp9z78USJp2xwrV8Zfs3OPo84NiNXyAU5fOF++uKQ1d363M42j2xWcTcZUt0dXU1Q4YMYfDgwQwcOJBBgwYxYMAABgwYQHl5uYKyiIiI9CsK2CU2bNgwPve5zzFr1ixmzpzJgAEDePDBB0mlUowYMYLly5ezcuVKAoEAL7zwAo899hhQCAV7Ez4uueQSnnjiCX70ox9x5ZVXAnDLLbewatUqjjrqqO0e4/f7CQQCPP/883ziE58gmUzy2GOPsXLlSsaNG7f3Ny/SD7hcLlwuF8FgsCTnM02TRCJBNBq1xveGw2E6OjqsGa97roOdyWSIJgpdmDe2bjvZmWF0zzZeBgGvga8MvB4Dr7vQOu5xGlY3dYcd7PYt61QbbFnPOl9cizoHLqdBZaAww3c4ahbWwM5veb/nMT0ZbFnr2lZcD9vWe13s4vuFzwJaw5A3TevcxSW60hmzsExXGhIpiCcLwTqe2nb97a15PB7q6uo47LDDGDJkCHV1ddbyXFv3vhERERHpzxSw94Of//znzJs3j+9///uk02nGjRvHggUL8Pl8XH/99Vx66aW4XC5GjRrFvHnzuOaaa1ixYsVejX+uq6vjscce4/bbb+crX/kKdrud448/nkWLFu1wuS2n08ldd93FzTffzHnnnUcoFOKkk07iBz/4Ab/85S9JJBLW2G+RQ51hGHi9XrxeL7W1tTvd1zRNOjo6aGpqoqmpicbGRqs0NTXR3NxMJpMhEodIHGg7sLON9xW73U51dTU1NTXWMluDBw9m8ODBVFZWsmHDBo4++mj1oBEREZGDnmEeiNlw5JBQXLe2uKa39B/xeJx33nmH0aNHK8T0oXw+T0dHB83NzbS0tNDa2kpbWxvhcJhwOEwkEiESiVhd2VOpFLncjgdoO53OXsXtdm/zmtPpxG63Y7PZsNlsvYaiFMfH5/N5crmcte35uLhP8TibzYbdbu91zbKyMjwejzXuORQKWeOhq6qqKC8v3+H61PpuSn+k76X0R/peSn90qHwv9yTnqAVbROQAsdls1qRco0eP3q1jegZd0zStoLx1WBYRERGRvqeALSLSjxXDtIiIiIj0f/qpTURERERERKQEFLBFRERERERESkABW0RERERERKQEFLBFRERERERESkABW0RERERERKQEFLBFRERERERESkABW0RERERERKQEFLBFRERERERESkABW0RERERERKQEFLBFRERERERESkABW0RERERERKQEFLBFRERERERESkABW0RERERERKQEHH1dARGRg10ulyMcDtPZ2UlnZyfRaJRoNEoikSCVSpFOp8lms+TzeQzDwGaz4XK5cLlceL1e/H4/wWCQ8vJyKioqCIVC2Gz6/aeIiIjIwUYBW0RkJzKZDK2trTQ1NdHc3ExLSwstLS20trbS1tZGW1sbnZ2dmKZZsms6nU6qqqoYMGAAAwcOZODAgQwaNIjBgwczePBgAoEAhmGU7HoiIiIiUhoK2CJySDNNk/b2djZv3myVxsZGq7S1te1WeDYM8LigzA1uF7id4HIaOB1gt4PdBgZgAqYJ2Rxks5DOmqTSkExDPAmJVCHUF6//r3/9a5tr+f1+K3QPGjSI2tpaamtrqampobKyUi3gIiIiIn1EAVtEPvYymQzNzc1s2rSJzZs399o2NjaSSqV2erzdBgEfBLwQ8BoEvOD3gr/MwFcGvjJw2E2Sqb1pVe59TM40iSchloBY3CSSgK4YROIQiRUCeDQa5f333+f999/f/hkNA7/fTyAQwOv14vP58Hg8uN1uHA6HVWw2GzabDcMw8Hq92O12q2W857a4n81m63V8sZu72+3G4/FQVlaG1+u1rulyufbi8xARERE5eClgi8hBL5vN0traSnNzM01NTVYptgK3tLSQz+d3eLxhFMJz0Achv9G9haCv8NjrYYddsjNZk/95zeSDjSa5XOm6ie8L0zSJRCJEIpE+rYfL5bKCfiAQIBQKEQwGCYVChEIhysvLKSsro729nQEDBuB2u7Hb7X1aZxEREZF9oYC9n8RiMe644w6ee+45YrEYn/jEJ5g2bRpjxozhySefZNGiRaxduxabzcbRRx/Nddddx9ixYwGYMGECkydP5s033+Tll1/G5XJx3nnnMW3aNBwOB7/73e+4//77+c53vsP999/P5s2bOeqoo5g+fTonnHACAMlkkgceeIBnnnmG5uZmjjjiCK688krOPvtsgN06h0hfyefzJBIJIpEI0WiUrq4uurq66OjooL29nfb2dsLhsPW4o6Njl+e024qhGYJ+CPUI0wEf2G07bn3O5qDQuXtbf3olz/sb9vJG+6GgD+oGFB6bJmAW7jxvFp7n84WS6y6ZHOSs7u6QyRReA0in09af0e4wDMOa7K1nKQbz8vJyAoEAwWCQQCCA3++nrKxM49FFRESk31DA3k+uvvpqPvroI+bOnUt9fT0PPPAAU6ZM4aabbmL27NnceOONjB8/npaWFubMmcPPfvYzlixZYh1/11138aMf/Yhrr72W1157jenTpzNmzBi++MUvArB582Yef/xxbr31Vnw+HzNnzmTatGn86U9/wjAMfvCDH/D2228zc+ZMDjvsMJ599lm+//3vc88993DWWWft1jlEdqW9vZ3f/OY3rFmzZp/Ok0qlSCaTJBIJ4vE4iUSipJOGQSEMtncVyhbmDh4fOBMnTqShoYHFixezbNmykt/3nuqKwcp9++PcYzajGOBNayb2tWvX7t6xNhs+nw+v10tZWRllZWW7bAUfMWIEX/nKV6ioqChF9UVEREQsCtj7wZo1a3jppZdYsGABp59+OgAzZ860ukbedNNNnH/++QAMGTKEhoYGZs+e3escp59+OpdddhkAdXV1PProoyxfvtwK2JlMhlmzZjF69GgArrjiCr773e/S0tJCJBLh+eef54EHHuAzn/kMAFdddRXvvvsuDzzwgBWwd3aO2tra/foZycfDQw89xPPPP9/X1TioNTQ0UFdXR0NDA0uXLu3r6vSJAVXwpTMMkhmDRPdEb5G4SVsntHWatHcWxqBvTz6f3+Pu8G+99RZut5uvfe1rJboDERERkQIF7P1g9erVABx77LHWa263m+uuuw6ADz74gHvvvZc1a9awdu1aVq1atc340OHDh/d6HggEyGQyO9wnEAgAhdC8atUqgG26ep944onccccdu3UOkd1x5pln8tJLL/XZd8ZmFCYY83nB7ylMPBb0gt9nEPQWun47Hfu3N8a+dhFfvHix1YJtGEaft2CPGAqfO7n0M5Dn8ybJNCRT3TOmpyCZNIl3v7bs7ybxpEk8BYkkpPbjV8rn83HyySfvvwuIiIjIIUsBez9wOHb8sT7zzDNMmzaN8847j+OPP55JkyaxevXqbVqwtzf77tY/eO/OPlu/t3Xd9vQcIj2NHz+eP/zhD3t1bC6XI51Ok0wmSSaTpFIpEokEiUSCWCxGNBolFotZrZPFrsPhcJiOjg4ikQh5s3t27W1aN7d8h70ek5C/MN46VBx7HSg89rp3PHnZ7vrcyTZs1iRne378smXLWLp0aZ+Ha5sNBlXB6GEGm1sLr5nd/zGL47Dzha7c+XzhXnP5wvj0THbLNp2BVMYsbNNYS5DtTWC22+3WZGjFHkA9x2AHAgGre7jP57O6iJeVleFyuXA6nSX8hERERER2TQF7Pyi2Cq9YsYJTTjkFKMxy/LnPfQ6Px0NDQwOzZs2y9i92sTVNsyRjn0eOHAnAP//5T8444wzr9ddff50RI0bs8/lFSsFut1thaG8UJ9Bqa2ujpaWFlpYWmpubrZnEGxsbicfjxJOF9aU3t2473trpoDt8Q8hXCN1Bv0Goe+Izh33Xfx+dDoOJpxpkcybxxJ7fRyxh0hUrTLbmK9v9lmMTk1gSojGIJkyiiULLb3Et7WR3uE1nd+98+TxsbIGNLd0zm+0nfr+/1yzigUCAdDrNiBEjqK2tpaKiwprcLBAIaD4IEREROagoYO8Hw4YN43Of+xyzZs1i5syZDBgwgAcffJBUKsWIESNYvnw5K1euJBAI8MILL/DYY48BhcDgdrv3+frDhw/njDPOYNasWRiGwWGHHcYf/vAHnn/+eX7xi1/s8/lF+gOXy8XAgQMZOHDgdt8vLlXV2NjYa83r4hrYLS0tZLImrWFoDcOWULklXPrKumcd716uq7D+9ZZ1sN3OLS3gDrtB0L/n9xH0Gwyq2f572axJVww6Y9AZNQlHCtvOaGEystyOVx7bhs1mw+12Wy27DocDu91urW8NvVvzDcOwnhf3sdvt2O12ax3s4vlcLlev1uNii7LP57Namostz1tPQBaPx3nnnXcYPXo0Xq93zz48ERERkX5GAXs/+fnPf868efP4/ve/TzqdZty4cSxYsACfz8f111/PpZdeisvlYtSoUcybN49rrrmGFStWMH78+JJc/4477uCOO+5g+vTpdHV1cdRRRzF//nw++9nPluT8Iv1dccmnYDDIUUcdtc376XR6m/BdfN7Y2EgymSSWgFhi+63fAA579xhwT2Gt7DKPQZkbPC5wOcHlNHA6wGErdMEu5tfiMleZbGEd7eLY5Hiq0KIdTUAkVmiJ3hm73U5tbS0DBgygpqaGmpoaqqqqrFbgYDCI3+/H5/PhcrnUGiwiIiKynxmmBtxKiaxYsQLAWs9b+g+1Eu6Z4nJRjY2NNDU10dTUZHU/L3ZF35NZq/eF1+tl4MCBDB48mEGDBjF48GDrcU1NzS6XpOrv9N2U/kjfS+mP9L2U/uhQ+V7uSc5RC7aIyFYMw7DGAY8aNWq7+6RSKVpbW2lvb6ejo4P29na6urro7OwkGo0SjUZJJBLWBG65XI58Pm91t+7ZtbrYhbqiooKKigqqq6upqamhtrZW45BFREREDiIK2CIie8HtdjNkyBCGDBnS11URERERkX6i9IudioiIiIiIiByCFLBFRERERERESkABW0RERERERKQEFLBFRERERERESkABW0RERERERKQEFLBFRERERERESkABW0RkF0zTxDTNvq6GiIiIiPRzCtgiIjthmibXXHMNP/jBDxSyRURERGSnHH1dARGR/iyZTPL2229bj8vKyvq4RiIiIiLSX6kFW0RERERERKQEFLBFRERERERESkABW0RERERERKQEFLBFRERERERESkABW0RERERERKQEFLBFRERERERESkAB+2Ni/vz5TJgwYYfvb9iwgZEjR/Lqq68ewFqJiIiIiIgcOhSwPyamTJnC4sWL+7oaIiIiIiIihyxHX1dASsPn8+Hz+fq6GiIiIiIiIocstWDvpVgsxpw5czj99NM57rjjuPTSS3nrrbcAePLJJznvvPM45phjOPbYY7nkkktYsWKFdeyECRO45ZZb+PznP89JJ53Ea6+9tlvXXLBgAWeddRZjxoxhwoQJ3HvvvZimCWzbRXz16tVcdtllHHvssXz2s5/l73//+zbn++///m8mTpzIMcccw8SJE3nkkUfI5/P78rGIiIiIiIgcstSCvZeuvvpqPvroI+bOnUt9fT0PPPAAU6ZM4aabbmL27NnceOONjB8/npaWFubMmcPPfvYzlixZYh3/2GOP8ctf/pJAIMDIkSN3eb0XXniBX/7yl9x5550MGzaMN998k2uvvZahQ4dywQUX9No3Eolw+eWXc9xxx/Hkk0/S3NzMjBkzeu3zxBNPcMcdd3D99ddzzDHH8PbbbzNnzhyampq49tprS/MhiYiIiIiIHEIUsPfCmjVreOmll1iwYAGnn346ADNnziQYDBIKhbjppps4//zzARgyZAgNDQ3Mnj271zk+/elPc+qpp+72NdetW4fL5WLIkCEMHjyYwYMHU1tby+DBg7fZ9w9/+AOJRIKbb76ZQCDAkUceyU9/+lO++93vWvvcd999fOc73+Hcc88FoK6ujmg0yqxZs/j+97+P2+3e489FRERERETkUKaAvRdWr14NwLHHHmu95na7ue666wD44IMPuPfee1mzZg1r165l1apV23S9Puyww/bomueffz7//d//zdlnn82IESM49dRTOfvss7cbsFevXs3hhx9OIBCwXjvuuOOsx+3t7TQ2NnLHHXdw1113Wa/n83lSqRQbNmxg+PDhe1Q/ERERERGRQ50C9l5wOHb8sT3zzDNMmzaN8847j+OPP55JkyaxevXqbVqwPR7PHl2zsrKSJUuW8MYbb/C3v/2Nl19+mUWLFnHVVVfxve99r9e+hmFsE+h71rn43nXXXbfdVvRBgwbtUd1EREREREREk5ztlWLrbs+Jy7LZLBMmTOD++++noaGBm2++mcmTJ3PiiSeyfv16AGtCsr3x+9//nt/+9reccMIJTJ06lf/3//4fX/7yl/njH/+4zb6jRo3io48+or293XqtOAEbQFVVFZWVlaxfv57DDjvMKitXruQXv/jFXtdRRERERETkUKaAvReGDRvG5z73OWbNmsUrr7zChx9+yIwZM0ilUgwdOpTly5ezcuVK1q1bx8KFC3nssccASKfTe33NVCrFLbfcwtNPP82GDRt4/fXX+cc//tGr63fRueeeS1VVFT/84Q959913ee2117jpppus9w3D4Bvf+AaPPvoojz32GOvWrePPf/4zM2fOxOPx4HK59rqeIiIiIiIihyp1Ed9LP//5z5k3bx7f//73SafTjBs3jgULFuDz+bj++uu59NJLcblcjBo1innz5nHNNdewYsUKxo8fv1fX+/KXv0w4HOa+++5j8+bNhEIhzj77bH70ox9ts6/X6+WRRx5hzpw5fOUrXyEUCjF16lRrjDjAlClTcLvdPProo9x8881UV1fzH//xH0ydOnWvPxMREREREZFDmWHuS79lkR6KXebHjh3bxzWRrcXjcd555x1Gjx6N1+vt6+ocVBKJhLUU3pIlSygrK+vjGn286Lsp/ZG+l9If6Xsp/dGh8r3ck5yjLuIiIiIiIiIiJaAu4v3A+PHjyeVyO3y/qqqK//mf/zmANRIREREREZE9pYDdD/zud7/b6Qzjdrv9ANZGRERERERE9oYCdj9QX1/f11UQERERERGRfaQx2CIiIiIiIiIloBZsEZGd8Hg8fOITn7Aei4iIiIjsiAK2iMhOGIbBHXfcYT0WEREREdkRBWwRkV1QsBYRERGR3aEx2CIiIiIiIiIloIAtIiIiIiIiUgIK2CIiIiIiIiIloIAtIiIiIiIiUgIK2CIiIiIiIiIloIAtIiIiIiIiUgIK2CIiIiIiIiIloIAtIiIiIiIiUgKOvq6AiMjuyuVydHV10dnZSVdXF5FIhGg0SiwWIx6PE4/HSSaTJJNJUqkU6XTa2mazWTKZDJlMhlwuRy6XI5vNksvlyOfzvYppmlbZHsMwrK1hGNhsNmtrt9ux2+3YbDacTicOhwOn04nL5cLtduPxePB6vXi9Xvx+P4FAgPLycsrLy6msrKSqqory8nLrGiIiIiJy8FDA3ksTJkzgwgsv5KqrrmL+/Pk89dRTvPDCCwCMHDmSuXPnctFFFx2w+rz44ovMmjWLlpYWfvzjH3PZZZcdsGuLlEI2m6WlpYXGxkZaWlpobm6mpaWF1tZW2traaG9vp7Ozc4eh9+PE6XRSW1vLwIEDGTRoEIMHD2bo0KHU1dUxcOBA7HZ7X1dRRERERLZDAXsvLV68GLfbvd33Xn75ZQKBwAGtzy9+8QuGDRvGokWLKC8vP6DXFtkduVyO9vZ2Ghsbt1va2trI5/O7dS63CzxucDnBYQeXCxwOcNoLW4cd7PburQ1s3c9tFB7bDDBs3Vtjy5burWGAQffzra5tdv+n57aY+U2zu+Qhb3aXPORyhW02VyiZDGSykM5AOl14LZGEeLKwzWQybNy4kY0bN25z7w6HgyFDhlBXV0ddXR319fXU1dUxdOhQvF7v3v3hiIiIiEhJKGDvpcrKyh2+V1NTcwBrUtDZ2ckZZ5zB0KFDD/i1RdLpNOFwmLa2Njo6OqxW55aWFqs1urm5mVwut9Pz2O0Q8ILfB34v+LwGfi94y8BXBmWeQrDO5eHFV00+2lgIrwc7ux0OHwIXfNbAZkAsAZEYRKLQFTXpjEJnF3RGCi39a9euZe3atducp7KykqFDhzJo0CAGDRrEwIEDGTBgANXV1VRVVeFw6J98ERERkf3pkP5pKxaLcccdd/Dcc88Ri8X4xCc+wbRp0xgzZgzLly/n9ttvZ8WKFVRWVnLGGWfwwx/+EL/fD/TuIr61nl3Ep02bBkBFRQVPP/008Xick08+mdmzZzNgwAAA1q1bx5w5c3j99dfx+/1MmTKF3/zmN3znO9/ZrW7mI0eOBODee+/l3nvvZdWqVWzatIlbb72VV155ha6uLqqqqjjvvPP44Q9/iM1m43e/+x33338/3/nOd7j//vvZvHkzRx11FNOnT+eEE04o1UcsB1g+nyeRSPQaT5zL5YjFYrS3t7N582acTqf1XjabtcYm93ycSqWsscvJZJJEIkEikbDGOUejUaLRqDUOOpFI7HYd/V7w+yHYY+vzF4J1mYddjj3O5eEvr5h8uH5fP63+I5eDD9ZB3jQ542SDMk/hs6itgp5t6KZpEotDR9eWwB2OFB4n09De3k57ezv//ve/t3udYDBIKBQiFAoRDAbx+/34/X7KysooKyvD4/Hgdrtxu924XK5eY8gdDgd2ux2Hw4HNZrO2xTHnXq/X2sdm0/yZIiIicmg6pAP21VdfzUcffcTcuXOpr6/ngQceYMqUKdxzzz184xvf4Dvf+Q433XQTra2tzJs3jylTpvDEE0/s8eRDzz77LOeddx6PPfYYbW1t/OAHP+AXv/gFc+fOJZFIcPnllzNs2DB++9vfEo1GmTVrFuvX7356ePnll2loaODzn/88U6ZMAeA73/kONTU1/PrXv8bn8/H8888zd+5cjjvuOM466ywANm/ezOOPP86tt96Kz+dj5syZTJs2jT/96U+aYKlEXnrpJW688ca+rka/Eo0XSuMO9+gfY6wnTpxIQ0MDixcvZtmyZQdk7PeH6+HD9fvvOl1dXXR1de3Rvy/91Zlnnsn3vvc9fD5fX1dFRERExHLINjOsWbOGl156iRtuuIH/7//7/zjssMOYOXMmF154IY8//jinnXYa3/72tzn88MMZP348t99+O//617947bXX9vhagUCA2bNnM3z4cD75yU/y+c9/nuXLlwPwxz/+kfb2dm6//XZGjRrF+PHjufXWW/foh/mamhqrBammpoZkMskFF1zAnDlzGDVqFHV1dVx++eVUV1ezatUq67hMJsOsWbM49thjOfLII7niiitYt24dLS0te3yPsn2PPvpoX1dB9lJDQwN1dXU0NDQcEhOrHWyef/55Vq5c2dfVEBEREenlkG3BXr16NQDHHnus9Zrb7ea6667j3HPPZe3atRx33HHbHPfBBx9w0kkn7dG16uvrcTqd1vNAIEAmkwHg7bffZtiwYb0mJhs1atQ+TZLm8Xi49NJLWbZsGf/+979Zu3Ytq1atorW1dZtJpIYPH96rXoBVN9l3P/7xj3nggQfYuHEjpmn2Wt6p+Ly4zefz2+05sL19i4Gv5zmLz7d3HSj8udpsNmtZquIyVaUOjzZb93jpMvCXgc9bHE+9ZXy107lvPSQORBfxxYsXWy3YPT/H/WlYHZxx8p59NqZpkkhCZxS6IoVtJArRWGEcd7qEf52L3cF7dhUvLlVmmiY2m227382e312g13fdNE2y2SwOh6PXa1sfs/V5Lrroou3+Gy0iIiLSlw7ZgL2zyX7y+TznnXce3/72t7d5b2eTm+2Iy+Xa4Xt2u323Z07eXfF4nEsvvZRkMsk555zDhRdeyDHHHMPkyZN3q25qrSudo446ijvuuKOvq0E8Huedd95h9OjR28w0XRyLXVwjOpPJWOtHF9eTjsfjJBIJa73pSCRCJBKxuhx3dnbS3t5OPB4nn++eoCsGzTuoj8dtEvBB0A8BHwT8hvXc5wWHfech84yTwWbs30nOli1bxtKlSw9IuC5Ocvbpkwycju3fez5vEokVxl+HOyHcZRYed+06RHu9Xqqrq6msrKSiosIagx0MBvF6vfh8PrxeLx6PB4/Hg8vl+v/Zu+84qepD//+v6bMzO9srsAhSFFBKUBHF2LjEEq+SkHhV9Cr+TBQbxqgQkwgmKoIQS6IEwRg1xuTywJIiJvjN1as3mmtJRDoLS12215mdfn5/nJ3DLnWBgV3g/Xw8PjmzM6d8zjBZ9z2fZo3BThWHw3FEho7s77MpIiIicqw5YQN2quV2xYoVjB07FjBn550wYQLbt28nMzOTk046ydq/vLycuXPn8r3vfS+tS3Cdeuqp/P73v6exsdFqxS4vL6elpeWQz/nBBx+wcuVKPvzwQwoKCgCsGZ4VnmV3drvdClSHKxwO09DQQF1dHbW1tdTW1loziFdVVVFVVUVrayvhCIQjUFOfOrLz59LnNTq1fPszbPjaZxH3tc8kfuHZNgzgIOZXOyihNjPQBvwGvowjOydBRoa5nFg4Ak3NBq0h8wuK5laD5lassq/v4mw2G8XFxfTp04fevXvTq1cvSkpKKCkpoaioSOOURURERI6SEzZg9+/fnwkTJjBr1ixmzpxJcXExCxcuJBKJ8Jvf/Ib//M//ZNasWUyePJnm5mZmzZpFOBymX79+aa3H17/+dZ555hm+//3v8/3vf59wOMzDDz8MHHg25X0pKSkB4K233uJrX/salZWVzJ8/32qZFDlSvF6vtUTUvrS2tlJVVUVlZSU7d+6kqqqq03rYkUiEUPua0PsK4ClOh7kmttttrontcpplj7WwHTYcqTWx29e/trc/Tq17nVoLO1XAhtsNkZhZOrLWvW7/n9Ra2J3WwE52Xgc7kYBYwiDevv51LAaRqFnaIhAOm/vvj8fjoU+fPvTp04e+fftapXfv3mn5gkREREREDs8JG7ABHn30UebMmcPdd99NNBplxIgRLF68mFNPPZVFixbx1FNPMXHiRHw+H2PHjuWBBx5I+x+xbrebRYsW8fDDD/Ptb3+b7Oxsbr31VlauXNlp3PbBGD58ODNmzODFF1/kySefpLi4mMsuu4zS0lJWrFiR1vqLHKzU0lAdx/+nGIZBc3MzVVVV1NTUWK3gdXV11hrbDQ0NtLS0mF3bExBvM9eN3r9jo+eGzWYjJyeHwsJCioqKKCkpoVevXpSWllJWVkZBQYGWwBIRERHpwWyG+gx3q23btlFRUcG4ceOs56qqqvjqV7/Kb37zG84444xurN3BSYX3008/vZtrIrs73sa5JpNJgsEgra2ttLS0EAwGCQaD1prdqbHjqbW8O44vT633nUgkrJKa9C21PnhqsrhUSek4aVdqm5roK7VNrQOdWhO641jm1DrTPp8Pn89HIBAgMzOTnJwcsrOzycvL2+/8EMej4+2zKccHfS6lJ9LnUnqiE+VzeTA558T6S64HikQifOc73+Hee+9lwoQJtLS08OSTT9KvXz9GjBjR3dUT6ZHsdjuBQIBAILDf7ugiIiIiIkeTAnY3GzBgAPPnz2fBggU8/fTTeL1exo4dy69+9StcLhf//u//ztat+1+P6OOPP9b4SxERERERkW6mgN0DXHLJJVxyySV7fW3BggUHXJf6UMdqi4iIiIiISPooYPdwvXr16u4qiIiIiIiISBdoOloRERERERGRNFDAFhEREREREUkDBWwRERERERGRNFDAFhEREREREUkDBWwRERERERGRNFDAFhEREREREUkDBWwRERERERGRNFDAFhEREREREUkDBWwRERERERGRNFDAFhEREREREUkDBWwRERERERGRNHB2dwVERE4EyWSScDhMW1sbkUiEcDhMNBolFosRj8dJJBIYhoHNZsNms+FyuXC5XHi9Xnw+H36/H5/Ph92u70VFREREeioF7CPgoosuYuLEidx5ZnvZ+QABAABJREFU550sXbqUGTNmsHbt2i4de7D7i8iRYRgGbW1ttLa2EgqFaGtrIxgMWiG5Y9n9udT+HX8Oh8OHXSe73U4gECAnJ4e8vDzy8/MpLCykoKCAoqIiq/j9/jS8AyIiIiJysBSwReSEEYlEqK2tpa6ujrq6Ourr62lsbLRKc3Mzzc3NtLS00NraSjKZPCL1cDnB4QCnExx2sNnBbgObzXw9mYSkAYkExOMQi5uPk8kkTU1NNDU1sXnz5n2e3+/3U1hYaJWCggLy8vLIzc0lJyeHrKwsMjMz8fv9OJ36z4CIiIhIuugvKxE5LiQSCRoaGqiqqqK6urpTqampoba2lubm5oM+r80GbpdZnE6w28HZHo5dTnA4weUApwuc9vatA1zt+zsd5n6p/e12sKWS9MHcX9IgGoVIBMLtpS0CoTZoa4NgCNrCEI1BMBgkGAxSUVFxwPO63W48Hg8ejweXy4XD4cDhcGC32/eop2EYHd4Xsyu7w+HA6XTu0aXd5/ORmZlJIBAgOzubnJwccnNzyc/PJxAIHNJ7ICIiItLTKWDvQzAYZP78+bzzzjsEg0GGDRvG9OnTOe200/jss8+YN28eK1asIC8vjwsvvJB7772XzMzMA573oosuYtKkSXz66af83//9H8XFxXznO9/hW9/6Vqf9li5dyrPPPktVVRWDBg3ioYceYsSIEQCEw2EWLFjAH/7wB6qrqzn55JOZOnUqX/va16xjn3vuOW677Taee+45KisrGTx4MA8++CCjR48GIBqN8tRTT/HWW2/R2trKoEGDuOuuuxg3blya30mRw5dIJGhqaqKuro7a2lpqa2upqamxSipEJxKJA57L6QCfD3xeyMgwt16vDa8HvF7wusHjMQO1x222NCcS8P7HBlu2m48Pn3HgXdLMBrjcZsiPRs1WcTB/F0SjUVpaWo5aXVwuF/n5+VbLus1mY9OmTfTu3dtqcc/OzlYIFxERkWOOAvY+TJs2jYqKCh577DH69u3LggULmDJlCj//+c+55ZZbuO2223jkkUeora1lzpw5TJkyhd/97ndd+oPw2Wef5dZbb+XBBx/k/fff58c//jF+v5/LLrvM2uf3v/898+fPx+v18uMf/5hp06bxt7/9DYDvfe97rFq1ipkzZ3LSSSfxxz/+kbvvvpuf//znjB8/HoDKykpee+015s6di9/vZ+bMmUyfPp2//OUv2Gw2ZsyYQXl5OU888QTFxcX87W9/49Zbb+XnP/85F1xwwRF5T+XElkgkiEajhMPhTmOWU62tra2tVhft5uZmmpqaaGhooKGhgcbGxi531/ZlQKYf/D6zZPrMQO3PMH92ubregmwA8QS8/5FBxdbDuPkewMAM1r2K4atn20gmDWIxM2jH27ugJwyze7qRBMMwj7HeKVunjfW60d6dPZkw36tUl/ZYnF0t7tH2Fvc2s4U9Fouxc+dOdu7cadXvvffe61TfVAjPy8sjLy+PnJwccnJyyM7Otrq4p7q5Z2RkkJGRYbXCi4iIiHQXBey92LhxI++//z6LFy+2WnRnzpxJVlYWr732Gueeey633norAP369WPevHmMHz+ef/zjH4wZM+aA5x83bhx33HEHACeffDL/+te/+PWvf90pYD/yyCMMGDAAgJtvvpk77riDuro6Ghsbeffdd1mwYIEVhO+8807WrFnDggULrIAdi8WYNWsWQ4YMAeCmm27i9ttvp6amhra2Nv74xz/yxhtvdHp9zZo1LF68WAFbDlkikeDhhx/m73//+xE5f4bXDMm+DDMwb9lhdo3uKNRmlv07+i3IB3LppZcyadIklixZwrJlyzp1x06niq1QsbX77r+oAM4/G0JhG8EQ7cWwHrcGzTC+txB+sHr16sWcOXMoKipK4x2IiIiI7JsC9l6sW7cOgJEjR1rPeTweZsyYweWXX87mzZsZNWrUHseVl5d3KWDvvs+oUaP47//+707P9evXz3qclZUFmF3DU7OLp7p6p5x55pnMnz+/03OpgA4QCAQA84/WVatWAXDttdd22j8Wi1nXEjkUzc3NfPTRR2k9Z2425OdCXo6NTL8Zrs0u3gb1jXsG7GPVpEmTKCsrY9KkSbz99tvdXZ0jxgYEMm1kBXb1IkgmzS9FUiG7pRVq6w1q6g/v33fHjh1s3LhRAVtERESOGgXsvdjfrLrJZJIrrrjCasHuKC8v75DOn0wm91jb1uFw7HHc/lq0DMPY47xut3uv+6XO85vf/GaP5Xy0xq4cjtzcXB599FH+8pe/7LNLt2EY1jrQoVCoUxfxvY2hbmgyy95anTO8UJBntmZn+s3gnZnqGu4/uO7g+3M0uogvWbLEasG22WxHrAW7X5nZRfxoSCaNzpOyhc0u4x9/bhAKGbSGdk3O1tXbTS1VluoinppQzel07vG+nX766ZxxxhlH6O5ERERE9qSAvReplt8VK1YwduxYAOLxOBMmTGD79u1kZmZy0kknWfuXl5czd+5cvve971ktxfuzYsWKTj9/9tlnDB06tEt1O+WUUwD49NNPufDCC63nP/nkEwYOHNilcwwaNAiAmpqaTtf92c9+ht1u5+677+7SeUT2ZvTo0Xv0sOiK1LrTqTHYqaWz6uvraWhosJbWSpVYLEZb2Axntfs4p8sJfp9hjsf2gz/DZnUx97VPcObxgN2+/8B5/tlgs6VzkrM9LVu2jLfffvuIhWu7HUoKoX8ZbNoCkShEo0bnMdjJXWOqYe+hN/V9hWGYJWmYxySSnZcVi8bMx13ldDqtdb0LCwvJz8+3Sscx2JmZmfoiUERERHosBey96N+/PxMmTGDWrFnMnDmT4uJiFi5cSCQS4Te/+Q3/+Z//yaxZs5g8eTLNzc3MmjWLcDjcqVv3/vzpT39ixIgRnHvuuSxfvpy//vWvLFiwoEvHDhgwgAsvvJBZs2Zhs9k46aST+NOf/sS7777Lk08+2aVzDBo0iAsvvJCHHnqIH//4xwwaNIhly5bxy1/+kscee6xL5xBJN5vNZrVGlpSU7Hff1HrQHZfhqqqqsmYUr6qqoqmpiVgcGpvNYtozMdps4PUY5iziHjNwe9zgdoPHbbOW6BrYz8bg/gZJw5yJPLU8l8MJ9jS0kofaDFqDkOk38GV0/XxJw6CtbdfY81AbBDs8bgtDLGZ2w95RZZajOQbdZrMRCASsNbhTobmgoICCggICgQANDQ2ceeaZXVqJQURERKQnU8Deh0cffZQ5c+Zw9913E41GGTFiBIsXL+bUU09l0aJFPPXUU0ycOBGfz8fYsWN54IEH9tole28mTpzIX//6V2bPnk2/fv148sknOf/887tct/nz5zN//nwefPBBmpubGTx4MM888wz/9m//1uVz/OxnP+NnP/sZP/7xj2lqaqJv37488sgjTJw4scvnEOkudrud3NxccnNzrV4du4tEIlb4TgXv1BJfdXV11NfX09TUZLact7eE76lrQdThMHC1r3OdWv869bjz1matie10mEuAORxgt4HNbsPvN1uFW4MdWoQTZkCOxiASMayu1m3hrk7oZnK73VbIDQQCBAIB/H4/Pp8Pr9eL2+3G5XLhdDqx2+2d1sHeV4t6ar1sh8OBy+XC7Xbj9Xqtmb1Ts3zvbchLSigUYvXq1WqVFhERkeOCzThSA/1kry666CImTpzInXfe2d1VSbtU1/fTTz+9m2siu0uFmCFDhuDz+bq7Oj1GIpGwuqI3NjZa3dNbWlpoaWmxxocHg0FCoRChUIi2tjZrmbGuLh12pLlcLgoKCigqKupUUmtK5+fnk5mZ2SPXldZnU3oifS6lJ9LnUnqiE+VzeTA5Ry3YInLCcjgcVpflg2UYhrWudygU6rS2d1tbmxXGU9tUSa0DHolEiEajRKNR4vE4iUQCwzCw2WzYbDarRdjj8eDz+fD7/QQCAbKzs8nOziYvL88as5ydna0WYBEREZEeQAFbROQQ2Gw2PB4PHo+H7Ozs7q6OiIiIiPQACthH2f/7f/+vu6sgIiIiIiIiR4D6FIqIiIiIiIikgQK2iIiIiIiISBooYIuIiIiIiIikgQK2iIiIiIiISBooYIuIiIiIiIikgQK2iIiIiIiISBooYIuIiIiIiIikgQK2iIiIiIiISBooYIuIiIiIiIikgQK2iIiIiIiISBooYIuIiIiIiIikgQK2iIiIiIiISBo4u7sCIiLHing8TktLC6FQiHA4TCwWI5FIAGC323E4HLhcLjweDx6PB6/Xi9frxeFwdHPNRURERORoUMAWEemgpaWFTZs2UVFRwfbt29mxYwfV1dXU1tbS0tJySOd0u91kZGRYxefz7bH1+/3WNjMzk8zMTAKBAFlZWWRlZeH1etN8pyIiIiKSbgrYx6ClS5cyY8YM1q5d263nEDnWRSIR1q9fz6pVq1i7di3r1q2jqqrqgMe5nOB0gt0BNhvYAMOAZNIs8QQkEuZzANFolGg0SlNT0yHX1ePxkJ2dTU5ODrm5uZ1KXl4eeXl51s8ZGRnYbLZDvpaIiIiIHBoF7BPUZZddxnnnndfd1RA5qhobG1m5cqVV1q9fTzwe32O/TD/kZEN2NgQyITMTfBmQkQFuF9jtBw6vhmGQTEIsBvE4xOLm41i8/efYrp9Tj6NRiLY/jkQhGjG3yaT5ZUB1dTXV1dUHvLbH4yEnJ4ecnByys7PJysoiEAhYLeN+v99qTfd6vVZ3do/Hg9vttorTqf9EiIiIiBwM/fV0gkqNDRU5XkWjUSoqKli7di2rV69m9erVbN++fY/9vF4oLDBLQT7k54Lbvf8AnUgYtLUdXH1cTrMcLMMwW8QjUYhEzBJuL5Fwh5/D5jaRMMN4VVVVl1rj98fhcOwxnrxjN/eO3dkzMzOt7uypUJ+dnY3b7T6sOoiIiIgcSxSwe7BgMMj8+fN55513CAaDDBs2jOnTp1uvL126lGeffZaqqioGDRrEQw89xIgRIwDYsWMHc+fO5aOPPqK5uZn8/HyuuOIK7r33Xux2+x5dxE855RRuv/12Xn/9dWKxGK+88gr9+vXrjtsWOSjxeJyqqiq2bdvGli1bqKioYOPGjWzevHmvrdM52VBUuKtk+ulyd+p43ODDj2DrdjPI9nR2O+TmQN8+Zkt5NGqWji3niYT5OBE3g3wyuev4RCJBKBQiFAodch18Pl+n1vTU41Txer3U1dVRXFyMy+XC5XId/o2LiIiIdBMF7B5s2rRpVFRU8Nhjj9G3b18WLFjAlClTmDp1KgC///3vmT9/Pl6vlx//+MdMmzaNv/3tbwDcdtttFBYW8qtf/Qq/38+7777LY489xqhRoxg/fvxer/fqq6/y/PPPk0gkFK7lqDIMg3g8TiwWs8Yrh8NhK9wFg0FaW1tpamqioaGB+vp66urqrMnHkh1TYQcul9kiXdDeOl2QD7s3qMYTAEaX6vnB32HL1sO716MpmYS6evD7YdzYrh1jGJBsH0MeT+wK3qnHsTjE2wN6tEPX9kjE/DnVoh6JmOdL/Rvu2LGjS9f3+XxWS3hWVlanFvLMzEx8Pp81OVzHLu6pkgrpTqcTp9OpsegiIiJyVClg91AbN27k/fffZ/HixYwbNw6AmTNnkpWVhc/nA+CRRx5hwIABANx8883ccccd1NXV4ff7ufLKK7n00kspLS0F4MYbb+T5559n7dq1+wzYV155JaeffvpRuDs50f3v//4vM2fOTNv5HA7ICkB2FmRlQcUWaG42w9/OarP0VJdeeimTJk1iyZIlLFu2DMPoWtg/GFu2wqs9+IsBm23XhHCpQL5z5860nd/hcPD0008zaNCgtJ1TREREZG/s3V0B2bt169YBMHLkSOs5j8fDjBkzrImHOrYyZ2VlARAOh/F6vUyePJn/+7//46c//Sm33HILX/3qV/fb0gdw0kknpf9GRPZi48aNaTuX3wdlfcxu0H37wEll4DmGhv1OmjSJsrIyJk2adETC9bHA44E+vc3u+0eiwTmRSHS5BV1ERETkcKgFu4fqyuy9Dodjj+cMwyAUCjF58mTC4TCXXHIJEydOZPjw4Vx33XX7PZ8mPZOj5ZprrmHgwIHU1tZaz9lsNitgxmIxwuEwbW1thEIhWltbaWlpobm5mcbGRurr64nFYgAEQxDc3Pn8NpsZ1vJyIT/PLDk55pjkw3EkuogvWbLEasHu+B6kU9+yrncRPxDDaO8qHjO7hEdjEIvumoTN6iYeNp+zJmOL7vuc4TBs23P+OQBcLpc1A3pqrfB9dRF3u917/F602Wz07t3bmp9CRERE5EhSwO6hUl2/V6xYwdix5l/G8XicCRMmHDAof/DBB6xcuZIPP/yQgoICwFyeqK6u7oRtIZOexeFwcPbZZx/y8YZh0NLSYs2UvWPHjk6TnIVCIRqboLEJNlaYxzgd5hjs1ORmhQUHni18d+eNNfjQlt5JzpYtW8bbb799RMK1wwG9S2HEadDY2HkZsI7Lh8XjHcZct4+1TiQ7Px+P7yqHymazWbOLpyY58/v9RKNRBgwYQGFhYadlxbKysvB4PGl7P0RERESONAXsHqp///5MmDCBWbNmMXPmTIqLi1m4cCGR1MxB+1FSUgLAW2+9xde+9jUqKyuZP3++NYGUyLEuFdSysrL2GFdrGAZVVVVs2LCB9evXs2bNGtauXWuO691tPHZujmGF7cJ8CAT2P6O402nj/HGHtkzXvoTaDIJB8PsNfBkH3t8wzKAcjuy5RFdqm1rOKxKFLdvMkm52ux2/34/f77damDtOTpadnd0pSKd+3r2FORQKsXr1aoYMGWLNLyEiIiJyrFLA7sEeffRR5syZw9133000GmXEiBEsXryYVatW7fe44cOHM2PGDF588UWefPJJiouLueyyyygtLWXFihVHqfYi3cNms1FSUkJJSYk1QWAymWTz5s2sWrWKVatW8eWXX1JZWUlDIzQ0wtr15rFuF+TlGeTlmF3Ks7PMydM8ns7B2+GwkZl56HVMJg2r9djtNru0x2JQW99hVu7ortm5O659HQ7vmhCsqzIyMggEAgQCgU7drFPrWnu9XtxuN16vF5fL1WlG7o5dsFP7praaoVtERESkM5uhPsOSJqnwrpnIex61Eu6prq6OVatWsXLlStasWcP69eutcd27czjMydS8XjNsu13gdJpjum229lmwk5A0zKWxrK7VHbpgp9aejsdSS4MdnkAgQG5uLrm5ueTl5ZGXl2f9nJuba7UcZ2Vl4d59bbIeRJ9N6Yn0uZSeSJ9L6YlOlM/lweQctWCLyAkpPz+f8847j/POOw8w5zioqKigvLyc8vJyNm/ezPbt26mpqSGRMGhugeaW9NbB4XBYrck+n8/qcp1a8znV6hwIBDp1s87JyenRoVlERETkRKWALSKCOXP/wIEDGThwYKfno9EotbW11NbW0tDQQEtLC6FQiHA4TCwWI5FIYLPZsNlsOBwO3G631bW6Y0nNfN1x63K51M1aRERE5DiigC0ish9ut5tevXrRq1ev7q6KiIiIiPRwh7kqrIiIiIiIiIiAAraIiIiIiIhIWihgi4iIiIiIiKSBAraIiIiIiIhIGihgi4iIiIiIiKSBAraIiIiIiIhIGihgi4iIiIiIiKSBAraIiIiIiIhIGihgi4iIiIiIiKSBAraIiIiIiIhIGihgi4iIiIiIiKSBs7srICJyojIMg7q6Onbu3EldXR0tLS3EYjEMw8DtduPz+cjOzqawsJDCwkIyMjK6u8oiIiIish8K2CIiR0kwGOTLL79kxYoVrF27lg0bNhAMBrt8fF5eHr169aKsrMwqffr0oaSkBIfDcQRrLiIiIiJdoYAtInKEJBIJ1q1bxyeffMKnn37KmjVrSCaTnfax2cDvgwwfeNzgcAA2SCQgFoNwGEIh83F9fT319fV8+eWXnc7hcDgoLi6muLiYoqIiCgoKyMvLIzs7m+zsbDIzM/H5fHi9XrxeLx6PB7tdI4RERERE0k0Bez+WLl3KjBkzWLt27VG/9kUXXcTEiRO58847D3r/7qy3yInMMAy2bt3KF198weeff84///lPWlpaOu0TyISiIigohPw8yMpqD9UHEI1CSws0t0Bz867S0mIG+R07drBjx44u19XlcuF0Ojtt3W43LpcLj8eD1+slIyMDn8+H3+8nEAiQlZVFdnY2OTk55OXlkZeXR2ZmJjab7WDfKhEREZHjkgL2ceiyyy7jvPPO6+5qiBzXEokEO3fuZNOmTWzcuJH169ezZs0ampqaOu3nckFJCfQqhZJSyPQf2vXcbsjPN0tHhgFtbdDSCq2tEAqaP7eFzdbvaNQssZjZKp4Si8WIxWK0tbUdWoWsernJz88nPz+fwsJC63FBQYHVkp6fn4/b7T6s64iIiIgcCxSwj0OpbqAicugikQi1tbXU1dVRU1NDTU0N1dXVVFVVUVlZyc6dO4nH43scZ7dDYQEUF5vBOj/ffG5fEgkzEB8uv88s+2MY5vUSCUgkwUiaj5PJzq8lkxCPQzyxq47RCESiEAm3h/c2iMYgGo1SWVlJZWXlfq+dlZVFQUGBFb4LCwspKioiOzubpqamvb6XIiIiIscaBWzMiYfmz5/PO++8QzAYZNiwYUyfPt16fenSpTz77LNUVVUxaNAgHnroIUaMGAHAjh07mDt3Lh999BHNzc3k5+dzxRVXcO+992K321m6dCnPPfcct912G8899xyVlZUMHjyYBx98kNGjRwPQ0tLCT3/6U959912cTiff/e5396jjZ599xrx581ixYgV5eXlceOGF3HvvvWRmZu6x7+5dxFtaWpgzZw5//etficViDBs2jPvuu4/TTz8dgGeeeYaPP/6YwsJC3nvvPSZOnMiPfvSjtL/PIt3NMAxCoRBNTU00NDTQ0NBgjWuuq6ujrq7OCtW7d+3eG4fD7OKdmwN5eWaYzs3tWpfveBw++gi2be/cstzTOBzQpzecfTY4d/svRjxuhu22kDlOvK0NQm3tP7e1/xwyA3tzczPNzc1s3Lhxr9ex2+3k5+dTWlpKaWkpxcXFlJaWUlJSQklJCbm5uRo3LiIiIj2eAjYwbdo0KioqeOyxx+jbty8LFixgypQpTJ06FYDf//73zJ8/H6/Xy49//GOmTZvG3/72NwBuu+02CgsL+dWvfoXf7+fdd9/lscceY9SoUYwfPx6AyspKXnvtNebOnYvf72fmzJlMnz6dv/zlL9hsNqZNm8aOHTtYsGABfr+f2bNns337dqt+a9as4aabbuK2227jkUceoba2ljlz5jBlyhR+97vf7Xf8o2EY3HLLLXi9Xn75y1+SmZnJm2++yTXXXMPvf/97hg4dCsD//d//ccMNN/Dmm2+S6Ml/7ctxIR6PE4vFSCaTJBIJksmkVRKJBPF4nEQiQSwWs7apY1IlGo0SjUaJRCKEQiEikQixWIxwOEw4HKatrY22tjZCoRCtra0Eg0FaWloO6vNtt4MvA3x+yPCaW78PMjPBn2k+3v3/foZhBs8D+d+/w9atB/nGdYNEAjZvgaQB54zd8/UMr1ny8vZ+vGGYXdRDbWardyhkhvJQCILt3dlbWyGZTFo9Bb744os9zuN0Oq3W77y8PHJzc61J3Px+P36/35rIrbCwkNzc3DS/EyIiIiIHdsIH7I0bN/L++++zePFixo0bB8DMmTPJysrC5zP7Wz7yyCMMGDAAgJtvvpk77riDuro6/H4/V155JZdeeimlpaUA3HjjjTz//POsXbvWCtixWIxZs2YxZMgQAG666SZuv/12ampqaG1t5YMPPuDFF1/kjDPOAGDevHlceOGFVh0XL17Mueeey6233gpAv379mDdvHuPHj+cf//gHY8aM2ef9ffTRR/zzn//ko48+IicnB4Dvfe97fPbZZ7z00kvMnj3b2veuu+4iEAgc9nsqsj+rVq1i2rRp3V2NLkkmoTVolp7i0ksvZdKkSSxZsoRly5ZhGMZRue7WrfC7I/SFQGEBjBtnBu7W9rHkrUEItm9DIfNLmaqqKqqqqrp0zsWLF1NWVnZkKiwiIiKyDyd8wF63bh0AI0eOtJ7zeDzMmDGDpUuXAmagTcnKygIgHA6Tn5/P5MmTWbZsGV988QWbN29m7dq11NbW7rEUTyqgA1aIjcVi1vVT3bUBCgoKOv1huGrVKjZv3syoUaP2qH95efl+A/bKlSsxDKNTYAeslr+U/Px8hWs5KqLRaHdX4Zg2adIkysrKmDRpEm+//XZ3Vyc9bOZkcG53hxKFqBvcMYhEutYroCON6RYREZHucMIHbOfugwr3wrGXAZWpsZyTJ08mHA5zySWXMHHiRIYPH8511123x/57m0HXMAyre/fugbxjvZLJJFdccYXVgt1R3r76ZXY4NjMz0/qyYF910qRocrSMHDmSJUuW0NLS0qn1tWN38b11D9+9i3iqS3gkEqGtrY1IJGKVVBfxcDhMMBgkFArR0tJy0KHL6wWfDzIyzK7iGT5zFnCf31xu63Amxj7ULuJLliyxWrBtNttRa8EuK9t7F/GuSCbbZzZvn908NdN5sH3sdnMz/P6/DnyezMxM8vPzO3URz8rKIhAI4PP5yMjIICMjg5KSEnr16nVolRURERE5DCd8wE61LK9YsYKxY82/HuPxOBMmTNhrUO7ogw8+YOXKlXz44YcUFBQA0NjYSF1dXZf/6E11G//ss8+44IILAHMyoC1btlj7DBo0iA0bNnDSSSdZz5WXlzN37ly+973v7bflefDgwbS2thKLxRg4cKD1/A9/+ENOPfVUJk+e3KV6iqRTVlaW1RvkaDEMg3A4TEtLC42Njdb/V1OTnaUmN6utraW+vp5kMkm4famrffF6ITvbnOQsNw8K8iEQ2HNc9t6cMxY+sh38JGfLli3j7bffPmrhen+TnKXGV6cmM0ttUxOdpSY929972JHP56OkpKTT5GYlJSUUFxdTVFRkDdsRERER6alO+IDdv39/JkyYwKxZs5g5cybFxcUsXLiwU/fpfSkpKQHgrbfe4mtf+xqVlZXMnz/fmoCpK/r27csll1zCww8/jNvtpqCggPnz53c6fsqUKVx33XXMmjWLyZMn09zczKxZswiHw526r+/Neeedx5AhQ7jnnnt48MEHKS0t5dVXX2Xp0qUsXry4S3UUOR7YbDarhbOoqGi/+yYSCSuA19TUUFtbS21trTUGeOfOnTQ0NFgBvOOwYI8HCguhpH2ZrqysvQdup9Mcd3ywy3S1tRkEg+D3G2RkdP24jpLJXSWR2LVEV8fn4gmzW7bdZm5XfGku1RWOmPccbm+N7uqXAw6Hg7y8PGuJrtQ2JyeHYDDImDFjKCoq2u+kjSIiIiI93QkfsAEeffRR5syZw9133000GmXEiBEsXryYVatW7fe44cOHM2PGDF588UWefPJJiouLueyyyygtLWXFihVdvv7jjz/O448/zj333EMymeTqq6+mvr7een3kyJEsWrSIp556iokTJ+Lz+Rg7diwPPPDAXrued+RwOHjhhReYO3cu06ZNo62tjQEDBvDzn//carEXkc4cDgf5+fnk5+czePDgve4TDAbZtm0bFRUVlJeXs27dOjZs2EAkEmXbNti2zdzP54PSUrOUlIBnt//LOhzmrORdlZlpBviOYrFdE4Olul+3tYf/aMRcrzoWa1/bOm4G6nQKBAKd1rju+DgVqrOzs/e6zFYoFGL16tUEAgGFaxERETnm2YyjNYBPjnupLxU6TtgmPUMqxAwZMkTdbI+gWCzG+vXr+eKLL/j888/58ssvicVinfbJy4OiIjMk5+eZAbwruTKZNGfZbm6G5pb2bXvpahfsvbHb7bhcLpxOJ2632yper5eMjAx8Ph+ZmZlkZmaSlZVFTk4O2dnZ5OXlkZeXR35+/gG/6NsffTalJ9LnUnoifS6lJzpRPpcHk3PUgi0ikiYul4uhQ4cydOhQ/uM//oNwOMyKFSv45JNP+PTTT9myZQv19VBfD2vWpI4xW6V9PrN129H+WzmRgFjU7JIdap8MbH9fh2ZlZVFSUkJRUZE1EVhOTg6BQKDTJGAejwePx4PL5cLtdu91EkcREREROTQK2CIiR4jX6+XMM8/kzDPPBKC2tpZ//vOffPnll6xZs4aKigpisSQNDdDQcODzud1uevXqRZ8+fejbty9lZWWUlZXRq1cvMg+mn7mIiIiIHBEK2CIiR0lBQQHjx49n/PjxgLkm+I4dO9i5cye1tbUEg0FrgkW3243P5yM7O5uCggKrZXpv45hFREREpGdQwBYR6SZut5t+/fodcDUAERERETk2qClEREREREREJA0UsEVERERERETSQAFbREREREREJA0UsEVERERERETSQAFbREREREREJA0UsEVERERERETSQAFbREREREREJA0UsEVERERERETSQAFbREREREREJA0UsEVERERERETSQAFbREREREREJA0UsEVERERERETSwNndFRAR6cmSySShUIhgMEgoFCIUChGJRIhEIsRiMWKxGIlEgmQyiWEYANjtdux2Ow6HA6fTicvlwu124/F4rOL1evH5fGRkZOBwOLr5LkVEREQkHRSwe6jrr7+e3r17M3v27GPivCLHmlAoRG1tLTU1NdTW1lJfX09dXR319fU0NjbS2NhIc3Mzra2tJJPJI1oXj8eDz+fD5/Ph9/vx+XxkZmbi9/vx+/17PE79nHqckZGB3a4OSSIiIiLdTQFbRI47yWSShoYGqqurqaqqorq62npcU1NDdXU1ra2tB3VOmw1cLnA4wekAuwMcDrDbAJv5us1m7msYZsGAZBISSUgmzG0ibm7jsV3nTrWINzQ0HNL92mw2qzU8FdKzs7MJBAJWGE897/f7rf0yMjLIyMjA6/WSkZGBx+PBlroJERERETloCtgickxJJBI0NjZSV1dHbW0ttbW11NXVUVNTY4Xn2tpaYrHYAc/lcoHPBxk+yMgAb6p4zeJ0wsovYWelGZCjUSB65O/xYBmGQTAYJBgMHva5Ul3Y3W631a3d7Xbjcrn2W1L7ulyuTt3gU+E9FepTQT8jI0NhXkRERI47x3zADgaDzJ8/n3feeYdgMMiwYcOYPn06p512Gp9//jk/+9nPWLlyJU6nk4suuoj777+f3NxcAC666CImTpzInXfeaZ1v9+c++OAD5s2bx4YNGzjppJO46aab+MEPfsC7775Lnz592LFjB3PnzuWjjz6iubmZ/Px8rrjiCu69917sdjtLly7lueee4/zzz+f1119nzJgxPPvss12+t3vvvZfly5cTCAT49re/zR133GF1BS0vL2fu3Ll8/vnnxONxzj33XB544AF69+4NQDQa5YknnuAPf/gD0WiU//iP/+jU1fWqq65iyJAhPPbYY9Zz//M//8PUqVP5n//5H3Jycg7r30ZOTIZhEA6HD7hfJBKhra2NcDhsjW0OBoO0trZa2+bmZlpaWmhsbKSpqYmmpiaam5u7XJeMDPD5zRDt85tB2u/f9bzLtf/jP/5f2LGty5frkQIBKCyCWMws8Xj7NgaxuLnt2AM+1Zp+pNlsNqtl3eVyUVRURE5ODllZWQQCgT22qeL3+zVmXURERHqsYz5gT5s2jYqKCh577DH69u3LggULmDJlCs8//zzXX389V199NQ899BA1NTU8/PDD3HzzzfzXf/1Xl/5AW716Nd/97nf5z//8T+bNm8fq1auZNWtWp31uu+02CgsL+dWvfoXf7+fdd9/lscceY9SoUYwfPx6ALVu2UF1dzRtvvNGl4JHyl7/8heuvv56lS5eycuVKHnroIbKysrjxxhvZvn07V199Neeccw6//vWviUQizJ49m8mTJ/OHP/yBzMxMfvrTn/L//t//Y/bs2fTq1YsFCxbwySefUFZWBsA3vvENnnzySR566CG8Xi8Ab7zxBhdddJHC9TEumUyyZs0aQqEQNpuNcDjMli1bCIfDeL1eazKuFMMwSCaTJJNJEomEVeLxuLVNPU5N6hWLxYjH49ZEX7FYjGg0yqeffkpLS0s33XlnbW1mqevuigCXXnopkyZNYsmSJSxbtmyPf4MjpaXFLD2NYRi0trZaXfW3b9/e5WN9Pp8Vtju2iKe6u6fK7i3wTqfTKqnW86KiIvr27XtE7lFEREROPMd0wN64cSPvv/8+ixcvZty4cQDMnDmTrKwsFi1axCmnnMKPfvQjAAYMGMD8+fO58sor+eCDDzj//PMPeP4XX3yR0047jfvvvx+Ak08+mbq6Oh555BEAwuEwV155JZdeeimlpaUA3HjjjTz//POsXbvWCtgAU6dOtYJtVw0dOpQf/vCHVv3Ly8t54YUXuPHGG3n11Vfx+Xw88cQTuN1uAJ5++mkuvvhi3nzzTa688kqWLl3KQw89ZN3ro48+ykcffWSd/4orrmDOnDksX76cr3/967S2trJ8+XKefvrpg6qn9Dw///nP+eMf/9jd1ZAOJk2aRFlZGZMmTeLtt9/u7ur0KFlZcMpQiEUhGoFIxOyOH2l/HGw1W95TUj0e0uWJJ55g+PDhaTufiIiInLiO6YC9bt06AEaOHGk95/F4mDFjBpdddhnnnntup/1PPfVUAoEAa9eu7VLAXrVqFeecc06n584880zrsdfrZfLkySxbtowvvviCzZs3s3btWmpra/eYdbhfv34HeXcwevToTj8PHz6cBQsW0NzczLp16zjttNOscA1QWFhI//79WbduHZs2bSIWi3H66adbr3s8HoYOHWr9nJuby8UXX8wbb7zB17/+dd5++20CgYD1ZYUcu3r16tXdVTgkNhu43eBym1u3Gzwes7g94PGa3bs9HnPr9uyaWOxI+Ph/YdvW9JxryZIlVgu2zWY7ai3YfcpgzDkH3u9ISibNgByPQTTVPT1mhuhY1HytscH8uWPAjrZvjySbzUYgEDiyFxEREZETxjEdsJ3OfVd/X3+8GoaBaz8DL+MdmkkcDsd+l+cJhUJMnjyZcDjMJZdcwsSJExk+fDjXXXfdHvumumAfjN2X3Ukmk9hsNlwu1z7vL5lM4nK5rO6Pu++3+3v2zW9+k1tvvZW6ujreeustrrzySo1vPA5MmjSJSZMmAbsmwFq1ahWnnHKK1UU81SU81S18X93DU6Vj1/B9dRFPdRPv+DgSiRCNRgmHw9bPqbHXbW1tVjHruqvVsivsdnNSstREZamx1v72rc9vhvRDDeFjzgHbR+Y47ETi0M6RsmzZMt5+++2jFq4dDujVB84625ysrSPDaA+87aHXehw37zO1TSbMbSLRPhv6btvUzOjJxK4Qndo/sdu5DldGRgaZmZmdZkZPlY4zqHfsIt5xsrbUeuSprcPhwOFw4PF49vvfEhEREZGDcUz/VTFgwAAAVqxYwdixYwEzIE+YMIHKykoyMjI67b9mzRpaW1ut41wuV6elelpbW6mr2zVa89RTT+WLL77odI7PP//cevzBBx+wcuVKPvzwQwoKCgCs2Y3T8Qf0ypUrO/386aef0qdPHzIyMjjllFN46623iEajVit2bW0tmzdv5tprr6V///54PB4+++wzhgwZApjvzZo1axgzZox1znHjxlFYWMjvf/97PvnkE2bOnHnY9ZaexWazYbfbcTgc1gzPPU0ikaCtra3TBGctLS00NzfT3NxsTXLW0NBAQ0MD9fX1NDU1kUxCKGiWfXE620O3v/OEZ9bEZxlmGN3XseeMMwNiuO3w7rGtzSAYBL/fYLdfTQctkdg1aVksBvEoROO7WoZjMTCSEE/Ah+/vtm/7tjs4nc5OwTi1hncsFqNv377k5uZaE5vtPsnZ/r4YFREREekpjumA3b9/fyZMmMCsWbOYOXMmxcXFLFy4kEgkwmuvvca1117LT37yE6699lpqa2v5yU9+wtChQ60wPnLkSP785z/zta99jaysLJ5++ulOrbdTpkzhqquu4oknnuCb3/wmGzZssMYn22w2SkpKAHjrrbf42te+RmVlJfPnz7da7g7XZ599xty5c/nGN77BZ599xquvvmoF4GuuuYbf/va33Hfffdx2221Eo1Eef/xxcnNzufzyy/H7/UyePJmnn36awsJCBgwYwAsvvEBVVVWna9jtdq666ioWLFjA6aefbn35IHI0ORwOMjMzyczM7PIxsViMhoYGa6mu1BJdqeW6qqqqaGxsJB6H5iaz7Euq63lGh2W6PN727ulucHnA7TJnHXe62te/tu/7fHvj80NOrtmy27HFuOPM3rGY2WV698eprtSpx/vpWHNQ7HZ7p6W0Uktr7b5UV2oZrv0t05Vaois1sViqpCYfy8jI6DSkJSUUCrF69WqGDBmCz+dLz42JiIiIdJNjOmCDOXHXnDlzuPvuu4lGo4wYMYLFixdz6qmnsmjRIp588kmuuuoqMjMzGT9+PPfee6/VEvK9732PxsZGbrrpJgKBAFOmTOm0BNDgwYP5+c9/zvz583nxxRfp378/kydP5plnnsHlcjF8+HBmzJjBiy++yJNPPklxcTGXXXYZpaWlrFix4rDv7Vvf+hYVFRVMnDiRvLw87r33Xr7xjW8A0KdPH1555RXmzp3L1Vdfjdvt5txzz2Xu3LlkZWUBcO+99+LxeHj44YcJBoNceumlXHTRRXtc5xvf+AYLFiywzi1yLEgt7VRUVLTPfSKRCNXV1VRVVVmhe/cgHovFiIQhEjbHAXeV3b4raNtsHbqh2wDD7IadTHYu6WSz2ayu0gfapmbaTpWOM25rLWoRERGR9LEZR2umnWPQF198gdPp7DQx2B/+8Ad+8IMf8Pnnnx834/Y+/vhjvvvd7/I///M/hzXZT+pLhY4Tq0nPoFbCvTMMg+bmZmpqaqivr6eurs7qhp5ad7ulpYWWlhaCwSChUGi/8zJ0ldvttlqNvV5vpxDccbu/4JyRkbHHPA3HIn02pSfS51J6In0upSc6UT6XB5Nzjo+EeISsXr2auXPn8vjjjzNkyBA2b97MM888w+WXX35chOvy8nLWrVvHggULmDhxombSlROOzWYjOzub7OzsLu1vGAaRSMQqqcncUpPEpb6vdDgc2Gw2nE6nNfa945rMmkhQRERE5Ph07KfEI+jb3/42NTU1PProo1RVVZGfn8/ll1/OXXfddcjnfP7553n22Wf3u88PfvADvvWtbx3yNbpq8+bNzJgxgxEjRnDPPfcc8euJHOtsNps1ZllEREREZHcK2Pths9m44447uOOOO9J2zm9/+9tMmDBhv/vk5+en7Xr7c9FFF/HPf/7zqFxLRERERETkeKeAfZQdTHdUEREREREROXYc+zPkiIiIiIiIiPQACtgiIiIiIiIiaaCALSIiIiIiIpIGCtgiIiIiIiIiaaCALSIiIiIiIpIGCtgiIiIiIiIiaaCALSIiIiIiIpIGCtgiIiIiIiIiaeDs7gqIiMixxTAMIpEI0WiUeDyOYRjY7XZcLhderxenU/9pERERkROT/goSERFLKBRi27ZtVFZWUlVVRXV1NbW1tTQ0NNDU1ERLSwvBYJBkMrnPc3i9XnJzcykqKqJXr17069ePQYMGMXjwYNxu91G8GxEREZGjSwFbROQElEwmqaysZN26dZSXl7Nx40YqKiqora09+JPZAGPXj+FwmMrKSiorK/nXv/5lPe9yuRg6dChnnnkm5557Lr179z78GxERERHpQRSwRUROAE1NTaxZs4bVq1ezZs0a1q1bR2tr61739XghMwD+TMjwg88H3gzzebcHXC5wOsHhBLvdBpjdxo0kxOMQjUBbG4SC0NIMzQ1QXwfhthj/+te/+Ne//sWiRYsYOHAgX/3qVyktLT2ab4WIiIjIEaOALSJynIlGo5SXl7Nu3TorVO/YsWOP/ex2yM6F3HzIyYWsHMjKBrfHdtDXtNls2BzgdpghPDOr8+uGYdDaAlWVULkVqnfChg0b2LBhAw6Hg7Fjx3LVVVdx+umnY7Md/PVFREREegIF7GNEY2Mj06ZN49NPP+WUU05hyZIl3V0lEelmhmHQ0NDA5s2b2bRpExs3bmTDhg1s3ryZRCKxx/6BLMgraC+FkJ2zqwX6SLPZbASyzDoMPAUiYYNtm6FiAzTUJ/jggw/44IMP6NevH1dccQUXX3wxPp/vqNRNREREJF0UsI8Rb731Fp988gmvvvoqxcXF3V0dETkKEokEzc3NNDQ0UFdXR01NDVVVVezcuZMdO3awffv2fXfz9pgt01agLjC7dIfbdu3TFoJOg6fTzJsBDsfeA7zHa2PAKTDgFGioN9i4DrZshIqKCp555hkWLVrERRddxCWXXMLgwYPVqi0iIiLHBAXsY0RzczOFhYUMHz68u6siIocgFovR0NBAfX09jY2NNDc309zcTEtLCy0tLbS2tnYqqdcM48ABODNgdu/OzjW7eufmQ4YPK5TG4waf/C/s2AbJPRu2jxi7A3r1MTjjHHA69x2Qc/NsjD4bTv+KweZyKF8Hrc1t/OlPf+JPf/oTZWVlXHDBBYwbN45+/fopbIuIiEiPddwF7GAwyPz583nnnXcIBoMMGzaM6dOnc9ppp/H555/zs5/9jJUrV+J0Ornooou4//77yc3NBeCiiy5i4sSJ3Hnnndb5dn/ugw8+YN68eWzYsIGTTjqJm266iR/84Ae8++679OnThx07djB37lw++ugjmpubyc/P54orruDee+/FbrezdOlSnnvuOc4//3xef/11xowZw7PPPrvfe5o+fTqvv/46AKeccgqPPfYYV111Fc8//zxLly5l+/btuN1uvvKVr/DjH/+Yvn37HvC9APjss8+YN28eK1asIC8vjwsvvJB7772XzMzMtP+7iByvUq3MjY2N1NXVUVdXR21trVVqamqoq6ujqanpkK/hdoO3faIxnx/8fvBlQiAA/ixw2PdSrzikWqf/739h+5ZDvvwhSyZg22YwDDjznH1/UeBwml8GuN02Bg2Bgaca1FTBpvWwfSts3bqVl19+mZdffpmCggJGjhzJsGHDGDx4MH379sXj8RzFuxIRERHZt+MuYE+bNo2Kigoee+wx+vbty4IFC5gyZQrPP/88119/PVdffTUPPfQQNTU1PPzww9x8883813/9Fw6H44DnXr16Nd/97nf5z//8T+bNm8fq1auZNWtWp31uu+02CgsL+dWvfoXf7+fdd9/lscceY9SoUYwfPx6ALVu2UF1dzRtvvEE4HD7gdR988EFyc3P585//zJIlSwgEArz00kssXryYxx9/nMGDB7NlyxZ+9KMfMXv2bCuw7+u9+Otf/0plZSU33XQTt912G4888gi1tbXMmTOHKVOm8Lvf/U4tRHJMqa6uZtmyZcRisU7Pd/wcG4axx8+JRIJEIkEymez0uGNJPR+Px4lGo0QiEcLhMKFQiNbWVoLBYJdamQ9HNGqW5sYjepn9uvTSS5k0aRJLlixh2bJlB3XP27fsP+DnF8IFX9v172Oz2SgqgaISiEUNtm81j6+qhNraWpYvX87y5csBsNvtFBYWUlJSwtChQ7nxxhv1+0tERES6zXEVsDdu3Mj777/P4sWLGTduHAAzZ84kKyuLRYsWccopp/CjH/0IgAEDBjB//nyuvPJKPvjgA84///wDnv/FF1/ktNNO4/777wfg5JNPpq6ujkceeQQw13698sorufTSS61lZ2688Uaef/551q5dawVsgKlTp1JWVtal+woEAvh8PhwOB4WFhQD07duXxx9/nAsvvBCA3r17c8kll7Bs2bIDvhcNDQ0sXryYc889l1tvvRWAfv36MW/ePMaPH88//vEPxowZ06W6iXS3RCLBbbfdRktLS3dXBTC7ZucVmLNxZ/jMZa68GfDZx9BwCEtM9xSTJk2irKyMSZMm8fbbbx+167rcNvoNgH4DIBE3qKmGmp1QUQ6RsLmed1VVFVVVVfzrX/9i/PjxXf7dKiIiIpJux1XAXrduHQAjR460nvN4PMyYMYPLLruMc889t9P+p556KoFAgLVr13YpYK9atYpzzjmn03Nnnnmm9djr9TJ58mSWLVvGF198webNm1m7di21tbUkk8lOx/Xr1+8g766ziy66iH/961889dRTbNq0iU2bNrFhwwZrArT9vRepe9m8eTOjRo3a49zl5eUK2HLMcDgcjBs37qiGvv1pC7W3trraA3Z7KSqGPieB12tOQOZu37rccKQn8k5HF/ElS5ZYLdg2m+2gWrB794Uzz9n366ku4vvT2mxQuR127oC6anO97d25XC6ys7O7XC8RERGRdDuuArbTue/b2dcfg4Zh4HK59nlcvMNfcQ6HY4+g3FEoFGLy5MmEw2EuueQSJk6cyPDhw7nuuuv22Nfr9e7zPF2xcOFCfvGLXzBx4kTGjh3LjTfeyLvvvsuf/vQnYP/vBZitPldccYXVgt1RXl7eYdVN5Gi75557uOeee/a7T6pLeCwWs7p8d9x27BK+exfxeDxOPB4nFosRiURoa2sjFAoRDAZpaWmhsbGRxsZG6uvrqauro7W1lXgMWprMciBOF7hc5vrRLrc55trtNkO4N1UyzNZwn3/fM3Pvy5nnGthshzfJ2bJly3j77bcPKlybk5xxwEnO9qUtZLBlE2zZBE0NnV/z+XwMGDCAfv360adPH0pKShg4cCBZWVl7P5mIiIjIUXBcBewBAwYAsGLFCsaOHQuYAXnChAlUVlaSkZHRaf81a9bQ2tpqHedyuTotedPa2kpdXZ3186mnnsoXX3zR6Ryff/659fiDDz5g5cqVfPjhhxQUFABYEx+le4zmggULuP322/nOd75jPbd48WLrOvt7L+6//34GDRpkTdSWUl5ezty5c/ne975HIBBIa31FupvNZsPpdB7wy6d0aGtrsyY4q62ttSY/q6uro6GhgcbGRpqamggGgwDEY2Yxl806MG+GgT9gTnIWyDZLdo4ZvvfWEux02jj7q5BIGJ2W6Tq4ezIItYIv02C3X6X7qefBfxlgJA12VsLGdbBzuzlBGphjrYcPH85ZZ53FqFGj6NevX5fmzhARERE5mo6rgN2/f38mTJjArFmzmDlzJsXFxSxcuJBIJMJrr73Gtddey09+8hOuvfZaamtr+clPfsLQoUOtADpy5Ej+/Oc/87WvfY2srCyefvrpTn/ATZkyhauuuoonnniCb37zm2zYsIGnn34aMP+oLSkpAcw1q7/2ta9RWVnJ/PnzicViRKPRtN5raWkpH374IRdddBF2u50333yTv/zlL1aw3997cdZZZ1FSUsJ1113HrFmzmDx5Ms3NzcyaNYtwOHzY3ddFTnQZGRmUlZUdcCxwIpGgpaWFYDBIa2trp+W6mpubaWpqorGxsdM62OFwmHCbuZ51XXXn8zldkJNrkJO3aw3szMCu0O1w2PAf4iIB/kyg8NCO7YpIxKBigxmsgx2W9h42bBjjx4/nvPPOU+u0iIiI9HjHVcAGePTRR5kzZw5333030WiUESNGsHjxYk499VQWLVrEk08+yVVXXUVmZibjx4/n3nvvtbqIf+9736OxsZGbbrqJQCDAlClTaG5uts49ePBgfv7znzN//nxefPFF+vfvz+TJk3nmmWdwuVwMHz6cGTNm8OKLL/Lkk09SXFzMZZddRmlpKStWrEjrfc6ZM4eHH36Yb37zm/j9fkaMGGGF6R07dtCrV699vhd5eXnk5eWxaNEinnrqKSZOnIjP52Ps2LE88MADuN3utNZVRPbO4XCQk5NDTk5Ol/Y3DIOWlhYqKyvZsWMH27ZtY+vWrWzevJmtW7cSj8WprYbaDsHb5Ya8AoO8AsgvMEO329MzZtk2DIO6Gti4HrZVQGoETmZmJhMmTOCyyy6zlh0UERERORbYjCO9vsxx5IsvvsDpdDJ06FDruT/84Q/84Ac/4PPPPz8qXU97stSXCKeffno310R2FwqFWL16NUOGDMHn83V3deQIiMVibN26lfLyctavX8+6devYsGHDXnvPZGaZQTsv32zpzs4Bp+vohG7DMGhpMtfH3rIJWjtM/j5w4ECuuOIKLrzwwsOep0LkcOh3pvRE+lxKT3SifC4PJuec2InwIK1evZq5c+fy+OOPM2TIEDZv3swzzzzD5ZdffsKHaxHpXi6Xi5NPPpmTTz6Zf/u3fwPMeRc2btzImjVrWL16NWvWrGH79u20NkNrM2zZ2H6wDQIBg6wcyMqBQJbZJTwzYE68djjrShuGOXa7vg5qqsy1rIMdQrXX62XYsGFcffXVjBgxQmtYi4iIyDFNqfAgfPvb36ampoZHH32Uqqoq8vPzufzyy7nrrrsO+ZzPP/88zz777H73+cEPfsC3vvWtQ76GiJyYnE4ngwcPZvDgwfz7v/87AM3NzaxZs4Y1a9awfv161q9fT319PS3N0NK853JeDgdk+Aw8GeZs5m632e3c6TJfs9vBZjMnI0skzMnaYlEIh82x1K3Ney6p5XI5GTXqK1xwwQWMGjWKiooKBg8erHAtIiIixzwF7INgs9m44447uOOOO9J2zm9/+9tMmDBhv/vk5+en7XoicmLLysrirLPO4qyzzrKeq6+vZ+PGjVRUVLB161a2bt1KZWUldXV1JBJmN+6OXbkPlsvlol+/fgwbNoxRo0YxYsQIqxtZKNTFqdNFREREjgEK2N0sOzub7Ozs7q6GiJzAUhMfnnHGGZ2ej0aj1NbWUltbS319PU1NTbS0tBAKhQiFQkSjUeLxOMlkErvdjsvlIiMjg8zMTHJzcykqKqJ3796UlpZak0mKiIiIHM8UsEVEZK/cbje9evWiV69e3V0VERERkWOCvbsrICIiIiIiInI8UMAWERERERERSQMFbBEREREREZE0UMAWERERERERSQMFbBEREREREZE0UMAWERERERERSQMFbBEREREREZE0UMAWERERERERSQMFbBEREREREZE0UMAWERERERERSQNnd1dARKQnSiQStLa2EgwGaWtrIxaLkUwmAbDb7bhcLrxeL16vF5/Ph9frxWazdXOtRURERKQ7KWCLyAkrGAxSUVHBli1b2LZtG5WVlezcuZO6ujoaGxsxDKPL53I6nWRmZpKVlUVWVhY5OTlkZWWRnZ1NIBCwng8EAgQCAfx+v4K5iIiIyHFGAfsEdf3119O7d29mz57d3VUROSpaW1tZt24da9euZf369WzYsIGdO3ce8DinExxOsDsglYMNA5IJSCQgHjOfi8fjNDY20tjYeFD1stlsVku4x+PB4/HgcrlwuVw4HA6cTidOpxOHw4HdbsfhcGCz2bDb7dbPHV9zOBy4XC6cTiculwu3222V1HW8Xi8ZGRlkZGRYLfAZGRm43e6DfFdFREREpCMFbBE57sRiMTZt2sSaNWussm3btr3u6/VBVjZkZoM/AL5MyPCDNwPcHrDbd7UuJxIG4bbdTmBAIg6xGMSinUskArFUiUK0fZ94bFcwNwyDtrY22tp2P/HR53Q6rdDdMYCnth3Decdg7vP58Pv9ZGZmWq34Pp9PLfMiIiJywlHAFpFjWqqb96ZNm9iwYQMbNmxg06ZNxGKxPfb1ZUJuAeTkQ04eZOeB23PgEBiPG3z+v1C51Wy5PlZ5vOZ7kIhDPN6+jZkt8WC2wre0tNDS0nLY13I6nVZX+ZycHPLy8sjLyyM/P98qhYWFeL3ew76WiIiISE+hgH2MCAaDzJ8/n3feeYdgMMiwYcOYPn0669at47nnnuP888/n9ddfZ8yYMTz77LMsX76cX/7yl6xfv55EIsGgQYO45557OO+88zqd895772X58uUEAgG+/e1vc8cdd2C3a3J56Tmi0SiNjY3U1dVRU1PDzp072blzJ9u3b2fr1q3U1tbu9TiXuz1Idygez577xWMHHmf92YewY8vh3kn3i4Qhvwi+cm7n5w3DDNzxGCRi7Y/ju7rAx+OQ7BDGU/vG47v2T7XaR6NgJM2wXl9fT319/QHrlZmZSXFxMUVFReTn51thPDc3l5ycHLKzs8nKysLv96tVXERERHo0BexjxLRp06ioqOCxxx6jb9++LFiwgClTpjB16lS2bNlCdXU1b7zxBuFwmC+//JI777yTBx54gIsvvpjW1lbmzZvH/fffz3vvvWeNs/zLX/7C9ddfz9KlS1m5ciUPPfQQWVlZ3Hjjjd17s3JCWL16Na+++ipNTU3WczabDcMwiMfjtLa20tzcTCgUOuC5vD7IyoHs3F1hOsMPH7wD6788gjeRBpdeeimTJk1iyZIlLFu27KAmVjsUO7b0vC8LWltbaW1tpby8fL/72e12MjMzrQniOo4Z39v71jGMX3jhhXz961/H6dR/9kREROTI0V8ax4CNGzfy/vvvs3jxYsaNGwfAzJkzrXGOAFOnTqWsrAwwg8uPfvQjrr32WuscN9xwA7fccgt1dXWUlpYCMHToUH74wx8CMGDAAMrLy3nhhRcUsOWomDdvHlu2HHzSs9mhsBiKekNeIWRm7b2b95EOqukyadIkysrKmDRpEm+//XZ3V6dbZOXCKcOhuQEa66Gpjj3HugPJZJLm5maam5sP+hqrV6+mqKiIc845Jw01FhEREdk7BexjwLp16wAYOXKk9ZzH42HGjBksXboUgH79+lmvDRkyhOzsbBYuXMjGjRvZvHkza9asAcy1fVNGjx7d6TrDhw9nwYIFNDc3k5WVdYTuRsR0ySWXsHDhwoM+zkhCdaVZ3B4IZENWjkFWrjmmOisXnE4bNpuN8y4xSMQPv65Hsov4kiVLrBbsVAv+kdSr755dxI8kw4BYHKJtZmgOt0E4ZG7bQhBp//mT9819j5RRo0YxZMiQI3cBERERERSwjwld6dLYcaKgf/zjH9x8881ccMEFjB49miuuuIK2tjZuv/32TsfsPtY6mUxis9lwuVzpqbjIfkyaNIlJkyZ1es4wDMLhMMFg0Jpsq7GxkYaGBmpra6mpqaGqqorKykrq6+uJRqCu2iwWGwSyDXLzzQnNcgvM0N1xNvCD9ZVxBrYjNMnZsmXLePvtt494uLY7oLQMRp1jfgHRFYZhkEh0mAwtvtv46/bHsWjnWdSjkfYSNsd9J5NdrKPdTk5OjjUOOzVBWnZ2tjUOO9VF3O/3WzOdOxyOw3hnRERERNJHAfsYMGDAAABWrFjB2LFjAXMCoQkTJnDdddftsf8LL7zAmDFjeOaZZ6znXn75ZaBzt9mVK1d2Ou7TTz+lT58+ZGRkpP0eRLrCZrNZoamgoGC/+7a1tbFt2zY2b97M5s2b2bhxI+Xl5dTX19PSCC2NsKV9SK/dATl5hjWDeG6BuSRXVyfMcjptnPnVfSzTdZjCIYNQEHx+A6+vwwuG2VqfTELSMFt3DaP9+d0eW68n24vRflzS/EIgmQS73dxuXG3Oip7oEJQ7bXebvCxd/H6/NXlZQUEBBQUF5Ofnk5WVRXNzM6NHj6ZXr14KyyIiInJMU8A+BvTv358JEyYwa9YsZs6cSXFxMQsXLiQSiex1/9LSUpYvX84nn3xCSUkJH3/8MU899RRgzsic8tlnnzF37ly+8Y1v8Nlnn/Hqq68yc+bMo3FLIoctIyODQYMGMWjQoE7P19XVsW7dOtauXWuV1tZW6mugvmbXfk4XZOeaXcsD2WbxByDDB7Z9tHY7HDb8mQeuWyJhEI2YrbfRcIcW3eiuNbFTrb4dW4YTCXO27kR7UO5JPB5Pp3WwO5ZUi7Lf7ycQCBAIBMjKyiI7O9tqhfbsbQp3IBQKsXr1avLz8xWuRURE5JingH2MePTRR5kzZw5333030WiUESNGsHjxYlatWrXHvnfddRe1tbXceuutAAwcOJBHH32U++67jxUrVlgt4t/61reoqKhg4sSJ5OXlce+99/KNb3zjqN6XSLrl5+czduxYq7eHYRhs376dNWvWWIF748aNRKPRPbuXAzYbeDPM1mS3x1zuy+k0W8FTDd6pFmKri3RsV9foWCS9Lb+7czgc2O12q9hsNpxOp/Wz0+nE6XTicrlwuVy43W7cbjcej2evITn12Ofz7RGcU697PB6FXxEREZEusBnHylS70uOtWLECgNNPP72bayK7S7USDhkyxJp5/kSWSCTYsmUL5eXlbN68mYqKCrZv387OnTuJpykd2+12qxU3NX441bqbmZlJZmZmp1CbCr+pQOxyuXA6nTgcDitAH48hV59N6Yn0uZSeSJ9L6YlOlM/lweQctWCLyAnH4XDQv39/+vfv3+n5RCJBfX09dXV11NfX09TURDAYJBwOE4vFSCaTGIaBw+HA5XLh8Xis1t/MzMxOXaN9Pt8eEwmKiIiIyPFNAVtEpJ3D4aCwsJDCwsLuroqIiIiIHIPUvCIiIiIiIiKSBgrYIiIiIiIiImmggC0iIiIiIiKSBgrYIiIiIiIiImmggC0iIiIiIiKSBgrYIiIiIiIiImmggC0iIiIiIiKSBgrYIiIiIiIiImmggC0iIiIiIiKSBgrYIiIiIiIiImng7O4KiIgcbwzDoL6+nu3bt1NdXU19fT0tLS2EQiESiQQ2mw2Px0N2dja5ubmUlpbSt29fcnNzu7vqIiIiInIYFLBFRA5DIpFgy5YtrF27lvXr11NeXk5FRQWhUOigz5WTk8Mpp5zCsGHDGDFiBIMHD8bhcByBWouIiIjIkaCALSJyEJqbm1mzZg0rV65k1apVrFu3jra2tj32s9kgww8ZmeD1gdsDThfY7GAYkIhDLALhEARbINQCjY2NfPzxx3z88ccA+Hw+Ro0axVlnncVZZ51Ffn7+0b5dERERETkICtgiIvsQi8XYtGkT69atY82aNaxatYpt27btsZ/DCTkFkJ0P2XkQyIXMLLA7bF2+ViJu0NwADTVQXwV1OyEUCvHhhx/y4YcfAjBw4EDOPvtszjrrLAYPHozdrmk0RERERHoSBWwREaCtrY2KigrKy8vZsGEDGzZsYNOmTcRisT329WdBbiHkFpnbQDbY7F0P03vjcNrMcxbCyUPBSBo01UP1dqjeBo21WPV65ZVXyM7O5swzz+SMM85g1KhRGr8tIiIi0gMoYB/D3nvvPWbNmkVNTQ333XcfL774IhMnTuTOO+884LHXX389vXv3Zvbs2UehpiI9RzKZpLKykk2bNrFx40Y2bdrEpk2bqKysxDCMPfZ3uc2W6dxCs5U6txDc3sML011hs9vIKTCvOXgERNoMK2zX7ICmpiaWL1/O8uXLARgwYACjRo1i5MiRDBs2DL/ff8TrKCIiIiKdKWAfw5588kn69+/PSy+9RE5ODl//+tfxeDzdXS2RHqOpqYmKigorRG/atImKigrC4fBe9/dkQFae2c07tfUFwGbrHKgTCYPInsOuD5knAxwH6E7uybBRNhDKBkIyaVBfDTXbzdLcAOXl5ZSXl7NkyRLsdjsDBgzgtNNOY9iwYQwdOpSCgoL0VVhERERE9koB+xjW1NTEhRdeSJ8+fbq7KiLdIpFIUF9fT21tLdXV1ezcuZMdO3awbds2tmzZQlNT016PszvMbt1ZeRDIad/mgucALdOJuMG/PoSdWyGZSN992B1QUmYw4lyzq/gB97fbKCiBghIYMtps3a6thNqdUFcJodYk69evZ/369bz++usA5OfnM3jwYAYNGsSAAQPo378/xcXFe3x5ICIiIiKHTgE7jYLBIPPnz+edd94hGAwybNgwpk+fzrp163juuec4//zzef311xkzZgzPPvssy5cv55e//CXr168nkUgwaNAg7rnnHs477zyWL1/OHXfcwbvvvkvv3r2ta1x99dV85Stf4YUXXgDgF7/4Bb/4xS9Yu3YtF110kdVFvK2tjZ/+9Kf893//N83NzQwYMICpU6cyYcKETvWdMWMGf/3rXzEMg3/7t3/jxz/+MT6f76i/d3L8MwyDcDhMKBQiFArR1tZmbcPhMG1tbUQiEcLhMLFYjEgkYpVoNGrt09bWRktLi1UOJMNvhunMXDNMB3LMVum9zQ8Wj+3ZRbyjf34AO7cc2v3vTzIBOyogmYSR4/Zfh71xOKG4zCxgzkxeX21OmNZYCy0NUFdXx9///nf+/ve/W8d5vV769OlD7969KSkpoaioiPz8fHJzc8nOziYzMxOfz4fTeeD/VBiGQTKZJB6Pk0gkSCQS1nMpdrsdh8OBw+HA5XJpCTIRERE57ihgp9G0adOoqKjgscceo2/fvixYsIApU6YwdepUtmzZQnV1NW+88QbhcJgvv/ySO++8kwceeICLL76Y1tZW5s2bx/333897773HBRdcQF5eHm+++SZTp04FYNOmTfzzn//kkUceYcqUKUyaNInLLruMKVOm7FGXp556irVr17Jw4UKysrL4r//6L+655x7eeecdq8X7L3/5C7feeitLly5l/fr13HPPPZSWlnL33Xcf1fdNjj1/+9vfeOqppw5pred0s9nA42tfEstvzsAd7lCttqBZqnd0Xx1TLr30UiZNmsSSJUtYtmzZHmO+d26BZa8evfqEw2Fr4rRjyciRI7nzzjspKyvr7qqIiIiIdKKAnSYbN27k/fffZ/HixYwbNw6AmTNnkpWVZbUIT5061fqDcPXq1fzoRz/i2muvtc5xww03cMstt1BXV0dpaSlXXnllp4D9xhtvcPrppzNw4EAAHA4HPp+PwsLCPeqzZcsW/H4/ZWVlZGVlcffdd3PmmWeSnZ1t7TN8+HDuueceAPr27cu5557Ll19+eQTeHTmeRKNR5s6dSzweP+LXstvB5QG311xH2pNhrintywR/ADJzzJ9T3ZwNw+B/l3UO2D3JpEmTKCsrY9KkSbz99tvdWpfcQhg8ctekaa17703fI/3zn/9kyZIl1u8vERERkZ5CATtN1q1bB5gtKykej4cZM2awdOlSAPr162e9NmTIELKzs1m4cCEbN25k8+bNrFmzBjDHlQJ885vf5IUXXuBf//oXw4cP56233uKWW27pUn1uueUWbr31VsaOHcvw4cM599xzueKKKwgEAtY+HesDkJ2dzfbt2w/21uUE43a7uf3223nqqaeO+LWSSYi0sd8JxVxu8GQYZGSCz292k+4/xFxKy+cHWxqXij7cLuJLliyxWrBtNtseLdglfWHkuMOs5F4kkxBsgqZ6s7Q0mhOjffzX9F/raBg4cCBXXnlld1dDREREZA8K2GnSlTGKXq/XevyPf/yDm2++mQsuuIDRo0dzxRVX0NbWxu23327tM3DgQEaMGMFbb71FOBymtraWr3/9612qz6hRo3jvvff48MMP+fvf/84bb7zBc889x6JFixg7diyAxj/KIbv88su5/PLLu7x/MpkkEol0Gn8dDAatMdWpcdi7j7vuuE2NwQ6FQrS2ttLS0kIikSAWhVh07y2wdjtkZpsTmAVyICvXfNyx1ftgjDrv8CY5W7ZsGW+//fYe4dqc5IwuT3J2ILGoOct4fZU5DrupDhJ76XBgt9spKSnZ5xhsv9+P3+/H4/Hgcrmw72XgejKZJJFIEI/HrZIag51MJkkmk9Z7nRqD7XQ6rRKPx1m3bh1DhgzR/A8iIiJyzFPATpMBAwYAsGLFCivAxuNxJkyYwHXXXbfH/i+88AJjxozhmWeesZ57+eWXATr94f3Nb36TZ599lmQyyfjx48nKyupSfZ5++mlGjx7NxRdfzMUXX8yMGTO4/PLLeeedd6z6iRwtdrudjIwMMjIyyM/PT8s5DcOgtbWVhoYGampq9phFfNu2bUQiEZobzNbajlweyMo1COS2h+4cc3ugcOtw2vjK+Ye+TFc4ZNAWhAy/gbdDluzKMl37E48Z1O1sn0V8JzTX77mPz+dj8ODBDBw4kAEDBnDyySfTu3dv3G73IV8XzH9bu92Oy+U6pON7wjh+ERERkXRRwE6T/v37M2HCBGbNmsXMmTMpLi5m4cKFRCKRve5fWlrK8uXL+eSTTygpKeHjjz+2utxGo1Frv8svv5zHHnuMpUuXdgrjB7J161beeustfvKTn9C3b1/+9a9/sWPHDkaNGnV4NyrSQ9hsNgKBAIFAgL59++7xejKZpKqqqtM62BUVFWzdupVYJEldexjtyJ9ldF4HO3/vS3c5HDZ8mQdf50M5Zm8Mw6C5Hqrb18FuqIHdepvTu3dvTjvtNIYOHcrQoUMpKyvbawu0iIiIiKSPAnYaPfroo8yZM4e7776baDTKiBEjWLx4MatWrdpj37vuuova2lpuvfVWwOwO/uijj3LfffexYsUKq0U8MzOT8ePH849//INzzz23y3V56KGHePzxx7nvvvtobGykd+/efP/739e4RTlh2O12SktLKS0t7dRrIxqNsmXLFjZu3MjGjRvZtGkTGzdupKmpiWAzBJuhsmLXeTL8BtkFkFsAOYWQk5+ebtwHKx4zqNlhTkpWvX3PcemlpaWMHDmSkSNHMnz48LT1FBARERGRrrMZu8+yIz3O9ddfz1e+8pUeP2PuihUrADj99NO7uSayu1AoxOrVqzXOdT8aGhooLy9n48aN1tJV27Zt22M/m81s3c4tbC9F5vJghzKme38MwyDYvCtQ11WBsWtJabxeL6NGjeLMM89k9OjRlJaWpvX6R4s+m9IT6XMpPZE+l9ITnSify4PJOWrB7sGWL1/O6tWr+ec//8mcOXO6uzoix7Xc3FzOOOMMzjjjDOu5YDDIhg0bWLNmDWvXrmXVqlXU19fTVGdOHFZhTvyPJwNyCgyy89u7l+eC9yBDt5E0aG02u3vXV5nd19uCnffp1asXY8aMYcyYMZx22mmHPX5aRERERNJLAbsHW7RoEZs2beInP/nJMds6JXIs8/v9jBgxghEjRgBmq3JNTQ2rVq1i5cqVrF69mvLyciJtCaq2QtXWXcc6nOaYbl+mGcDdXnC6zJnNjaQ5q3c0Yq7ZHWqBlqY9ZyZ3uVycdtppnHXWWZx11lmUlZUdxbsXERERkYOlgN2Dvfbaa91dBRHpwGazUVRURFFRERdccAEAkUiEDRs2sG7dOtatW0d5eTnbtm0jHo/TXL/3Gb33xePxcMoppzB06FCGDx/Oaaed1ml5PxERERHp2RSwRUQOg8fjYdiwYQwbNsx6Lh6Ps2PHDnbs2EF1dTV1dXW0trYSCoVIJBLYbDa8Xi9ZWVnk5uZSWlpK3759KSkp0fr0IiIiIscwBWwRkTRzOp307dt3r8uHiYiIiMjxS4uiioiIiIiIiKSBAraIiIiIiIhIGihgi4iIiIiIiKSBAraIiIiIiIhIGihgi4iIiIiIiKSBAraIiIiIiIhIGihgi4iIiIiIiKSBAraIiIiIiIhIGihgi4iIiIiIiKSBAraIiIiIiIhIGji7uwIiIukQjUZpaWmhpaWF1tZWa9va2kowGCQUChEMBmlra6OtrY1wOEwsFiMajZJIJEgkEgDYbDacTidOpxOv10tGRgaZmZkEAgFycnLIy8sjPz+foqIiCgsLycjI6OY7FxEREZGeQgH7ODN9+nS2b9/Oyy+/zLZt27j44ot56aWXGDNmDNdffz29e/dm9uzZ3V1Nkf0yDIOWlhYaGxs7laamJpqbm2lqarIeNzc309LSQjgc7pa65uXlUVpaSu/evenduzdlZWX07duX0tJSXC5Xt9RJRERERLqHAvZxrLS0lA8++IDs7OzurooIiUSC5ubmToG5oaFhr6WxsdFqUT4oNnC5zeL0dHicKi5wuNq3TrA72osdbDbzFIZhlmQCEnGzxCJmibS1lyC0BSERg/r6eurr61m5cmWnqtjtdnr16kVZWRl9+vShT58+lJWV0atXL3Jzc7GlLigiIiIixw0F7OOYw+GgsLCwu6shx6l4PG61JDc1NdHY2Gi1Lqdam3d/zTCMg7qG0w0uj7l1e8zHHYvTvVuIdu0KykeaO8MM4aEWCDWbJdgEwWYINkIinmTbtm1s27Ztj2O9Xi+lpaWUlJRQXFxMUVERRUVF5OfnU1BQQG5uLm63++jciIiIiIikjQL2QQgGg8yfP5933nmHYDDIsGHDmD59OuvWreO5557j/PPP5/XXX2fMmDE8++yzlJeXM3fuXD7//HPi8TjnnnsuDzzwAL179wbMbrAvvfQSr776KpWVlZSVlXHbbbfx9a9/HYDKykrmzZvH3//+d4LBIKNHj+a+++7j1FNPtY5/7rnneO2112hububSSy8lEolY9d29i/juysvLmT17Np988gl+v58xY8Ywffp0hfITlGEYhEKhTi3Lqcd766rd0tJySNdxecxw6vGaW7cXPBntz2Xses7pglV/h+ot0HZolzqi7A4o6gunjYPsgs6p3jAMIqH2wN20K3iHmsyW73A4zKZNm9i0adM+zx8IBMjLyyMnJ8cq2dnZ5OTkkJWVRXZ2dqet06lf5yIiIiLdTX+RHYRp06ZRUVHBY489Rt++fVmwYAFTpkxh6tSpbNmyherqat544w3C4TDbt2/n6quv5pxzzuHXv/41kUiE2bNnM3nyZP7whz+QmZnJokWL+MUvfsGDDz7ImDFjeO+997j//vspKCjgtNNO45prrqGsrIznnnsOt9vNM888w+TJk3nzzTfp3bs3CxcuZNGiRTz88MMMHTqU3/3udyxdupSzzjrrgPdSVVXFtddeyxVXXMH06dNpa2vjmWee4eqrr+aPf/wjPp/vKLyjciQkEgnC4TBtbW3WxF719fWsXbuWiooKwuGwNXa5YwtzY2MjsVjsoK/n8piBuOM29bjj86nHti6uXbDif6B680FX56hJJmDnJkgm4fTz9myZd7ohu9AsHRkJM2SHWiHcCuEgtLWaXc/DQYiEAANrwrbNm7v2Jvh8PrKysggEAtY2NTlbZmYmmZmZ+P1+fD4fPp+PjIwMvF6vVdxuNw6HIw3vjIiIiMiJSwG7izZu3Mj777/P4sWLGTduHAAzZ84kKyvLCqNTp06lrKwMgLlz5+Lz+XjiiSesrp5PP/00F198MW+++SbXXnstv/71r7nhhhv41re+BcD1119POBwmHo/z1ltv0dDQwNKlS8nLywNg3rx5jB8/nt/85jfcd999vPzyy9xwww1Wi/eMGTP4+OOPu3Q/v/3tbykpKeGHP/yh9dyTTz7J2WefzbJly/jGN76RhndN0umvf/0rc+fOPeLXsTsAwwyOXZEan3ysuPTSS5k0aRJLlixh2bJlB91tfXfVm+HdbvoiwGYzx4sDhEIhQqEQO3fu7J7K9GBXXXUV3/3ud/UFgoiIiBxxWge7i9atWwfAyJEjrec8Hg8zZsywumb269ev0/6nnXZap3GUhYWF9O/fn3Xr1tHQ0EBNTQ0jRozodJ1bbrmFcePGsW7dOvr162eFazDHbQ4fPrzT8aeffnqn4zvWb39WrVrF+vXrGTVqlFXOOeccIpEI5eXlXTqHHF2///3v035OhwuyC6D3IDjlTBg9Acb+OwTy036pHmPSpEmUlZUxadKkww7X3S2QB2O+DsPPhwEjofRkyCowW89llzfeeIPt27d3dzVERETkBKAW7C7qyvhGr9drPd7XH+7JZBKXy3XA5Xv2d7zT6bRmIN59v66Ow0wmk5x99tk89NBDe7wWCAS6dA45uqZNm8bzzz9PdXV1p+dtNhuGYVjblHg8TltbW6dx+btLxKCp1iy7s9nbu3ZngMcDrvax0e72MdQuT/vEY+3P2dP82+RIdRFfsmSJ1YK9+3t2KIpOgtPPO/x6GQbEY+YM5ZE2iIYhmtq2l1hk12MjCc118PEfD+16TqeTjIwM3G73Xmc03/292f1ztq/P3f72N++z8zmTySTxeByn04ndbu/yufa13+7XcDqdTJ482epdJCIiInIkKWB30YABAwBYsWIFY8eOBcwAM2HCBK677ro99j/llFN46623iEajVit2bW0tmzdv5tprryUQCFBUVMSKFSu4+OKLrePuuusuSktLOeWUU3jjjTeoq6sjP99sToxEInz55ZdcddVV5ObmUlpayqeffsr48eOt47/88ssurb07aNAg/vznP1NaWmrVr7GxkQceeICbbrqJs88++xDfKTlShg0bxpNPPnnQx8ViMWpra/niiy8oLi4mGo3ucwx2qoRCIYykOR44EoKuzDHmcHYYa+3d9XiP0h7UHc79T/c9/KsGX35gTnKWPIQVu/Zl2bJlvP3224cdrjtOcnage0mJRgxrxvG2FnPsdWoMdjh48PfpcrkIBALWRGcdx2Cnxl+nxmD7/X4yMzOtMdg9ZY3uUCjE6tWrGTJkiOZ+EBERkWOeAnYX9e/fnwkTJjBr1ixmzpxJcXExCxcu3Gfr4DXXXMNvf/tb7rvvPm677Tai0SiPP/44ubm5XH755QB85zvfYf78+fTv359Ro0bx3//937z77rv86le/YsiQIfzyl79k2rRp3Hfffbjdbn7xi18QCoW4+uqrAbM7+eOPP87JJ5/MGWecwZtvvskXX3zB6NGjD3g/1157Lb/73e/4/ve/z9SpUwF4/PHHWbt2LYMHD07TuyY9gcvlIjs7m4KCAgYPHtylEBOJRPY7i3hqJvHUNpFIkIibQbGttWv1crgMayZxa/bw9sep5weNhlPPhkQ0fctvRUIGba2QkWngOYw8587Ye7BOJg3aWnabQby9dGWselZWFnl5eeTm5pKfn99pFvHdZxD3+XxaT1tERESkB1HAPgiPPvooc+bM4e677yYajTJixAgWL17MqlWr9ti3T58+vPLKK8ydO5err74at9vNueeey9y5c8nKygJg8uTJhMNhnnrqKWpqaujXrx8/+9nPrFnAX3nlFWbPns2NN94IwOjRo/ntb39rdXW87rrrSCaTPPfcc9TW1nLeeecxadKk/S79k1JWVsYrr7zCvHnzuOaaa3A4HHzlK1/hpZde6jTuW05MHo+HkpISSkpKDrivYRgEg8E91r1uamqiubl5r8E8FouRiEEoZq4jfSB2R+dW8FS3dJdnt8ep4jbHl+8tfGYEIKf4UN6VXRJxg3AIwq3tLdItu9bBDrWY3bf3JT8/n9LSUnr16rXXdbC1/rWIiIjIsctmHOuz/EiPsWLFCoA9Jl6T7teTuuGmAnnH9bb3VlKBfH9jyPfHZjMn+3K6zcDtdJtraztdZnd2h9McN253gN2+q4XcMMySTEAibo6LjkcgFm0fG90+Lnp/PB4PZWVlVunTpw9lZWX06tWLjIyMQ7qf41VP+myKpOhzKT2RPpfSE50on8uDyTlqwRaRo8pms1nrMvfp0+eA+7e1tXVq/U61ire0tFg/Nzc3W+tGt7S0EIvFMIxdS4i1HYH78Hg8FBYW0qtXL0pLS+nTpw+9e/emb9++FBQUYLdrkQYRERGRE40Ctoj0aBkZGWRkZFBaWtrlYyKRCK2trbS0tBAMBgkGg7S2tlprRYfDYcLhMLFYjGg0ao4hT5gzjNlsNpxOJ06nE6/Xi9frtSYLy8nJIS8vj/z8fLKysjT+WUREREQ6UcAWkeOOx+PB4/FYM/CLiIiIiBwN6sMoIiIiIiIikgYK2CIiIiIiIiJpoIAtIiIiIiIikgYK2CIiIiIiIiJpoIAtIiIiIiIikgYK2CIiIiIiIiJpoIAtIiIiIiIikgYK2CIiIiIiIiJpoIAtIiIiIiIikgYK2CIiIiIiIiJpoIAtIiIiIiIikgYK2CIiIiIiIiJp4OzuCoiIHC+SySSNjY3U1tZSV1dHU1MTLS0ttLW1EQ6HicfjGIaB3W7H7Xbj9XrJzMwkKyuL3NxcCgsLKSwsxO12d/etiIiIiMghUMAWETlIjY2NbNmyhc2bN7Nt2za2b9/Ojh07qKqqIhaLHfb58/LyKC0tpVevXvTp08cqvXv3VvgWERER6cEUsLtg+vTpbN++nZdffplt27Zx8cUX89JLLzFmzBiuv/56evfuzezZs9NyrY8//pgbbriBd999lz59+qTlnF2V7nsROdaFQiEqKirYtGkTFRUVVmlqatr3QTbwZIDbB24vOD3gdIPDATa7+ToGJBMQj0E8CrEwREMQDkEyDvX19dTX17Ny5crOp7bZKCoqolevXvTq1YuSkhKKi4spLCykoKCA3NxcBXARERGRbqSAfZBKS0v54IMPyM7O7u6qiEiaRKNRtm7dyubNmzsF6qqqqn0e480Efy74ssCXDRlZkBEAjx/sdtsh1cMwDOIRaGuFtmYINUNbE4SazMfxqEFVVRVVVVV8/vnnez2Hz+cjEAgQCATw+/14vV68Xi9utxu3243L5cLpdOJwOKyt3W7H4XBYz6WKy+WyjvN4PHg8HjIyMvD5fFax2zWVh4iIiEiKAvZBcjgcFBYWdnc1ROQQtLS0sG3bNrZu3crWrVvZsmULW7ZsobKykmQyuddj3D7IzDXDdGrrzwaHa+8hOhE3aAsah1VPlwdchZDV4VeNYWCG7xYIByHcCpEgREJmibYBhtnqHgqF9vvlQLrYbDYr0GdlZZGdnU1OTg45OTnk5uaSn59Pfn4+BQUFFBQUqHVdREREjnvdHrCDwSDz58/nnXfeIRgMMmzYMKZPn866det47rnnOP/883n99dcZM2YMzz77LOXl5cydO5fPP/+ceDzOueeeywMPPEDv3r0BswXopZde4tVXX6WyspKysjJuu+02vv71rwNQWVnJvHnz+Pvf/04wGGT06NHcd999nHrqqdbxzz33HK+99hrNzc1ceumlRCIRq767dxHfXXl5ObNnz+aTTz7B7/czZswYpk+fftCh/L333uO3v/0tFRUVnHTSSdx3331ccMEFVh0XLVrEa6+9Rm1tLf369ePmm2/m3//9363jly9fzi9/+UvWr19PIpFg0KBB3HPPPZx33nmA2WL3xBNP8Ic//IFoNMp//Md/7DNgiBwrotEotbW1VFVVUV1dTWVlpVW2b99OS0vLPo91usGf0zlIZ+aCy9u11uhE3GD1/0DtFrP7d09ns4E3ANnF5mMjaYZ4I2nW30hCMml2WU8mzJKIm93aE7HU/gbBYJBgMMjOnTsPeM3s7GwKCgooLCykqKiIwsJCsrKyCAaD5OXlaYy5iIiIHPO6PWBPmzaNiooKHnvsMfr27cuCBQuYMmUKU6dOZcuWLVRXV/PGG28QDofZvn07V199Neeccw6//vWviUQizJ49m8mTJ/OHP/yBzMxMFi1axC9+8QsefPBBxowZw3vvvcf9999PQUEBp512Gtdccw1lZWU899xzuN1unnnmGSZPnsybb75J7969WbhwIYsWLeLhhx9m6NCh/O53v2Pp0qWcddZZB7yXqqoqrr32Wq644gqmT59OW1sbzzzzDFdffTV//OMf8fl8XX5fXnrpJR5++GGKiop44oknmDZtGh9++CF+v5+f/exn/PGPf+THP/4xJ598Mv/3f//HzJkzaWlp4brrruPLL7/kzjvv5IEHHuDiiy+mtbWVefPmcf/99/Pee+/hdrv56U9/yv/7f/+P2bNn06tXLxYsWMAnn3xCWVnZ4fxziqRFMpkkEokQDocJh8OEQiGCwSCtra20tLTQ3NxMU1MTjY2NNDQ0UF9fT21t7f7HRrdz+8AXgIxss2u3L8sM026vGTR3l4h1rTV61ftQs/lg77T7GIbZDT0zF4Z+9eCPT8TNEouY48jjEYiGzZb0WMQcUx5tg0ib2dJuJKGpqYmmpibKy8v3ed7s7Gzy8/PJy8uzWsOzs7PJysoiEAiQmZmJ3+/H5/ORkZGB1+vF4/HgcDgO490QERERSY9uDdgbN27k/fffZ/HixYwbNw6AmTNnkpWVZYXRqVOnWqFv7ty5+Hw+nnjiCauV4+mnn+biiy/mzTff5Nprr+XXv/41N9xwA9/61rcAc+Ku1PI4b731Fg0NDSxdupS8vDwA5s2bx/jx4/nNb37Dfffdx8svv8wNN9xgtXjPmDGDjz/+uEv389vf/paSkhJ++MMfWs89+eSTnH322SxbtoxvfOMbXX5vfvCDH1gt5LfffjvLly+nvLycgQMH8uKLLzJ//nyrRbtv375s376dxYsXc9111+FwOPjRj37Etddea53vhhtu4JZbbqGuro5AIMDSpUt56KGHOP/88wF49NFH+eijj7pcP5HD1dTUxA9/+EPWrl2b1vPaHeD1gycTWuvNCcQ6iobM0njke1B3yaWXXsqkSZNYsmQJy5YtwzAOr3v5warZDO+9fFQvaXF5zS85ou3d3JOJXSF848aNabnGuHHjePDBBxXARURE5Kjo1oC9bt06AEaOHGk95/F4mDFjBkuXLgWgX79+nfY/7bTTOnUhLCwspH///qxbt46GhgZqamoYMWJEp+vccsstgBne+/XrZ4VrAK/Xy/Dhwzsdf/rpp3c6fuTIkfttcUlZtWoV69evZ9SoUZ2ej0QiXTq+o/79+1uPs7KyAAiHw2zYsIFIJMK9997baXKheDxONBolHA4zZMgQsrOzWbhwIRs3bmTz5s2sWbMGgEQiwaZNm4jFYp3u0+PxMHTo0IOqo8jh2Lx5c1rDtT/XHLMcyDMnIPNkwtoP9wzYPc2kSZMoKytj0qRJvP32291dnaMqIxMGntUesIPmFyLNteY2XT788EOam5vJzc1N30lFRERE9qFbA7bTeeDLe71e6/G+WnaSySQulwuXy7Xfc+3veKfTia29f+ju+3WlnqnznH322Tz00EN7vBYIBLp0jpS9zcxrGIZVtyeffJKTTz55j33cbjf/+Mc/uPnmm7ngggsYPXo0V1xxBW1tbdx+++0Ah32fIulw2mmn8YMf/IB//OMf1mfRtlsf7VRX8VAoRGtrK8FgkJaWFlpbW/f4/AYbzFK523WcnvYZvjPNrS+rfRsAx/5/ZRyUQ+0ivmTJEqsF22azHfUW7MKTDq2L+P4kk2Y38dTka9ZkbMHOE7M118Knf+jaOX0+H1lZWZ26iHu9Xux2u/W+pT4/yWQSm82G3W7nkksuUbgWERGRo6ZbE9WAAQMAWLFiBWPHjgXMltgJEyZw3XXX7bH/KaecwltvvUU0GrVasWtra9m8eTPXXnstgUCAoqIiVqxYwcUXX2wdd9ddd1FaWsopp5zCG2+8QV1dHfn5+YDZuvzll19y1VVXkZubS2lpKZ9++injx4+3jv/yyy8PGN4BBg0axJ///GdKS0ut+jU2NvLAAw9w0003cfbZZx/iO7XLySefjNPpZMeOHVx44YXW8y+99BIbNmzg4Ycf5oUXXmDMmDE888wz1usvv2z2ATUMg/79++PxePjss88YMmQIYL7va9as2evEbSJHgt1u54ILLrCGOhyMRCJBS0sLDQ0NNDY2UldXR11dHbW1tdTU1FhLWbW2thKPQEuNWXbnzTS7KKcmN0ttnfuYIXx/hp5/aJOcLVu2jLfffvuoh2u7A/LL4JSxHSY3S7ZPXpaa4Kx9srNE3JzsLDXuOtG+fnc81j4GO2JuY2FzHHZXew3YbDZycnLw+/306dOHkpISa/x1agx2bm4uWVlZ+gJQREREjgnd+hdL//79mTBhArNmzWLmzJkUFxezcOHCTrN2d3TNNdfw29/+lvvuu4/bbruNaDTK448/Tm5uLpdffjkA3/nOd5g/fz79+/dn1KhR/Pd//zfvvvsuv/rVrxgyZAi//OUvmTZtGvfddx9ut5tf/OIXhEIhrr76asDsTv74449z8sknc8YZZ/Dmm2/yxRdfMHr06APez7XXXsvvfvc7vv/97zN16lQAHn/8cdauXcvgwYPT8p4FAgH+4z/+g6eeeorMzEy+8pWv8PHHHzN37ly++93vAuZa3cuXL+eTTz6hpKSEjz/+mKeeegowZ1n2+/1MnjyZp59+msLCQgYMGMALL7xwVJb1EUkHh8NhTYC1P62trezcuZMdO3awfft2tm/fzrZt29i+fTtNTU2EW83lruq3dz7Om2nsWpIrFzLzzCC+v/WtHU4bp11oziYebev6vURCBuFW85qers+DaC3b1XGZrlhkV+CNR3cFYmsm8I4BOgE1FWY5Eux2+x5LdRUWFnYqBQUFxGIxVq9ezZAhQw5qIkgRERGRnqjbmwQeffRR5syZw9133000GmXEiBEsXryYVatW7bFvnz59eOWVV5g7dy5XX301brebc889l7lz51rjlCdPnkw4HOapp56ipqaGfv368bOf/cyaBfyVV15h9uzZ3HjjjQCMHj2a3/72t9ZEatdddx3JZJLnnnuO2tpazjvvPCZNmsSmTZsOeC9lZWW88sorzJs3j2uuuQaHw8FXvvIVXnrppU7jvg/XjBkzyM3N5amnnqK6uprS0lLuuusu/r//7/8DzBb72tpabr31VgAGDhzIo48+yn333ceKFSsYMGAA9957Lx6Ph4cffphgMMill17KRRddlLY6ivQEmZmZDBw4kIEDB+7xWlNTk7UO9ubNm61SX19vBe/arbv2t9nBl23sWsorB3w5ZnfzjsHb4bSRcRAjQjICQPHeXzMMg1gYQk3tpdnctrWYJRnv+nW6yul04nA4rGE3brcbt9uNx+PB6/Xi9XqtGbwDgQB+v7/TOtjZ2dlWq3NXJhaLxWLpvwkRERGRbmIzjvaAPzlurVixAmCPSeKk+4VCIbUSdlFzczMVFRVs2rSp0zYUCu11/9R60r4sc+vNNGcxd2eYxeUxx3rbHZ3HmBtJw1zmKtretbq9JTrcuitAtzWbLdH7YrPZyM/Pp6ioiLy8PPLz860lrTIzM/H5fPh8PjwejxWUXS4XDofDCtK7l6NNn03pifS5lJ5In0vpiU6Uz+XB5Jxub8EWEelJsrKyGD58OMOHD7eeMwyD6upqNm/ezKZNm6zW7q1btxIOh2lrNsPwgdjsBjZbezftLn61abPZKCoqok+fPvTp04fevXvTu3dvevXqRVFRUZfmhxARERGRo0MB+yg644wzSCT2PftRfn4+y5cvP4o1EpGusNlsFBcXU1xcbA03ATN419bWsn37dnbs2EFlZSXV1dXU1NRYE7AFg8Fd+ydh91ztcrnIzs4mJyeHgoICiouLKSoqorS01ArSHo/nKN2piIiIiBwOBeyjaOnSpfudJbg7umeKyKGz2WzWhF0jR47c6z6JRIJIJEI4HCYej1vHud1uMjIyrBUHREREROTYp4B9FPXt27e7qyAiR5nD4bDGQouIiIjI8c3e3RUQEREREREROR4oYIuIiIiIiIikgQK2iIiIiIiISBooYIuIiIiIiIikgQK2iIiIiIiISBooYIuIiIiIiIikgQK2iIiIiIiISBooYIuIiIiIiIikgQK2iIiIiIiISBooYIuIiIiIiIikgQK2iIiIiIiISBo4u7sCIiLSvQzDIBaLEQ6HicfjJJNJDMPAbrfjcrlwu914PB5sNlt3V1VERESkR1PAFhE5jiSTSYLBIC0tLTQ1NdHc3ExTUxONjY2dSktLC83NzbS2thIMBkkmk/s9r91ux+fzkZmZSXZ2Njk5OeTl5ZGfn09hYSGFhYWUlJRQVFSE2+0+SncrIiIi0rMoYIuIHEWGYdDS0kJDQwONjY2dQm5bWxttbW1Eo1FisRixWIx4PE4ikdijxONxYrEY0WiUSCRCOBymra2NUCh02HW02VN1BQzzcTKZpLW1ldbWVnbu3Lnf4/Pz8yktLaV379706tWL3r1706dPH3r37o3H4zns+omIiIj0VArYIiJpYhgGra2tVFdXU1VVRXV1NdXV1dTU1FBTU0NtbS319fXE4/EjXhe7E1wecHrB5QVXBrjbt06v+ZrLC043ONzgcJnH2Gx06gpuJA0ScUjGIR6FeARiYYi1QTRklkgQIq0QbjX3q6uro66uji+//LJTnWw2G8XFxfTt25e+ffvSr18/iouLiUajR/z9EBERETkaFLBFRLogFovR1NREfX29VWpra6mrq7MCdHV1NW1tbV06n9Nthl2H2wy2zvaA63CC3WEW7GZrst32/7N35/Fx1YX+/19n9sySfW2artA2QEGQCxYBoawF2TQuiBcRwYXtAgoXv5WlFC9LvSwWEdCilMq9Sn+toNhq2VSUolDg1gJdaAvdkmbP7Ov5/TGZ06RJ26SdNCl9Px+Pz+PMcuZzPjOMNe/5bN23jex962jbcW7utXZnd1i2D/y9mZlscCZuPdLveR4/2Ip3PQ/bNE1SsWzQjnVBtLvEOiHSCemESWNjI42NjfzjH//o9dqqqiomTJjA2LFjGTduHGPHjqWurk7DzUVEROSAooB9AAuHw9x///388Y9/JBwOc/jhh3PLLbewZs0avv/977N69Wrr3EWLFvV6bPr06TQ0NPDmm2/yz3/+k6qqKr75zW/yhS98YbjejsiQy2QyRKNRwuEw4XDYGvKcm7Ocux8MBq05yrl5zKFQaMDXcXrA7e8uvh1HlxdcPnAVZIdfr/0LtH0EmfQQvuk8stmhdIzJoSeD3dE3aBuGgbMg+8NBoKL3c6ZpkoxBtAMiudKeLckYNDU10dTUxGuvvbbjejYbNTU1jBkzhtGjRzN69GhGjRpFTU0NZWVl2O2D+BVBREREZD9QwD6AXX/99WzcuJG7776bMWPG8Oijj3L55Zdz1VVXDej1jzzyCN/+9reZOXMmf/nLX7jtttvw+Xycc845Q9xykf6ZpkkmkyGVSlklNxc5N9c4kUgQi8V6ldzc5dwc5FzJhedIJGLNcd5XuQDpKugOzN7uEO0Fpy97276Hf1nNDKz5C7Ru3Ofm7FeZNLRsyP44MOnk/nu5d8fuAH95tvSUTvYI3N3HcDukExm2bNnCli1b+tZlt1NeXk5FRQVlZWWUlpZSXFxMYWEhgUAAn8+H1+vF6/VSWFhISUnJ3r1pERERkUFQwD5ArV+/nr/85S/MmzePE088EYA77riDwsJCvF7vgOo48cQTueaaawCYMGEC77zzDk8++aQCtuwXpmly++23s3z58uFuyqAko9my70uJDZ8ZM2bQ0NDAwoULWbp0KaY5uLDcuhFe25i/9hRWwdRzoXhUj7nfppn9nDuyJdqZLbFgdr53Op22er0H4uabb+b000/PX6NFRERE+mEb7gbI3lmzZg0An/jEJ6zH3G433//+93E4Bva7yfHHH9/r/tFHH23VKzLU0uk077333nA346DU0NBAXV0dDQ0Ngw7X+4thGLi8BkU1UFrXXcZkj8W14BjkYuQDDeIiIiIi+0I92AeogYbonHS67yTPnevIZDLYbPrNRfYPh8PBz372M/7xj3+QyWQwDKPfsNffMPGdh4jHYjEikYg1RDwcDhOPx/u56uDZHN2rcPdYjdvZY3i4qyA7r9rpzi4+NlDDOUR84cKFVg/2rj733SkbB5NOzl97bN3/FMWCJuH2HXOzcz3XmT0suu52uykrK6OoqMgaIh4IBPB6vRQUFFBUVMTJJ+exwSIiIiK7oIB9gJo4cSIAK1euZNq0aUA2iJx55plcd911AIRCIfx+PwAbN27sU8fKlSt73V+xYgWHHXbYELZapLfi4mLOPPPMIak7nU73Ox9755J7fOcFzkKhUHZOeCo7JDm+hzXODHv3XOzuRc08/h4LnfmzYbznwmCTPmOy1hieRc6WLl3KkiVLBh2us4ucsctFzgbCNE0S4b5zriMd2bnY/XE4HNTU1Fh7aVdXV1NdXU1lZSUVFRV4vd5eW4uJiIiIDBcF7APU+PHjOfPMM5k1axZ33HEHVVVVPP7448TjcSZMmIBhGMydO5d///d/Z+XKlSxevLhPHc8//zxHHXUUn/70p3nhhRdYtmwZjz766DC8G5H8s9vtVk/m3kin04TDYWsV8Y6ODtrb263S2tpqbdPV3t6OmTaJdWW3p9oVh9u0er6dBdkwPvqo7uecYMtt1dW9RZfN3mNbrh5bc2GAzbbjucFKRExiIfD4s+0ZKFcB2AYYrFMJc8dWXZ29y+6C9JgxY6ytunK3a2pqtGK4iIiIHBAUsA9g//Vf/8V9993Hf/zHf5BIJDjqqKOYN28eU6ZMYdasWTz22GM8/fTTfPKTn+Tmm2/mP//zP3u9/qKLLmLZsmXcc889jBs3jgcffJDPfOYzw/RuREYWu91OYWEhhYWFezw3mUzS0tJCc3MzTU1N1nH79u1WicfjpOLZ/aYj7flrZ24v7Nz+13Zndo9thztbnAW9h7e7PFBQmN1Gy7DtZS90xiTRvdhbPAKJEMTDOxYgiwWzW2/tit1up7a2ljFjxlBbW4vdbmfatGlMnDhx0NNfREREREYS/SVzAAsEAsyePZvZs2f3ee5LX/oSX/rSl3o9duGFF/a6X1VVxV133TWUTRQ5KDidTmpqaqipqen3edM0CYVCtLS00NLSQnt7Ox0dHXR0dFhD0sPhsLXlWDwet+adp1Ip0uk0qVSKTCbTt+4MpDO77hXeHYfLxO7O9p7bu3vPbXYgl7vN7PD1TDpbfzqR/YEglRhY/UVFRdTW1lJbW8vo0aOpq6tjzJgxjBo1ygrSkUiE9957j7q6OoVrEREROeDprxkRkSFmGIY1XH38+PF7XU9un/Bc4E4kEiQSCZLJZK8F3sLhMMFgkK6uLjo7O60w39HRQWdnJ8FgEMgG5VQC9mY5OJvNRnFxMeXl5ZSVlVFZWUlVVRVVVVXWjw0+n2+v36uIiIjIgUgBW0TkAGEYBna7HbvdjsvlGvCe9ztLp9N0dXX16T3P9ZznesptNhtOpxOXy0VBQQE+n49AIEBRURF+v1/zokVERER2ooB9kHrppZeGuwkiMkzsdjslJSWUlJQMd1NEREREPla06bGIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBY7gbcCCZPHkyd999N5/73Ofyeu7eevnll6mrq+OQQw7h9ddf59JLL+XFF19k9OjRQ3ZNEdkhk8kQiUSIRCKEw2Gi0ah1P3c7FosRi8WIRqPE43FisRiJRMIqyWSSVCpFKpUik8lgmiaZTMa6hmEYGIaB3W7vVRwOh1WcTmevx3qeZ7PZsNlsveoyTdO6Ts+STqetYzqdts7rqef13W43Ho+HgoICfD4fgUCAQCBASUkJxcXFFBcXY7fb9+t/ExEREZHhpIB9gNqyZQvf/va3mT9/PocccghHH300r776KqWlpcPdNJEDkmmahEIh2traaGtro6Ojg46ODjo7O+nq6qKzs5NgMEgwGCQUChEKhYhEIn0CqOxgs9koKyujsrKSyspKampqqKmpYdSoUYwePZri4uLhbqKIiIhIXilgH6B2/qPe5XJRUVExTK0RGdlM06Srq4vm5maam5vZvn27dbulpYWWlhZaW1tJJBJ7Vb9hA7sL7E6wObNHuwtsDrDZAaP7dvd9mx0MR/Z1hg1sNjCM7G2M7mI1PlvMniXTu5CBTKb3c+Rumz3q6dXobDHIXhujdxuM7mKda2bfE4aRrTcNmbRJOgmZJKSTkIpBKg7JaPZ2JpOxPudVq1b1+dy8Xi+jRo3C7/dTX1/PhAkTGD16NLW1tXg8nr36byEiIiIynBSwd6GxsZFZs2axfPlyAoEAN910k/VcJpPhZz/7GYsWLWLLli24XC6OOeYYbrvtNsaMGdOnrrlz5/Lmm29y7LHH8vTTTxONRjnvvPP4zne+wx133MHy5cuprKxk5syZnHLKKQBs3bqVOXPmsHz5crq6uigrK+O8887ju9/9Llu3buW0004D4NJLL+Waa67huOOO6zVEfHevt9lsLFq0iJ/+9Kd85zvf4ac//Snbtm1j0qRJzJw5k09+8pP75TMWyYdUKkVHRwdtbW20trbS2tpqheZcuGtubiYejw+oPrsLnF5wFoDDs+PocBvdx+4w7QaHKxekjT71pFMmG/9s0rYhG0Y/Dgw7lIw1GfcZA7tj518CejMzJskoJELZEg9BvMskHoRYZ/axSCTCunXrAHj77bd7vb68vJza2lpGjRpFdXU11dXVVFZWUlFRQVlZmYaei4iIyIikgN2PVCrFFVdcgd/vZ8GCBSQSCWbNmmU9P3/+fObNm8e9997LpEmT+Oijj7j11lu55557eOSRR/qt84033qCsrIxf/epXrFixgv/3//4fL774IjfddBM333wzc+bM4ZZbbuG1117DMAy+853vUFFRwS9+8Qt8Ph8vvvgid999N0cffTSnnnoqzzzzDF/4wheYO3cun/70p/nXv/7V63q7e/3pp58OwLZt2/jf//1f5syZg8/n44477uCWW27hT3/6E4ax6z+cRfKhvb2daDRqzT9OJpMkk0kSiYQ1VzkWi/Wa4xwKhaxh2p2dndbw7YGye8DlA7cPnN3F5QNXQff9gv7D8u6YJqSTfYeJb3jFpH3joKoa8cw0tK3Phufxp+z5fLsLCkqzJWvHZ5tJmSSCEO2CeBDindngHeuEdBzrR5J33nmnT702m43i4mJKS0spLi6mqKiIwsJC/H4/fr8fr9dLQUEBHo8Ht9uN2+3G6XRSXV2Nz+fLx0chIiIi0i8F7H689tprrF27lmXLllk90nfffTcXXnghAGPGjOHee+/l1FNPBaC2tpazzz6bpUuX7rLOTCbDrFmz8Pv9jB8/njlz5vCpT33KqvPiiy/m5Zdfprm5mcLCQi644AJmzJhBTU0NAJdddhk/+9nPWL16Naeffro117qoqKjPH4yxWGyPrwdIJpPMmjWL+vp6AL7+9a9z9dVX09zcTGVlZR4+SZH+LVq0iEcffTR/FRrZcOz0gsvbHZa90LoW4j3ydzoG0RhEW3dX2YEzp3rGjBk0NDSwcOFCli5dut/mg7dvhPZf5u9a/iqYct6OBdhS8e7A3ZX97xcPZsN4PATJcPbf09xc+cEIBAIsWLCAgoKCvLVdREREpCcF7H6sWbOGoqKiXsO96+vrrTmB06dP55133uGhhx5iw4YNbNiwgXXr1lFVVbXLOsvKyvD7/dZ9r9fbq/5c3YlEAo/Hw1e/+lWWLl3K//3f//Hhhx+yevVqWlpaeq0uvCuDef3EiROt24FAAMgGb5GhlO/vmM2end9sd+yYA21z9JhD/DHV0NBAXV0dDQ0NLFmyZLibkxeGYWBzmNn/jt3/PW09joYdzNTe1Z1Kp7QonYiIiAwpBex+GIbRb5B1OLIf1+OPP85PfvITLrroIqZNm8Zll13Giy++yPPPP7/LOp1OZ5/Hclvn7CwSifDVr36VWCzG2WefzUUXXcSRRx7JJZdcMqD2D+b1Lperz2P6A1SG2pe+9CVOPvnkPkPEe25f1XOIeDgctkpuiHhuhe9kMkkm1d3TubvR4kb3cPDuYg0P79Hj7fCQt+kR+2OI+MKFC60e7Fzv7/5QMg7Gn7Jvn5OZMUlGINaR7Zn+6O8msQ6TaGe2l3pPvF5vnyHiPp8Pv9+Pz+frNUTc5XLhcrkYPXo0Xq93n9otIiIisjsK2P2or68nGAyydu1aDj30UAA2btxIKBQC4NFHH+Xqq6/mm9/8pvWaefPm5e2P21dffZVVq1bxt7/9jfLycgA6OjpobW21rrG7EDCQ14sMt9z0hX1hmiaRSIT29vY+i5zlVghvbm6mra2NTCZjLbi1K4YBDq+ZHW5e0GOBM8+OBc4c7h4LnLlzPeV9//c4/lQw/mzS/uHQLXK2dOlSlixZst/CdXaRM3oscrZrpmmSTkAi3L3IWTA71Dv3Q0isa/efi9/vp7a21traq+ciZxUVFRrmLSIiIiOSAnY/jj/+eI466ihuvvlmbr/9dux2O7Nnz7Z6nGtqavjb3/7G9OnTsdlsPPvss/zpT3+ywuy+qq6uBuC5557jrLPOYtu2bdx///1WDx9g9cKsWbOGww47bNCvF/k4MAwDn8+Hz+dj9OjRuzwvlUrR2traZ4uuniG8s7MT0zRJhvvrQd1NeDXA7jKtrbl6bdXlhPJJ2dOsLbq6hzlb23V1b9WFrcd2Wd31Yu64smkC3Vty5bbfSkSzvcC56/d8LrdlV26Lr/7anbuOYXRfn362C+uRo+3O7GfesjrbA51JZRcrSychnchu0ZWKQSqa3aors4eh3A6Hg+rqagoLC5kyZQrjx49n9OjRjB49msLCQi22KCIiIgccBex+2Gw2HnvsMe666y4uv/xyPB4P3/rWt9iyZQsA9913H3feeSef//zn8fl8HHXUUcyaNYs77riDrVu3MmrUqH26/pFHHsn3v/99fvnLX/Lggw9SVVXFOeecQ01NDStXrgSgpKSEz3/+89x33318+OGHnHHGGYN6vcjBxOFwUFVVtdt1ElKplNUT3tbWRkdHh1W6urro6uoiGAzS1dVFKBQiFAplp5KY2VWv0wPbBexjYHA95YFAgIqKCqqqqqiurmbUqFGMGjWK2tpaqqqqiMfjvPfee9TX12v4toiIiBzwDFNjhiVPcuF96tSpw9wS2VkkElGIyTPTNInFYoTDYWueeDQatY7RaJRIJGLNJY9Go9b2Yz3nmieTSWseeiaTsUqOYRjYbDbsdjs2mw2Hw4HdbsfhcFjF6XT2esxut1vn516bqyvX9lzJXS+dTve6nU6nrXNyrzEMw6rX6XRaW2B5vV5r/nNhYSHFxcWUlJRQVlZmLeC4K/puykik76WMRPpeykh0sHwvB5Nz1IMtIrIXDMOgoKBAc4FFRERExNL/MtYiIiIiIiIiMigK2CIiIiIiIiJ5oIAtIiIiIiIikgcK2CIiIiIiIiJ5oIAtIiIiIiIikgcK2CIiIiIiIiJ5oIAtIiIiIiIikgcK2CIiIiIiIiJ5oIAtIiIiIiIikgcK2CIiIiIiIiJ5oIAtIiIiIiIikgeO4W6AiHw8hEIhtm3bRltbG8FgkHg8jmma2O12PB4Pfr+foqIiysrKKC4uxm63D3eTRURERETySgFbRAbNNE02btzIm2++ycqVK1mzZg2tra0Dfr3dbqeiooKamhpqa2upq6tj7NixjB8/npKSkiFsuYiIiIjI0FHAFpEB27hxIy+++CJ//vOfaWxs7PO8owAcPnC4wXCAYYCZgUwS0glIRbMlnU7T2NhIY2Mjb731Vq86iouLOeSQQ5g0aRKTJ09mypQpCt0iIiIickBQwBaR3YrFYvz5z3/m+eef5/3337ceN+zgGwX+UQbeKvCUgt1l7LE+M2OSikAiBIlOiHeaxDsg1g6JLujo6OCNN97gjTfesF4zatQojjjiCI444gimTp3KqFGjMIw9X0tEREREZH9SwBaRfjU2NvK73/2OJUuWEAqFsg/aoHAMFB9iEBgDNsfgQ65hM3D6wekHXzXAjjoyKZNYG0SbIdpsEmmGeDts3bqVrVu38qc//QmAsrIypk6dypFHHskRRxzBmDFjsNm0ZqOIiIiIDC8F7EGaPHkyd999N5/73OcGde7cuXNZvHgxL7300pC2b/r06Vx00UVce+21/T6/aNEivv/977N69epha6OMXJlMhrfeeovnnnuO119/nUwmA4AzAGX1BsWTwOkdup5jm8PAWwneSsgF73TcJNwEkUaT8LZs+G5tbeWVV17hlVdeASAQCHDYYYcxZcoUJk+ezKRJkygsLByydoqIiIiI9EcB+yBzzjnncNJJJw13M2SEaWlpYdmyZfzxj39k69at1uP+Wig7wiBQl+157k8mZZKKDm37PCXgKTGoPCZ7P7IdwtsgvM0k0gTBYJDXX3+d119/3XpNeXk548aNY+zYsYwePZpRo0ZRXV1NRUUFDof+6RMRERGR/NNfmQcZj8eDx+MZ7mbICLBt2zZef/11Xn31VVauXIlpmgDYnFB8KJQdbuAp2XVvdSZlsvkVk64PwUzvnzYbdigcC6NPMfCPMgADM2MSbYFIE0S2m0Sbs3O5W1paaGlp6TWXG8AwDEpKSigrK6O0tJSSkhKKi4spKiqiqKiIwsJCCgsLCQQCBAIBfD6fthQTERERkQFRwN6NxsZGZs2axfLlywkEAtx00029nn/llVd45JFHWLt2LT6fj3PPPZcbbrhhQAF2zZo1/Pd//zcrVqwgGo1SVVXFJZdcwuWXXw7A3Llzef3116moqODPf/4zF110EbfeeuuA2t3c3MwVV1xhvf4b3/gGl1xyCdB3iLgcHBKJBFu2bGHz5s2sX7+ed955p1dPNYC3Ohusi8aCzZkN1pmkucs6N71i0rVhSJvdh5mGzvXZbcLqTtnxeLaHG0qndA8rT5jE2rsXTuuEeCckgpAMZRdZa2tro62tbcDX9Xq9+P1+vF4vXq+XgoICCgoKrNsulwuXy4XD4cDpdGK323E4HNjtdux2Ozabzbqdey53bu61brcbj8dj1alQLyIiInLgUcDehVQqxRVXXIHf72fBggUkEglmzZplPb9s2TKuu+46rr32Wu69917Wr1/PHXfcwaZNm3jkkUd2W3c0GuXyyy/n05/+NP/7v/+L3W7nmWee4d5772XatGnU19cD8M9//pNLL72UZ599lnR64F2Ev/nNb7j++uuZOXMmr776Kj/84Q+prKzkjDPO2LsPQ0asdDrNypUrCYfDxGIxIpEI4XCYrq4u2traaGlpoampie3bt1s91BYDvFVQOM6gaAI4fbD+OZOtfwXYdbDOlxkzZtDQ0MDChQtZunRp3/btRtcGWLVh6NuYE4lEiEQi++16AG632wr0Xq8Xn8+Hz+ejoKDAOhYUFODxeHC73VZIdzgcGIZBYWEh9fX1Wm1dREREZD9SwN6F1157jbVr17Js2TLGjBkDwN13382FF14IwOOPP84ZZ5zBVVddBcD48eMxTZOrr76adevWccghh+yy7mg0yqWXXsoll1yCz+cD4LrrruPnP/85q1evtgJ27vFAIDCotp9++ul8+9vfttr19ttv88QTTyhgfwzNnz+f//mf/xnw+b4aKKgEX7WBr6b3tlqDCbj50NDQQF1dHQ0NDSxZsmS/XjtfnH4oOgRIQyad7WE3M9mCueO2aQLdR+uxNGQS2f3B0/G+dcfjceLxOO3t7XvdvquvvpoLLrhgr18vIiIiIoOjgL0La9asoaioyArXAPX19dbw7zVr1nDuuef2es1xxx1nPbe7gF1aWspXvvIVfv/73/Puu+/y0UcfWfsL51ZthuxWRIMN1wCf/OQne90/6qij+POf/zzoemTkq6ysHNT50RbAAJvdxOY08FaZ2OzZkG0YBhPOBzM1sLr2dYj4woULrR5swzAGFfALx0PdKUPTM2tmTFLxbOi1SncQNhOQTkImV9IQa+kOy6kdwblPyDb7hu79MEiA8vLyob+IiIiIiFgUsHfBMIxeYTcnt/pwf2Egd/6eVihubm7mS1/6EqWlpUyfPp0TTzyRqVOn8pnPfKbXeXu7GNnO+wFnMhlcLtde1SUj27nnnsupp55KNBolFosRDocJh8N0dnbS3t5Oc3MzTU1NbNq0iU2bNpFOpglvhfBWYIWJzQmBMSZFE7IrhdscBoZzYNeuOxU2G3u/yNnSpUtZsmTJoMJ1z0XOBrsHdzphWvOwk2FIRUySEUhFsyUdg1Qs26u8v9lsNmsBQo/HYw3/9vl8vYaH527nns8Vt9ttDRN3Op04HA7rvoiIiIjsPwrYu1BfX08wGGTt2rUceuihAGzcuJFQKARk949esWIFl112mfWa3GrFEydO3G3dv//97+no6OCPf/wjTmc2zeQWHcvHMN1Vq1b1uv/mm29a70E+fnJzdHcnEonwr3/9C7/fz/r161m5ciUrVqygs7OTzg+g8wMTmwuKDzEpnWJQUL7n8GpzGIw53djrbbqSEZNkEJwBc8B7azsK2GOwTsezq4rHWiHWbhLvyC5ylo4Nrn2BQAC/328dey5yliu5+c9utxun02kVh8PRZ2Gz3P3cAmc9FznTtmEiIiIiHw/6q24Xjj/+eI466ihuvvlmbr/9dux2O7Nnz7Z6h6+44gr+4z/+g0ceeYQZM2awceNGZs+ezamnnrrHgF1dXU00GmXp0qV88pOfZP369dx9991AdrXnffX8888zZcoUTjnlFF544QWWLVvGk08+uc/1yoHNbrczbtw4DjvsMD772c+SyWRYvXo1f/3rX/nzn/9Mc3Mzbe9C27smBRUmZYcbFE3EGkK+KzaHgWvwMxlwBQyo2ss3083MmMTaslt0hZtMotuzW3TtSmFhIZWVlZSXl1NeXk5paSnFxcVWKSwspKioCL/fr1W8RURERGTQFLB3wWaz8dhjj3HXXXdx+eWX4/F4+Na3vsWWLVsAOOuss7j//vv56U9/yiOPPEJpaSmf/exnue666/ZY99lnn82qVau45557CIVC1NbW8oUvfIEXX3yRlStXcvHFF+9T27/xjW/w8ssvc//991NbW8t///d/c/zxx+9TnfLxY7PZqK+vp76+niuuuIJ33nmHJUuW8OqrrxJtTrH5FZPG16G03qS03sDpG/7VqHN7Xoe3QrjRJNzY/5Du6upqJk6cyPjx4xkzZgyjR4+mpqbGWlRQRERERGQoGOb+XjpYPrZWrlwJwNSpU4e5JbKzSCTCe++9R319/R6Hk7e3t7N06VJ+97vf0dLSkn3QgMJxUFpv4B8Fhm3/hO10wiTaDOFGiDSaRJqyi4n15PV6qa+v5/DDD2fKlClMmjSJwsLC/dI+2XeD+W6K7C/6XspIpO+ljEQHy/dyMDlHPdgi0ktJSQkXX3wxX/ziF/nb3/7Gb3/7W/71r3/RtQG6Npg4fVA0MbswWkEFedtnOZ3IDveOtkCsxSTSDPEO+qy2HQgEOOKIIzjyyCM58sgjmTBhgoZzi4iIiMiIoIB9gLjzzjtZvHjxbs/5yU9+wgknnLCfWiQfd3a7nZNPPpmTTz6ZDRs28Ic//IEXXniBcDhMy/9By/+ZOArAV2PirTTwlIGrCJze/nu4M2mTdAySkexK3okgJLpMEp0Q64BUuP92VFVVUV9fzxFHHMHUqVMZO3Zsn5XyRURERERGAgXsA8Q111zD1772td2eM9g9kUUGavz48Vx99dVceeWVLF++nL/85S+88cYbRCIROtdD5/re3cw2l4nNARhAJrt39ED2166oqGDChAkccsghHHrooUyZMoXS0tIheU8iIiIiIvmmgH2AKC0tVdCQYedyuaxe7WQyyXvvvcfKlStZu3YtGzdupKmpiXQ6TSbR/+JjNpuNkpISysvLqa6upqamhtraWkaPHs3YsWPx+/37/02JiIiIiOSJAraI7BWn02nNg85Jp9N0dXURCoWIx+NkMhmcTidut9vaS1rDu0VERETk40oBW0Tyxm63U1JSQklJyXA3RURERERkv1NXkoiIiIiIiEgeKGCLiIiIiIiI5IECtoiIiIiIiEgeKGCLiIiIiIiI5IECtoiIiIiIiEgeKGCLiIiIiIiI5IECtoiIiIiIiEgeKGCLiIiIiIiI5IECtoiIiIiIiEgeKGCLiIiIiIiI5IFjuBsgInIgMU2TVCpFPB7vUxKJBIlEgmQySTKZJJ1Ok06nMU0TAMMwsNvtOBwOXC4XHo8Hj8eD3+/H5/MRCASw2+3D/A5FREREZG8pYO9HkydP5u677+Zzn/tcXs8dyPlz585l8eLFvPTSS4Nqs8hIlEqlCIVChMNhwuEw0WjUKj2DbiKRIJVK9Qm8qVTKOmYyGVKplPVYMpns9ZpkMkkikbDqjcfjZDKZIXlfhmHg9/spLS2ltLSUsrIyKioqqKyspKqqyioul2tIri8iIiIi+0YB+yBx+eWXc8kllwx3M0T6lUwm6ejooL29nba2Ntrb2+no6OhVurq66OrqIhgMEovFhrvJOzjAZgdjp4INMMDoPgJggpkBuksmBWYKMkkwk9ne8WAwSDAY5MMPP+z3coZhUFZWRnV1NaNGjaKmpoaamhqqq6upqamhuLgYwzD6fa2IiIiIDC0F7IOEz+fD5/MNdzPkIGGaJtFolM7OTqv0DMvt7e29wnRXV9deXcdwZovZHVCHRSoblPeFYQffBCidBmbSIB2BdARSYUiFTFJBSIUgGQQzadLS0kJLSwv/+te/+tTldrupqKigqqqKiooKysvLKS8vp6SkhNLSUoqLiykqKsLtdiuIi4iIiOSZAvYQaWxsZNasWSxfvpxAIMBNN93U6/lXXnmFRx55hLVr1+Lz+Tj33HO54YYb8Hg8feqaO3cuf//73znxxBOZP38+6XSaM844g5kzZ+L3+63zNmzYwGWXXcabb75JcXExX/3qV/nWt75l1ZEbIr5582ZOO+00fvzjH/Pzn/+c9957j8rKSr71rW/xpS99aWg/GBlWueDbn55DoZPJZK+5xbFYjFgsRjweJxKJEI1GicVihMNhIpGINVQ7FAoRCoUIBoOk0+nBNc4AmwccPrB7wF7Q41gAhhvs7uxjNle2GDaD7S+ZhDfk4cMZRmYawusBEyqngzPQ89kdIdg0TTKxbNBOBSHVlb2d7MoG8HQY4vE4mzdvZvPmzbu9psPhIBAIUFBQgM/no6CgAI/Hg9vtxuVy4XK5cDqdVrHZbDgcDmsOee62zWazHuv5nNPptI49i8vlIhAI4Ha7Nd9cREREPnYUsIdAKpXiiiuuwO/3s2DBAhKJBLNmzbKeX7ZsGddddx3XXnst9957L+vXr+eOO+5g06ZNPPLII/3WuXLlSgCeeOIJQqEQM2fO5Prrr+fnP/+5dc6CBQu4/fbbmT17Nr/73e+4//77OfLII5k2bVq/dd59993ceuutTJo0iV/84hfccccdnHDCCdTV1eXx05D+RKNRlixZQktLS5/nTNMcdM9ibm5xz/nDuWMuNHd2dtLS0kI8Hs/X28gvEzJRSPSf/3f9omEwY8YMGhoaWLhwIUuXLrUWMdtX4Q2wYd7+eU+pVMoaSTBccou92Ww2vF4vHo/HCvc9g37PsJ8L8nvS3/+ODMPgzDPPZOzYsUP1lkREROQgp4A9BF577TXWrl3LsmXLGDNmDJANsxdeeCEAjz/+OGeccQZXXXUVAOPHj8c0Ta6++mrWrVvHIYcc0qdOwzB48MEHqaqqAuC2227jyiuvZP369UyYMAGAr3zlK9Y1rrrqKp544gn+9a9/7TJgX3bZZZx22mkA3HDDDfzqV7/inXfeUcDeDx544AFeeeWV4W6G7KWGhgbq6upoaGhgyZIlw92cA1ZucTmAUCi0X665aNEifv3rX1NYWLhfriciIiIHFwXsIbBmzRqKioqscA1QX19vDf9es2YN5557bq/XHHfccdZz/QXscePGWeEa4JhjjrHOzwXscePG9XpNYWHhbnsrJ06caN0OBLJjUpPJ4ZrIenA57rjjPh4B2w42Z/eQbXf2aHdnh3rbXdmh3TZP9jlryLcnO7Q7X4ZjiPjChQutHmzDMPLWg+0bD5XT8/fZmKZJJtE9nzuaHSGQjkImBukEZOKQSXSXVHYee27hNTNNdjG2j5njjz9e61GIiIjIkFHAHgKGYfS7jY/Dkf24+/tjPHd+7pydOZ3OXvdz81t7DpXsb9jk7v7w72+rn3wFBdm9008/ndNPP32vXmuaZp+tpXYeFp5Op3ttURUKhdiwYQNVVVXYbLZe86xzW1H13Mu55+3c/OtYLGbNvU4kEtnGpCGTzga2wbAXmNnA7c0WRwHYvYb1mMO7I5zvabh85XRofsUkvLE7FO4HS5cuZcmSJXkL14YdfOOg4hQDm3PgAduak909FzvVBamgmb0dyhZzHxdg25ndbu8153rn+z3nYOeGdOeGePcc8u12u6253e3t7dTV1REIBHoND3c6nb1u9yy56zgcDi3WJiIiIiOGAvYQqK+vJxgMsnbtWg499FAANm7caA2BnDx5MitWrOCyyy6zXvPGG28AvXuVe9qwYQPBYNDqaX7rrbcAOOyww4bqbcgIZRiGFWrcbveAXhOJRPD5fNTX1+P1eve5DalUikgksssFznLbaXV1dfVaQbyrqwvTNEl396TS1rPWfoKqAXaPme0Rz/WAu7t7y92GtdiZ/1CDwGSTTBpsjt5bZRn27q2ybGCQnyCWimRX9nYETBzefa/T7gWbo/96MsnstXILmyWDZnZxs67s/Uxiz/X7fD5KS0spKSmhpKSEwsJCCgsL8fv9+P1+vF4vBQUF1kJnPQNwzwXL7HZ73sNsJBLhvffey9t3U0RERGQ4KWAPgeOPP56jjjqKm2++mdtvvx273c7s2bOx2WwAXHHFFfzHf/wHjzzyCDNmzGDjxo3Mnj2bU089dZcBOxKJcPPNN3PDDTfQ0tLCnXfeyTnnnENtbe3+fGsiQHakRS6kDUY6nbYCd1tbG21tbXR0dNDa2mo9ljsGg0EwscJ4ss9aXHvRc2wzMWw9Ardtxz7VvR6z7wjmRo/Abji6A7wDDEd2O61E932bfadz7Tvq7m8f7Ey6ew/s3BDthEk61v3jQ26brtDAAnR5eTnV1dVWqaqqorKyksrKSsrKyvrdnUBERERE8k8BewjYbDYee+wx7rrrLi6//HI8Hg/f+ta32LJlCwBnnXUW999/Pz/96U955JFHKC0t5bOf/SzXXXfdLuusqamhvr6eSy65BLvdznnnncf3vve9/fWWRPLCbrdTWlpKaWmptXbArqRSqT6937mS6y3P9aBHIhFrCHtuWHsymew7VSOTDbj5mQix/6ZTeL1eKzjnQnRNTQ2jRo2iqqpqwCMZRERERGRoGaYm3Y54PfewHslyW4lNnTp1mFsiOztYh+H2nJves+Tmree2N8vdz5XcaxKJhDVHPRfce85N7/lYbj57IpEgkUhY26ZlMhkymQyGYVjD+3Pzkj0eDx6PB5/Ph8/no6ioiKKiIkpKSigrK6OsrIyKioqP9aJcB+t3U0Y2fS9lJNL3Ukaig+V7OZicox5sEfnYyi2CJSIiIiKyP9iGuwEiIiIiIiIiHwcK2AeAa6+9dsQPDxcRERERETnYKWCLiIiIiIiI5IECtoiIiIiIiEgeKGCLiIiIiIiI5IECtoiIiIiIiEgeKGCLiIiIiIiI5IECtoiIiIiIiEgeKGCLiIiIiIiI5IECtoiIiIiIiEgeKGCLiIiIiIiI5IECtoiIiIiIiEgeKGCLiIiIiIiI5IECtoiIiIiIiEgeKGCLiIiIiIiI5IFjuBsgInKwiUajdHR00NHRQVdXF52dnYRCIUKhEJFIhGg0SiwWIxaLkUwmSSaTpNNpMplMr3psNht2ux2bzYbT6cThcOB0OnG5XL2K2+3udTt3jtPpxG63W3XY7XYATNMkk8mQTqdJpVKkUimrHYlEgmQyaT2eTqcxTdNqj9PpxOPx4PV68fv9FBUVUV5eTmlpqVW/iIiIyMeVAvZemjx5MnfffTef+9znhrspu/XTn/6UX/ziFySTSebPn09DQwPz58/n+OOPH+6miXzsRCIRWlpaaG1t7VPa2tqsEo/Hh7up+53dbqeyspLa2lrq6uoYN24cEydOpLKycribJiIiIpI3CtgfY8FgkIceeohvf/vbfOELXyCZTA53k0QOSJlMhs7OTlpaWnqV5uZmWltbrfvRaHTglTrAVgCGG2xOMFyAE2wuMJxgOLIFGxh2wADD6F2FCZDJ3jDT2dtmpvt2Ons002Cmus9L7Xgsdy7p7qPZXXLXMMCw9Tjau9th23HElm2rrbtj2jS760tCJgFmHDJRyEQgnU6zbds2tm3bxhtvvGG9h1zwPuKIIzj88MOZPHky48aNU2+3iIiIHJAUsD/Gurq6ME2TT33qU9TW1rJ58+bhbpLIiJNOp+no6KC5ublPeO4Zogf6A5XhApsvW+ze3G0DW+62N1sMoOtlk/gGSKeH9j0OKTu4x0PhqQaG0+j3FDNjZkN2Z7ak2kxSbZBqgXRsR/BetmwZAG63m4kTJzJp0iQOOeQQJk6cyJgxY3A6nfvznYmIiIgMmgL2ADQ2NjJr1iyWL19OIBDgpptusp6bO3cur7/+OhUVFfz5z3/moosu4tZbb+WZZ55h/vz5fPjhh9hsNg477DC+//3vM3XqVCA7B/Oee+5h6dKlJJNJZsyYQSwWw+l0cs899wDw1ltv8cADD7Bq1SocDgfTp0/n5ptvpqSkBIDp06dzySWX8Pbbb/Pqq6/icrk477zzuOWWW3jzzTe59NJLAfja177Gcccdx9133221+/333+eCCy5gwYIF/Nu//Zv1+I033kgqleLHP/7xkH+uIkMlmUwSDAYJBoN0dnZa8507OjqsYdo9h23n5hDviVHQIzznwrK/x20f2HYRMnfW9aJJfP2+vMsRIg3xddCVMSk8bden2dxgqwRnJeS6yU3TJBOCZBukmyHZDKntEI/Heffdd3n33Xet19vtdmpraxkzZgy1tbWMGjWKqqoqKioqKC8vp6CgYGjfp4iIiMgAKGDvQSqV4oorrsDv97NgwQISiQSzZs3qdc4///lPLr30Up599lnS6TTLli3jzjvv5K677uLYY4+lubmZ2bNn84Mf/IBnn30WgP/8z//k3Xff5YEHHqC8vJyHH36YP/3pT1x44YUA/N///R///u//zpe+9CVuv/12mpubufPOO/nGN77BM888Yw2ffOihh/je977HzTffzD/+8Q9mzpzJEUccwTnnnMMzzzzDF77wBebOnctxxx1HKBSy2jxlyhQOO+wwfvvb31oBOxgM8sILLzB37tz98MmK7N62bdt48skn2bRpU6/HTdPEMIw+oTgWixGJRAiHw0M2x9mMQjoK6RbYdX/2wML6/jJjxgwaGhpYuHAhS5cuHfCPCYMVXw/N6/eubmc1FF9kWP9d0x3ZoJ1sNkm1dPd0J9J89NFHfPTRR/3W4Xa7KS4uxu/3Y/QYSx8IBPjyl7/M0UcfvVdtExERERkMBew9eO2111i7di3Lli1jzJgxANx9991WEM657rrrCAQCADQ3N/PDH/6Q888/H4Da2loaGhq48847Adi0aRN//OMf+fnPf84JJ5wAwJw5c1ixYoVV3xNPPMHkyZO59dZbAZg4cSL3338/F1xwAa+++iqf+cxnADjxxBOtnuq6ujqeeuopVqxYwYUXXkhpaSkARUVFFBcX9wrYAJ///Od58MEHue2223C73SxZsoTCwkJOPPHEvH1+Invr0Ucf5bXXXstrnTYvOMrBXgaJDZDuyGv1I1JDQwN1dXU0NDSwZMmS4W7OHhmGgaMEHCXgmdy7pzvVComPTOIfQaar9+vi8ThNTU00NTX1qbOpqYlf/vKX+6H1IiIicrBTwN6DNWvWUFRUZIVrgPr6ejwej3W/rKzMCtcA//Zv/8YHH3zAT37yE9avX8+HH37I6tWrrS12csMee/aouN1ujjzyyF7X/fSnP92rLVOmTCEQCLB69WorYE+cOLHXOYFAYMBzRc877zzuvfdeXnzxRc455xwWL17MBRdcoMWFZEQ4++yz8x6wMxFIfATkOkHdvYd3233ZId82L9j93UO+XQMb8j1Y+2uI+MKFC60e7P56/vPFPQEKT9vLz8pBr15ngEzMJJUbNt5qkmrt/kEk028Nu3XmmWfuXbtEREREBkkBew8Mw+iz9yyAw7Hjo+sZtgF+97vfccstt3DeeedxzDHH8OUvf5k1a9ZYPdi5ANtfvTm7+iPYNM1eC/24XK4Bv3ZnRUVFnH766Tz33HNMnTqVt956i7vuumtArxUZatOmTeNPf/rTbs8xTZNkMkk0GiUSiVhDxIPBIKFQiM7OTmuf6Z5zsNvb20mlUhCHdBzSbbu+huEyd8y79ufmXBvZIN4dyg1P34C4J4WnQZctu8gZQ7jI2dKlS1myZMnQhesBLHK2J5mkmR0Ovh2STSbJ5r491Dlut7vPHOyysjJKSkooLi4mEAjg9/u1IJqIiIgMCwXsPaivrycYDLJ27VoOPfRQADZu3NhnuHVPjz/+OA0NDb3mar/44otANhBMnjwZwzB4++23OfnkkwFIJBKsWrWKadOmAdl9tt98881e9b7//vuEQqE+vdb74vOf/zzf+c53+O1vf8uRRx6Z17pFhpphGLhcLlwuF0VFRQN+XSaTIRgMWlts9dxqK7dqeHNzM6FQCDMB6QSk23vOu94pqNrB5jOzPeDWImiGdTu3onjPAGo4DYrONDBT2RW2h0o6bJIJgi1gYvflvzfe5gXDMbB6TdMkE4ZUW/ZHjWRLtpc63UG/U9dHjRrFoYceyoQJE5gwYQLjxo2joqICm82W1/cgIiIiki8K2Htw/PHHc9RRR3HzzTdz++23Y7fbmT179m7/wKupqWHFihWsWrWKQCDASy+9xIIFC4BskK6rq2PGjBnMnj2bO++8k4qKCh577DEaGxutXrCvf/3rfOUrX2H27Nl85StfoaWlhdmzZ3PYYYdZITwfTjjhBMrLy/n5z3/OLbfckrd6RUYym81GUVERRUVFTJgwYZfnRaPRXoG75+1cIO/s7IR0tse1d69r38RoOE1rmy5bQfc+2AVgcxsYnu49sHOlex9sw052D+rufad7VW927z2dyRZrj+vuva+ze2AbGE7IhLJbZPXaCzud3ULL2hO7Z1sNdux1bTN2tKPn0ZbbK7v7vebakAIzAZl49seDTBjSQUh3Za/fn7KyMqZMmcKkSZOYMmUKhx56KH6/f5f/bURERERGIgXsPbDZbDz22GPcddddXH755Xg8Hr71rW+xZcuWXb7m1ltv5bbbbuOrX/0qLpeLKVOmcN9993HDDTewcuVKjj32WGbPns1dd93Ftddei2manHfeeRx99NHWsMajjjqKn//85zz44INceOGF+P1+Tj/9dL773e/mdeijzWbj/PPP5xe/+AXnnntu3uoV+TgoKChgzJgxvdZg2FkikaC1tbVXb3jP+21tbbS0tBCPxzGTO/aC7m1krTzeV/7aZ7PZGDVqFOPGjWPixImMHj2aTCbD8ccfj9frzdt1RERERIaDYQ7VijeyS/F4nL/+9a986lOf6tVDc9ZZZ3H++edz9dVX79f23HLLLaRSKX70ox/tUz0rV64EsPb6lpEjEonw3nvvUV9frxAzTCKRiLXvdnt7uzUvPDdPPBgMEg6HCYfDxGIxotEoiURiwIsWAjidTqu4XC7cbrc1hL7n7VxxOBw4HA7sdjs2mw2bzWatO2GaJul0mmQySSqVIpVKkUwmrTblHs9kMtZ6Ena7HafTidvtxuv14vf7KS4upry8nIqKCqqrq6muru71I6G+mzIS6XspI5G+lzISHSzfy8HkHPVgDwOXy8WsWbM47rjjuOqqq7Db7SxcuJCtW7dy9tln77d2/O1vf2PdunU8//zz/OpXv9pv1xU5GHm9XrxeL6NHjx7U6zKZDKlUinQ6bQVfyM4/NwwDu92Ow+GwwrGIiIiIDB8F7GFgGAaPP/44c+bM4Utf+hLpdJrDDjuMJ554Yr8uMvb//X//H6+88grXXnttry3CRGTksNls/e4WICIiIiIjjwL2MKmvr+eJJ54Y1jbcf//9w3p9ERERERGRjxPtdSIiIiIiIiKSBwrYIiIiIiIiInmggC0iIiIiIiKSBwrYIiIiIiIiInmggC0iIiIiIiKSBwrYIiIiIiIiInmggC0iIiIiIiKSBwrYIiIiIiIiInmggC0iIiIiIiKSBwrYIiIiIiIiInmggC0iIiIiIiKSBwrYIiIiIiIiInmggC0iIiIiIiKSB47hboCIHFxM0ySZTBKPx0kmk6RSKZLJJOl0mnQ6TSaTsc41DAPDMLDb7djtdpxOp1VcLhdOpxPDMIbx3YiIiIiI7HDAB+y5c+eyePFiXnrppbzU197ezgsvvMAXvvCFXZ5zyy23sGXLFp566qm8XHNfbd68mdNOO4358+dz/PHHE4lEWLx4MZdccslwN00+htLpNF1dXXR0dNDV1UVXVxfBYNAqoVCIcDhMOBwmEokQjUatEovFiMfjeWuLzWbD4/Hg8XgoKCigoKAAn8+H1+vF6/X2ez9X3G43bre7V1i32+3YbDYr2JumiWmaZDIZ0uk0qVTK+kGgv5JOp0kmk9b5Pdtpt9txOBy43W6rvV6vl0AgQGFhIXa7PW+fi4iIiIgMjwM+YOfbfffdx+bNm3cbsGfOnNnrj+fhVlNTw6uvvkpRUREATzzxBIsWLVLAlkGJx+O0trb2KW1tbbS3t9PW1maFatM083dhW49idJeezO6S6VG6ZTIZIpEIkUgkf+0ZJoFAgJKSEkpKSigrK6OiosIqVVVVVFVV4fP5hruZIiIiIrIbCtg7GUhwCAQC+6ElA2e326moqLDu5zX8yAEvk8nQ0dHB1q1bCYfDhEIhWlpaaG1tpaWlxSrBYHBwFXtyxdhx221guAE34DLABTgBVzYj888MbDah5+9TO4XmjxUDKADKuu+kyZakCUkgAXR36OdGAHz00Ue7rC4QCFBVVUV1dTWVlZVUVVVRWVlpBfHi4mINmRcREREZRgdEwA4Gg9x3330sW7aMZDLJ4Ycfzk033cTUqVP36ty//vWvPPzww7z//vsUFRVx0UUXcd111zFz5kwWL14MwOTJk1m9ejX//u//zrhx43j//ffZsGEDt912G3//+997DRH/8MMPueeee/jHP/6Bw+Hg05/+NDNnzqSsrGxA7++jjz5i9uzZvPHGG/j9fi6//HKefvppvvOd7/C5z32u3yHpPR/rOUT8H//4Bw8//LD1Hl588UUqKyt54IEH+OMf/8j27dvxer1MmzaN22+/ndLSUuv1N954I/Pnz8fj8fDss8/i9/v3+r+ZDI1kMkk0GrWGYOeGZAeDQWu4dkdHBx0dHVbPc0dHx8B/dLEBfsAL+ACv0X3byAbFgu6jBwzbIIPcC2n48CD78ccEIkCNgXF6/0PAzYyZDdkxIGJmzw+bEAZCJoSALiCxI4SvW7eu37ocDgelpaWUlpZSVFREcXExRUVFFBYW4vP58Pv91pD5goICa3i9y+XCZhueNS9jsZh+FBQREZGPjREfsE3T5Morr8Tj8fDYY4/h9/t59tlnufjii/nNb34zqHMPO+ww3nrrLb75zW/y9a9/nf/6r/9iy5Yt3HTTTTgcDmbOnEksFqOxsZG5c+da9T7zzDPMmTOHyZMnU1FRwd///nfrua6uLi655BImT57Mk08+ic1m47bbbuP6668f0BztaDTKZZddxvjx4/mf//kfQqEQs2bNYtOmTXv1eV1++eVEIhH+8Ic/sHDhQkpLS7n77rt5+eWXueeee6itrWX16tV8//vf56c//SkzZ860Xrt48WKefPJJotGownUepVIpnn76aRYsWDDcTdmzDNkw15V7wNzpuMNIiUQzZsygoaGBhQsXsnTp0pEZ1j4wMT9IDfllUqkU27dvZ/v27UN+rQNdIBDgu9/9LieccMJwN0VEREQ+RkZ8wF6+fDlvv/02y5cvp7i4GIAbb7yRFStWMH/+fGprawd87j333MNTTz3FUUcdxc033wzAxIkTufPOO2ltbSUQCODxeHA6nb2GXNfX13Peeef1274//OEPhMNh7r//fmsO9F133cXzzz9PIpHA5XLt9v394Q9/oK2tjUWLFlltnjNnDhdccMHefFxW71TPYeNTp07l7LPP5thjjwWgtraWE044gTVr1vR67Ve+8hUOOeSQvbqu7Nr777+/f8O1HygG2sn2gn7MNTQ0UFdXR0NDA0uWLBnu5sgBIhgMcu+997Jo0SItMCciIiJ5M+ID9qpVqzBNk1NPPbXX44lEgng83itg7+lcgDVr1vDpT3+61/NnnXXWbtswduzYXT63Zs0axo0bZ4VrgClTpjBlypTdv7Fu7777LuPHj7fCde71+ZznfcEFF/D3v/+dH/3oR2zcuJH169ezYcMGK3Dn7O59yt6bNGkSX/jCF3jmmWf2zwVD3aUnG9mh3rmh3z6j36PhGLr5u+YLafgg/73LCxcutHqwcyt/jzgTdz1EfKDMdPdw8WBu2LiZHUIeJHs/zMgZVnAAcDqd3HDDDQrXIiIiklcjPmBnMhn8fj+LFi3q85zL5WLhwoUDPheycxQHy+Px7PK5vamvJ7vd3mvf34FKpQY+3PS2227jj3/8IxdeeCHTp0/n6quvZt68eTQ1NfU6b3fvU/aey+Xiyiuv5Morr9ynetLpNLFYzNr+KrdgWc8tsjo7O+ns7KSjo4P29nba29sJhULZod+9gnf/Q79NN9nA7d8x99rIzcX2kZ2D7QWcDH4xrdPtmLY0rN9pkbN9tHTpUpYsWTIyw7UdmGBgTLdjOPv/vEzThBQQJTsHu3vutRkmG6aD3ccBjEYwDIPi4mJKS0utFclzc7ADgQCBQKDPHOzctmEul2tYwmYkEuG9996jvr4er9e7368vIiIikk8jPmBPmjSJUChEMpnsNXz5Bz/4QZ9e4j2d+9WvfpWJEyeycuXKXq978skn+f3vf88zzzwz6NBwyCGH8MwzzxAMBq1e51WrVnHFFVewePFiqqurd/v6KVOm8Jvf/IaOjg6rF/uDDz7otaKz0+nMhqQePvzww10G4p7vob29nV//+tc88MADnHPOOdbj69ev1x+zBxi73Y7P5xv0Vk2JRIKtW7eyYsUKCgsLCQaD1griPVcSj8fj2cW24kDbjgDeb2S1g+mhe8EzY8dq4m6yq4i7jO6VxOleRdzIhvIT7ZgndS/qZduLkJ5rlWlmfzRIgdllQpeB6TLBYcuuzp0iu1J3nN73rdtkQ36KHSt799wKjO77Ro+SWwPMzo5txew97udu93yNI1uPuSyNmas71V0S5o5VxAf4g4Pb7ba27MqtIN5zJfHS0tJ9/tFPRERERPbeiP9L7KSTTqK+vp4bbriBmTNnUlNTw9NPP82iRYuYN28eb7zxxoDPBbjiiiv4/Oc/z0MPPcQFF1zAhx9+yCOPPMKll14KgNfrZfv27WzatIm6uro9tu+8887jkUce4aabbuL6668nlUpxxx13MGnSpD2Ga4DPfvazzJ07l+9973t873vfIxaLceeddwI7wscnPvEJFi5cyHPPPcfRRx/Nc889x5o1azjyyCP7rdPr9dLZ2cmGDRsYPXo0gUCAF198kcMPP5xYLMaCBQtYtWoVRx111B7bJwc+l8tFZWUlY8eO3WUvoWmahMNhK2zn9r/OHXuuSB6NRrOBMNxdduoNH3AfsgFmz4CaK93P9aqs5x7YPQNx33cy0KsPTF6qG1glTqfTWgE8tw92eXl5ryCtbbhERERERrYRH7DtdjtPPPEEc+bM4frrrycajTJx4kQefvhhpk2b1itg7+lcyC5Y9pOf/IQf//jH/OxnP6OyspJLL72U73znOwBceOGFLFu2jM9+9rP86U9/2mP7CgoKmDdvHnfffTdf/vKX8Xg8nHLKKfznf/7ngN6fy+Xi5z//OXfeeSdf/OIXKSoq4tvf/jarVq3C6XQCcP755/Pee+9x1113kUqlmDFjBl/72td46623+q3zzDPP5De/+Q3nn38+CxYs4KGHHuKee+7hvPPOo6ioiOOPP54bb7yRxx57LBuW5KBnGAZ+vx+/38+4ceN2e24sFrOGoudKz2HquS3EcsPYI5EIsViMSCRCPB7fMYzbZEdv7j5wOBzWdlO5oc+5YdA+n4+CggK8Xq/1XM/tqdxuNy6XC6fTidPpxG63Y7fbMQzDGnKeyWQwTZNUKkUqlSKdTpNMJkkmkyQSCet27vlUKkUmk+k19cMwDBwOB3a73bpmbjSCz+ejqKgIj8ej8CwiIiJygDPMETdp8eCyefNmNm7cyIknnmg91tTUxMknn8yvfvWrPguRjWS5off97U8uw2ukzHM1TZNEItGr5AJrJpOxwmnu3FzQdTgc2Gw2Kwg7nU5r3nDuhyg5MI2U76ZIT/peykik76WMRAfL93IwOWfE92B/3MXjcb75zW/y3e9+lzPPPJNgMMiDDz7IuHHjNIRbPnYMw8DtduN2u4e7KSIiIiIieaeAPYTOP/98Nm3atNtzXn/9de6//34effRRfvzjH+PxeJg2bRq/+MUv1DMnIiIiIiJyAFHAHkKPPvooyWRyt+c4nU7OPvtszj777P3UKhERERERERkKCthDaNSoUcPdBBEREREREdlPbHs+RURERERERET2RAFbREREREREJA8UsEVERERERETyQAFbREREREREJA8UsEVERERERETyQAFbREREREREJA8UsEVERERERETyQAFbREREREREJA8UsEVERERERETyQAFbREREREREJA8cw90AEZGDUSqVIh6Pk0gkSCaTpNNpMpmM9bxhGBiGgd1ux2azYbPZet3OPd+z5J6z2fTbqYiIiMhwUMAWEdlHpmkSDodpbm6mtbWVtrY22traaG9vp7Ozk66uLrq6ugiFQoRCIaLRKMlkcsjaYxgGDocDl8uFx+PB6/USCAQoKiqitLSUyspKqqqqqK2tZfTo0fh8viFri4iIiMjBRAE7z+bOncvixYt56aWX8lbn5MmTufvuu/nc5z6Xtzp3Zpomv/3tbzn55JMpKysbsuuIHMja29v58MMP2bRpE1u2bGHbtm1s27aNpqYmotHo3ldsA2wGGGSL2V0ATDN7O7OrF/dlmibJZJJkMkk4HKa1tXW355eXlzNx4kQmTJjAoYceyqGHHkplZSWGYezV2xERERE5WClgCwD//Oc/ueWWW3jxxReHuykiw840TbZu3cqaNWtYu3YtH3zwAevXr6ezs3P3L3Qb4LeDz4bhtUGBHQps4DEwCmzgtoHLAJcNnAY4DLAz4CBr5sJ2r9KdxHOBPANkzOwxZWZLPANxEzOagXAaQmnMrjR0pCGSoaWlhZaWFl5//XXrWkVFRVbYPvTQQ5k4cSLV1dUK3SIiIiK7oYAtQPcf7iIHqc7OTlavXs3777/P+++/z+rVqwkGg/2fXGiHEgdGsR2KHBhFdgjYwW/HcO4In2bKhEi6/zpMExImJLrv5vn9WOyA3QC3Hch2juO1Yzh6tDOWgbYUZmsSWlKY25PQlqKzs5M33niDN954wzrX6/Uybtw4xo4dS11dHbW1tdTU1FBVVUVBQcFQvQsRERGRA4YC9l4IBoPcd999LFu2jGQyyeGHH85NN93E1KlTB33u3Llz+fvf/86JJ57I/PnzSafTnHHGGcycORO/32/Vs2HDBi677DLefPNNiouL+epXv8q3vvUtADKZDD/72c9YtGgRW7ZsweVyccwxx3DbbbcxZswYIDvM/Ic//CG///3vWbFiBYWFhXz5y1/mmmuu4fXXX+fSSy8F4LTTThvy4egiw8U0TZqbm9m4cSMffPAB69atY+3atTQ2NvY92QaUOzEqnVDhwChzQqmjV4ju9xpJE/OlTswNMdhFvh5WdjDGezCmF2E4DQyPDUa5MEa5rFPMlAmtScztKWhOYjZnQ3ckEuHdd9/l3Xff7VNtIBCgoqKCsrIySktLKS0tpaSkhJKSEoqLi60SCAS0CJuIiIh8bClgD5Jpmlx55ZV4PB4ee+wx/H4/zz77LBdffDG/+c1vBnXuYYcdBsDKlSsBeOKJJwiFQsycOZPrr7+en//851ZdCxYs4Pbbb2f27Nn87ne/4/777+fII49k2rRpzJ8/n3nz5nHvvfcyadIkPvroI2699VbuueceHnnkEauOe++9lx/84AfMnj2b559/ngceeIDjjz+eo48+mrlz53LttdfyzDPPMGnSpP3wSYrsmmmaxGKxAZ2bSqVIJpPE43FisRjhcJhQKERnZyft7e20tbXR1NREU1MTW7ZsIR6P919RkQ0qnVDpxKh0ZcO0vU/LMJO772/OvNAJ63dxjZEgDea6GGbGxHZ60a7PK3VglDpgiic7LTwNdKYw21LQnoLONHR1H5PZHxODwSDr16/f7eUNw6CwsJDCwkJKSkoIBAKk02nefvttysrKKCwsJBAI4Pf78fv9+Hw+vF4vbrdbw9NFRERkxFPAHqTly5fz9ttvs3z5coqLiwG48cYbWbFiBfPnz6e2tnbA595zzz1A9g/OBx98kKqqKgBuu+02rrzyStavX8+ECRMA+MpXvsKFF14IwFVXXcUTTzzBv/71L6ZNm8aYMWO49957OfXUUwGora3l7LPPZunSpb3afuGFF3LBBRcA8O1vf5t58+axYsUK/u3f/o2iouwf2qWlpXg8nvx/cPKxtWDBAubPnz/czdh3nRnojMPa+I71xYa1QTvMmDGDhoYGFi5cyNKlS/MzpWN9nMzj2/e9nkEyTZPOzk46OzvZtGmT9fjy5cvzUn9ZWRm33nqr9QOmiIiIyP6kgD1Iq1atwjRNK8zmJBIJ4vF4r4C9p3Nzxo0bZ4VrgGOOOQaANWvWWAF73LhxveooLCy06pg+fTrvvPMODz30EBs2bGDDhg2sW7euV50AEydO7HU/EAgM6VZB8vEXiURYsGDBcDfjY6+hoYG6ujoaGhpYsmTJcDcnf3IrpudRa2srS5cuVcAWERGRYaGAPUiZTAa/38+iRYv6POdyuVi4cOGAz81xOp29nkunsxM37fYd41N73s7J9WI9/vjj/OQnP+Giiy5i2rRpXHbZZbz44os8//zzu7zmznWI7A2v18udd97JE088QSQSwTAM6zuVu73zY5lMBpvNhmma1vM9z8+d299rd36sp9yw8nA4TCYzgD2tAjYoc2TnWVc4ocKJ4dn3IchDMUR84cKFVg/2rt7/oE1w736I+ACYKSCUhmAas3t1ciKZ7pKGaAYi5q5D9G7ehmEY1vDwnb8jNpvN+m+887Dxww8/nK9+9av79L5ERERE9pYC9iBNmjSJUChEMpnkkEMOsR7/wQ9+wJQpUwZ1bu6PwA0bNhAMBgkEAgC89dZbAAPugXn00Ue5+uqr+eY3v2k9Nm/evEH9Ea65jbK3jjvuOI477rjhboYlF7Q7Ojpob2+npaWFpqYmtm3bxubNm/noo49oa2uDYAaCCdiY2DEkvMiOUeWEKmf2WO7EsA/ufxu204vzvsjZ0qVLWbJkSX7C9U6LnA2EmTShLYnZmoLWFGZ79zzs0MA35y4oKKC4uJiSkhKKioqs4vP5CIVCTJ48mcrKSgKBAIFAAJ/Pp8XQRERE5ICjgD1IJ510EvX19dxwww3MnDmTmpoann76aRYtWsS8efN6bWmzp3NzIpEIN998MzfccAMtLS3ceeednHPOOb2Gm+9OTU0Nf/vb35g+fTo2m41nn32WP/3pT5SXlw/4fXm9XgDef/99SkpK8Pl8A36tyEhiGAYFBQUUFBRQU1PT7zldXV2sX7+edevWsWbNGtasWcPWrVuhM43ZmYY1sWzotgFlDoxyJ5Q7MMocUOrM7mm9q+s7DYyzine/TdcgmeE0RjANATs2X9/RLIOy0zZdfa6VzK0gnoTt3SuJd6R22dtcUFBAVVUVlZWVlJeXU15eTllZGcXFxdZK4sXFxf2OoIHsv3/vvfce9fX11r9DIiIiIgcqBexBstvtPPHEE8yZM4frr7+eaDTKxIkTefjhh5k2bVqvgL2nc3Nqamqor6/nkksuwW63c9555/G9731vwG267777uPPOO/n85z+Pz+fjqKOOYtasWdxxxx1s3bqVUaNG7bGOSZMm8ZnPfIbrr7+eG2+8kcsvv3xwH4zIAaSwsJBPfOITfOITn7Ae6+rq6rUP9po1a+js7ITmFGZzCuiRMT0GFHfvgV3ogEI7ht8Gfjv4svthGw4j+1weGIUO6P+3gr1mmma2F7+9e2XwliRmS3fPdD9huri4mAkTJjB+/HjGjBlj7YNdXFysETAiIiIi3QxTk3CH1dy5c1m8eDEvvfTScDdln+W2G+tvP3AZXuolHDzTNGlqamLt2rV88MEHrF+/no0bN/a/Z/bOXAZ4bdlSYMvuNe2xgdsGbgPDZQOnkf2J025kiw0wjB0Lf+X+ac503890z2W2xrPvfL/H6zJgps3sEPWkCYkMxE2IpjHDmexc6a70Loewl5SUMGnSJCZNmsShhx7KoYceSllZ2V59jnui76aMRPpeykik76WMRAfL93IwOUc92CIi/TAMg+rqaqqrqznppJOsx6PRKFu2bGHLli1s3bqVxsZGmpqa2L59O83NzdnV/RMmJNLQkU2wO/+KOVJ+1XQ4HNTW1jJmzBgmTJjAhAkTrDCtXmkRERGRwVPAFhEZhIKCAg455JBeCxfmmKZJJBKhtbWVtrY2Ojo6rD2fg8EgXV1dRCIRIpEI0WiUeDxOIpEgmUySTqd7rX5uGAY2mw2bzYbdbu91hB07C+TOA3qd73Q6cblceDwefD4ffr/fWmSsoqKC6upqKisr+92hQERERET2jgL2MLv22mu59tprh7sZIpIHua2lfD4fY8aMGe7miIiIiMh+pj1QRERERERERPJAAVtEREREREQkDxSwRURERERERPJAAVtEREREREQkDxSwRURERERERPJAAVtEREREREQkDxSwRURERERERPJAAVtEREREREQkDxSwRURERERERPJAAVtEREREREQkDxSwRURERERERPJAAVtEREREREQkDxSwRURERERERPLAMdwNEBGRHdLpNIlEgmQySTKZJJ1OWyWTyfQ6ptNpUqkUqVSq1+1kMtnnds86MpmMdT2bzYZhGNjtdhwOB06nE5fLhcvlwuPxWMXn8+Hz+fD7/bjd7mH8hERERERGLgVsEZEhZJom7e3tbN++ne3bt9Pa2kprayttbW10dHTQ1dVFKBQiHA4TjUZJJBLD3eQ9crlcFBYWUlRURElJCaWlpZSVlVFRUUFVVRXV1dVUVVXhcrmGu6kiIiIi+5UCtojIPjBNk66uLpqammhsbLRKU1MT27ZtY/v27fsWmu1GdjKPYYAB2Po52rrPsRvd5/c+Grbc+d2vMXZ+E0DGhIyJmTYhbULKhGRmxzHRXUxIJBK0tLTQ0tKyy2bbbDYqKiqoq6ujrq6OsWPHMnbsWMaNG4fP59v7z0NERERkBFPAFhHpRyqVorOz0yrt7e20t7fT1tZGW1ubFTBbWlqIx+O7r8wAvA4IODD8DswCOzgM8Ngx3DZw28FpA6cBDlv2OZuBYds5CQ+9fq/otWM4bJhmd9iOZSCWhkgaM5qCcBrCKcxQCoJJ6EqSSWZoamqiqamJN954o1d1VVVVjB8/nvHjxzN69GhSqRSTJk3aL+9PREREZCgpYB8ggsEg9913H8uWLSOZTHL44Ydz0003MXXqVObOncubb77Jsccey9NPP000GuW8887jO9/5DnfccQfLly+nsrKSmTNncsoppwAwffp0LrroIq699lrrGv09JvJxkEwmCYVCdHV10dXVRWdnJ8FgkM7OTut+z+dyw7YHxWuHgBOj0AGFTih0YgSyR/wODLuBmcxgvtQE73Zle4nJdh7vyu6e26/sBsZ4H8b0KgyXHVz27Pui/0BumiZE09CRxOxIQFsCsz0BrQkIp6zgvXz5cus1P/nJTxgzZgxjx45lzJgx1NXVUVtby6hRozTnW0RERA4YCtgHANM0ufLKK/F4PDz22GP4/X6effZZLr74Yn7zm98A8MYbb1BWVsavfvUrVqxYwf/7f/+PF198kZtuuombb76ZOXPmcMstt/Daa69hGPu/V0xkoEzTtBbnSiaTxONxEokE8XjcKtFolFgsRjQaJRKJEAwGCYfDRCIRwuGwNac5FAoRDAaJxWJ73yC3DQrs2eK1Q4Eje/Q5MHx28Duyt+272ZQhY2JmTDIvNMH6QQb3kSBtYq4LYWbAdnrVwF7jtEGFG6MiG45z/+qYsTS0xTHbktAah7Y4tCVIJBKsW7eOdevW9amqtLSUyspKKisrKSsro7S0lJKSEgoLCwkEAvj9frxeL16vF4/Hg91uz9MbFxERERkcBewDwPLly3n77bdZvnw5xcXFANx4442sWLGC+fPnU1tbSyaTYdasWfj9fsaPH8+cOXP41Kc+xYUXXgjAxRdfzMsvv0xzczOVlZXD92bkoPPMM8/ws5/9bLibsffimWzpSPZ5ytzF7ZFkxowZNDQ0sHDhQpYuXZrtXd5b60NkHh+CHwiqPRjTKzHak5htCWhPZHu+O5KQyFjD8t9///29vsR3v/tdzjrrrDw2WkRERKQvBewDwKpVqzBNk1NPPbXX47levdraWsrKyvD7/dZzXq+XMWPGWPc9Ho/1GpH96cUXXxzuJhzUGhoaqKuro6GhgSVLlgx3c/pngFHswihxw3gTwmmMju6QvT2OuTkCwdQ+XeK1115TwBYREZEhp4B9AMhkMvj9fhYtWtTnOZfLxcKFC3E6nX2es9l2M2S1H6nUvv0BK9Kf2bNns3jxYoLBIIZhDKgHted5yWSy1xDxWCxmDQ+PxWKEw+Fe+zrvFWd2wTE8tu5jj1Jgx/DYskPDu4eJG47B/W8rZziGiC9cuNDqwR7o579LE/wDHyI+AGa0e7h4RwLz5e1k2rLztUnu/r+nzWajqKjIGiIeCATwer04HL3/Ly33fktLS7ngggvy1m4RERGRXVHAPgBMmjSJUChEMpnkkEMOsR7/wQ9+wJQpU/aqTqfT2WsRp1AoRGtr6z63VWRnFRUVfPOb3xyy+k3TJJFIEIlEes29zs2/zi1uFgwGrYXMciUYDHavjG1CMgXBXVxj5/tuG/gc2cXL/NljdoEzJwS652T3swK47fQqzJfA3BC2FjkbakuXLmXJkiX7Fq57LnLmHPyPC2Yqkx323ZZd6MxsjWfnX4fTO87pcb7NZqOmpobRo0czatQoa1/t3BzsoqKiQf+AKCIiIrI/KGAfAE466STq6+u54YYbmDlzJjU1NTz99NMsWrSIefPm9dkCZyA+8YlP8Ic//IGzzjqLwsJCfvzjH2thIDkgGYaB2+3G7XZTUlIyqNem02nC4XCv1cR3vt3Z2UlHRwcdHR20t7eTTCa752V3r47doz7rtg3wO6HQ0R26s8HbCDgxPlUOn6nASOyfgG2GUxjBJASc2Hx7+U/+AHrtzUQ6O4w7mMLsSkJncsc86q6+89dzqqqqKCsrY+rUqRx66KGMHTuWUaNG9TsqR0RERGSkU8A+ANjtdp544gnmzJnD9ddfTzQaZeLEiTz88MNMmzZtrwL2jTfeSEdHB1//+tcJBAJcfvnldHV1DUHrRUYuu91OYWEhhYWFAzrfNE1rtEdLSwutra1s377dKk1NTWzfvj073aIrGyxNojte37MuV4/Vyd227u2vuvfBdtrAbmSDus3oLoBhZJfjtu04GrYe59mNnY5gFGRXPO9TR08ZM9u4tJm9ne7u1U9nIJnBbDIxExmIp7t/XEhnh3fnSjiVPX83AoEA48aNY/z48dZx/PjxALz33nvU19fj9XoH9N9BREREZKQyzH2akCeyw8qVKwGYOnXqMLdEdhaJRBRi9pN0Ok1rayuNjY1WyQXv5uZmWlpaPraLDQYCASorK6murqampoZRo0ZZe1oXFxf3u0WgvpsyEul7KSORvpcyEh0s38vB5Bz1YIuI5JHdbrf2bD7yyCP7PG+aJsFg0Bp23tXVZc0Zj0aj1mJuiUSCZDJJOp22SiaTIZPJ9HosnU6TSqV6lWQy2eexVCq128XgbDYbDocDh8OBy+XC7XbjcrkoKCigoKAAr9eLz+fD7/cTCAQoLCykuLiYkpISSktLKSsro6CgYCg/WhEREZERTwFbRGQ/MgzDGpbecyu9/SUX0nu2x2az9du7LCIiIiKDo4AtInIQsdlsWoFbREREZIjorywRERERERGRPFDAFhEREREREckDBWwRERERERGRPFDAFhEREREREckDBWwRERERERGRPFDAFhEREREREckDBWwRERERERGRPFDAFhEREREREckDBWwRERERERGRPFDAFhEREREREckDBWwRERERERGRPFDAFhEREREREckDx3A3QERkKKXTaZqamti6dSuNjY00NzfT0tJCe3s7XV1dhMNhotEoiUSCdDqNaZrY7XacTicFBQV4vV4KCwspKiqitLSU8vJyKisrqa6upqamhkAgMNxvUURERERGCAVsEflYME2TxsZG1q9fz4YNG9i4cSMffvghW7duJZlM7lWdHR0dezwnEAgwatQoRo8ezejRo6mrq6Ouro7a2lpcLtdeXVdEREREDkwK2Hk2d+5cFi9ezEsvvTSk15k8eTJ33303n/vc54b0OiIjUTqd5qOPPmLdunWsW7eODz74gA8++IBwONz/C+wGFLowCl0QcGH4nOB1QIEDw20Hpy17js3Inm8C6QwkM5iJDMRSEE1hhlMQSmAGkxBMQCRFMBhk9erVrF69utclDcOgsrKS2tpaRo8eTU1NDaNGjaK6upqqqiq8Xu/QfkgiIiIist8pYB+gXn31VQ1NlYNCV1cXGzZsYMOGDaxfv97qoe63V9pmQIkbo8yDUVYApW6MEg8EnBiGsVfX392rzGQGOuOYnXHoSGC2xzA7E9Aew0xkaGpqoqmpiRUrVvR5bSAQoLy8nLKyMsrKyigtLaW4uJiSkhKKioooLCwkEAgQCATweDx73X4RERER2X8UsA9QFRUVw90EkbxJJBLWPOmtW7eyadMmNm3axEcffUR7e3v/L3LaoLwAo9yDUVGAUV6QDdf2/tduNFMZiKTy33iXHaPCCxVeK4ybpgmxNHQlMIMJzK4EhJIQ6j4mMgSDQYLBIBs2bNjjJRwOB36/H7/fj8/ns4652z0f9/v9BAKBXrcdDv1TLyIiIrI/HHR/dQWDQe677z6WLVtGMpnk8MMP56abbmLq1Kn9Du/e+bHJkydz22238eyzz/Lee+8xbtw4rr/+ek477bRe13n88cdZsGABHR0dHHXUUcyePZtx48YB2XmdDz30EC+99BLt7e0cdthh3HDDDRx//PHWNd98801OOOEEFixYQHt7O0cddRSzZs1i4sSJVjtyQ8RvueUWtmzZwlNPPWVdv+djmzdv5rTTTuP+++/nZz/7GR988AGHHnooc+bMYenSpfzqV78ilUpx7rnnctttt6mnTPImk8kGyc7OTtrb22lra6O1tZXW1lZaWlpobm6mqamJtra2bCjdlYATo8wDZQXZ3umKguyQ7wF8V81khszLmzA3dEF6N9cYTgZQ6IJSD8TT3UPS0xBPQQZSqRQdHR0DmhPeH6/Xa/WG9xfCewb23MJuBQUFeDwePB4PbrdbIV1ERERkAA6qv5hM0+TKK6/E4/Hw2GOP4ff7efbZZ7n44ov5zW9+M+B6fvSjH/G9732Pe+65h0WLFnHNNdfwq1/9imOOOQaALVu2sGLFCh5//HESiQQ333wzM2fO5Fe/+hXpdJrLL7+cZDLJnDlzKC0tZf78+XzjG9/g6aef5sgjjwTgjTfewO128/jjj5NMJrn55puZNWsW8+fP3+v3/8ADD/Bf//VfFBYWcs0113DxxRfzmc98hqeeeop//OMf3HHHHZx00klMnz59r68hBybTNMlkMqTTaZLJpHVMJBIkk0ni8TiJRIJYLEYsFiMajVolHA5bJRQKEQwG6erqso67Dc492Q0ockGhG4pcGMUujGIPFLsxXPa+56dMTPZcd+bFTZjrOwf5iexnJtCZwCgrwHbu+B0PmyYkM9nQnUhDPI2ZSEMi030/032/+7F4GhKp7DGehmT284lEIkQiEZqamva6iYZh4Ha7cTqdOJ1OHA4HDocDl8tlrbput9ux2+29nut5bs/X5m4DtLa2snnzZvx+P06n03rdziX3ulx9uevlis2mnSdFRERkeB1UAXv58uW8/fbbLF++nOLiYgBuvPFGVqxYwfz586mtrR1QPZ/73Oe45JJLAPje977HP/7xDxYsWGAFbKfTyY9+9CP8fj8AX/7yl3nggQeA7NzpVatW8bvf/Y5JkyYBMGvWLFauXMm8efN46KGHgGyP1X333UdRUZFVx5w5c/bp/V9++eUcd9xxAJxxxhk89dRT3HnnnRQUFDBx4kTmzp3L2rVrFbAPEu+88w433XTTcDdjh7QJbfFsIZs5h7u/ecaMGTQ0NLBw4UKWLl068B8L9pK5vpP0CP0xwDRN6weWA80VV1zBF7/4xeFuhoiIiBwEDqqAvWrVKkzT5NRTT+31eCKRIB6PDzhg54Zy5xx99NH87W9/s+6XlZVZ4RqgsLDQ+qN0zZo1BAIBK1xDtmfo2GOP5dVXX7UeKy8vt8I1ZBdE2tuthnLGjh1r3fZ6vZSXl1NQUGA95vF4SCQS+3QNOXBs2bJl6C9iMPwpeR80NDRQV1dHQ0MDS5YsGe7myF5as2bNcDdBREREDhIHVcDOZDL4/X4WLVrU5zmXy8XChQv7PJ5K9V0Uaee5iOl0utfQRLu9n+Gs3XbVA2aaZq9693X/3IG0W8MpD24zZsxg9OjRbN++vd/nc8PEc8PDcz9ERaNRYrEYkUiEaDRKJBKxhoeHQiHS6fSOSgYSrl02CDgh4IKAG6PIiVHkhmJ3dhutfVwTYF+GiC9cuNDqwTYMY8h7sI0JRdhOq9vtOWaqe3h497BwMzd8vLuYsYw1nLzn0HJiKWvI+FAzDMMaxt1zWPfOw8NdLhc2m41YLEZJSQler3eXQ8R3rmug/355vV5r5I6IiIjIUDuoAvakSZMIhUIkk0kOOeQQ6/Ef/OAHTJkyBafT2Wcf3Q8//LBPPStXruw1jPqtt97i8MMPH1AbJk+eTDAYZM2aNVYvtmmavPnmm73aNBhOp5NQKNSn3R6PZ6/qk4ODYRjWnP98MU2TaDRqzb/u7Oyks7PTWqCrra2NtrY2WlpaaGlpyf7vLZGB1ni2EOw9NNxtz64MXurJrhZeVgBlnv7nZO+C7bQ6Mjb2apGzpUuXsmTJkqEP1zYDqgqg1of5fy2YsVR2FfJYCjO2U1DOw0JtXq93l6uSe71evF4vHo+HgoIC3G63VVwuV7/ht+cc7MGEX8jOD3/vvfeor6/X3uAiIiJywDuoAvZJJ51EfX09N9xwAzNnzqSmpoann36aRYsWMW/ePAzDoKOjg3nz5nHWWWfx6quv8pe//MWar53z5JNPMmHCBI444gh+85vfsHr1an74wx8OqA0nnngi9fX1fPe73+XWW2+lrKyMBQsWsGbNGm6//fa9el+f+MQnWLhwIc899xxHH300zz33HGvWrMl7eBLZE8MwrIBWVVW1x/MjkQjbt2+nsbGRbdu2sW3bNjZv3syWLVtobGzM9s42RjAbI707wwtdGN1bdNG9RZfhc/bfJqcN+5lj92qbLjOcxAgmIODCtov6d/t604RoCjOYgK4kZigB4WR2q65wCqLd7cmYsC2CuS0y4BH1Pbfpyq0S7vP5eh17rhxeWFiobbtEREREhthB9VeW3W7niSeeYM6cOVx//fVEo1EmTpzIww8/zLRp0wC49tpreeKJJ/jxj3/MySefzHXXXddn5e4vf/nL/PKXv2TNmjVMmTKFefPmMWXKlEG14d577+Waa64hkUhwxBFH8Mtf/pJPfOITe/W+zj//fN577z3uuusuUqkUM2bM4Gtf+xpvvfXWXtUnsr94vV7GjRtnbWHXUzweZ/PmzXz44Yds2LCBjRs38sEHH9DS0pLdX7or0Xvod4EjG7jLu7fyKvX02hfbcNiyW2ENglHoghrfHs8zE2noiGN2F9rjmJ1x6IhDaveR2WazUVpaSmlpKSUlJRQVFVFUVERhYSGFhYVWQM4dc1tp7W4qioiIiIgMD8Mc6kmFHzM995+W3lauXAnA1KlTh7klsrOP0zDcrq4uPvjgA9atW8e6dev44IMP2Lx5M5lMpu/JBt1bfrmhyJ0NzH4nht8JBU4osFsBfFfMjJkdmh1NYYaT2R7oYDIb8Lvi0JHY0RPdD5vNRnV1NaNGjaKmpobq6mqqqqqorKykoqKC4uLigzosf5y+m/Lxoe+ljET6XspIdLB8LweTcw6qHmwROfAVFhZy9NFHc/TRR1uPRaNRq4d7/fr1Vo93OByGjgRmR4Lc/O4+HAY47dmjYWRDecbMznVOZrJlAIqLixk9ejR1dXWMHj3aul1dXa0h2SIiIiIHCf3VJyIHvIKCAurr66mvr7ceM02T1tZWNm3axKZNm6x53s3NzbS0tNDR0ZHt9U6Z0M+q+zsLBAKUlpZSVlZGVVUVVVVV1NTUUFtbS21tLT7fnoeSi4iIiMjHmwL2IK1evXq4myAiA2AYBuXl5ZSXl/fq7c7JZDKEQiHC4TCxWIx4PG5tMZZbFdvj8VgLiKkXWkRERET2RH8xishByWazWQuJiYiIiIjkw8A3KxURERERERGRXVLAFhEREREREckDBWwRERERERGRPFDAFhEREREREckDBWwRERERERGRPFDAFhEREREREckDBWwRERERERGRPFDAFhEREREREckDBWwRERERERGRPFDAFhEREREREckDBWwRERERERGRPFDAFhEREREREckDx3A3QETkQGCaJqZpAmAYBoZhDHOLRERERGSkUcAWkYNCKpWitbXVKu3t7XR0dNDR0UEwGCQYDBIOh4lEIsRiMeLxOIlEglQqRSqV6rdOu92O3W7H4XBgt9txOp19isPh6HXf5XL1ea7nYy6Xq1dxu91W8Xg8fe47nU6FfREREZERQgFbRD4WYrEY27dvp7GxkcbGRpqamti+fbt1bG9vt3qg8yWdTpNOp0kkEnmtdzAMw+gVvncO4bmQ3vPx3O2CggI8Hg9erxePx4PP58Pr9eL1evH5fLhcLoV3ERERkUFQwBaRES+dTtPR0UFLSwvNzc1W6RmiOzo69lyRzQCfE7xODJ8LChxQ4MRw28HtAI8DnDYMpx3TABLp7GtsBhhALmyaJuSyesbMlrSZfTydgbSJmXssk9nxfO6Yzj6WPScDGazXkclAqvuxVCb7eKr7uZ73zVxTTGKxGLFYLN8fO06nE5/Ph9/vx+fzEQgE8Pv9+P1+AoFAr5J7LPe8x+NROBcREZGDjgL2CBYMBrnvvvtYtmwZyWSSww8/nJtuuonm5mauuuoq/v73v1NaWgrAhRdeSCqV4ve//z0AnZ2dTJs2jfnz53Psscfy8ssvM3fuXNatW0dVVRXnnnsuV111FS6XC4DJkydz9dVXs3jxYpLJJAsWLGDcuHHD9dblYywXCMPhMMFgkFAoRDAYpKuryyq5odttbW20tbXR0dFBJpPZc+UuOwRcGAE3FLoxAi7wd9/3ZwP1nkKfmUyTeXkj5ob2bKg9kNkMKCvAmFiCkQEz1R3OUxlIprPHRDr7eCINye5jIg1AMpm0/lsMlt1ut4J5z+POtx0OB21tbZimSVlZmfVcQUGBArqIiIgccBSwRyjTNLnyyivxeDw89thj+P1+nn32WS6++GKeeuop3G43y5cv55xzzqGtrY3Vq1eTyWRobW2lrKyMV199laKiIo455hj+8pe/cP311/P973+fE044gY8++ojZs2ezYcMGHnroIeuaTz/9ND/72c9Ip9MK1x9zkUiEZDJJJpPBNE0ymQyZTIZ0Om0dcyWZTFrHniWRSJBIJKy5yvF4nHg8bvWmRqNRotEokUjEmtecu73XQ7W9DvC5ssXvwvA7wd8dpAMuDPce/klLZdjTlTMvbsBc37537RtpMiY0RyDgxjhtPAONq6ZpZsN2PG0FbjOeyt6OpzBzj8dS3ed0H+PdRzM76qCzs5POzs69arrNZrOGrPc8FhQUUFBQgNfrtYa47zwsvue8dofDYc2RdzgceDwe64dJERERkXxTwB6hli9fzttvv83y5cspLi4G4MYbb2TFihX8+te/Ztq0abz66qucc845/P3vf+ewww6jubmZ119/nXPOOYdXXnmFU045BZvNxqOPPsoXv/hFvvzlLwMwZswYZs2axde+9jU2b97M6NGjAbjggguYOnXqcL1l2U8WLVrEo48+OtzN2DuRVLY0R4Ado7QPtH7mGTNm0NDQwMKFC1m6dGne54bvzFzfTnok/2jgsGV/PEl096Bnsj/65Bafy7err76aCy64IO/1ioiIiChgj1CrVq3CNE1OPfXUXo/negq/8IUv8MgjjwDwt7/9jWnTprFlyxaWL1/O2WefzV//+lfuuusuAN59913+7//+j4ULF1r15P6g/+CDD6yAPXbs2P3x1mSY7WpFbNl/GhoaqKuro6GhgSVLlgx3c4afQXY4u717vntmaH9wSKfTQ1q/iIiIHLwUsEeoTCaD3+9n0aJFfZ5zuVzY7XZuu+02PvjgA1577TV++MMfsmXLFubNm8c777xDNBrl05/+tFXXFVdcwUUXXdSnroqKCuu2x+MZujckI8YXv/hFzjzzTJLJpPVDS8+h4TsPEc9tU5VMJq1jMpm0hob3HB6eSCT6DBEPh8O9hovv9YrbBtkFyrqHh+NzWnOrs0cnhtO+z5/P/hgivnDhQqsH2zCMIe/BNiaUYDtt/KBeY6Z7DBGPpzETuSHg2WHg1jDxeCo7VDzRY4j4YOeuJzPQEe/zsNvtxu/39xoenjvmVj7vuXq6x+OxtjfruRVaz+LxeKisrBxc+0REREQGSAF7hJo0aRKhUIhkMskhhxxiPf6DH/yAKVOm8NWvfpUjjjiC//mf/6G1tZVPfvKTjBkzhltvvZVf//rXnHDCCRQUFABw6KGHsmHDhl491K+//jrz58/njjvuwOv17vf3J8MrN+1gOKTTacLhMOFwmFAoRCgUoqury1rorLOz01pYq729nba2Nrq6urLjwEPJbGkKA/0MES9wZOcbB1y9j/7uUO6273HhLNtp48nYjCFd5Gzp0qUsWbJk6MO1zYDyAqj2Yf5re3YOenKnhc6SGcxkjwXOkt3BOQ/v3ev19rvAWW5Fcq/Xi8vlor29ncmTJ1NaWtrrHIdD/xclIiIiBxb99TJCnXTSSdTX13PDDTcwc+ZMampqePrpp1m0aBHz5s0DYPr06fz0pz/lE5/4BB6Ph7q6OkaPHs2zzz7L7NmzrbquvPJKrr/+eh5++GHOPfdcGhsbmTlzJqNHj+7Vgy2yP9jtdgoLCyksLBzwa5LJJG1tbTQ3N9PS0sL27dtpbm62tuhqamoiHA5DNAXRFOb23gHc4rBlg7bXieF1ZlcVL3Bmt+fq3qrLcNqwHVODeWxNdk5wbviyrUcwz23TlTv23Kqrx7Zcu9qqy4ymIJLAdNqzw6LTO70+ty1Xbkuvnbfqyt3ek4wJ2yOY2yN7NU/dMAwrJPfcnmvnrboKCwv7PO/1erHb9zyiIBKJ8N5771FfX68f+0REROSAp4A9Qtntdp544gnmzJnD9ddfTzQaZeLEiTz88MNMmzYNyAbshx56iE996lPW60444QQWLlzYa+722WefzQMPPMBjjz3Go48+SnFxMdOnT+d73/vefn9fInvD6XRSVVVFVVXVLs8JhUI0NTXR2NhIY2Mj27dvp7Gx0QriXV1d2WDaEYOO2AG7QFp/ckOfXS5XryHTLpcLt9ttPd7zObfbba3C3XNl7p6rdnu9Xmw223C/PREREZEDhmEO9eQ/OWisXLkSQCuRj0DqJYRYLEZraystLS20tbXR2tpqbSOVW606HA5bW4rFYjFr3vnuGIZhze/NzfnNzf91uVy97uee7zlHuOe5PY+5YNwzIO8coHPHgfQUj1T6bspIpO+ljET6XspIdLB8LweTc9SDLSIHBY/HQ21tLbW1tYN6XW6P8EwmA2RX4DcMA5vNZhUREREREVDAFhHZLYVoERERERko/dUoIiIiIiIikgcK2CIiIiIiIiJ5oIAtIiIiIiIikgcK2CIiIiIiIiJ5oIAtIiIiIiIikgcK2CIiIiIiIiJ5oIAtIiIiIiIikgcK2CIiIiIiIiJ5oIAtIiIiIiIikgcK2CIiIiIiIiJ5oIAtIiIiIiIikgcK2CIiIiIiIiJ5oIAtIiIiIiIikgeO4W6AiEg+mKZJNBolEokQjUaJx+MkEglSqRSZTAbDMDAMA4fDgdPpxOPxUFBQgNfrpaCgAMMwhvstiIiIiMgBTgFbREY00zTp6Ohg+/btbN++nebmZlpaWmhtbaWtrY2Ojg46Ozvp6uoik8ns1TVsNhuBQIDCwkKKi4spKSmhpKSE0tJSSktLKSsrs0ogEFAYFxEREZF+KWAfAFauXMnNN9/Mpk2b+Pd//3f+8z//c7ibJJJXyWSSpqYmtm7dapVt27bR2NhIY2Mj8Xh84JUZgNMODhvYu0suD5tAxoR0BpLpbDEhk8nQ2dlJZ2cnmzZt2m31TqfTCt2lpaVWGC8uLqaoqMgqhYWF+P1+nE7n3n4sIiIiInKAUcA+ADz22GM4nU7+8Ic/EAgEhrs5InslHo+zbds2tm3bxpYtW3qF6e3bt++599nnAr8bw+8CnxsKHNnwXODE8DjA5QCXHey2Afcwm2Z32E6kIZHCjKcgloJoEjOaglgSogmIJCGahETa+jGgqalpQNdwuVz4fD68Xi+FhYUEAgF8Pp/1WO7Ys+z8vNPpVK+5iIiIyAFAAfsA0NnZSX19PWPGjBnupojsUjwep6WlxRrK3dTUZPVAb9u2jdbW1t1X4LBBkQej0AOFHoyi7mPAAwE3hj27JqOZTJN5ZR3mqsZsOCbbMT1SJRIJEokE7e3tbNmyZa/qcDgcvQL3zuG852M9Q/rOAd7h0D/5IiIiIkNJf22NcNOnT7f+KP/tb3/LCy+8wNKlS/nf//1fWlpaGDduHN/4xjc4//zzAXj99df5+te/zvXXX8+8efOora3loYce4vTTT+fGG29k/vz5eDweTjvtNF566SVeeOEF61rBYJBPf/rT/PjHP+aUU04ZjrcrI0wymSQYDNLV1UVHRwctLS10dHTQ0dFBW1sb7e3t1lzorq6uPVfotEF3gCbgwSjuDtCFHvDuppc2Y2Jm0tmbL63FXL+HsD7SlXphbAkkU5Do7kHPDVlPpLp71NOQyv6AkEqlrCHs+8LpdPYK4blF3vrrRS8oKMDn81FQUEBxcXGvEK+gLiIiItI//ZU0wi1cuJCrrrqK6upqZs6cyfz583n++ee57bbbmDBhAv/85z+54447CAaDXHLJJQCk02n+/Oc/8+tf/5poNGqFlsWLF/Pkk08SjUZxOp08+eSTvPHGGxx77LEA/OEPf6CwsJCTTjpp2N6vDJ5pmqxatcoKX6ZpWv/NTdMkk8kQCoX46KOP2LBhA5DtbY7H48RiMWKxmLX6djgctkooFCIWi+W3sckMtEayhWzP83D1Ps+YMYOGhgYWLlzI0qVLs8PF95e2SLbsZ8lkMi9B3eVy9QrgPYvH48Hj8eB2u63icrlwOp3W0eFwYLNlRyTE43E2b95MZ2cnHo+Ho446Cp/Pl4+3KyIiIrLfKWCPcKWlpdaWQj6fjyeffJL777/f6mEeM2YMW7ZsYd68eVbABrj88ssZN24cAJs3bwbgK1/5Cocccoh1zuGHH85zzz1nBezFixdz/vnnY7fb98+bk7z43//9X37xi18M/YUMA/ZnCB1iDQ0N1NXV0dDQwJIlS4a7OQeU3LD3fQ3q/amoqOCpp56yAriIiIjIgUQB+wCybt064vE43/3ud3v98ZlKpUgkEr16G3PhuqexY8f2uv/5z3+eBx98kB/84Ads27aNt956ix/+8IdD1n4ZGjU1NfvnQrlwXeAArws8zuzCYwXO7MJjXjeG35ldgMztGLJFufI1RHzhwoVWD7ZhGPu1B9uYUIZt+qFDVr+ZW7gtlRtynsFMpLuHpGeHopu5Yem5YzwNqR7D0xPp7Irr+9m4ceO0oJuIiIgcsBSwDyC5APDggw8yYcKEPs+7XC7rttvt7vO8x+Ppdf+8887j3nvv5eWXX2bNmjUceeSRTJw4Mc+tlqF2yimncMopp1jDwdPptFVSqRSpVIpgMMj7779PXV0dNpvN+kGm5xDxaDTaa4h4MBgkFArR1dVFV1cXkUj3kOZoKlt6MHc64rRl51gH3DsWKrMWMHNjOPZ+lIRt+qFkbAbmhjZrkbO9sXTpUpYsWbJ/w7XdhjG+FNsph2A4+34GZsbcEXq752L3Csbx1I5gHN8Rhs1EakdITqYgnd/34/F4+iyglpu/nTt6PB5rmLjL5eo1TNzlclnDw3PF4XBgt9tJJBKsXbuWww47DL/fn9d2i4iIiOxvCtgHkAkTJuBwONi6dSunnnqq9fj8+fNZt24dd95556DqKyws5IwzzmDZsmW8//77vYaYy4HHMAzsdnu/Q/y9Xi9tbW1MmDABr9e7V/Xn5u+2t7fT3t5OW1sbbW1ttLa20tLSQnNzM83Nzdlhw8kMtEUw23bMte7F58quEl5UsGO18KKCbAjvJ3j2ep9OO/YzJmOmMhBJ7NV7ATAjCYxgHAJubF7Xnl8wkDpNMxty49ktvUwrBGcDsGkCyTSZl9buCMaJHoubJff+B4P+9AzGPRcy6xmQ+1uRPDe/Ond/KKeN5L63GhIuIiIiHwcK2AeQQCDAl7/8ZR566CH8fj/HHHMMr7/+OnPmzOFb3/rWXtX5+c9/nu985zuYpsm5556b5xbLx4nT6aS8vJzy8vLdnhePx2lqamL79u3WNl2NjY1s3bqVbdu2EQ6HIZzADCdga1ff8F3g3NHbHfBgFLqzt/3u7D7YtuzwYcPRvSL5XjIKPVA9sHPNZHpHm8MJiCQwI9kjkSRmbp/seHKPq7YNpG85ty1Xf+F3d1t17RyktZ6CiIiIyP6lgH2A+f73v09JSQkPPfQQ27dvp6amhuuuu44rrrhir+qbNm0aJSUlHHPMMRQWFua5tXIwcrvdjBkzpt99203TpKuri61bt7Jlyxa2bdvGli1brPDd2dmZDarRJGZjMPuanhUYZOd/+1wYPhd4XRheZ3Y+uMeZnfvttoPTnt1X224Dm5FdoC3bgOy84nQmuwVWbgh2PJUNx7EUZjTZHaCTVoAmmR7UZ+Dz+QgEAhQWFuL3+wkEAlYo9vv9/fYm9wzIPad7iIiIiMiBQwH7APDUU09Ztx0OB9dccw3XXHNNv+cef/zxrF69utdjo0eP7vNYTiQSobOzk4aGhvw1WGQXDMOgqKiIoqIi6uvr+zwfCoWssJ0rjY2NNDU10dzcTDKZzPYghxN9530PMa/XS2lpKWVlZb2OJSUlFBcXU1xcTElJCYWFhdonWkREROQgpb8CD1KdnZ0sX76cJUuWUFtby7Rp04a7SSL4/X4mTZrEpEmT+jyXyWRob2+nubmZ1tZWWltbaWtro729na6uLjo7O60F2qLRKPF4nESi/znauUW4ctvf+f1+/H6/Ff5LS0spLi62QnRpaelez10XERERkYOHAvZBKp1OM3PmTEpLS3nwwQe1LY6MeDabjbKyMsrKygb8mp4rqxuGgc1mw2az6fsuIiIiIkNCAfsgVVpayhtvvDHczRAZUrtbWV1EREREJN+0L4qIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiMj/z96dx0dVH+of/5zZs4dsJJBA2AmCVBQRta1gb6/W2qrFBeqCW627uCOLArWAaBWx1g2rSF16+WG9WqGu1eq94kWsgiJh3wkhezL7zPn9MZljwprAhAR43q/X8cyc9TvDCPPMdxMRERFJAAVsERERERERkQRQwBYRERERERFJAAVsERERERERkQRQwBYRERERERFJAAVsERERERERkQRQwBYRERERERFJAAVsERERERERkQRQwBYRERERERFJAEd7F0BE5EgWjUYJhULWEo1GiUQiRCIRAEzTxDAMAOx2OzabDbvdjt1ux+l04nA4cDgc1jEiIiIicuRSwD5Iy5cv5+6772bz5s307duXvn37MmPGjDa515YtWzjzzDOZN28ew4YNa5N7iBzLTNPE6/VSWVlJVVUV1dXV1NTUUFNTQ11dHbW1tdTX19PQ0IDX68Xr9eLz+fD7/QQCgUO+v2EYOJ1OXC4XLpcLj8eD2+22Fo/HQ1JSEklJSc0eN12Sk5ObreOP7XZ7At4hEREREWkJBeyD9PTTT+N0Onn77be58cYb2/ReBQUFfPLJJ2RkZLTpfUSORsFgkIqKCioqKigvL6eiooJdu3ZZ68rKSioqKggGg4m7qc0AA6BxbRL7jwmYjesmTNMkGAwmtgyNHA4HSUlJVlhPSUkhOTnZCvEejweXy4Xb7bYCvtPp3GOJ17THl/i2puumPxK43W5sNvVCEhERkWOLAvZBqqmpoaSkhG7dupGZmdmm97Lb7eTm5rbpPUSONOFwmOrqaiorK60lHqTj4XnXrl3U1NS0/KIuOyS5IMmFkeQET2wx3E5Mhw1zTRnsrIOouf/rWPsPcNxhEA6Hqauro66u7rDfO14b37RGPSUlhZSUFFJTU0lLS8PtdlNfX099fT15eXlkZGSQmZlJUlKSms2LiIjIEUcB+yCMHDmSrVu3AvC3v/2Nrl270rVrV2v/e++9x9NPP83q1auJRCL06dOHcePG8cMf/hCAyy67jIEDB1JeXs77779PSkoKN954I3379mXq1Kls2LCBkpISZsyYQXFx8R5NxC+77DIGDx5MZWUl77zzDtFolBEjRjBlyhRSU1MBWLFiBdOnT2fFihXk5ORw6623cu+99/LnP/+ZYcOGEYlEeOmll3jllVfYtm0bXbp0YezYsYwePfrwv6FyTAsGg3i9Xqqrq60m2PHm2HV1ddTX1zdrql1dXU1tbW3rAqPNgBQXJLshxQ3JLoyU2GMj2Rnb5nFhOPfdnNr8YCXsqE3AK+4gclIxeudBOIoZjkA4CtFo49qEiAmRxm2RaOy5aTY+b1xHmzyPNB7X5DeFeK18bW3r3zen02mF7aZLRkYGGRkZpKenk5GRQVpaGmlpaaSmpuJ0OhP4BomIiIi0ngL2QViwYAE33HAD+fn5TJgwgVtvvdXat2LFCm6++WbuuecezjzzTOrr63nkkUe4++67+eijj3C5XAC89NJLjBs3jltvvZXnnnuO3/3ud/Ts2ZOJEyeSnJzMrbfeyiOPPMKcOXP2WoYXXniBq666igULFrB27VruuOMOevTowU033URZWRlXXHEFZ555JlOmTGHr1q088MAD1qBLADNmzOCNN95g0qRJDBo0iI8//pgHH3yQQCDA2LFj2/T9O1Jt3ryZv//975jm9wmi6WPDMJo9b2p/+/al6TkHqsk70LXD4TCVlZV8+umnVgjZ/Zym99j9dbXkHvHy7j7oVzAYJBAIEAwGrT7LPp/PWofD4f1eNyGiJtQFYkujjlLHfPbZZzNq1CgWLFjA4sWLW/05OWi76jF31R+eex2IywFpbghGwBeEcOwzFG+F0FLxJvDxZvBN+63Hm8jv/v9STk4O55xzDikpKYl+VSIiInIMUsA+CFlZWTidTjweD7m5uc0GEbLb7UyaNIkxY8ZY2y6//HKuvfZaKioqKCgoAKCkpISrr74agEsvvZRXX32Vyy67zBrE7Oyzz+a9997bZxl69+7N7bffDkBxcTGnnXYaX375JQCvvfYaaWlpPPjggzidTnr37s3EiRO54YYbAKivr+eVV17h3nvv5dxzz7WusWXLFp555hmuuOIKNc3cTUNDA7/97W8JhULtXRQ5yowaNYqioiJGjRrFokWL2rs47SMrBft5J3z/Y06oMWj7Qpj+2D5/164AAQAASURBVBpfELM+AFVezGovNOw5uFwgECAQCFBZWdmq2zc0NHDllVcm5KWIiIjIsU0BO8FKSkrIyMjgmWeeYd26dWzcuJHvvvsOoFkNcrdu3azHSUlJABQVFVnbPB7PfsNcz549mz1PS0uzmmF+++23DBw4sFlzyaFDh1qP161bRygU4sQTT2x2jZNPPpkXX3yRiooKcnJyWvyajwVJSUmcfvrpfPjhh+1dlGOTgdUfGo8LkpyQ5MRIckFyY5/p5MbHHmeb/EAU/WAl5rryhF93wYIFVg32wbR0OFhGz1xsI0sOy732xjRNCEUgEIJQBHNzJaY/FAvVviA0fdwYsAlFDnzhg1BS0n7vg4iIiBxdFLAT7PPPP+fqq6/mjDPO4MQTT+Tcc8/F5/PtMdL43voKtmbE3XhT872x2+1Eo9F97t/XF/j4OQ6HPha7s9lsjB8/nvHjx7d3UQ6K1+tl5cqVlJSUkJycnNBrR6NRwuGwtTRtHh5vIh5vHh5fxxefz4fP57Omvtq9/3VdXV3shyaTxpAVArzWvZt+kq3HNiPWpzrFhZHshlT39/2tU2LPSXFj2Fs3wrVtZAlRm4G5flesr3GCLF68mEWLFh2+cG23YfTIwXZGf6vPuWmajf2uG/tgR5os8e1RE3P3/tfxx5Gm/bAjmOHG64QjsVDcuJihCATCEAzH1gfxeu12u9X3Oj09nfT09Gb9sOPNw/fVRNztdlsjnquljoiIiCSaklSCPf/88wwbNqxZ3+mXXnoJOHAf1kTp378//+///T9CoZAV5OPNxwF69eqF0+nkiy++aFZzs3TpUnJzczUdmLSKzWazpmZqC36/n9raWmuAs5qaGqqrq6mqqrKW+AjiNTU1jf2t/VDn338/a4+zcZAz1/cDn1m14U1qyt0ODJsNw2nH/h/HxQYE8yZuOi3TG8Co80OaB1uy+8DHm+b34TUYhXA4VqbGx4SjEIw0DlzWGG6bhl3TxKyoJ/La59/vi0TarTO60+kkKSmJrKwsaxCzpuvMzEw6depkDW6WmpqqYCwiIiIdlgJ2ghUUFPDee++xdOlS8vPzWbJkCbNnzwZokzlu92bMmDH8+c9/ZtKkSVx77bWUlZUxbdo0IDYQVWpqKhdffDGPP/44mZmZDBo0iE8++YSXX36Z22+/XV9epUPxeDx4PB7y8vIOeGwoFKKqqqrZPNfx+a+bzoEdCoViTZD9IcyK78/fZ8Z0OcDduLgcsZpfpx0cdnDawB5bDLutcQ7s+ALWRNjWHNhmY21wk1rjSBS2VmNGmtT8xkf3DjUJx/HRvtvYvubAdjqd2O32Zuv44/j82U3n1I7/2cVrkpsOQBavdY5EIm3WukJERETkcFPATrBbbrmFXbt28dvf/haIDUb2+9//nrvuuovly5fTq1evNi9DdnY2zz33HL///e/55S9/SX5+PqNHj+ahhx6yarTHjx9Pp06dePjhh9m1axfFxcVMnjyZiy66qM3LJ9JWnE4neXl5+w3jpmlSV1dnjVAdr/2O14RXV1dbNeXWVGDBxmbNjU/3FcQPZyWwzWZr1gw6Ps/07s89Ho+1PR54my7xZtPxYOxwOFrVXeVQeb3eAx8kIiIicoQwzMM2J4wcLmvWrKGmpqbZIGbLli1j9OjR/POf/7RGMk+05cuXAzBo0KA2ub4cvLbsg300i0Qi1vzbDQ0N1NfXN+sv3rRvebzPeSQSIRwOY5qmtRiGgWEY2Gw2bDYbdrsdh8PRrBa4ac1v0/7CTcNwPCQnJycfNX2I9dmUjkifS+mI9LmUjuhY+Vy2JueoBvsotGPHDq677joefPBBhg4dys6dO5k+fTonn3xym4VrkaOR3W63+gGLiIiIiByIAvZR6PTTT2fChAk8/fTTTJo0ibS0NEaOHMmdd97Z3kUTERERERE5ailgH6XGjBnDmDFj2rsYIiIiIiIix4zDN5KNiIiIiIiIyFFMAVtEREREREQkARSwRURERERERBJAAVtEREREREQkARSwRURERERERBJAAVtEREREREQkARSwRURERERERBJAAVtEREREREQkARSwRURERERERBJAAVtEREREREQkARSwRURERERERBJAAVtEREREREQkARSwRURERERERBLA0d4FEBGR1olGo4TDYUKhEMFgkEAgQDAYxO/34/f78fl8zRav12s9jh8TPycUChGJRIhEIkSjUQDsdjtOpxOn04nH4yE5OZnU1FTS09PJzMwkKyuLnJwc8vLyyMrKwjCMdn5HRERERDqGDhWwly9fzt13383mzZvp27cvffv2ZcaMGW1yry1btnDmmWcyb948hg0b1ib3OBiXXXYZXbt2bbPXvS9Llizh8ssv5/3336ewsPCw3luko4tEIlRVVVFeXk5FRQWVlZVUVVVRU1NDXV0ddXV1NDQ04PP5CAQC+P1+wuEw4XDYCq+maVrXMwzDWmw2Gzabrdm2+GKapnVePAA3DcIdgcvloqCggC5dulBUVERRURHdu3enW7duJCcnt3fxRERERA6rDhWwn376aZxOJ2+//TY33nhjm96roKCATz75hIyMjDa9j4h0fNFolIqKCnbs2NFsKSsro6ysjF27dhGJRBJ2v92D8yGzGeCwgd0eWzvt4LB/v3bYMVz2xv12cNow7I3H222xzkKGEVtMM7Y4HRgmEApjhiIQCIE/hOkLQkMAs94P3lgt+MaNG9m4cSP/+7//26xYnTt3pri4mB49elhLYWEhDkeH+qdHREREJGE61LecmpoaSkpK6NatG5mZmW16L7vdTm5ubpveQ0TaXyQSoaamhsrKSiorK9m1axe7du2ivLycnTt3UlZWRnl5OaFQaP8XMgxIcWOkuCHZDR4H5o4aqPFC1Nz/uW0takIwAuw7rO9ewgOW2G7D6JGL/YzjsDnte79mJAoNfswaH2Z1A1R7MasaMKvqwRu0fqBYsmSJdY7D4aCwsJDu3bvTvXt3OnfuTDAYpGfPnqrxFhERkSNehwnYI0eOZOvWrQD87W9/o2vXrnTt2tXa/9577/H000+zevVqIpEIffr0Ydy4cfzwhz8EYk2rBw4cSHl5Oe+//z4pKSnceOON9O3bl6lTp7JhwwZKSkqYMWMGxcXFezQRv+yyyxg8eDCVlZW88847RKNRRowYwZQpU0hNTQVgxYoVTJ8+nRUrVpCTk8Ott97Kvffey5///GeGDRtGJBLhpZde4pVXXmHbtm106dKFsWPHMnr06Fa9Fw0NDYwfP553330X0zT5j//4DyZPnmx9+Vy7di0zZsxg6dKlpKSkMGzYMO69917rB4OamhpmzZrFRx99RGVlJenp6Zx55plMmDCBpKQkAJYuXcrMmTNZtWoVxcXF/OpXvzq0P0CRg2SaJn6/H4jVJMf7BceXYDDYbIk3wY6v432OGxoa8Hq9NDQ00NDQQG1tLbW1tdTX17e8MKkeSEuCNDdGWhJGWhKkeTBSPJDsxrB939c48sEKqGpI9NvRcUSimGvKiERN7CMH7vu4JDdGkhsjP7PZZtMfxKyqx6xsAGvdQDgUZsOGDWzYsKHZ8Y8//jjZ2dkUFBTQuXNnOnfuTE5ODtnZ2WRlZZGZmUlmZiYulyvxr1VEREQkQTpMwF6wYAE33HAD+fn5TJgwgVtvvdXat2LFCm6++WbuuecezjzzTOrr63nkkUe4++67+eijj6wvXC+99BLjxo3j1ltv5bnnnuN3v/sdPXv2ZOLEiSQnJ3PrrbfyyCOPMGfOnL2W4YUXXuCqq65iwYIFrF27ljvuuIMePXpw0003UVZWxhVXXMGZZ57JlClT2Lp1Kw888ECz5p0zZszgjTfeYNKkSQwaNIiPP/6YBx98kEAgwNixY1v8Xrzzzjv89re/ZeHChaxevZpx48ZRUFDArbfeSllZGWPGjOHcc8/l3nvvxefzMWfOHC6++GLeeustkpOTuffeeykrK+OJJ54gOzubZcuWcd9999G7d2/Gjh3L5s2bueqqqzjvvPOYMWMGa9asYfLkyQf3BydHnc2bN/P888+zfft2a9vu/YdbwjRN69im50ej0WYBura2tuP0Ka73x5btsRredq6X3quzzz6bUaNGsWDBAhYvXtzsvW0L5rqdhNd9cMjXMfIzsV11BkZDALMyFrjNqnqoasCs9mIGw1brguXLl+/zOm63m7S0NJKTk7Hb916zbhgGQ4YM4de//jUpKSmHXHYRERGRluowATsrK8sasTY3N7fZFye73c6kSZMYM2aMte3yyy/n2muvpaKigoKCAgBKSkq4+uqrAbj00kt59dVXueyyy6xBzM4++2zee++9fZahd+/e3H777QAUFxdz2mmn8eWXXwLw2muvkZaWxoMPPojT6aR3795MnDiRG264AYD6+npeeeUV7r33Xs4991zrGlu2bOGZZ57hiiuuaHEwOf744xk3bhwA3bp147TTTmPFihUAvPLKK+Tn5zNx4kTr+Mcee4xTTjmFxYsXc8EFF3DaaacxdOhQ+vXrB0BhYSHz58+ntLQUgL/+9a/k5ORw//33Y7fb6dWrF9u3b2f69OktKp8c3R555BG+/fbb9i6G7MOoUaMoKipi1KhRLFq0qL2L0yqGYXzfMqD79110TNOM9e+u8WLurMXcVoW5vQr8ezbbDwQCBAKBA95r3bp1FBQUWH8fi4iIiBwOHSZg709JSQkZGRk888wzrFu3jo0bN/Ldd98BzQcI6tatm/U43hS6qKjI2ubxePbbz7Jnz57NnqelpVFbWwvAt99+y8CBA3E6ndb+oUOHWo/XrVtHKBTixBNPbHaNk08+mRdffJGKigpycnJa9HqLi4ubPc/IyLCaz3/77besXr2aE044odkxgUCAtWvXAjBmzBg++OADXn/9dTZs2MCaNWvYsmWL9fpKS0sZMGBAsx8xhgwZ0qKyydHvggsuODoCtgF4nOBxQZILkl0YSa5YU+8UD6Q2rpNdBzXNVOSDFZjrdia+3AewYMECqwY7PtJ4WzJ65u2/iXhLOWzft2gIRaC6obG/dgNmdQNmjRdqfRBKzGByPXr00N9rIiIictgdEQH7888/5+qrr+aMM87gxBNP5Nxzz8Xn8+0x0njT8Btns9lafJ/99e2z2+37bca6ry+58XNaM2ruvpo9xq93yimncP/99++xLy0tjWg0ynXXXcfq1av5+c9/zs9+9jOOO+44Jk2aZB1nGMYer0Wj+krcj370I955552EXa/pnM2RSKRZ8/D49nhf66b7mva/DoVCzeZ63r3/tdfrbdb/OhQKxdp3+0KxpbGvdPz/0mb/t9oMSEvCSIv1vzbSY0v8MR7nXgO4feRAIrZvMNeXQ+TwNXFfvHgxixYtavtw3WSQM2Mfg5wdiBk1ocYbaxJeUY9ZWYdZWQ81vv2el52dTV5eHrm5uWRnZ9OpUyc6depEeno6GRkZpKamkpKSQnJyMh6PR/Nwi4iISIdxRKSq559/nmHDhjXrO/3SSy8B+w62ida/f3/+3//7f4RCISvIx5uPA/Tq1Qun08kXX3xBSUmJtX3p0qXk5uYmbDqwPn368Pbbb1NQUGD9IFBdXc0999zDlVdeSVpaGh9//DF//etfGTx4MAChUIhNmzZZtfn9+/dn4cKFBINB6xrxJugiiWaz2XC5XIdtcCrTNAkEAtYgZ9XV1VRXV+8xivjOnTuprKyM/dhU443VoLKXftcOG6QmYaS6IdVjjSJuJLuwHVcEPyiOjeLtsoPN1uZhz/QGMOt8sabWye62u1GyC8PRsmBtRqJQGxtJ3KqVroz1r97Xjw/p6el069aNLl264HQ6+cEPfkDPnj3p3LmzBjITERGRI9YREbALCgp47733WLp0Kfn5+SxZsoTZs2cDEAwGD0sZxowZw5///GcmTZrEtddeS1lZGdOmTQNiNcKpqalcfPHFPP7442RmZjJo0CA++eQTXn75ZW6//faEfekeM2YMr732GnfeeafV/zs+Gnjfvn0JhUI4HA4WLVpEVlYW1dXVPPXUU5SXl1vv1ejRo/nLX/7Cfffdx/XXX8+mTZv2OfCbyJHGMAw8Hg8ej4e8vLz9HhuJRCgvL7emk4rPf719+3bKysqoqKjADEdjzZmrm9eC7+Pmsbmn7bbGxQDDFmuu3vTvgPgPg2b8sdnk8V5uEj/fMGI17jYDw2b7/j4O2/fzXTsb57922mNzWTvt4HJY82Jb+x1Ny2lrvH6TMkXN2JzXoUhsLuxAuHEe7EBsHuyGANT5MWt9UO/b5xvjdrspLi5uNh92cXExmZmZGIaB1+tl5cqVlJSUaJouEREROeIdEQH7lltuYdeuXfz2t78FYoOR/f73v+euu+5i+fLl9OrVq83LkJ2dzXPPPcfvf/97fvnLX5Kfn8/o0aN56KGHrBrt8ePH06lTJx5++GF27dpFcXExkydP5qKLLkpYOYqKipg/fz6PPPIIo0ePxm63M2TIEObNm0dWVhYQG818zpw5/OUvfyE3N5czzjiDsWPH8sEHsZGAO3fuzIsvvsjvf/97zj//fAoKCrj++uuZMmVKwsopciSw2+3k5+eTn5+/1/3BYNCaL7u8vNyq/a6qqqKqqoqamhpqa2tpaGiI1YSbJgTDh6Xs+wr67TXyudvtpqioiKKiIrp37063bt3o0aMH+fn5++32IiIiInI0MczD1cb6CLdmzRpqamqaDWK2bNkyRo8ezT//+U9rJPNjWXxqnUGDBrVzSWR3qiVsW9Fo1OoPHu8jHu9HHo1GrcEYm05dZhgGtsYm5fF1fGk6doRpmkSjUUzTJBKJEIlErL7r4XDY6qcev2+8DH6/H6/Xa/VRb1q++LHh8IF/DHC5XCQlJZGWlmb1gc7KyiI3N5fc3Fzy8/Pp0qULWVlZB9VSR59N6Yj0uZSOSJ9L6YiOlc9la3LOEVGD3RHs2LGD6667jgcffJChQ4eyc+dOpk+fzsknn6xwLXKMs9lsJCcnH3H/sMQHnYsH9/jvrXa7HbvdjsvlUu2ziIiISCsoYLfQ6aefzoQJE3j66aeZNGkSaWlpjBw5kjvvvLNF5z/77LM8+eST+z3mvvvu48ILL0xEcUVEDigepEVEREQkMRSwW2HMmDGMGTPmoM696KKL+OlPf7rfY7Kzsw/q2iIiIiIiItL+FLAPk4yMjIRN1SUiIiIiIiIdj+3Ah4iIiIiIiIjIgShgi4iIiIiIiCSAAraIiIiIiIhIAihgi4iIiIiIiCSAAraIiIiIiIhIAihgi4iIiIiIiCSAAraIiIiIiIhIAihgi4iIiIiIiCSAAraIiIiIiIhIAihgi4iIiIiIiCSAAraIiIiIiIhIAihgi4iIiIiIiCSAo70LICIiRz7TNIlGowAYhmEtIiIiIscSBewjyObNm7nttttYtWoVZ555JklJSWzdupWXXnqpRedfdtlldO3alRkzZux1/5IlS7j88st5//33KSwsTGTRRY4Z4XCYQCBAMBgkGAwSCoUIhUKEw2EikQiRSMQKo6ZpNjs3HkptNhs2m816bLfbm63j++x2+16DrGmamKZJJBIhGo0SiUQIh8OEw2GrPPHy+f1+a92SJRgMNnt9TV/T7q/F4XDgdDpxu914PB6Sk5NJSUkhNTWV9PR0MjIySElJwev1Eo1GKSwsJDs7G5fL1eZ/TiIiIiJtQQH7CDJ//nx27NjBG2+8QWZmJi6Xi0gk0t7FEjlqhMNh6urqqK+vp66uzlrq6+upr6+noaHBWnu93mZLPICGw+H2fhkdgmmaVpj3er0HPP7VV1+1HmdlZZGXl0fnzp3Jz88nPz+fgoIC8vPzycvLw+HQP10iIiLSMelbyhGktraWHj160KtXr/YuikiHFA91DQ0NzcJwQ0NDs6DcNDg3DdItCYKtYmusWY6a+z/uWGEzMHIzoFcBRigMviCmLwheP2ZDABr8EIlSWVlJZWUl33333Z6XsNnIzc21gnc8hOfl5ZGXl0dOTo4CuIiIiLQbfQtpI5WVlUybNo1//etf2O12LrzwQr7++muGDh3KjTfeyLPPPsvChQvZunUrLpeLIUOGMHnyZLp16wZAv379uPHGG3n99dcJhUIYhsHOnTutffPmzeP1119v1kR87dq1zJgxg6VLl5KSksKwYcO49957yc3N3WsZly5dysyZM1m1ahXFxcX86le/OjxvjhxTotGo1Tw5HA4TDAapr69v1lw53oS6afPjUChEIBAgEAgQCoWsGuJAIGA99vl8+P1+vF4vPp8Pr9ebmFYdTju4nbHF5QS3A9xODKejcZsDw+WIHed0gNOB4bTHntvt4LCB3Ub0w+WY68sOvTxHi6iJWVaNkezGNvL477c7Yk3dTdMEfxDq/Zh1Psw6H9T5MGu9mHVeqPURjUQpKyujrKyMr776ao9bGIZBp06dyM7OJjs7m06dOtGpUycyMzPJyMggLS2N9PR0UlJSSEtLIykpCafTeRjfBBERETmaKWC3gWg0ynXXXUckEuG5557D6XQyffp0li5dytChQ5k3bx5z585l5syZ9O3bl02bNjFp0iRmzJjBk08+aV3n5Zdf5tlnnyUSiVBcXMwDDzzAjh07mDNnDhkZGbz++uvWsWVlZYwZM4Zzzz2Xe++9F5/Px5w5c7j44ot56623SE5OblbGzZs3c9VVV3HeeecxY8YM1qxZw+TJkw/beySHT01NDX/605/44IMP2rsoR45QJLbU+5ttNvfxuCM7++yzGTVqFAsWLGDx4sV79JVuD+b6MsJz37WeG/mdsP9yWKwveZIbktyxmu7dzzNN8AYwa31Q542F8FqvFcip92FGTasGfPXq1QdVvr59+zJ58mTy8vIO+jWKiIjIsUkBuw18/vnnfP311yxatIiePXsC8NhjjzFy5EgAunXrxsyZMxkxYgQAXbt25ayzzmLx4sXNrvPLX/6SQYMGWc89Hg9Op3OvNdKvvPIK+fn5TJw40dr22GOPccopp7B48WIuuOCCZsf/9a9/JScnh/vvvx+73U6vXr3Yvn0706dPT8ybIB3GRx99pHB9DBs1ahRFRUWMGjWKRYsWtXdxDolhGJDiwUjxQEGnPfabpglV9Zg7a2LLrhrMijqIRFt1n9LSUj7//HN+/vOfJ6roIiIicoxQwG4D3377LRkZGVa4BsjJyaFHjx4AjBw5kq+++orZs2ezfv161q9fz5o1a+jcuXOz63Tv3r1V91y9ejUnnHBCs+2BQIC1a9fucXxpaSkDBgzAbrdb24YMGdLi+8mR40c/+hHLly/no48+au+iHF4uR6xpt6uxmXfjcyP+2OPEsJqAOzE88ePsCZteKvLB1+3eRHzBggVWDbbVDLudGT06Y99LE/EDiTchN2tjzcW/b0buxazzQ4MPwq0L03vTq1cvTjrppEO+joiIiBx7FLDbgN1ut+aD3ZtnnnmGP/7xj5x//vkMHz6csWPH8v777/P3v/+92XEej6fF94xGo5xyyincf//9e+xLS0vbY5thGHuUUQMDHZ0yMzMZN24cZ511FiUlJXt0F2hLpmk2mx4qEok063fddIn3u45P/xTvj910GqlAIGD1u473wY73vY6vrc91MBxbaGUzbwOr/7UR74ftdsaCudsRC+cuZ6wPduNiOO3gaOyT7Ygtht2GfeRgIv9cjrmhrNW1qImyePFiFi1a1DHCtd2GUdwZ+xmDYu/ZbkzTjP2Z1fkw632NTcF9mHXe2ONaL4QP3Mc+IyODnJwcsrKyyMrKIjMz0+qDnZ6eTlpaGqmpqaSkpJCSkoLL5dKc3SIiIpIQSlRtoH///tTV1bF27VprxO+qqio2btwIwFNPPcWNN97Ib37zG+ucuXPnHtKX3z59+vD2229TUFBgzSFbXV3NPffcw5VXXskpp5yyRxkXLlxIMBi0jl+xYsVB319kbwzDwOl04nQ6SUpKavP7maaJ3++3Rg6PjyS++xIfQby2trbZSOKBQCCWuv0h8IcOrc+1YYDdFhvwzOWIBXebAYYt9hjj+3X8DubuaxOixNYmjaORN243dz++6b0b/2MzrF2mrbEsttgAbNhtsfI4vh+YzbDbwWmLPXfGfyhoss1hj4Vkhw1sdrDH7oHNFnu9zf8wIBqFiAmRCGYoEjs3EsVcvY1oIBgbRdwbiPWr9jaOIh7af4A2DIPs7Gxr6q74KOK5ubl07tyZnJwczaMtIiIi7UYBuw0MGzaMwYMHc/fddzNp0iQ8Hg+zZs3C5/NhGAYFBQV8+umnjBw5EpvNxhtvvME777xDTk7OQd9zzJgxvPbaa9x5553ccMMNANYI4X379t3j+NGjR/OXv/yF++67j+uvv55NmzYxZ86cg76/SEdgGAZJSUkkJSUd1P9PwWCQuro6K3g3DeO7z4Xt9XppaGiwatHjtepWDbppxmpbW1Dj2jZMaHbrCAQOeEaLtrW1jIwM8vLymk3DlZ+fT5cuXcjLy1OAFhERkQ5LAbuNzJkzh6lTpzJ27Fjcbjdjxoxh3bp1OJ1OHnroIaZOncqvfvUrUlJSGDx4MFOmTOGBBx5g27ZtdOnSpdX3KyoqYv78+TzyyCOMHj0au93OkCFDmDdvHllZWXsc37lzZ1588UV+//vfc/7551NQUMD111/PlClTEvHyRY5ILpfLmt7pYMTn4W46vVgwGLSayUciESKRCKZpWtOJmaZpNU82DMNabDZbs8Vut++xzWazAbG5oePXME3TCvnRaNS6Z9Om+k2b4u/eDL/pEv/hwOfzNWum3/S1RSKRfXaJsdlsOJ1OPB4Pbreb5ORkkpOTSUtLIy0tjczMTFJSUvD5fAwcOJCioiKys7Nb1T1GREREpCMxzHbvlHf0qays5KuvvuL000+35lcNBoMMGzaM+++/n/POO699C9hGli9fDtBs5HPpGLxeLytXrjzsfbDl2BD/0SAetHf/AWB/9NmUjkifS+mI9LmUjuhY+Vy2JueoBrsNOBwOxo0bxyWXXMLo0aMJhULMnTsXl8vFj370o/YunohIQjWdjUBERETkWHbg6gVptfT0dJ566in+/e9/c95553HxxReza9eufTbXFhERERERkSOfarDbyCmnnMKrr77a3sUQERERERGRw0Q12CIiIiIiIiIJoIAtIiIiIiIikgAK2CIiIiIiIiIJoIAtIiIiIiIikgAK2CIiIiIiIiIJoIAtIiIiIiIikgAK2CIiIiIiIiIJoIAtIiIiIiIikgAK2CIiIiIiIiIJoIAtIiIiIiIikgAK2CIiIiIiIiIJoIAtIiIiIiIikgAK2CIiIiIiIiIJ4GjvAkj7WbhwIePHj2fVqlXtXRSRY45pmoRCIfx+P6FQiEAgQCgUIhwOEw6HiUQiRKNRotEopmk2O9cwDAzDwGazYbPZsNvt1jq+OByOPRan04nNpt9VRURERNqKAraIyEEIBoM0NDRQX19PfX09dXV1zR433dfQ0IDX66WhoQGfz4fP58Pv9xONRg97ue12O06nE5fLZS1ut9taPB6PtSQnJ5OUlERycjLJycmkpKSQnJxMamoqKSkppKamkpaWhtvtPuyvQ0RERKQjUsAWkaNOJBIhGAw2W0KhULP17ksgELAWv9+P3+/H5/Ph9XqtUNzQ0GAtwWAwcQU2AJsN7LbY2maAYcTWGLH9TZmN/zEB04wtUbP542g0tt7LexOJRPD7/QkrvtPpJC0tjbS0NNLT05stGRkZ1jq+ZGZm4vF4MIzdX5iIiIjIkU0BOwEqKyuZNm0a//rXv7Db7Vx44YV8/fXXDB06lJtvvpkPP/yQOXPmsGbNGjp37sw555zDDTfcgMvlAqBfv37ceOONvP7664RCIebPn0+XLl2YPXs2//3f/019fT19+vThlltu4fTTTwdizbv/9Kc/cf311/OnP/2J7du307dvXyZMmMCJJ54IwMiRIzn//PO5+eabrbLubVvc4sWLufPOO5k4cSKXXHLJYXjnRGJM08Tn81k1vvFa36Y1v7vXAMdrgePreDgOBoOEw+H2fkmtYwKRaGxpLzYDIycTo28hmFEIRSAUhlAYMxhbEwxDMIQZCEEwBIEwNDZ1r6yspLKyssW3c7lcZGRkkJaWhsPhoEuXLmRnZ5OZmdksiMfDeUpKigK5iIiIdHgK2IcoGo1y3XXXEYlEeO6553A6nUyfPp2lS5cydOhQPv74Y2677TbGjx/PqaeeyqZNm5g2bRrr169n9uzZ1nVefvllnn32WSKRCMXFxdxxxx2sXbuWhx9+mM6dO/Phhx/y29/+lieeeIIzzjgDgO3bt/Pqq68ya9YsUlJSeOCBB7j33nt55513Wv1F9L333uOuu+7i/vvv58ILL0zkWyRHKdM0m9X8xmt9d6/53T0kx8Pz7us2ay5tEKsZttubrx2NtcV2Ozjssed2G4bTEdvmtIPDAS47htMOTic4HRguB9EvSjE3l7dNedtL1MTcWQUpHuwjf9CiU0zTjAXvQGPw9gch0BjA/UHwBzEDQfCFIBCIbfMFIRr77JSXl1NeHnsfS0tL93svu91u1ZDHa8vT0tJITU21mqzHm7DHm7UnJSWRlJRkNX13uVzY7fZDfadERERE9kkB+xB9/vnnfP311yxatIiePXsC8NhjjzFy5EgAnnrqKS666CKrRrhbt25MmTKFK664gi1btlBYWAjAL3/5SwYNGgTAxo0beeutt/jb3/5GSUkJAFdeeSXfffcdc+fOtQJ2KBRiypQpzY658cYbKS8vJy8vr8Wv4Z///Ce33347U6ZM4YILLjj0N0WOSF9++SVTpkzB6/W2XyFsNnDZY7WniarNNYFwNLa08PCWbGsrZ599NqNGjWLBggUsXrx4jwHO2pq5fjvhudsP6z1JT8bo3w0jEML0BWIh3B+IBXZfEMKxZu3V1dVUV1e3aVGuu+46fvWrX7XpPUREROTopYB9iL799lsyMjKscA2Qk5NDjx49rP1ff/01CxYssPbHvzCvXbvWCtjdu3dvdk2AMWPGNLtXKBQiPT292bZevXpZj9PS0qzjWuPWW28lGAxaZZFj07vvvnv4wrXLAWnJGGlJGGnJjY+TIdkNLgeRD/8NO6sPT1k6mFGjRlFUVMSoUaNYtGhRexfnsDCS3dhP6N2s5Y0ZjnxfC97gx6yuh5oGzOp6zJoGaEhcH/Km/va3vylgi4iIyEFTwD5Edrt9v01bo9Eo11xzDeeff/4e+3Jzc63HHo/HehwP4H/5y19ISUlpds7uU+zE+3E3tb8ar731Tf3d737Hu+++y4QJE/jv//5vkpKS9nm+HL0uu+wyQqEQa9euxTRNDMOw1vsS/6yFw2GreXggEDjwzYJhqKjFrKjdf+2wzQCXMxbIXY7GJtsOcNpjTbkdjc24HbEm3Ua86bfd3qQpeHy7/fuBxJosB9OvN/LBvzHXt00t74IFC6wa7PifweFk9ChocRPx1jBD4Vjz8cbaafxBTF8oVlMdCBFZ9Hnjtsb9ocgh3c9ut5OUlGQ1DY9PbbY/6enpXHHFFYd0XxERETm2KWAfov79+1NXV8fatWut2uSqqio2btwIQJ8+fVi/fn2zGuolS5Ywb948HnjgAZKTk/e4Zp8+fQAoLy9nwIAB1vZHH30Um83Grbfe2qKyOZ1O6uvrref19fVUVFTscdy5557LKaecws9+9jP+8Ic/MGHChBZdX44uBQUFCfmzj0ajzfphx5emI3A3ncKqaV/s+GLVpEdNqxZzdwlrym1rDOUOu7UYDjs4Y0EepyMW5l2O2Da3E6NbLvgCmDurY6N1J9DixYtZtGjR4Q/XdhtGcT72MwbHXu9emKYZa7rfOMiZGQjFHgdCsb7W/tD3/a79QUx/vC924IBN9Pf2Su12uzUKeXzZvR/23vpgp6Sk4HQ6NSiaiIiIHHYK2Ido2LBhDB48mLvvvptJkybh8XiYNWsWPp8PwzC49tprue2223jiiSc455xz2LFjBxMmTKCwsLBZDXZTffr0YcSIEdx///1MnjyZPn36sHjxYp5++mmmT5/e4rL94Ac/4O233+Y///M/SU9P5/HHH9/nAD+5ubnWIGdnnXWWNRK5SGvZbDZr3uTs7OyDukYkEmkWypuOIN7Q0NBs9HCfz9dsiq34SOLxAdiaTs8Vf94suEajEIzGatUb7R72WhxzDWKDobkbA7nLuWdAdzStfbdbNe6G3QZ2A9MfwvAFIC0ZW7KncYquvc7T1XxqrqZTdUVNzPhUXWYUIvF9UWu0cjPa2C89GoGwGZsNLGoS+ddyCMdHEI/Eap6bjCC+t6m/WsrpdDabrisjI4PU1FQCgQC9e/cmNzeXzMxMayRxjRwuIiIiRxoF7ASYM2cOU6dOZezYsbjdbsaMGcO6detwOp2cddZZPProozz99NM89dRTZGZmMnLkSO688879XvPRRx/l0UcfZfLkydTU1NCtWzcefPDBvTY135fbb7+d6upqrrzyStLS0rjqqquora3d5/EXXngh//3f/819993HG2+80azZusjhFB8xOj6uQCKZpkk4HG4WuOOhPN7Evelo6LuPiL6vWvhIJBLLvcHGKaya3nP3MiT8VSVGS8tls9msGuN4LXLTWuXd57+Or5OSkvYIzF6vl5UrV1JSUrLXFj0iIiIiRxLDPNwd/I4ylZWVfPXVV5x++uk4nU4AgsEgw4YN4/777+e8885r3wIeRsuXLwewRkOXjkMhpm2Zponf76eurq5Z6N59Tu94WPf7/Xi9XivMNw37oVCIaDRKOBw+4NRlhmFgs9mw2+3YbDYcDoe1ttvt1trpdOJwOHA6ndbicrlwuVy43W5rHZ/OyuPxWP2X460R4ktqaupeg/LB0mdTOiJ9LqUj0udSOqJj5XPZmpyjGuxD5HA4GDduHJdccgmjR48mFAoxd+5cXC4XP/rRj9q7eCJyGBiGYc253Jop8loiGo3u0Rc7PmCXmk+LiIiIdCy2Ax8i+5Oens5TTz3Fv//9b8477zwuvvhidu3axbx588jKymrv4onIES5eQ910sdkObvRzEREREWlbqsFOgFNOOYVXX321vYshIiIiIiIi7Ug12CIiIiIiIiIJoIAtIiIiIiIikgAK2CIiIiIiIiIJoIAtIiIiIiIikgAK2CIiIiIiIiIJoIAtIiIiIiIikgAK2CIiIiIiIiIJoIAtIiIiIiIikgAK2CIiIiIiIiIJoIAtIiIiIiIikgAK2CIiIiIiIiIJoIAtIiIiIiIikgAK2CIiIiIiIiIJ4GjvAoiIHCtM06S+vp76+nq8Xi9+v59QKEQ0GgXAMAwcDgdutxuPx0NycjIpKSl4PB4Mw2jn0ouIiIjIgShgdzBLlizh8ssv5/3336ewsLC9iyMirRCJRNixYwdbt25l+/btbN++nZ07d1JeXk5FRQVVVVVEIpFWX9fpdJKWlkZaWhqZmZmkpaWRkZFBeno6aWlppKamkpKSQlJSEklJSbhcLpxOJzabDcMwME2TSCRCOBwmGAwSCATw+Xz4fD68Xi8NDQ00NDRQX19vPY7/ABBfQqGQ9WOAaZrYbDbsdjsul6vZjwEZGRlkZmaSk5NDTk4O+fn5FBQUkJ2djc2mRlMiIiJydFPAFhFpJa/Xy+bNm9m0aRObNm1i8+bNbN68mW3btrUsQDvs4HLE1nY7GAYYQNSEaBQiUQiFIRgG0yQUClFZWUllZSUbN25s89fXGl6vt0XHuVwuCgsLKSoqonv37hQXF1NcXExGRkYbl1BERETk8FHAFhHZC7/fz44dO9i+fTvbtm1j69atbNmyhS1btrBr1659n2i3QUYqRnoKRnoypCVjpCZDigcj2QMeF4bDDoAZjoDXv89LmQDhCARCEAxiBkIQCMXW/mBsW7AxiAdDsWPDEYhEIGLGrmCasQCPAXYjFujtdnDYwNkY8l1ODJcj9tzpxHDGfwCI7Tccttg5KR4MR+M/G6YZ+0EgEom9jmAYAkFMfxC8fswGP9T7MOu8UOclGAyybt061q1b1+w1ulwucnNzKSkpoU+fPvTs2ZMePXqQnp5+SH9+IiIiIu3hqAnYlZWVTJs2jX/961/Y7XYuvPBCvv76a4YOHQrEml7n5uby0Ucfcf755zNp0iT+67/+i3nz5rFx40ZsNhsDBgxg/PjxDBo0CICRI0dyySWXsHTpUpYsWUJ2djb33XcfALNmzaKsrIwTTzyRhx56iOzsbADWrl3LrFmz+PLLLwmHw5x22mncc889dO3aFYDLLruM/v37U1FRwfvvv09GRgaXXnop1157bbM+lh999BGvvPIKGzZsoHv37tx1112cccYZQKwZ6ksvvcQrr7zCtm3b6NKlC2PHjmX06NHWa73yyiv505/+xKxZs9iwYQOFhYXceeed/OQnPwFifUGfe+45Xn31VXbt2kVxcTFXX301v/jFL9r+D0uknZimid/vp66ujurqamuprKykoqKCXbt2UV5ezs6dO6murt7/xZLcGJmpGJ3SoFMaRmYaRmYqpCYdsL+0GQoT+eeXmBu2x2qrOwBzH4+bsdswiguwn3EChvP7fz4O1DvcjESh3otZXY9ZVYdZVQeVtZhVdQSDQbZu3crWrVt57733rHOysrLo3r073bp1o6ioiK5du9KlSxfy8vKw2+0H+zJFRERE2tRREbCj0SjXXXcdkUiE5557DqfTyfTp01m6dKkVsP/v//6Pyy+/nDfeeINIJMK7777L1KlT+d3vfsdJJ51EeXk506ZNY+LEibzxxhvWtZ988kkeeOABJk6cyIwZM7j77rvp2bMns2bNwuv1csstt/Dss89y7733snXrVi6++GJOPfVUXnzxRQKBADNmzODSSy/lzTffJDU1FYBXXnmFX/3qVyxcuJCvv/6aBx54AIDf/OY31n3nzZvH1KlTycvL4+GHH+a2227j008/JSUlhRkzZvDGG28wadIkBg0axMcff8yDDz5IIBBg7NixQCyEz5o1iwkTJlBQUMAf/vAH7rnnHj7++GNSUlJ49NFHeeutt5g8eTI9e/bk//7v/3jggQeoq6vj17/+9eH5gxPZh2g0avX5DYVCBINBQqEQgUDA6kMcCATw+/3W2ufzUV9fb/Ut9vl8NDQ0WNsbGhqoq6sjHA63vCBOO6SnxGqh01MxMlNitdMZKRhu197PCUf2HVAbRT5Yhrl+W8vL0VFEophrtxKJmthHDmnducmxGnyjS461yYyaUOfFrG4M3JW1mBW1UOe1msR/+eWXzS5jt9vJycmhc+fOZGdnk52dTWZmJpmZmVaf9KaDw3k8HpxOpwaJExERkcPiqAjYn3/+OV9//TWLFi2iZ8+eADz22GOMHDmy2XG33HILaWlpAJSXl/Pggw9aNbZdu3Zl1KhRTJ06tdk5Z5xxBueddx4AF110Ee+//z7jxo3j+OOPB+DUU09l9erVALz88sskJyfz8MMP43LFvnw//vjjnHnmmbzxxhtWcO3RowcPPPAAhmHQq1cv1q5dy7x587j22mut+953330MGzYMgBtvvJH33nuPtWvX0rNnT1555RXuvfdezj33XACKi4vZsmULzzzzDFdccYV1jdtuu43hw4cDcMMNN/CPf/yD0tJS+vXrxwsvvMAf/vAHq1a8W7dubN26lblz5ypgS0KtWrWKiRMnUlNT095Fab1QBCpqoaKWxgbXHdrZZ5/NqFGjWLBgAYsXL8Y026bE5vpthOcm7gcCIz8L+y9/aIVgMxjCrKqHqlgtt1lTj1ldD7VeIpEIZWVllJWVtfo+w4YNY+rUqQrbIiIi0maOioD97bffkpGRYYVrgJycHHr06GE9z87OtsI1wNChQ1m7di1//OMfWbduHRs3bmTVqlXWdDlx3bt3tx4nJSUBsTAa5/F4qKioAKC0tJSBAwda4RogNzeXHj16UFpaam0bNmxYsy94J5xwAs8++yxVVVXWtqZlj/dF9Pv9rFu3jlAoxIknntisnCeffDIvvviiVRag2fsRrz0PhUKsWbOGQCDAHXfc0WxU3/gIw36/H4/Hg0gifPXVV0dmuD4CjRo1iqKiIkaNGsWiRYvauzgHzXA5MTp3gs6dYv27q+tjIbumHnNHJeb2itggcK20bNkyAoGA/n4TERGRNnNUBGy73b5HMN7d7l+o3nzzTasWeMiQIVxyySWUlpbuUYPtcOz5Fu2r9mNftUXRaBSn07nPa8bL3rRf4d6mszFNc7/32P3aTYP+3q7x2GOPNQvh+ztP5GCdd955pKamsnr1akzTxDAMDMPY4/9Zq/ay8Zj4umlz8b01EY83E/f5fK1r/r03HhekJsUG80ptHKAsLRkj3kzcnphpptqqifiCBQusGuz4e9gWjB5dWt9EfH8cdoiamNWxJuJmvLl4VR3UHXiUcpfLRUZGBhkZGaSkpJCammpNVxZ/H2w2G2eccYbCtYiIiLSpoyJg9+/fn7q6OtauXUuvXr0AqKqq2u90Ns888wyjRo1iypQp1rb3338f+P4Lfmv169eP//7v/yYYDFohddeuXWzcuJExY8ZYxy1fvrzZecuWLaOwsLBF09X06tULp9PJF198QUlJibV96dKl5ObmtugaPXv2xOFwsG3bNkaMGGFtnzdvHmvWrNnjRwaRQ+FyufjZz352WO4VDofx+/14vV5rife/rq+vp76+ntraWmpra6mpqaG6upqqqiqqqqpi4dwfjC27aqzm4FZENYiF7Iw0jE6pGJlp0DjImZHkblU57SOHEPmnkfBBzhYvXsyiRYvaLlzvY5Cz1jBNExp8mJV1jX2ua2L9rqvrYqOS70VaWhqFhYV06dKFgoIC8vLyyMvLIycnh+zsbJKTk9XsW0RERDqEoyJgDxs2jMGDB3P33XczadIkPB4Ps2bNwufz7fOLZkFBAcuWLeObb74hLS2NDz74gPnz5wMQDAZxu1v3hRlg9OjRvPLKK9x1111cf/31BINBZs6cSadOnTjnnHOs45YuXcrjjz/OL37xC5YuXcpf/vIXxo8f36J7pKamcvHFF/P444+TmZnJoEGD+OSTT3j55Ze5/fbbW/QlMy0tjUsuuYTZs2eTmprKkCFDWLJkCbNmzeK6665r9esW6SgcDgepqalWl4iWikaj1NbWUlFRwc6dO9m5cydlZWXs2LGDbdu2sW3bNvx+P9R6MWu9mJt36//rcX0fuDMbB0HLSI0F8r0EUcPpwPEfQw84Tdf+mBCbmqtxii4zFMas92HU+8DpiN236d99hoFhM2LTiMXn33Y6YtNzORzWvNz7/Rsk2WNNMbbfskWj4A1g1vtig5jV1mPWNMSaelfXxcq8FykpKfTo0YMePXpQXFxsjSKemZnZindGREREpP0cFQEbYM6cOUydOpWxY8fidrsZM2YM69atw+l0EgwG9zh+0qRJTJ48mUsvvRSXy0X//v156KGHGDduHMuXL+ekk05qdRkKCwuZP38+s2bN4uKLL8blcnHaaacxa9asZnO6nnnmmaxdu5Zf/OIX5OXlMX78eGuKrZYYP348nTp14uGHH7am2Jo8eTIXXXRRq68xe/Zsdu7cSUFBAbfccgvXXHNNq16zyNHAZrNZI1HHW8E0ZZomlZWV1jzYmzZtYvPmzWzevDk22JY/iLmjAnZU7DkQWmOzcyMlCZLdGB43uJ0YLmdslHK7DQxb/EYQjcZGIo/PLR0MxeaWDsRq1814Lbs/2DxAt8ABjzaMWNB2OcHlwHA2ljEeyO22xjm1m5Q1Eo0NBhcKYwaC4AvEyrYfNpuNoqIiiouLKSwsxG63c/rpp9O9e3fVRIuIiMgRzTDbqpPeYVRZWclXX33F6aefbvV1DgaDDBs2jPvvv98aBbwjuOyyy+jatSszZsxo76IkXLzpe3wecek4vF4vK1eupKSkhOTk5PYuzlHF5/OxdetWNm3aZAXwrVu3smPHDurq6tr8/m63m7S0NFJSUkhKSsLtduN2u3E4HNjtdqsVTyQSsQYyjPdfjzejb2hoOOA4Fq1lt9vJzs6mc+fOVtPuoqIiCgsLKSwstP6u1mdTOiJ9LqUj0udSOqJj5XPZmpxzVNRgOxwOxo0bxyWXXMLo0aMJhULMnTsXl8vFj370o/YunogcxZKSkujduze9e/feY199fT1lZWWUl5eza9cuqqurqampoa6uDp/Ph9/vJxQKEYlEgFjNrsPhwOVy4fF4SE5OJjU1lZSUFDIyMkhPTyc9Pb3Z40QMSmiaJn6/n4aGBqu/utfrtcoYH1wuHA4TjUatQcMcDgdOp5OkpCQ8Hg9paWlkZGSQmZlJRkZGs4EbRURERI4FR0XATk9P56mnnuKxxx7jtddew2azMWTIEObNm0dWVlZ7F09EjlHx/uB7a3bekRiGQVJSEklJSeTk5LR3cURERESOWEdFwAY45ZRTePXVV9u7GAf00ksvtXcRREREREREpA0kZlJXERERERERkWOcAraIiIiIiIhIAihgi4iIiIiIiCSAAraIiIiIiIhIAihgi4iIiIiIiCSAAraIiIiIiIhIAihgi4iIiIiIiCSAAraIiIiIiIhIAihgi4iIiIiIiCSAAraIiIiIiIhIAihgi4iIiIiIiCSAo70LICIiR5ZgMEh1dTU1NTXU1NRQW1tLXV0dXq8Xv99POBzGMAycTicpKSlkZmZSUFBAt27dSEtLa+/ii4iIiLQZBWwRkWNYJBKhvr6e2tpaa4mH5qbr+FJdXY3X6z3o++Xn5zNw4EBOOukkhg4dit1uT+CrEREREWlfCtgiIh1cJBLB7/cTCAQIBoNEIpFmSzgcJhKJEAwGCYVCBAIB/H4/Pp8Pn89HQ0MDDQ0N1NfXU1dX12ypr6/HNM3WF8pmgMcNHjeGxwUeFzidGE472Bp7H4UjmMEQeP2YtQ1Q72XHjh3s2LGD9957D7vdzgknnECfPn3o3bt3Yt80ERERkXaggN0GFi5cyPjx41m1alXCrjly5EjOP/98br755oRdU0Q6Bq/Xy4YNG9i4cSNbt25l+/bt7Nq1i8rKSmpra/H5fG1fCJcD3C4MjzsWlq3g7MZIarItyQ1JbnA5MQyjVbcwA0HMnZWYW8uJbtpBpKqWpUuXsnTpUt58801++tOfcs4551BUVNRGL1JERESkbSlgHyEWLFiA2+1u72KIyCEKhUKsXbuWlStX8t1337F69Wq2bNnS8gvYbbEaYpstVotsGN8/ttvAbsdw2MFhB6cTnA4MlwNcTnA7MVyNtc1uVyxAuxsf29t+zEvD7cIoyoeifOynDMKsqiW6ejPR1Rupr69n4cKFLFy4kB/84Aecc845nHrqqTidzjYvl4iIiEiiKGAfIbKystq7CCLSSqZpsmvXLlatWsXKlStZuXIlpaWlBIPBPQ9O9mBkpWNkpEF6CkZqcmxbkgtcLnA6wG5rVmtshiPg8x9aISMR8Po4iEbiB5bkiYX9fTA6pWM/+ThsJw3A3LyD6LfrMDeX8e9//5t///vfZGRkMGLECEaOHEm/fv1aXWMuIiIicrgdVQG7srKSadOm8a9//Qu73c6FF17I119/zdChQwFYsmQJubm5fPTRR5x//vlMmjSJ//qv/2LevHls3LgRm83GgAEDGD9+PIMGDQJiTbN//etf8+9//5tPPvkEl8vFueeey7333ovDEXv73n33XR5//HE2bNjAoEGDOPXUU1tV7oULF/LYY49x00038fjjj9PQ0MCpp57K5MmT6dy5s1WOeBPxaDTKs88+y8KFC9m6dSsul4shQ4YwefJkunXrBkC/fv148MEHeeutt1i2bBnp6elccskl3HTTTdZ9//nPf/Lkk0+yevVqUlJSOOeccxg3bhwej+eQ/yxEjjU+n48tW7awefNmNmzYwLp161izZg2VlZV7Hux2YXTOwsjLwsjtFFuSWt5CxQyFiXz0BeaGbRCJJvBVJJjdhlHcBfuPT8Rw7vufG8NmYHQvwNa9ALOugeh3G4h+t4Gamhr+9re/8be//Y28vDyGDRvGkCFDGDRoEOnp6YfxhYiIiIi0zFETsKPRKNdddx2RSITnnnsOp9PJ9OnTWbp0qRWw/+///o/LL7+cN954g0gkwrvvvsvUqVP53e9+x0knnUR5eTnTpk1j4sSJvPHGG9a1Z8+ezZ133sndd9/N559/zoQJExg4cCDnnXcey5Yt4+abb+amm27inHPOYenSpUybNq3V5a+srOTFF1/ksccew+Vy8cADD3DNNdfw+uuvW0E+bt68ecydO5eZM2fSt29fNm3axKRJk5gxYwZPPvmkddzMmTOZOHEi06ZN4+9//zuPPvoow4YNY+jQobz77rvccsst3HzzzcycOZN169bxwAMPsHnz5mbXEDnWxAcNCwaDzQYLazpIWHV1NVVVVezatYtdu3ZRVlZGVVXVvi+alf59kM7LgozUPWpjzVC45WX8cCnm+q0H+xIPn0gUc+0WIlET+4iT9n2cw269H0ZaCvahx2E7sQRzy06ipRsxN25n586dvPnmm7z55psAdOnShR49elBYWEh+fj5dunRh8ODB2Gxt39RdREREZF+OmoD9+eef8/XXX7No0SJ69uwJwGOPPcbIkSObHXfLLbdY87CWl5fz4IMP8otf/AKArl27MmrUKKZOndrsnNNPP53LL78cgKKiIl566SWWLVvGeeedx/z58xkyZIhVM9yjRw9KS0uZN29eq8ofCoWYOXMmAwcOBGDWrFn87Gc/43//93/54Q9/2OzYbt26MXPmTEaMGGGV+6yzzmLx4sXNjjvvvPP45S9/CcBvf/tb5s6dy7Jlyxg6dCjPPPMM//Ef/8ENN9xglds0TW688UbWrFmjEX3lmDNv3jzmz59/aBcxDNjbiNyVtZiVtZirNh7a9Q+Ts88+m1GjRrFgwQIWL158cKOMN2Gu30p4Pz8IGPnZ2H/x42Y/Ohg2G0a3fGzd8jHDEcwtZZiby4huK4fqOrZt28a2bduaXef666/n/PPPP6SyioiIiByKoyZgf/vtt2RkZFjhGiAnJ4cePXpYz7Ozs61wDTB06FDWrl3LH//4R9atW8fGjRtZtWoV0WjzJpe9evVq9jwtLY1QKARAaWkpp512WrP9J5xwQqsDdkpKihWu4/fMyMigtLR0j4A9cuRIvvrqK2bPns369etZv349a9assZqTt7Tc55xzTrP9J598srVPAVuONevXrz+0C6QmQSgCgb30rz7CjBo1iqKiIkaNGsWiRYvauzixftwFORCNYgOi4QjU7zkXd319/eEvnIiIiEgTR03AttvtewTj3e3et/jNN9/k3nvv5dxzz2XIkCFccskllJaW7lGD7XK59rhWvEbHMIw97nswo97u7ZxIJILdvucAQc888wx//OMfOf/88xk+fDhjx47l/fff5+9//3uLy723Gqn469i9SbrIsWD8+PF88cUX+P3fDxoWn3/a5/Ph9XqtuaPjTcQrKiqoq6uLHVy/l6m07DbIzsTIzWxsHt4JUpIPebCutm4ivmDBAqsG2zCMQ67BNnp0bXET8abMQBBz3Vaia7dgbi+HaPNyJCcnU1RUZDUR//nPf35I5RQRERE5VEdNkurfvz91dXWsXbvWqrmtqqpi48Z9N8l85plnGDVqFFOmTLG2vf/++0AsgLbkS3D//v358ssvm21bsWJFq8tfXV3N5s2brflfV69eTX19PQMGDNjj2Keeeoobb7yR3/zmN9a2uXPntupLcL9+/Vi2bBljx461ti1duhTYs+Zb5FjgcrkYPnx4q8/z+XyUlZWxfft2a5Cz9evXs2HDBgKBAOysjM39HD8h2YPROTs2yFnnLIzszP0OALY39hEnEbEZbTbI2eLFi1m0aNGhh+sWDnLWlGmamNvKiX63IfYjQpPXV1RUxIknnsjAgQPp168feXl5GllcREREOpSjJmAPGzaMwYMHc/fddzNp0iQ8Hg+zZs3C5/Pt80tiQUEBy5Yt45tvviEtLY0PPvjA6oMZDAZbNO/0VVddxYUXXsjMmTO56KKLWL58+UH347zrrruYOHEi4XCYKVOmcMIJJ1gDtO1e7k8//ZSRI0dis9l44403eOedd8jJyWnxva655hpuvfVWnnzySc4++2w2bNjAtGnTGDFihAK2SCskJSVRXFxMcXFxs+2RSIStW7dSWlrKd999x8qVK1m3bh0Rrx9z/dbva6ANAzqlxYJ2p3SMzFSM9NRYk3OXc68B0nA6cPxkWGKm6doL0+vHrGvASEvBSD6EWQUOME1Xs3v6g0RLNxJduQ6qv2/qXVxczMiRI/nhD39I165dD74sIiIiIofBUROwAebMmcPUqVMZO3YsbrebMWPGsG7dOpxO517nnZ00aRKTJ0/m0ksvxeVy0b9/fx566CHGjRvH8uXLOemk/TRpbFRSUsKzzz7LrFmzmD9/Pn369OG3v/0tDz/8cKvLf+655/Kb3/yGYDDIyJEjmTBhwl6/XD/00ENMnTqVX/3qV6SkpDB48GCmTJnCAw88wLZt2+jSpcsB7/Wf//mf/OEPf+BPf/oTTz75JFlZWfz85z/nlltuaXW5RWRPdrudbt260a1bN37yk58A4Pf7KS0t5dtvv2XlypWsWrUqNo1XfBC0PS5iA48b3M5YDbDDDnY72Ayw2WLhvHFt2G2x4+2Nxzjt4HBguBzgcsbCuju2xh2bV3tftb9GWgp0zm7bN4gmtdWrNmKu22LVVicnJzNixAjOPvts+vTpo1pqEREROWIY5qF2rusgKisr+eqrrzj99NOt/szBYJBhw4Zx//33c95557VvAfdj4cKFjB8/nlWrVrV3UQ7J8uXLAaw5xKXj8Hq9rFy5kpKSEpKTk9u7ONLINE0qKipYvXo169evZ+PGjWzdupUdO3ZQW1vbtje3GbGg7XFhuN3gaXzscYHHba1j29yxx659h/KWMkNhzB0VmJu2E12/DRq+77ves2dPfv7znzNy5Eh9TqVd6e9M6Yj0uZSO6Fj5XLYm5xw1NdgOh4Nx48ZxySWXMHr0aEKhEHPnzsXlcvGjH/2ovYsnIrIHwzDIyckhJydnj/7fgUCAqqoqamtrqa+vx+v1EggECIVChMNhotGoNWd3fB0KhQiFQvj9fgKBAD6fr9kc3vF1KBSKDRjmC4AvgEmddd/9/uJqM2JBO8mNkRQL3bG1C9wuDJczVssen4s6EoVgMNbkvKYBKmswK2uaDVaWnJzMwIEDGTVqFIMHD1ZttYiIiBzRjpqAnZ6ezlNPPcVjjz3Ga6+9hs1mY8iQIcybN4+srKx2KVNZWRlnnXXWfo8ZNGhQh65dF5H24Xa7yc/PJz8/P6HXNU0Tv99vjYheW1tLXV0dNTU11NTUWI9ra2ubrf1+fywYe/3g9VtB/GCaQOXm5nLiiScyfPhwBgwYwJo1a+jbt6/CtYiIiBzxjpqADXDKKafw6quvtncxLDk5Ofztb3/b7zHxL9EXXHDB4SmUiBzTDMMgKSmJpKQk8vLyWnxeIBCgpqaG6upqa4mH8pqamj1q2SE2/WBKSgpZWVl07tyZbt260bdvXzp37myFaa93z/msRURERI5UR1XA7mjsdjvdu3dv72KIiBwyt9tNXl5eq0K5iIiIyLHG1t4FEBERERERETkaKGCLiIiIiIiIJIACtoiIiIiIiEgCKGCLiIiIiIiIJIACtoiIiIiIiEgCKGCLiIiIiIiIJIACtoiIiIiIiEgCKGCLiIiIiIiIJICjvQsgInKkCIfD7Nixg23btlFXV4fP58MwDJxOJ2lpaWRkZJCbm0tWVhZ2u729iysiIiIih5kCtojIPkQiEVatWsVnn33G8uXLKS0tJRQKHfA8h8NBfn4+Xbt2pbCwkMLCQoqKiigsLKRTp04YhnEYSi8iIiIih5sCtojIbjZu3Mg777zD+++/T2VlZfOdDjukp2IkucHpBEyIRCEQxPT6wesjHA6zZcsWtmzZwpIlS5qdnpKSQmFhId26daN79+50796dnj17kpOTo+AtIiIicoRTwBYRIdb8+5NPPuHNN99k+fLl3+9wOTG6FWArzMfIz46F6/0EYTMahQYfZk09Zm0dVNdhVtdh1tRBnZeGhgZWrVrFqlWrmp2XkZFBnz59KCkpYeDAgfTv35+kpKS2erkiIiIi0gYUsEXkmFZZWcnbb7/N3//+dyoqKmIbDSMWqvsVY3QrwGhFf2rDZoO0FIy0FKBzs31mOAK19bHAXVWDWVWLWVkD1XXU1NSwdOlSli5dCsSamZeUlDBkyBCGDh1K7969sdk0LqWIiIhIR6aA3QL9+vVj+vTpXHDBBR3+fvfeey9bt27lpZde2uv+LVu2cOaZZzJv3jyGDRvGZZddRteuXZkxYwZLlizh8ssv5/3336ewsPBQX4ZIhxWJRPjyyy9ZtGgR//u//0s4HI7tSPJgK+mJraQnRmpywu9rOOyQlYGRlQF8//+YGY5gVlZj7qzELKvA3F5OuMHH8uXLWb58OS+++CKZmZkMHTqUYcOGceKJJ5KSkpLw8omIiIjIoVHAPsYUFBTwySefkJGR0d5FETmsIpEI33zzDZ9++ikfffRRs77VRudsbMf1xuhZ2Kra6kQxHHaMvGzIy4aBfTBNE2obiG7dgbm5DHNrGdXV1bz77ru8++672O12SkpKOOmkkzjhhBPo27evRi0XERER6QAUsI8xdrud3Nzc9i6GSJurra1l3bp1lJaWsmLFCpYvX05DQ8P3B7hd2Pp0w9a/J0Z25gGvZ4Yj4PO3TWGTPLHa7UaGYUBGKvaM3jCgN2YkgrljF+am7UQ3bSdSXceKFStYsWIFL7zwAklJSfTv358BAwbQu3dvevbsSefOndWkXEREROQwU8BuofXr1zN27Fi++OILMjMzufTSS7nuuusAiEajPPvssyxcuJCtW7ficrkYMmQIkydPplu3blxwwQUMGTKEiRMnAvDee+9x4403Mnv2bM466ywAZsyYwXfffccLL7zQ7L7l5eVcdtllFBQU8Kc//Qmn08kf/vAH3nrrLSoqKigsLOSKK65g9OjR1jnhcJhp06bx+uuv43Q6Oeecc7jnnntwu917NBEX6ehM08Tv9+Pz+azF6/Xi8/loaGigvr6e2tpaampqqKiooLy8nB07dlBTU7PnxTyuWN/qHkUYRZ1bVFtthsJEPvo/zA3bIBJpg1cI2O0YxV2w/3gohnPPv5YNux2ja2fo2hn78B9g1tYT3dJYu729HJ/Px5dffsmXX35pneNyuejSpQudO3e25ubOyMggLS2NlJQUkpOT8Xg8uFwunE4nTqcTm81m1YQbhhGrSSdW+x+NRolEIkQiEcLhsPU4vi9+bOzl2LHb7TgcDlwuF263m6SkJNxut0K/iIiIHNUUsFto/vz53H///UybNo0333yTP/zhDxx//PEMHz6cefPmMXfuXGbOnEnfvn3ZtGkTkyZNYsaMGTz55JOMGDGCt99+27rW//zP/2AYBkuWLLEC9j//+U9+/etfN7tnZWUlY8eOpWvXrjz55JO43W5eeuklFi9ezKOPPkrnzp358MMPeeCBB+jTpw8nnXQSAMuWLaNz58689tprbNmyhYkTJ2Kz2ayAL0enaDRKXV0dEAulpmkSjUaJRqM0NDRQWVnJtm3bcLlc1vamS/z4pkGpKcMwmi3xoNR02+73jYexcDhMKBQiEAhYi9/vt4Ky1+vdY2loaLD276tMB5SSBDmZGLnZGAW5GNkZsUHIAKImZjR8wEtEPvwcc/2Wg7t/S0UimGs3E4ma2EecfODjkzzY+hRDn+LYe1NVQ3RnJWZ5JVTWQGUtwWCQDRs2sGHDhrYteysYhkFSUhIpKSmkpqaSkpJCUlIS4XCYLl26kJGRYW2L/wDg8Xhwu93WjwAulwubzUZOTg5Op7O9X5KIiIhIMwrYLTRmzBjOO+88AG644Qaef/55VqxYwfDhw+nWrRszZ85kxIgRAHTt2pWzzjqLxYsXAzBy5EieeOIJtm/fTkFBAZ9++ilnnnmmNT/upk2bWL9+PSNHjrTuV11dzdixY+nSpQt//OMfcblc1rHJyckUFhaSl5fHpZdeSs+ePenRo4d1bm5uLjNnzsTtdtOnTx9uvfVWpk6dyh133HE43ippB9FolJtvvpnVq1e3d1E6lgZfbMqsjds5yIjeYmeffTajRo1iwYIFLF68+KB+FDDXbyHc1mH+YBlGbLEZYLM1Lsb32w0DDMAETBOi0dj84JEIhGM1/6ZpWj+glJeXN7t809r3ligoKGDu3Lk4HPpnTERERDoOtdVroeLi4mbP09PTCQQCQCxAZ2VlMXv2bG677TZ++ctf8uc//5loNArAcccdR+fOnfn000/Ztm0bW7Zs4brrrmPt2rWUl5fzz3/+k5KSErp27Wpd/9FHH6W0tJTc3FwrXAP8+te/pr6+nh//+MdccMEFPPLII2RlZZGdnW0dM3DgQNxut/X8+OOPJxQKdaiaLEm8g67llYQYNWoURUVFjBo16sj8s9j31N7f7zd2P3C3cI3RZHfj9gNe+OAcke+xiIiIHPX0038L7W2E3vgXvGeeeYY//vGPnH/++QwfPpyxY8fy/vvv8/e//906dsSIEXz66acADBo0iOOPP57OnTuzZMkSPvroI84888xm1z711FP51a9+xc0338zPfvYzTj/9dCAW9N955x0+//xzPv30U/75z3/y7LPPMn36dM4///y9ljUe9JsGdTm62Gw2nnjiiWb9jps2+25oaGD16tX06NEDt9tt9ZvdW/Pw3ZuJN20CHr9XfB3fFl8DB2wiHgwG9+hTHe9PvXvT8IaGBnw+38G/ManJkJ2JkZcVayKe1aSJeAu1tIn4ggULrBrspv2XW8PoUdiyJuJNxJuImzsriZZXxZqIV9VAtJX3P9DhUbPxoGjrrrub5ORkkpOTSUlJIS0tDY/HYzURz8zMtPYnJSVZ/bbdbrfVV9zhcOBwOMjOzlbttYiIiHQ4+naSAE899RQ33ngjv/nNb6xtc+fObfYFe+TIkdxzzz3YbDaGDx8OwPDhw/nggw9YsmTJHs23//M//5Of/vSn/OxnP2PSpEm8+eabpKamMm/ePLKzsznnnHM47bTTuPvuu7nyyit5++23rYC9cuVKotGoFYS++OILPB4PRUVF7Ny5s63fDmknNpuNTp067XWf1+ulsrKSrl27kpyc+Pmd21I0GiUQCFihu+lAZ7sPclZZWUl5eTnbt2+ntrYW6r1Q78XcuC2WHz1ujG75rRrkzD7iZCI244CDnC1evJhFixYdXLg+wCBnu4sNclaGuWUH5rZyCAT3OMbpdNKlSxfy8/PJyclpNshZamoqSUlJewxyZrfbm/1wAt//YBL/USb+g0nTAc4ikYjV/z5+fjwIx8NxPCzv/gOg1+tl5cqVlJSUHHGfTREREZHdKWAnQLxf9ciRI7HZbLzxxhu888475OTkWMcMHz6cQCDAO++8w9y5c61t48ePJz8/nwEDBuz12hMmTOBnP/sZDz30EFOnTqWyspI//vGPeDwe+vfvz7p161i5ciWXX365dc727du57777uPrqq1m3bh1z5szhmmuuUQ22HJFsNptVm9kaNTU1rFu3jtWrVzebpsss3UikdCN4XNh6d8fWv8d+p+kynA4cPxl+wGm6TK8Ps86LkZaMkdy6su4+Tdce145EG6fp2kZ003aormu23+PxUFJSQv/+/enTp481TZfmxhYRERE5vBSwEyAefn/1q1+RkpLC4MGDmTJlCg888ADbtm2jS5cuuFwuTj31VD755BN+8IMfALGAHY1Gmw1utrucnBzuvvtuJkyYwNlnn81NN91EKBTid7/7HeXl5eTm5jJ69GhryjCAM888E7vdzkUXXURSUhKjR4/mhhtuaOu3QaRDycjI4IQTTuCEE07goosuIhwO88033/A///M/fPTRR1RWVhJdsZroitUY+TnYjuuN0aPrPmu1DYcd0lL2eT8jLQU6J678Zm095pYyopt3YG4tg9D3I57bbDYGDBjAiSeeyJAhQ+jTp4+aS4uIiIh0AIapkWIkQZYvXw7E+phLx6JmuM1FIhG+/PJL3n77bf73f/+XSLzpd7IHW0lPbCU9MVIO3/tkRiKYlbF+1OaOXZg7dsWatzeRkZHBySefzMknn8yJJ55IamrqYStfW9JnUzoifS6lI9LnUjqiY+Vz2ZqcoyoPETnm2O12TjrpJE466SQqKip4++23+fvf/x6r1f7iW6LLVmJ074KtbzFGt/wW9dVuCTMSgZp6zOo6zOpazKpazMoaqK7dY1Ayu91OSUkJQ4YMYejQofTp08caV0FEREREOiYFbBE5pmVnZ3PZZZdxySWX8Mknn/DWW2+xfPlyzA1biWzYCi4nRrcCbEX5GJ2zIT212SBguzNNMzb3dk09Zk0dVNdh1tRhVtdBXUNsjui9SEtLo1+/fvTv35+BAwdSUlLS6n7nIiIiItK+FLBFRIiNuj1ixAhGjBjBhg0bePfdd3n//feprKzEXLOJyJpNsQMdDkhPwUjyQHzE70gEAkFMXwAafBDd91RWycnJFBUVUVRURPfu3enevTs9e/YkNzd3v8FdRERERDo+BWwRkd0UFxdz7bXXctVVV/Hdd9/x2WefsXz5clavXk0oFILKGkxq9nm+3W4nPz+frl27UlhYSGFhIUVFRRQWFpKVlaUgLSIiInKUUsAWEdkHu93Occcdx3HHHQdAKBSirKyMbdu2UVtbi8/ns+Z8Tk9PJyMjg9zcXLKzszVFloiIiMgxSAFbRKSFnE6nVSMtIiIiIrI7DUkrIiIiIiIikgAK2CIiIiIiIiIJoIAtIiIiIiIikgAK2CIiIiIiIiIJoIAtIiIiIiIikgAK2CIiIiIiIiIJoIAtIiIiIiIikgAK2CIiIiIiIiIJoIAtIiIiIiIikgCO9i6AiIh0HKZp4vf7qauro76+nvr6erxeLz6fD7/fj9/vJxgMEgqFiEQiRKNRTNMEwG6343A4cLlceDwekpOTSUtLIz09nU6dOpGVlYXT6WznVygiIiLSdhSwRUSOcqZpUldXR2VlpbVUVVVRVVVFZWUl1dXVVFdXU1NTQ21tLaFQqM3KkpWVRX5+Pl26dKGwsJDOnTsTCoXo169fm91TRERE5HA5pgJ2v379mD59OhdccMFhve+cOXN4/fXX+eCDD9rkeBE59kSjURoaGqitraWmpobq6mqqqqqorq62AnRlZSUVFRVUVla2PjTbbOB2gsuF4XKC0wFOJ4bDDvbGxWaA0biYZmyJRCESwQyFIRSCQBDTHwCvH6JRK+B/++23zW735JNP0qtXL/r27Uvfvn0pKSmhoKAAwzAS+K6JiIiItK1jKmCLiLSnUCiE1+u1mlzHl3jT692X+P74OQ0NDTQ0NFhNt6PRaOsK4HKCxw1JHgyPG5LcsbXHjeGOr53gdoHDnrhwm5QEdhv4A5j1Xqitx6ytw6yuxaysxayqwe/388033/DNN99Yp2VkZNC/f39KSkooKSmhf//+JCUlJaZMIiIiIm1AAVtEpIXi/ZPjAbeuro7a2lqrv/Lu6/r6eisQNzQ0tGnT6xYJhmJLbT1m4yZzvyckiN2Orbgr9h8Pw5abBblZzXab0SjU1BEtr8Qsr8TcWYG5q4qamhqWLFnCkiVLALDZbHTr1o1+/frRr18/evfuTXFxMR6P53C8ChEREZEDOuYC9vr16xk7dixffPEFmZmZXHrppVx33XXW/g8//JA5c+awZs0aOnfuzDnnnMMNN9yAy+UCoLS0lEceeYRly5bh8/no3Lkzv/71r7nqqqusa7z22ms899xzlJWVceqpp1JYWNisDP369WPy5Mm88cYbrFy5kuLiYm677TbOPPPMZsc988wzzJ8/n+rqagYPHsy0adMoLi4GoLq6mtmzZ/PBBx9QVVXFgAEDGDduHMOGDQNizcy/+OILTj31VObPn09VVRWDBw9mypQp9OrVC4C6ujoeeugh3n33XUKhEMcddxx33XUXgwYNSvj7LtKeTNMkGAxaNcE1NTVWLfLe1k1rjL1erzXQ10HVGu+N3QbOxmbXDkdsbbeD044Rf+6ILYbTHqt5djoxnLEm29GvVmJu3XHo5ThcIhGiazdhRk0cI07Zc7/DjtEpA3unDOjbAwAzEsHcVYVZtguzrILozl1E671s2LCBDRs28I9//AOIhe4uXbpQXFxMUVERXbt2pUuXLuTn59OpUyfsdvvhfKUiIiJyjDvmAvb8+fO5//77mTZtGm+++SZ/+MMfOP744xk+fDgff/wxt912G+PHj+fUU09l06ZNTJs2jfXr1zN79mx8Ph9XXXUVp512Gq+++ip2u53/+q//YubMmQwfPpySkhLeeustpk6dyn333cepp57Ku+++y6OPPkpBQUGzcjz88MPceeedzJgxg4ULF3LTTTfxl7/8hSFDhgCwdetWli1bxjPPPEMwGOTuu+9mwoQJ/OUvfyESiXDVVVcRCoWYNWsWWVlZzJs3j6uvvpqXX36Z448/HoClS5fidrt55plnCIVC3H333UyZMoV58+ZhmibXXnstHo+Hp59+mtTUVN544w1Gjx7NX//6VwYMGHDY/2zk2GWaJt988w2VlZV73RcOhwmFQtYSDAYJBoMEAgFr2b159e7NsBMSjBMlEoVIAPyBPXbtXqN8WGqYmzj77LMZNWoUCxYsYPHixdYI4Ylgrt9MaP3mPbYb+Tk4fvGTZk3SDbsdo3MOdM75/vwGH+bOCqLlsRpus7ySqD/Ali1b2LJlyx7Xtdvt1ujlmZmZpKenc9JJJzFy5MiEvSYRERGRpo65gD1mzBjOO+88AG644Qaef/55VqxYwfDhw3nqqae46KKLuOSSSwDo1q0bU6ZM4YorrmDLli0kJydz+eWX8+tf/5qUlBQAbrnlFp577jlWrVpFSUkJL730Ej/72c/49a9/DcBvfvMb/v3vf/Pdd981K8cFF1xgHXPnnXfy+eefM3/+fCtgO51OHn74YVJTUwG45JJLePTRRwH45JNP+Oabb3jzzTfp27cvAFOmTGH58uXMnTuX2bNnAxAOh3nooYfIyMiwrjFr1iwAPvvsM/7973/z2WefkZmZCcDtt9/OsmXLmDdvHjNmzEjsGy+yH2+88QZPPvlkexdDgFGjRlFUVMSoUaNYtGhRexenGSMlCaNHIbYesVZBpmmC149ZWY1ZVYNZ09ive3s5mCaRSIRdu3axa9cu6xoffvghp59+utUqSURERCSRjrmAHW9iHZeenk4gEKtF+vbbb/n6669ZsGCBtT9ee7N27Vp+/OMfM2bMGN566y2+/fZbNm3aZAXneO1YaWkp55xzTrN7nHDCCXsE7HhT7qbHfPrpp9bz7OxsK1zHy+n3+617pKWlWeEawDAMTjrpJD755BNrW05OjhWuAdLS0qw+oN988w2maTJixIhm5YjXCoocTru38DjsGkfIxuWwmm4brlhzbFxODJcrts/tijXTdrtig4G5XLHHh7kZcvjDzzD3UhOcCAsWLLBqsA3DSGgNttGjaN9NxFs5oJrVb7ui+vuAXV0HtfWx0cz3wePxYLPZWlt0ERERkRY55gL23vrjxb9ARqNRrrnmGs4///w9jsnNzaW8vJyLL76YrKwsRo4cyemnn86gQYP48Y9/3OzY3ZuiOp3OPa7ncDR/6yORSLMvffvrN7ivL7ymaTa77v5qaKLRKKmpqSxcuHCPfarZkcNt2LBhvPPOO5imSTQaJRKJEIlECIfDzZZ4E/FAIGA1E483CW/aTDw+MnfTvtVNR+SOr63/l0Lh2OL9vkxN/y87YMR0NIZvtws8rtjUVo2jcRuNITwW1Bv7XbucGI741FeNfa3tLQ99jhGnELEZRDdshUikxee1xOLFi1m0aFFiw3WTQc4MZ+v/2TFNE+obiJZVxAZAK6/A3FUN4fBej3c4HOTl5ZGbm0tOTg6dOnWymogfd9xxe/z9KyIiIpIo+pbRRJ8+fVi/fj3du3e3ti1ZsoR58+bxwAMP8NZbb1FdXc0//vEPKzSvWrUK+D70lpSUsGzZMsaOHWtdY/ny5Xvca/ny5c36AX755Zccd9xxLSpnv379qKuro7S01KrFNk2TL774gt69e7foGn379qW+vp5QKNTsnIkTJ9K/f38uvfTSFl1HJJEMw8Butx+WganiI4I3HdQsPrCZz+ezpsRqOi1W/HF8lPCGhobY//vhMITDmA3fJ/RWR1ObDRx2K3Rbg505nbFQ6nTGgnk8rBd3xd67O2A0Bns3huPQa2ZNrw+zrgEjLQUjOUFTYiUlxebPbmkZQuHG0cR3xUJ12S7w+fc4zu1207NnT3r06EH37t3p1q0bhYWF5OTkaHAzERERaRcK2E1ce+213HbbbTzxxBOcc8457NixgwkTJlBYWEhubi75+fn4fD4WL17MiSeeyLp165g+fToQa1oNsT7X119/Pc899xw/+clP+Ne//sU//vEP8vLymt3rxRdfpGfPngwcOJC//vWvrFq1igcffLBF5Tz99NMpKSnhjjvuYNKkSWRnZzN//nxKS0u5//77W3SNH/7wh5SUlDBu3DgmTJhAQUEBL7/8MgsXLmTu3LmteNdEjkyGYZCUlERSUhLZ2dkHdY1IJNIsdDddGhoarHV8aRrk4zXqkXgNdDQKwWhsGi1aWYMe53TE5rhOToLk2NpI9kByUrNteNz7bJJtpKVC59yDej8OhhkMYVbWYFZUYe5qnKarsmaPZt52u51evXpRUlJCv3796Nu3L127dlWQFhERkQ5FAbuJs846i0cffZSnn36ap556iszMTEaOHMmdd95p7f/mm2+YMWMG9fX1dO3alQsvvJD333+f5cuXM3r0aM444wweeeQR5syZw+zZs/nBD37AVVddxVtvvdXsXpdccgkvvPACpaWl9O/fn7lz59K/f/8WldNut/P8888zc+ZMbrrpJoLBIAMHDuSFF17gBz/4QauuMWvWLG677TZ8Ph+9evXiiSeeYPjw4a1630SOVXa7nfT0dNLT0w/6GqFQaI+m7buPht502X0O7traWmpqagiHG5u5h+oxa+uB/QRzmxGrVU7yxEJ3kgeS3Bgedyyguxv7lrvdsSnCXM6D6ydtmrEy+QOYXj94fZj1DZi19daAZNR793pudnY2JSUllJSUMGDAAHr37o3b7W7V/UVEREQON8NM5Ag20iL9+vVj+vTpXHDBBe1dlISKN4XXPNodj9frZeXKlZSUlJCcnNzexZEEM00Tr9dLVVUVlZWVVFdXU1FRYT2vqKigsrKSyspKampqDu4mhhFrwu5wxNZ2G4bNFtv+fUEwI9FYv/BQOFYb34J/YtLS0ujTpw/9+vWjT58+9O/fn5ycnAOeJ9JW9HemdET6XEpHdKx8LluTc1SDLSJyhDMMg5SUFFJSUigsLNzvsaFQiKqqqmZhvOkSrxWP9zP3er2xgRvjtdGh7wcWa+mvsy6Xi06dOpGdnW11t+nSpQtFRUXk5OSwdevWo/4fZhERETk2KGCLiBxDnE4neXl5e4wLsS9NB4OLj9YeCASskd0jTUYxt9vtOJ1OnE4nHo/HCv1JSfseLM3r9bJ169ZDfl0iIiIiHYECdjuIjzwuItLRNR0MTkRERET279DndBERERERERERBWwRERERERGRRFDAFhEREREREUkABWwRERERERGRBFDAFhEREREREUkABWwRERERERGRBFDAFhEREREREUkABWwRERERERGRBFDAFhEREREREUkABWwRERERERGRBFDAFhEREREREUkABWwRERERERGRBHC0dwFERI4koVCIXbt2sXPnTioqKqiurqampoa6ujoaGhrw+XwEAgFCoRDhcJhoNAqAYRg4HA6cTidut5ukpCRSUlJITU0lPT2dzMxMOnXqRHZ2NtnZ2aSlpWEYRju/WhERERFpDQVsEZG9CAaDbNiwgXXr1rFhwwY2bdrEli1b2LlzpxWa25Lb7SYnJ4e8vDxyc3PJzc0lJyeH3NxcsrOz6dSpExkZGdjt9jYvi4iIiIi0jAJ2E/369WP69OlccMEFHfq6c+bM4fXXX+eDDz5IyPVEjnWRSIQNGzawatUqVq1aRWlpKRs2bCASiez9BLsdUpMxkpMwkpMgyQNuF4bLCU4nOOwYdjvYbGAYgAkmEI1iRiIQjkAoBMEQZiAI/gCm3w9eP6bXB/4AgUCArVu3snXr1n2W2zAMUlNTSUtLIyUlheTkZDweD263G5fLhcPhwOFwYLfbrbXdbsfpdFo16R6Ph6SkJJKTk5vVpicnJ6sGXURERKSVFLBF5Jhimibbt2+ntLSU0tJSK1AHAoE9D3a7MLI7YWRlxpaMNIyMdEyXE8PvP6j7tySymuEI+GJh22zwgdcXe+yNPcbnh0AQ0zSpq6ujrq7uoMqyP06nk6ysLKvJerwWPS8vz1oyMzMVwkVERESaUMAWkaOSaZpUV1ezefNmNm3axMaNG1m3bh3r1q2joaFhzxNcToycLIy8bGx5ORg5WbFa6iYB0gyFiXz0GdENW2BftdtHAsOIvbbsThCNQij8fW16IAChMKFQiLKyMsrKyvZ5GafTaTVdz8nJscJ4p06d6NSpE5mZmWRkZJCenq6m7CIiInJMUMDezfr16xk7dixffPEFmZmZXHrppVx33XXW/g8//JA5c+awZs0aOnfuzDnnnMMNN9yAy+UCYMeOHUyZMoXPPvuMtLQ07rrrrj3u8eabb/Lkk0+yZcsW+vfvz7nnnsuDDz7IqlWrAKirq+Ohhx7i3XffJRQKcdxxx3HXXXcxaNCgZtd55plnmD9/PtXV1QwePJhp06ZRXFwMQHV1NbNnz+aDDz6gqqqKAQMGMG7cOIYNG9bicoh0RKZp4vf7qauro6amhurqaqqqqqioqGDnzp2Ul5ezc+dOysrK8Pl8e7+IYUB2ZixQ52Zhy82GjPQ9a2PDEcymTz/8H8z1m9vstR02pgl1DZCTheMnP9xzdzgMfj+m1x+rPW/wxmrSG7yY9V5oaACvn1AoxLZt29i2bdsBbxkf0C3enD0tLY3k5GTcbjeBQIANGzaQlZVFSkrKHktSUpJqykVEROSIoIC9m/nz53P//fczbdo03nzzTf7whz9w/PHHM3z4cD7++GNuu+02xo8fz6mnnsqmTZuYNm0a69evZ/bs2YTDYa655hpSU1OZP38+wWCQKVOmNLv+hx9+yD333MMdd9zByJEj+eyzz5g+fbq13zRNrr32WjweD08//TSpqam88cYbjB49mr/+9a8MGDAAgK1bt7Js2TKeeeYZgsEgd999NxMmTOAvf/kLkUiEq666ilAoxKxZs8jKymLevHlcffXVvPzyyxx//PEHLIdIom3fvp2///3vzUKvaZp7PTYUCuH3+63F6/Xi9XppaGigoaGBUCh0aIUxTdhVhbmrCvO7tbT9kGX7dvbZZzNq1CgWLFjA4sWL9/metAVz/WZC6187LPeK/9ntr0Z8X2w2G8nJydaSlJREUlISHo/HWmy272ed3D2M9+3blzPPPBOHQ//kiYiISNvSt43djBkzhvPOOw+AG264geeff54VK1YwfPhwnnrqKS666CIuueQSALp168aUKVO44oor2LJlC+vXr2f16tW8++67dOvWDYDp06db1wOYO3cuZ511FldffTUAPXr0YMOGDbzwwgsAfPbZZ/z73//ms88+IzMzE4Dbb7+dZcuWMW/ePGbMmAHEmmY+/PDDpKamAnDJJZfw6KOPAvDJJ5/wzTff8Oabb9K3b18ApkyZwvLly5k7dy6zZ88+YDlEEm38+PEtquk8KPEBxQ41eLeDUaNGUVRUxKhRo1i0aFF7F6d9uJzgdsdqxqN7/sAQjUapr6+nvr7+oG9hGAY//elPD6WUIiIiIgekgL2beBPruPT0dGvwo2+//Zavv/6aBQsWWPvjtU1r165lzZo1ZGRkWOEaoKSkBI/HYz3/5ptv9viSN3ToUCvYfvPNN5imyYgRI5odEwwGmw3ClJ2dbYXreDn9jYMulZaWkpaWZoVriH25POmkk/jkk09aVA6RRPvxj3/MK6+80jYXj0S+7xPtcUNqCkZqMqSnxQYmy0zDyMiIjfJ9CNqiifiCBQusGmzDMA5rDbbRowjHiFMTci3TNCEYAp8P0xfA9MVGQzd9gVi/bn8g1sc7GIJAEIKNjyG2DrbdjyOdOnWiT58+bXZ9ERERkTgF7N3sbSCe+BfeaDTKNddcw/nnn7/HMbm5uaxdu3av8+M2bZbocDj2O4duNBolNTWVhQsX7rEv3s97X+Xcvbx72x4vy4HKIZJoV155JVdeeeU+90ciEeuHpGAwuEcTcZ/PZ9Vi1tfXU1tbS01NDTU1NVYf7FAoBP7GMLerEqBZH2rSUjGyO2HL6YSRm4WRm42R5NlrefbGMeJUIrbEDnK2ePFiFi1adHjDtd2OrbgQ+49PwXC27J8BMxSG+gbMei9mfQNmfQPEHzd4ocEbm37soIpjJzU11Vr21g873he7aTPx+BRjbrfbmprM6XSqv7aIiIi0GwXsVujTpw/r16+ne/fu1rYlS5Ywb948HnjgAUpKSqirq2P16tVWbcmGDRuaNWvs378/X331VbPrfvnll9bjvn37Ul9fTygUonfv3tb2iRMn0r9/fy699NIDlrNfv37U1dVRWlpq1WKbpskXX3xhXfNA5RA53Ox2u9W39mDEp6yKD3C2fft2tm3bxubNm9m8eTOVlZVQV49ZV09kQ5Na6NQUbHnZGHk5GHnZsYHP9hE6DacDx09Ob5xGax8DqLW23F4fZl0DRlpKbE7tBDNNM9bnPNq4mFFwuWLTc9c3EA2HrRpkMxgEf7D5nNxeL2a9L1bj3ALJyclkZ2eTmZlpLenp6aSnp5OWlkZaWlqzwc7sdjtr166lpKSE5OTkhL9+ERERkcNJAbsVrr32Wm677TaeeOIJzjnnHHbs2MGECRMoLCwkNzeX7OxsBg8ezN13383999+P3W5n2rRpzQbfufbaa7nuuus4/vjjGTFiBF988QXz58+39v/whz+kpKSEcePGMWHCBAoKCnj55ZdZuHAhc+fObVE5Tz/9dEpKSrjjjjuYNGkS2dnZzJ8/n9LSUu6///4WlUPkSGMYhhXkmv44FVdbW8v69etZs2YNa9asobS0lC1btmDWNxCtb4B1m+IXwuiUEavhzsn6fh5s9/ctSAyHHdJS97jHQZU7LRU65+73GNM0Y/NiN9YUmw0+TJ8/Nh+21fQ6GKtlDoUhHIZIFKKRvfZpPljJycnk5eXRuXNna17s+JKTk0NWVlarfyDxer0JK5+IiIhIe1PAboWzzjqLRx99lKeffpqnnnqKzMxMRo4cyZ133gnERrp9+umn+d3vfsdVV12Fx+PhuuuuY+vWrdY1fvSjHzF16lSefvppHnnkEQYOHMjo0aOtcGu323n++eeZNWsWt912Gz6fj169evHEE08wfPjwFpUzfo2ZM2dy0003EQwGGThwIC+88AI/+MEPWlQOkaNNeno6gwcPZvDgwda2hoYGVq9ezXfffcd3333HqlWrqKiowKysxqyshlXrvr9AchJGZnqsT3daamwe6ZTkWK2zxx2bR7vJj2ktYfVb9geswNx8SqzG5tf13th81Qlis9lwOp24XC5rFO540+z09HQyMjLIzMwkOzubrKwscnJyyM3NJSUlJWFlEBERETkaGebhHFFH+Pzzz8nJyaFnz57WtqeeeooFCxbw3nvvHdHlWL58OcAe83VL+/N6vaxcuVLNcFtg165dlJaWsnr1atasWcP69evZuXNny052OcHpALsDw2GLjWyOAQaNzbSjmJForIY5FG7VwF6GYVhhNysri6ysLDIzM8nIyLCaWycnJ+PxeKz+yA6HA4fDgd1u32PdUeizKR2RPpfSEelzKR3RsfK5bE3OUQ32YfbJJ5/w5ptvMn36dLp168bKlSt58cUXGTNmzDFZDpGOJicnh5ycHE499fvRtRsaGti0aRNbtmxh27ZtlJWVUV5ezq5du6iurqahoSF2YJPRsFvzy6Xb7aZTp0506tTJCtHxWuO8vDyrC4rmcRYRERHp2PRt7TC76aab8Hq93H333VRWVlJQUMDYsWO55pprjslyiBwJUlJSKCkpoaSkZK/7Q6EQ9fX1NDQ04PV6CYVCBINBwuEwpmlimiY2mw2Hw4HT6cTtduPxeEhJSSE1NbXZDAEiIiIicuRSwD7MXC4XEydOZOLEiSqHyFHC6XRaNdAiIiIicuxq3Yg8IiIiIiIiIrJXB12DvXnzZoLBIL169aKuro7HHnuMrVu3ctZZZ3HeeeclsIgiIiIiIiIiHd9B1WB/9NFHnH322SxYsACAyZMn8+qrr1JWVsb48eP5r//6r4QWUkRERERERKSjO6iA/ac//YnTTz+dG2+8kdraWt59911+85vf8Prrr/Ob3/yGefPmJbqcIiIiIiIiIh3aQQXs7777jiuuuILU1FQ+/vhjIpEI//mf/wnAaaedxsaNGxNaSBEREREREZGO7qACttvtJhwOA7H5lLOzs+nfvz8Au3btIj09PXElFBERERERETkCHNQgZ0OGDOH555+ntraWf/zjH5x//vkArFixgieeeIIhQ4YktJAiIiIiIiIiHd1B1WDfd9997NixgzvuuIOuXbty/fXXA3DdddcRCAS48847E1pIERERERERkY7uoGqwi4qKePvtt6moqCAnJ8fa/sc//pEBAwbgcrkSVkARERERERGRI8FB1WADGIZBcnKy9fwf//gHX375Jdu3b09IwURERERERESOJAcVsNetW8d//Md/8MwzzwDw2GOPcdtttzFz5kx+8Ytf8MUXXyS0kCIiIiIiIiId3UE1EX/44YdxOByceeaZBINBXn75Zc4++2ymTp3Kvffey2OPPcZLL72U6LKKiLQJ0zSpqqqirKyMnTt3UlFRQVVVFdXV1dTV1dHQ0IDP58Pv9xMMBgmFQoTDYaLRKNFoFIi16jEMA7vdjsPhwOVy4fF4SE5OJiUlhYyMDDp16kRubi75+fl07dqV/Px87HZ7O796EREREUmUgwrYS5cu5fe//z2DBg3ik08+oa6ujosvvpjU1FQuueQSbr755kSXU0TkkJmmSXl5OWvXrmX9+vVs3LiRzZs3s2XLFvx+/2Evj9PppFu3bvTu3Zu+fftSUlJCjx49FLpFREREjlAHFbBDoZA11/XHH39MUlISJ554IgCRSASH46AuKyKSMKZpUlZWRmlpKatXr6a0tJQ1a9ZQV1e39xMMA1KSMVJTMJKTITkJw+MGjxtcLgynE5wOsNvBbgObDcMwYudhACaYJqZpQiQKkQiEwxAMYQYC4A9gen2Y9Q1QV49ZU0soFGLt2rWsXbuWf/zjHwAkJSUxYMAAjj/+eI4//nj69u2L0+k8bO+biIjI/2fvzuPjLOv9/7/u2fdJJlvTNl0odIO2FIFSQJCWA7SIQomKtGipioKALIpghQNFZAcBKcqibB6PUlkOantAPOAXfojKWqF0TbM1+zqZmcx6//6YZmhIl7SdNl3ez8fjfkwyc9/3XPcwDfOe67o+l4jsul1KwuPHj+ell15i7NixrFixghNPPBGbzUYymeQ3v/kN48ePz3c796oJEyZw6623Mm/evLyc44EHHuC5557jr3/9ax5buW2mafL8889z0kknUVRUtFeeU2QoZTIZmpqaWLduHevWrcsF6u7u7oE7GwZGYRAjVIgRKsAoKMAoCIDfh5GHnmNjkPuZppkN2u0dZFraMFtaMZtaicVivP3227laFk6nk0mTJjF16lQOP/xwJk6ciNvt3u12ioiIiEj+7VLAvvzyy/nud7/Lb37zGxwOB9/61rcAOP3002ltbeUXv/hFXhu5v1u0aBHz58/fa8/3z3/+k2uvvZZXXnllrz2nyN5gmiZtbW3U1tZSU1PDxo0b2bhxI1VVVUSj0YEHWCzZEF1chFFSlL0NFWBYrZipNMRin+wbjWHuvUvJ8niwBPxYxowCwMxkMDs6MRuayDQ0YTY0Ee+N89577/Hee+9tviQLY8aMYeLEiRx66KGMGzeO0aNH91vVQURERESGxi4F7BNOOIEXX3yRlStXMm3aNEaMGAHA17/+dY477jgmTJiQ10bu77xeL16vd689n2nu9ZggkjeJRIKWlhYaGxtpamqioaGBhoYGNm3aRH19PbEtQ/GWtgzTxaHsbVHhgF5pM5Ui9Ze/kamuzQ7jHkpWK5bRFVg/dzyGzYZhsWAUhaAohPWISZimidnRhdmYDduZxmYykSgbNmxgw4YN/U5VUlLCiBEjKC8vp6ysjJKSEoqKiigoKCAYDBIIBDTUXERERGQP2+XJ0hUVFVRUVPS77+tf/zoAPT09+Hy+3WvZEKuqqmLhwoW8/fbbFBQUsGDBAr797W/nHv+///s/HnjgAdatW0dZWRlnnnkml1xyCQ6HY8C5Pj1EvLW1lTvuuIPXXnuNVCrF0UcfzY9+9CNGjx4NwKuvvsrSpUtZu3YtXq+XM888kyuvvBKXywVkh5/fcMMNvPDCC6xatYoxY8ZwxRVXMHv2bN566y2+9rWvATB79uzcMPV33nmHu+++m5UrVxIKhTjllFO4+uqrc/+dZs2axemnn85rr71GW1sbDzzwAMcee+wefY3l4GCaJolEgp6eHnp6euju7qarq4vOzk46Ojpob2+npaWFtrY22tra6Ozs3PFJ/T4oCGSHd4eCGIUFGMEghuVTA7QzGczNVb77pF59A7OqJn8XuDvSaTIbNmKaGWyfO2Gruxh+L4b/EDjsEKyAGYlitrRlh5W3t0N7F/T20tLSQktLS66ne2tcLhc+ny9X2dzj8fTb3G43wWAQn8+Hz+fLfTnYt7/X61UBNhEREZHt2KWAnUgkeOKJJ/jHP/5BIpHI9Ziapkk0GmXdunW8//77eW3o3vb000/zn//5n9x88828+OKL3HPPPUydOpWZM2fyt7/9jSuuuILrrruO448/npqaGm6++Waqqqq47777tnveVCrFokWLsNlsLF26lIKCAm677Ta++c1vsmLFCv76179y+eWXc9lll3H77bezYcMGbrzxRmpra1m6dGnuPHfddRff//73ue2223j22We59NJL+c1vfsP06dN54IEHuOyyy3jmmWcYP348H3/8MRdeeCEXX3wxt9xySy7gL1q0iN/97nfZQk2br/mXv/wlfr9foxAOAIlEgueff56XXnqJTCZDIpHA4XDklpPalk+PgOjbd8v7P338p49Jp9MkEgl6e3vp7e0llUrt7uX0F+7Jzl+u3bT3h3UDc+bMobKykmXLlrFixYrdHjViVtWQ3Auhv++/x+5wOp243W5cLtdWe8S3997amkwmQzwex+l0YrFYtvs+A/r9/+bTjxuGgdvt5hvf+AZHHnnkTrVDREREJB92KWDfcccdPP3004wfP5729nacTiehUIg1a9aQTCa59NJL893Ove7888/n7LPPBuCSSy7hV7/6Ff/+97+ZOXMmv/jFL/jyl7/MeeedB8CoUaO46aab+PrXv05dXR0jR47c5nnffPNNVq9ezYoVKxg7diwAP/nJT3j88cfp6uri4Ycf5j/+4z+45JJLABg7diymafLd736XdevWceihhwIwb9683Lzu73//+/zjH//g6aef5p577iEYDAIQCoVwuVw89thjnHDCCXznO98BYMyYMdx9992ceuqp/OMf/2DGjBkAnHzyyRx//PF5fiVlqLz++us8+uijQ92M7bNawWKBZHKoW7JTKisrqaiooLKykuXLlw91c/aqeDxOPB4f6mZs149+9COee+45nE7nUDdFREREDjK7FLBfeuklLrzwQn74wx/yi1/8glWrVnHffffR1NTEggULyHxqSOb+aMyYMf1+DwQCuQ+VH330ER988AHLli3LPd7Xq7J+/frtBuw1a9YQDAZz4RqgrKyMH/7wh7nHzzzzzH7H9A3VXrNmTS5g94XiPtOnT+eNN97Y6nN+9NFHVFdXM3369AGPrV+/PneuviHqcmA48sgjmTFjBm+99dZQN2Xb0un+86BtNvB5s8tl+b0YXi9GwA9+L4bfj+HY/TnE+RgivmzZslwPtmEYu92DbYwdtc0h4oNlZkyIRjHDPdmlwCJRzFgvZqwXeuMQ37wlkkM/93wPW7BggcK1iIiIDIldCtjt7e2cdNJJQHbJrt///vdANihedNFF/PrXv97ve7G3Ns+w70N0JpPhm9/8Juecc86AfUpKSrZ73h2tEb61D+p9X1hseeynz5NOp7FYLFs9ZyaT4ayzzsr1YG8pFArlfu6b4y0HhlAoxM033wxANBpl1apVTJo0aY9UmzZNk3Q6TSqVIplMkkgkiMfj9Pb2EovFiEQiRCIRwuEw4XCYrq4uurq6aG9vp6Ojg7a2NiKRSHbd6M4u6OzChIHDv10ujILA5q0gt9wWHveghybbTjmRtPH/7VaRsxUrVrB8+fLdD9efKnI2WGasF7O1DbO1HbOtI1t5vLs7u/72TnA6nf3mWG8513rLOdhbztf2er25IeIulwun05mberAr9vR7U0RERGRv2qWA7ff7SSQSQLbXs6GhIVfYbMyYMTQ0NOS1kfuaww47jKqqqn49vm+99RZPPvkkN95443Y/JB566KF0dXVRXV2dO769vZ05c+bwy1/+kgkTJvDOO++wcOHC3DH/+te/ABg3blzuvpUrVzJr1qzc7++++y6HH344MHDe4mGHHca6dev6tXf9+vXceeedXHXVVfj9/l14FUQ+YRgGNpsNm822y1/UxGKxXKGupqYmmpqacpXE6+vr6erKFvMyG3sxG5v7H+x0YBSFsltxCEtxCIIBjK186WTYbNhOPWngMl07wYxGMcORbC/77oRCtxvDtv2iYaZpQmcXmYZmzMZmMk3N2TnoW2Gz2SgrK8tVEQ+FQhQWFhIMBgkGg/j9/n7BWQXLRERERPJrlwL20UcfzVNPPcWxxx7L6NGjcbvd/OUvf+Hss8/m3Xff3e8riO/It771La644gp+/vOfc+aZZ9LY2MjixYsZOXLkDnuwZ86cyRFHHMEPf/hDfvSjH+F2u7njjjsIhUIcfvjhfPOb3+R73/seS5cuZc6cOWzcuJGbb76ZU045pV/AfuKJJzjkkEM44ogj+P3vf8/q1au55ZZbAHIB/+OPP6awsDC3DvdNN93EggUL6O7u5qabbqK3t3fAUHiRoeJ2uxk1ahSjRo3a6uORSIT6+nrq6uqora2lurqa6upq6uvrycQTmJsaMTc1ApAGsNs2L9lVhFESwlJcDEF/7gsow2bNViPfBYbfB2W7dOgOmaaJ2d6J2dCYWwub3oFznkeOHMlhhx2WWwd71KhRlJaWKjSLiIiIDKFdCtiXXnop8+fP56KLLuKpp57i/PPP5/rrr+fJJ59k9erVfPWrX813O/cpZ5xxBvfeey+//OUv+cUvfkFBQQGzZs3i+9///g6PtVgsLF26lFtvvZULL7wQwzA47rjjePTRR7Hb7Zx++uncc889PPTQQyxdupRQKMTnP/95Lr/88n7nOe+883j88cdZs2YNEydO5LHHHmPixIlAdtj+ySefzBVXXMFVV13FokWLePTRR7nvvvs455xz8Hg8zJw5kx/+8IdbXVZMZF/k9XoZP34848eP73d/IpGgurqaDRs2sG7dOtauXcv69euJx+OYfQGVvtBtz66NXVSY7e0u3DzMfAj/HZjxOGZLW3bpraZmzKYWiCf67eN0Opk4cSJTpkxh8uTJTJgwQSNPRERERPZBhrmLEwhbWlpYs2YNJ5xwAqZp8stf/pJ33nmHqVOnctFFFym47UETJkzIrW+9L1m5ciUAU6ZMGeKWyKcdbPNc0+k0NTU1rF27NretW7cuN7VlALcLIxjI9kz7vBheD4bbDW4nhtMJDgfY7dle8Z2Ya2ym09miYvEEZm8vRGOYkQhmdw9mVzdmRydEogOOc7lcTJ48mWnTpjF16lTGjx+/1SWxDgQH23tT9g96X8q+SO9L2RcdLO/Lnck5u9SDDdliXn3DoQ3D2GoBLRGRoWC1Whk7dixjx47ltNNOAz4J3evWrWPDhg1s2LCBmpoa2traYHO17QFzu7fGYtm8vJiR/RkAg1xJtkwmu6XSMMjvL8vLyxk/fjyTJk3i8MMPZ9y4cTssiCgiIiIi+55Bf4L7+c9/PuiTGobBd7/73V1qkIjInrBl6N5S39zuTZs25YqrtbW10dnZSWdnJz09PUQikU+WH+wL0DvB4/EQCAQoLCyktLSUsrIyRowYwahRoxgzZgxerzdflykiIiIiQ0gBez+0evXqoW6CyAFjW3O7t2SaZm7ZsUQiQTKZzC1L1jfLxjAMDMPAarVis9lwOp04nU7cbrcKj4mIiIgcJAYdsD/++OPcz7FYDLfb3e/xjz76iMmTJ+evZSIi+wjDMHLrPouIiIiIbMvARWK3Y/Xq1Zx77rk8/vjj/e7v7u6msrKSL37xi1RVVeWzfSIiIiIiIiL7hUEH7Lq6Or72ta/R2to6YA6j3W7nmmuuobOzk/PPP5+mpqa8N1RERERERERkXzbogP3www9TUFDAc889xxlnnNHvMbfbzcKFC1m2bBlOp5Nf/vKXeW+oiIiIiIiIyL5s0AH7zTff5Jvf/CahUGib+5SUlLBo0SLeeOONvDROREREREREZH8x6IDd3NzMmDFjdrjf+PHjaWxs3J02iYiIiIiIiOx3Bh2wQ6EQzc3NO9yvo6ODYDC4W40SERERERER2d8MOmAfc8wxPPvsszvc7/nnn9dyXSIiIiIiInLQGXTAvuCCC3jrrbe47bbbiMfjAx5PJBLccccd/O1vf2P+/Pl5baSIiIiIiIjIvs422B2nTJnCddddx09/+lNeeOEFZs6cyciRI0mn02zatIm33nqLjo4Ovve97/HZz352T7ZZREREREREZJ8z6IANMH/+fCZOnMhjjz3GK6+8kuvJ9nq9nHjiiSxatIhp06btkYaKiIiIiIiI7Mt2KmADfOYzn+Ezn/kMAO3t7dhsNgKBQN4bJiKyv0ulUnR0dNDR0UFXVxc9PT1EIhFisRjxeJx0Oo1pmlgsFmw2Gy6XC7fbjc/nIxgMEggEKCwsxO/3Y7EMekaPiIiIiAyRnQ7YW9remtgiIgeDSCRCdXU1tbW11NfX09DQQGNjIy0tLXR0dGCa5m4/h9VqpaCggMLCQgoKCigoKMgFcJ/Ph8/nw+Px4Ha7c7culyu3Wa3WPFypiIiIiOzIbgVsGXoTJkzg1ltvZd68eVx77bXU19fz1FNPbXXfuro6Zs+ezZNPPsmMGTP2cktF9n+9vb2sXr2aVatWsWbNGtauXUtTU9P2DzIMcLsx3E5wOsHhwLDbwWoFiwUMwDQhnYFUCjORhEQCs7cXenshniCdTtPW1kZbW9sutdvpdObCt9frxefzEQgECAaDBINBCgsLKSwsJBQKUVRURCgUwmbT/x5EREREdpY+Qe3nXn/9dfx+/6D2LS8v5/XXX9c65SKDFI/H+fDDD3n33Xf54IMPWLNmDel0euCOHg9GYRAjGMAIBDD8PvB5MbxecLswDGOX22Cm0xDrxYzF+t/29kJvHDORgHgCkknMZBKSSUimIJXKBvfN1xGPx+ns7BzUcxqGQWFhIcXFxRQVFVFUVERxcTGhUIhQKJQL5AUFBQriIiIiIlvQJ6P9XElJyaD3tVqtO7W/yMEmnU6zZs0a3nvvPd59910+/PBDkslk/528HixlpRglxRglRRihEIbLuc1zmqlUNhTvJsPlBJcTo3BwX5CZJpBOZ4N2MoWZSm0O30nMeBISccxMBiOeyLYvGsOMxiAaxTRN2tvbaW9v3+Hz+P3+AT3gRUVFlJSUUFZWRllZGcFgcLe+ZBARERHZXyhg7+e2HCIO2aJKN998M8899xx2u50zzzyTH/7whzidzgFDxDdu3MjNN9/Me++9RyaT4aijjuKaa65hwoQJQ3xVIntHJBJhzZo1rFq1in//+9989NFHRKPR/jt5PViGl2OMKMdSXoYxyBEjZipF+tXXyVTXZoPuvshqxRhdgW32yRibe6JN04RYDDMShUgUMxrN/hyNYUY3327uRcc0CYfDhMNhampqtvk0breb4cOHM2LECEaMGMHIkSNzm+aHi4iIyIFEAfsA884771BWVsbvfvc76urq+PGPf4zFYuHHP/7xgH2vuuoqJk6cyB/+8AdSqRS33347l156KS+//PIQtFxkz4jFYrS3t9Pa2kpjYyP19fXU1NSwceNGNm3aNPAAhx2GlWEZPgzL8GEQCPTrfTU/3aO9DalXX8esqs7XZewZ6TSZDRsxTRPb50785H67HaMgCAVBttXvbJom9PV+x2KYvfFs73c0lg3mkSj0RCAWIxaLsX79etavXz/gPH1zwQ855BBGjBhBaWkpJSUlFBcX5yqoK4SLiIjI/kIB+wBTUlLC7bffjtPp5LDDDuN73/seS5Ys4eqrrx6wb01NDccffzwjRozAbrfz05/+lA0bNpDJZLQkkOzTent7efzxx3n22Wd3/2Q+b3bOcjye/T2RhJo6MjV1ZHb/7Ltszpw5VFZWsmzZMlasWJGXauTbYlZVk9xbXwa43RAMQHcYolG6u7vp7u6mtrZ2p09VXFzM1VdfnVs6UkRERGSoKUUdYI444giczk/mg06dOpVkMsnGjRsH7HvllVfy61//mhkzZvCd73yHl156iYkTJypcyz7vgw8+2L1w7fdhmXYE9i+djf2rldne2n1MZWUlFRUVVFZW7tFwvbcZAT/2s87AseDL2Bd8GevJJ2A5ZAw4HDt9rtbWVp588sn8N1JERERkF6kH+wDz6aGUmUy2D86xlQ+v8+fP54wzzuC1117jzTff5P777+ehhx7i+eefp7i4eK+0V2RXTJ06lXPPPZc//OEPu3aCcA+Z9/9N5v1/Z6t9lxRjOfYzGMNKMQoLMPLwJdPuDhFftmxZrgfbMIw9GrKNsaP7DxHPIzOVhp4ezK4wZrgbs7uH1B9XYHZ1Q3T3ir+Vlpby9a9/PU8tFREREdl9CtgHmFWrVvUb4v3222/jcrmoqKigubk5t19bWxsPPvggF110EfPmzWPevHk0NTVx0kkn8Y9//IO5c+cO1SWI7JDL5eLb3/423/72t3e4b29vLx0dHbS0tOTmYNfW1lJVVUV9fT30RDB7Ip+EYYcDo7wMy4jhWEaWwy5WwLad8lnShrHLRc5WrFjB8uXL92y4tlqxjK7A+rkTc0XOBsvMZCAex4z1flL4rK8QWiSafU17enYYogOBAAUFBYwdO5aKigpKSkooKSnJrcft9/s1qkZERET2GwrYB5iGhgZ+9KMf8Y1vfIMNGzbwwAMP8M1vfnNAD3YwGOTVV1+lpqaGq6++Gp/Px7PPPovdbueII44YotaL5J/L5aK8vJzy8nKmTp3a77FoNNqviviHH35INBrFrK4lXV1LGj6pIj58GJbyYeD3DSpwGzYbtlM/l10eaxeW6TKjUcxwBMPvxfB4dvr4QXG7BwRrM5OB3t5Pqoj3FSyLZiuKE9u8nFdvPLfO9o54PJ5tVhG3WCysWrWKSZMm4dlT1ykiIiKylyhgH2Bmz56N1Wrly1/+Mm63m69+9atccsklA/az2Ww88sgj3H777SxcuJBYLMakSZN4+OGHGTVq1BC0XGTv83g8HHnkkRx55JFAdh3stWvX8u677/Lee+/x73//m2QkSmbteli7Phu4PR6MshIspSUYxUUYRdtfB9uw2WCQS3v1O87vh7Jduy7YXOU7nd689nUqW/08kYBEEjMe39z7HM+G6S17n6OxQQdnwzByPdChUIiCggKKi4spLi6mpKSE0tJSysrKCHyqEvuWBiyLJiIiIrIfM8wDqXqODKmVK1cCMGXKlCFuiXxaNBpVL+EuiMfjfPjhh7z//vu8//77rF69mvTWhnu73dm528EARsCP4fdle7q9HnC5dmtOt5lOQ6z3k+Wwor3Qu3lZrN44ZiIB8QQkEtkQvTlQk0rt8nNaLBYKCwspLi6mqKiI4uJiQqEQRUVFFBYWEgqFKCwspKCgYLeX0NJ7U/ZFel/KvkjvS9kXHSzvy53JOerBFhHZBqfTyVFHHcVRRx0FZOdzr169mo8//pg1a9awdu1aGhsbs8E3FsPc1DDwJIaRDdluFzid4LBj2O1gs0Ff8O7rbU6lMJMpSMQ3B+jebHjeTS6XC4/Hg9vtxufz4fV68fv9BINBCgoKKCwszAXnvvWntfa0iIiIyM5TwBYRGSSXy8W0adOYNm1a7r5IJEJNTQ21tbXU19fT0NBAU1MTzc3NtLe3Z4dqbw7gfXZ22JDVas0F4YKCgtzm9/vx+/14vV68Xm8uRLvdblwuF263G6fTqSJhIiIiInuJAraIyG7wer1MmjSJSZMmDXgsnU7T0dFBR0cHXV1dhMNhIpEIsViMRCJBOp3OVf232+25UOzz+XJzmwsKCvD5fArJIiIiIvsBBWwRkT3EarXmin6JiIiIyIFPXSIiIiIiIiIieaCALSIiIiIiIpIHCtgiIiIiIiIieaCALSIiIiIiIpIHCtgiIiIiIiIieaCALSIiIiIiIpIHCtgiIiIiIiIieaCALSIiIiIiIpIHCtgiIiIiIiIieaCALSIiIiIiIpIHtqFugIiIHJgymQzRaJR4PE4ymQTAbrfjcrnweDwYhjHELRQRERHJLwVsERHZJbFYjE2bNlFfX09jYyMNDQ00NzfT2tpKe3s74XCYTCaz1WNtNhsFBQWUlJTg8XiYMmUKkyZNYvz48Xi93r18JSIiIiL5oYAtIiJblUqlaG9vp7m5maamJhobG2lsbMyF6vb29sGdyDDAsnlGUiYDpkkqlaK1tZXW1lYA3n777c27GowZM4apU6cyffp0pk2bpsAtIiIi+w0FbBGRA0AmkyEWixGNRonFYvT29hKPx3PDsxOJBMlkMrclEgni8Ti9vb309vYSjUbp6emhp6eH7u5uOjo66O7u3vETO50YwQBGIAB+P4bfh+H1gseD4XZlH7dac7ubpgnpNPTGMaNRzHAYOrvItLdjtrZihnuoqqqiqqqKF154AavVyuTJk5kxYwbHHnsso0eP1tByERER2Wcd0AF7woQJ3HrrrcybN2+H+9bV1TF79myefPJJZsyYwbXXXkt9fT1PPfXUXmjp4OzM9WxNR0cHf/nLX/jSl76U55aJyJ6STCZpaWmhqamJlpYW2traaG1tpaOjg46ODrq6uuju7qanp2ebw7F3i8UCXg+Gb3N4DvghkA3URjCA4XTu1OkMwwCbDXw2DJ8XSksA6IvgZjSK2dhEZlMDmfp60l3drFy5kpUrV/Loo49SVlbGcccdxzHHHMO0adNw7uTzi4iIiOxJB3TAfv311/H7/bt07OLFi0mn03lu0dC64447qKurU8AW2YeYpklXVxcNDQ1s2rSJhoaG3NbY2EhbW1u213ewDAPsdrBZwWrLBmSrFayWT362WLK9ylZbdj+bDcNuzx7nsGdDs8uJ4drcA72tHuNEAjOR2P0Xwe3GsGX/d2R4PBiHjMVyyFgAzO5uMrV1ZGpqMTc10NTUxAsvvMALL7yAw+Fg6tSpHHXUURx55JGMHTsW6xa95SIiIiJ72wEdsEtKSnb52F0N5vuynfqQLiJ5YZomPT09uV7o5ubm3FzmvhAdjUa3fxKrFXw+DJ/3k+HXXg+G2w1uFzhdGE4HOJ2Ypknmtf9HproG0rFtt2sHv+9VViuW0aOwfu6kXNDuYwQCWA+fjPXwyZjJJGb9JjI1tWRq60hEIvzrX//iX//6FwBer5fJkyczceJEDjvsMA499FCKioo0pFxERET2mgM6YG85pPraa68FoLCwkOeff55oNMpxxx3HkiVLKCsrG3DslkPE33rrLS688EIeeugh7rzzTjZu3MjIkSP5/ve/z6mnngpkP0Q/+uij/Pd//zetra2MGTOGb3zjG3zhC18YdHs3btzIzTffzHvvvUcmk+Goo47immuuYcKECQP2bWlp4YILLqC8vJyHHnoIl8vFM888w5NPPkl1dTUWi4XJkydz3XXXMWXKFK699lqee+653OuyevXqvLRZJJ9M0ySTyZBKpUin07ktk8nkHjNNs9+XRYZhYBgGFosld2uxWLBarbnbvm1329Y3d7lvznI0GiUSidDT00M4HKa7u5vOzs7c8O329nZaWlqIx+M7fgKPB/y+7NBrnw8Cm4dk+/zZ3uTBhETTJP3q3zCrNu7Wte516TSZDVUA2E6dtc3dDLsdY8xoLGNGZ98HHZ2YdXVk6jdhNjYRiUT45z//yT//+c/cMT6fj4qKCkaMGEFZWRmjRo3is5/9LDbbAf2/PxERERkiB9UnjD/+8Y+cddZZPP3007S1tXHVVVfxs5/9jFtvvXWHx6bTae68804WL15MeXk599xzDz/84Q/529/+htfr5d577+WPf/wjN9xwA4cccgj//Oc/ufHGGwmHw8yfP39Q7bvqqquYOHEif/jDH0ilUtx+++1ceumlvPzyy/32a29vZ+HChYwYMYKlS5fidDp5+eWXWbJkCT/5yU84+uijaWlp4eabb+bHP/4xL7zwAosXL6a3t5fGxkYeeOABgLy0WaTPihUruOeee4a6Gfsulys759jnw9hcDAy/j8y/3sVsa4NoFKJRzKbmoe1NHoQ5c+ZQWVnJsmXLWLFiRd5Gx2SqazBTqQG92FtjGAZGqBBChVinTsHMZDDb2jGbm7OvYVsbZmcXPT09rFq1ilWrVuWOTSQSnH766Xlps4iIiMiWDqqA7ff7WbJkCXa7nXHjxjF37lxee+21QR9/xRVXMHPmTAAuueQS/vd//5c1a9YwYcIEHn/8ce655x4+97nPATBq1Cjq6+t57LHHBh1Wa2pqOP744xkxYgR2u52f/vSnbNiwgUwmg2XzEjednZ0sXLiQ4cOH8+CDD+JwOAAoKCjglltuyfU+jxgxgsrKSpYsWZK7dpfLhd1up6SkhGg0mpc2i/R55plnhroJ+xa7HaO4GKO0GEtJCRQEMXw+jM3/ZmFzj/17K4ewkbumsrKSiooKKisrWb58+VA3BwDDYsEoKYaSYjh8MmY0htnSQmZjdXa4fG9vbt+urq4hbKmIiIgcyA6qgD1q1Cjsdnvud7/fTzKZHPTxhxxySO5nn88HZCv8rlu3jng8ztVXX50LwpBdQ7ZvOKnL5drh+a+88kp++tOf8l//9V8ce+yxfPazn+Xzn/98v3Pee++9JJNJjjjiiFy4BjjmmGNYv349Dz74IBs2bKC6uprVq1dvs6pwvtos0ufaa6/l17/+NS0tLRiGgWmauVtgwH2ffqzPp/fvuy+TyfR7P396mHjf0PC+c23vuT/9+Kdt7zHI/juJxWK5bauSScyGBsyGBvr9K3Q4Nvde+7M92ePGYpl6BIbfDz5vvyWtdkVqLwwRX7ZsWa4He0ev1c6wjB41qN7rTzMzmewSXw2NZJqaMZtbsiMCtvYcFku/v+UiIiIi+XRQBewtA2m+jt9yPujPfvazrX5wG+zzzp8/nzPOOIPXXnuNN998k/vvv5+HHnqI559/nuLiYgCOP/54zj33XC677DLmzp3LiSeeCMCLL77Itddey1lnncVRRx3Feeedx5o1a3I92Ftrdz7aLNLnsMMO46c//elQN2OvS6fTRCIRuru7B8zB7ltSq7W1lebmZsLhcLbydls7tLUPHApuGNmQHQhsHkbuz87L9vuy87I9nh3OxbadcjJpw9hc5GzPrISwYsUKli9fnr9wvUWRs8Eyu7qy1cXr6jEbGuFTX5YahsHw4cMZO3YsFRUVDB8+nGHDhjFy5EiKiop2v80iIiIiW3FQBew95ZBDDsFms7Fp0yZOOeWU3P1PPvkk69at22bI3VJbWxsPPvggF110EfPmzWPevHk0NTVx0kkn8Y9//IO5c+cCcPrpp3Paaacxd+5crr/+el588UV8Ph8PP/wwlZWV3HTTTblzvvLKKwC5nrstP5jno80iAlarlUAgQCAQ2OG+sViMpqYmmpqa+i3F1fdzPB6HcA9muGfr87ANI7smtdcLbg+GxwUuN4bLmV1Oy+EAhwPLkVOxHHUkJJLZZbgs2WW6jC1Gq+wOMxrFDPdkg7/Hs/sn3GKZrm0+Zzqd7aGuqSVTUwvd3f0e9/v9HHHEERx++OFMmjSJQw89FLfbvfttExEREdkJCth54Pf7Oe+887jvvvvw+XwcddRRvPXWW9x55518+9vfHtQ5gsEgr776KjU1NVx99dX4fD6effZZ7HY7RxxxxID9Fy9ezNy5c7njjjtYsmQJ5eXlvPPOO3z44Yf4/X7++te/8vTTTwPZgj5OpxOPx0NzczO1tbVUVFTsdptFZOe43W7GjBnDmDFjBjxmmibt7e00Njbm1sPuW86rubmZ1tbW7BD5nghmTyR7zM42wDA2r4m9ebNZs8F28xrYhiO71BdOJ4bble0x93iyxdm83lxAN/x+2MrqC/lm9kTI1NWRqanDrK/v10tts9k4/PDDOeaYYzjqqKM45JBD+k13ERERERkKCth5ct1111FYWMh9991Hc3Mz5eXlXH755Xzzm98c1PE2m41HHnmE22+/nYULFxKLxZg0aRIPP/wwo0aNGrB/cXEx11xzDYsXL2bOnDlcf/313HDDDSxYsACHw8HEiRO54447uPLKK1m5ciVHH300Z599Ni+//DKf//zneemll3a7zSKSP4ZhUFRURFFREYcffviAx9PpNG1tbblh533LgPUNTQ+Hw0QiEaLRaG5ueDweJ73lMHHThFQqu/XdtcVzbDew9/We+wMYAT9GMIARCEAwmP19i/oWu8I0TQj3kGluxmxsJFPfAJ8qRlZYWMixxx7LjBkzOOqoo/Dko/dcREREJI8MM1/VaeSgt3JlthrylClThrgl8mnRaJRVq1YxadIkhZKDTDqdJpFI5Nbw7rvt23p7e4nFYv3W9O7q6qKzs5P29vZcoN9hQUi3e/PccV+2t9vjzt7ncIDNlu0xB8ikIZnC7O3NLkvWHcbs6sJs74BPrRdusViYMGECRx99NDNmzODQQw9VL7XsFfqbKfsivS9lX3SwvC93JueoB1tE5ABmtVpxu927NR85k8nQ2dnZb/h6fX099fX1bNq0KVu8LRbDjMUwm5p2+XlsNhuHHHIIhx9+OFOmTOHII4/MrdggIiIisj9QwN4LHnnkEZYuXbrdfX70ox/xpS99aS+1SERk8CwWC6FQiFAoxOTJkwc83t3dnSvW1tTUlBvK3t3dTU9PD729vSSTSQzDwGaz4XK5CAaDFBYWUlRURCaT4bjjjmPChAlawUBERET2awrYe8GXv/xlTjvttO3uo2VjRGR/1VdFffz48Tt9bN/QsnHjxilci4iIyH5PAXsvCAaDBIPBoW6GiIiIiIiI7EGqFiMiIiIiIiKSBwrYIiIiIiIiInmggC0iIiIiIiKSBwrYIiIiIiIiInmggC0iIiIiIiKSBwrYIiIiIiIiInmggC0iIiIiIiKSBwrYIiIiIiIiInmggC0iIiIiIiKSBwrYIiIiIiIiInlgG+oGiIgcCEzTpLW1lbq6OhoaGmhubqatrY3Ozk56enqIxWL09vaSSqXIZDIAWK1W7HY7TqcTt9uN1+vF6/USDAYJBoMUFhYSCoUoLi6muLiYQCCAYRhDfKUiIiIisi0K2CIiO8k0TRoaGli1ahVr1qxh7dq1VFVVEYlE9ujzOp1OSkpKGDZsWG4rLy9n+PDhlJeX4/F49ujzi4iIiMj2HfABe8KECdx6663Mmzdvt87z7LPPct1117F69eo8tWzX/d///R8VFRUceuihQ90UkYOCaZrU1tby/vvv88EHH7By5Ura29sH7mgYEAhgBAIYPh+GxwMeD4bTCXY72GxgtWb3M83slk5DKgXJJGYiAYkEZm8vxGKYsRhEo5jRKMRixONx6urqqKur22o7g8Egw4cPZ/jw4bkAXlZWRllZGUVFRTgcjj38SomIiIgc3A74gP3666/j9/uHuhl5U19fz3e+8x2efPJJBWyRPcQ0TRobG3nvvfd47733eP/99wcGaosFo7gYo6QkuxUVYQSDGFbrnmlTOg2RCGY4jNnTg9ndDeFw9vfubujtpauri66uLlatWrXVc/QNOy8sLCQQCBAIBPD5fHg8HlwuF06nE7vdjt1ux2azYbVasVgsGIaBxWLJbX3322y23P4ulwuXy4Xb7cZiUXkPEREROTgd8AG7pKRkqJuQV6ZpDnUTRA446XSajRs3smrVKlauXMnKlStpbW3tv5PVilFWhqW8HKO8PBuqbdv+E2qmUhCL5behhpHtHQ8EYPjw/s+XTGKGw9DTkw3gPT2YkQhEoxCJQCaTC+AbN27Mb7s+xePx4Pf7CQQCFBQUEAqFCIVClJSUUFpaSmlpKWVlZbjd7j3aDhEREZG97YAP2FsOEX/++ef51a9+xcaNGykuLqayspJvf/vbWDf3OD3//PM88sgj1NTUUFBQwBlnnMEPfvCDfsMqn332WZYuXUpTUxOHHXYY//mf/8m0adMAmDVrFueccw6XXXZZbv9P3/fMM8/w5JNPUl1djcViYfLkyVx33XVMmTJlh9dSV1fH7NmzAfja177GpZdeyrHHHsuFF17IFVdcwWOPPcaIESNYtmwZLS0t3Hbbbfy///f/sFqtTJ8+nWuvvZYxY8bkzveHP/yBRx99lPr6ekaMGMF5553HBRdcoN4nOaB1d3dTV1fHxo0bqaqqYt26daxbt454PN5/R4slG6KHD8cyfDhGael2A3UfM5Ui/dprZKqrs8O/91WGAcFg9suCdBozmcwOVc9ksu3OZLJb31D2zV/umX339d2m058Mc9+8TzQaJRqN0tTUtN0mFBYWUlpaitvtZsKECYwaNYry8nKGDRtGKBTS3yIRERHZ7xzwAbvP448/zt133821117LCSecwPvvv8+SJUvo6Ohg8eLFfPzxx/z4xz/mrrvuYurUqaxfv56rr76awsJCLrnkktx5fv/733PPPffgcrm44YYbuOKKK/i///u/QbXh5ZdfZsmSJfzkJz/h6KOPpqWlhZtvvpkf//jHvPDCCzs8vry8nGeeeYYvfelLPPDAA5xwwgn8+9//Jp1O89prr/G73/0uV6n4ggsu4PDDD+fpp5/GYrHw61//mi9/+cu8+OKLlJWV8bvf/Y577rmHG264galTp/LRRx9x880309TUxDXXXLPLr7PI3pTJZIjH48TjcWKxGNFolEgkQjgcpru7m46ODtrb22ltbaW5uZmmpibC4fDWT2azQUkJRmkplrKygYHaNLMhdAdSr76KuYd7iPPCNKGzEwoKsH7uc3k43eawnUxm55HH49Dbm73dPI/cjESyvek9PZBM0tHRQUdHBwDvvfdev/PZ7XZKSkooKSmhuLiYoqIiCgsLKSgoIBAI4Pf7c8Pb3W43TqdTgVxERESG3EERsE3T5JFHHmHBggXMnz8fgDFjxtDZ2cmdd97J5ZdfTl1dHYZhMGLEiFyRoMceewyfz9fvXLfccgvjxo0D4Bvf+AaXXnopbW1tFBUV7bAdBQUF3HLLLXzhC18AYMSIEVRWVrJkyZJBXYfVaiUUCgHZuZRerzf32KJFi3K908888wzd3d3ceeed2DYHhFtuuYW33nqL3//+91x22WUsXbqUiy++mDPPPBOAiooKenp6uOmmm/je976H0+kcVJtE9pTnn3+epUuX7r0nTKWgoQGzoYF9od95zpw5VFZWsmzZMlasWLHHpoeYGzeSfPzxPXLubTHKyrCedhqEw9l55N3dubnkZnc3RCIkk0k2bdrEpk2bdurcJ598MosXL95DLRcRERHZvoMiYPf1YH3mM5/pd/+xxx5LMplkw4YNfPazn2X69OlUVlYycuRITjjhBGbPns0RRxzR75gth1gHAgEAent7B9WOY445hvXr1/Pggw+yYcMGqqurWb16dW5N3N2xZbs++ugjurq6OOaYY/rtE4/HWb9+Pe3t7TQ2NnLPPfdw33335R7v6w2sq6vLfYkgMlT+3//7f/k/qc+X7WXN99zoPaCyspKKigoqKytZvnz5UDcn7wynE8PlgpKS7JcHkUj/oN3YiNnYuNPn/de//kUmk1FvtoiIiAyJgyJgb6vnpy/Y2mw2nE4nTz75JB999BGvv/46r7/+Ot/5znc4++yzufXWW3PHWLdSIXh7PUupVCr384svvsi1117LWWedxVFHHcV5553HmjVrBt2DvT1b9jhnMhnGjh3LQw89NGA/j8eTu+7rrruO448/fsA+5eXlu90ekd11/fXX88c//pGurq5+95umiWEY/e7r+3IoEokQjUYJh8N0dXXR2dlJcsth3T09A5/I64WiIizFxdlh4cXFg5prvS35GiK+bNmyXA+2YRh7rAfbGDMGWx6GiG+PaZrZ4eKbh4ibkQjp/+//y4bpzb3Yg5mv7vf7CQaDuSHiXq8Xj8eD1WrFNE2sViunnHKKwrWIiIgMmYMiYBcXF1NcXMzbb7/Nqaeemrv/X//6F3a7nVGjRvHaa6+xcuVKLr30UiZPnsxFF13EQw89xC9+8Yt+AXt77HY7PVt8gO/p6aGtrS33+8MPP0xlZSU33XRT7r5XXnkF2Hpo2JrB7DN+/HheeOEF/H5/bkh5Mpnk6quv5owzzmDOnDmEQiFqa2sZPXp07rg///nPvPzyy9x+++07vliRPaygoIAFCxbs1jlM06Snp4fW1lZaWlpobGykvr6e2tpaqquraWlpyc4JjkTI1NRkD+orbjZsWLa4WVkZht0+6Oe0nXJKXoqcrVixguXLl++5cG21YowahfW447JrbqdS2WHyfQXO0ulPiplBdg56X7GzLQudbVHkzEyloG8t77452LFYdsTADq7BarVSVlaWK3I2bNgwSktLc3OwQ6GQ1vEWERGRfd5BEbAhO1/63nvvpaKighNOOIEPPviAn//853zlK1/B7/djt9t58MEH8fl8zJ49m66uLl599VWmT58+6Oc48sgj+fOf/8zpp59OIBDg/vvv79fjXV5ezjvvvMOHH36I3+/nr3/9K08//TQAiURiUPOePR4PAGvWrGHy5Mlb3ecLX/gCDz/8MJdffjk/+MEP8Pl8LF26lL/97W9873vfwzAMvvWtb3HvvfcyfPhwTjrpJFavXs2NN97I7Nmz9SFWDhiGYeD3+/H7/YwdO3bA4+FwmPXr17NmzRo+/vhjPvroI9rb2zGbmjCbmsi8//4ngXvEiOwSXTuoJm7YbNhmz97tZbrMaBQzHMbw+zE2/7sf9LGmmQ3NkQhmT88nRcZ6e6G3N9uuRAKzqopUVdUut3FnGIZBKBTKLdM1bNgwysvLKSwspKenh+OOOw6/379X2iIiIiKypxw0AXvRokU4HA6eeOIJfvrTnzJs2DC+9a1v8Y1vfAOA448/nltuuYVf/epX3HvvvbhcLk4++WSuvfbaQT/HVVddRWdnJxdeeCF+v59FixbR3d2de/z666/nhhtuYMGCBTgcDiZOnMgdd9zBlVdeycqVKzn66KN3+ByFhYWce+653HHHHVRXV/Mf//EfA/bx+/08/fTT3HHHHXzjG98gnU5z+OGH86tf/So3t3rRokU4nU6eeuopbrvtNoqLi/nyl7/M5ZdfPujrFdnf+f1+jjzySI488kggG0wbGxtZuXIl77//Pu+//z7Nzc2fBG7I9vz29XD3VRt3uQac27DZYDcCo+H3Q1nZNh83U6nsmtebC4Pltp0Yct3H6XTicrlwuVzY7XbsdjtWqzW3GYaBxWLpt/U9ZrfbcTgcueM9Hg9er7ffOtiFhYWEQqGtTrGJRqOsWrVqq4+JiIiI7G8Mc09N7NsHpFIpDj/8cO666y7OOuusoW7OAW/lypUAg1rTW/auvhAzadKk3CgI2bG+wP3uu+/y3nvv8cEHH9De3j5wR58Po6gIo7AQo6AAIxDA8PnA7cbYhfnAfb3fZiyW7X3ePG+Znh7Mnp5siI5Gt3sOi8VCaWkpZWVluaHWRUVFhEIhCgsLCQaDuXnMQxlu9d6UfZHel7Iv0vtS9kUHy/tyZ3LOAduD3fehGFS0S0R2jWEYlJeXU15ezty5czFNk/r6ej744AM+/PBDVq1aRV1d3SfBt7r60ycAlwucTgyHA6zW7NZXS2GLOczm5vWjiccH3fvsdrspLy9n+PDhuXb2/VxaWqpeYREREZG97IAN2L/+9a/5/e9/z+c///mdmkc9VJqamjjjjDO2u8+UKVN48skn91KLROTTDMNg5MiRjBw5krlz5wIQiURYt25dbum9uro6GhoaaGtry1bs31zka2eHCtnt9tzQ6r5CjSUlJZSVleW2YDA4qMKHIiIiIrJ3HLAB+7rrruO6664b6mYMWnFxMc8///x29xlMETQR2bu8Xi/Tpk1j2rRp/e5Pp9N0dnbS2dlJOBwmEomQSCRIpVKk02kMw+g3h7lv7rLX6yUQCODxeBSeRURERPYzB2zA3t9YrdZ+S2aJyP7NarVSVFREUVHRUDdFRERERPaSna++IyIiIiIiIiIDKGCLiIiIiIiI5IECtoiIiIiIiEgeKGCLiIiIiIiI5IECtoiIiIiIiEgeKGCLiIiIiIiI5IECtoiIiIiIiEgeKGCLiIiIiIiI5IECtoiIiIiIiEgeKGCLiIiIiIiI5IECtoiIiIiIiEgeKGCLiIiIiIiI5IFtqBsgInKgMU2T3t5ewuEwkUiEaDRKJBKht7c3t8XjceLxOMlkMrel02nS6TSZTCZ3LsMwsFqtWK1W7HY7drsdp9OJ0+nE7Xbj8Xhym9frxefz4fP5cLvdGIYxhK+CiIiIyMFHAXsHJkyYwK233sq8efOGuikisg9Ip9M0NTXR0NBAU1MTzc3NtLa20tbWRkdHB52dnXR3d5NKpYa0nRaLJRe4vV4vXq83F8TdbjculwuXy4XD4cDpdObCu91ux2azYbfb+4V6u92e29fpdOLxeHC5XArxIiIiIltQwBYR2YpIJEJNTQ3V1dXU1NRQW1tLXV0djY2NpNPpwZ3EYgGHA8PhALsD7HYMuw1sdrDZwGrFsFrBas3u27cZRnYzzex5TBPSachkIJ3GTKUglYRkCjOZgGQSEgnMRALicchkyGQyhMNhwuHwHnuN+kK83+/H7/dTUFBAKBSiqKiI4uJiSktLKSsro6ysDIfDscfaISIiIrKvUMAWkYNWKpWiqamJTZs2UV9fT11dHbW1tdTU1NDW1rbtA61WDH8Aw+8Hnw/D58PweDA8HnB7wG6HTBqsNvZ2B69pAukUJJKYySQk4tngnUxBMomZSmYDeTqd/TmdgVQq295MBjOTyd5ngGGa2Z8zacx0OhvyU9nzADsV4ouKihg+fHhuGzFiBCNHjqSwsHAPvyIiIiIie48C9k5oaWnhggsuoLy8nIceegiXy8UzzzzDk08+SXV1NRaLhcmTJ3PdddcxZcoUAGbNmsX8+fN57733eP3113E4HJx11llce+212GzZl//111/n7rvvZt26dYwePZoLL7yQH/3oR7zyyiuMHDmSTZs2ceedd/L3v/+d7u5uioqKOOuss7j66quxWCw8++yzPPTQQ5x88sk899xzzJgxg6VLl7J+/XruvPNO3n33XVKpFCeccAI//OEPGTFiBJAd6vrUU0/x29/+lk2bNjF8+HAWLlzIV7/61SF7jUV2VyaTIRaL0d3dTTgcpru7m87OTjo7O2lvb6etrY2Wlpbc0O4t5zsP4PFgFBZiKSjEKCjAKCjECAbB693q0GgzlST16qtkqjdmw+j+zGrFGD0G2+c+h2Gz93vINM1PQnw8DvFezN5eiMUwo1HMaBR6ejB7ejB7wpBM0tbWRltbGytXrhzwVMFgkFGjRjFy5EiGDx9OeXk5w4YNo7S0lGAwqGHoIiIist9QwB6k9vZ2Fi5cyIgRI1i6dClOp5OXX36ZJUuW8JOf/ISjjz6alpYWbr75Zn784x/zwgsv5I697777+P73v88111zDP/7xDxYvXswRRxzB2WefzapVq/j2t7/N17/+de6++25WrVrFTTfd1O+5L774YkpKSvj1r3+N1+vllVde4dZbb2X69OmceuqpANTU1NDc3Mzzzz9Pb28v9fX1fOUrX+H444/niSeeIB6Pc9ttt7FgwQJefPFFfD4ft912Gy+88ALXX389U6ZM4W9/+xu33HIL8XichQsX7s2XVw4CpmmSyWRIp9OkUilSqRTpdDpX4CuRSJBMJnPFv+LxeL+iYFtu0WiUWCxGNBrtV0Csr6DYTrFYIBDECPgxAsFskA4WYBQEMRzOrR+TSmFu7e5X/0qmqmqnX5t9UjpNZsN6UmYG2+dmbX0fux3Dbs/24m/jNKZpZgN4OJzdurowu7sxu7uhqxOSSbq6uli5cuVWw7fT6aS4uJhQKEQoFKKwsJBAIEAgEMDv9+P1enG73bl55X3zxN1ut4ali4iIyF6ngD0InZ2dLFy4kOHDh/Pggw/mPrQVFBRwyy238IUvfAGAESNGUFlZyZIlS/odf+KJJ/K1r30NgIqKCp566ineeecdzj77bB5//HGOOOIIrrnmGgAOOeQQ2trauOWWWwDo7e3li1/8InPmzKG8vByAhQsX8sgjj7B69epcwAa45JJLqKioAODOO+/E4/Fw11135dp7//33M3v2bF544QW++MUv8tvf/pZrr72Ws846C4AxY8ZQV1fHww8/zNe//nX1GkleLFmyhNdff32om7FtmQx0dmB2dmw1NO9r5syZQ2VlJcuWLWPFihXZALsHZaqqSFQ9tkfObZQNw3baadDdjdnVjdm9OXyHuzG7wxCLEo/Hqa+vp76+fqfPf9NNNzFz5sw90HIRERGRrVPAHoR7772XZDLJEUcc0a9H5JhjjmH9+vU8+OCDbNiwgerqalavXj1gyOm4ceP6/e73+0lunsP40Ucfcfzxx/d7/Jhjjsn97HK5WLBgAStWrOCDDz7IPcfWhraOGTMm9/OaNWsGtLekpISxY8eyZs0aNmzYQDKZ5DOf+Uy/cxx77LE88cQTtLW1UVxcvBOvkshApmmyYcOGoW7GAaWyspKKigoqKytZvnz5UDdntxkuNzhdGG4PpseN6fFger3ZrasLc3tz4Xegubk5jy0VERER2TEF7EE4/vjjOffcc7nsssuYO3cuJ554IgAvvvhirgf4qKOO4rzzzmPNmjUDerC3Nkyxr9fJarVudw5oNBplwYIF9Pb2csYZZ3DOOecwdepU5s+fP2Bfl8s14PyflslksNvt230cyM0PF9kdhmHw4IMP8u6772KaJoZh5N57hmGQyWRIpVJbHSKeSCT6DQuPxWK5276fI5EIiURiVxsHPl92eHMgiBEIYASCWAoKsvdZLDt9yr0xRHzZsmW5HuwtX889xTJ27LaHiO8E0zQhGv2kl7q7C7Orm+Tvf4cZ7s6OJNheOywWQqEQBQUFBINB/H5/bgmyLZceczqd2Gw2fD4f06ZN2+12i4iIiOwMpahBOP300znttNOYO3cu119/fW4O88MPP0xlZWW/OdOvvPIKQC5M7MjEiRP54IMP+t337rvv5n5+/fXX+fDDD3njjTdyPcqdnZ20tbVt94P1hAkT+J//+R8SiUQu4Le2tlJdXc3555/PuHHjsNvtvP3220yaNCl33L/+9S9KSkoIBoODeGVEdszr9ea+lNoT0ul0bj52JBIhEokQDofp6emhu7ub7u5uurq66OjoyBU5a29vz36ZFA5DOIzZ0JAbHp6GbIGvYDBb1Kxw81ZQkA3i2/nyyXbKLFLGni1ytmLFCpYvX77nw7XVimUbRc4+LTvPOo4Zi2VDdDSCGYlkC5z1zb0Oh7f7mthstlyBsy2LnJWWllJcXExBQQGWXfjSQ0RERGRvUsDeCYsXL2bu3LnccccdLFmyhPLyct555x0+/PBD/H4/f/3rX3n66acBSCQSOJ3bKJC0hUWLFnH22Wdz1113ce6557Ju3Truv/9+INvDN2zYMAD+53/+h9NPP52GhgbuueeeXI/ftnz1q1/lt7/9LT/4wQ+4+OKLSSQS3H777RQWFnLmmWfi8/n4yle+wv33309BQQFTpkzh9ddf57/+67+46qqrNP9a9htWqxWfz4fP5xv0Mel0mra2NhobG2lsbMzN8a2rq6Ouro5EIoHZ3o7Z3j7wYJ8vG779gWyvt8+H4fVheL3gdmM/9T+y61THdrLY2iCZ0ShmOIzh92eXBdvR/ibZZbWSyWy7kolskbZUKrvk1ublt8y+dbY3r7WN1YqBSerNNz+5L5WC9OZjE8nsGtzxBCTin6zZvR1Wq5Vhw4YxfPhwRo4cyYgRIyguLiYajTJjxgz8fn8eXiERERGRoaOAvROKi4u55pprWLx4MXPmzOH666/nhhtuYMGCBTgcDiZOnMgdd9zBlVdeycqVKzn66KN3eM7x48fz85//nHvuuYfHH3+csWPHsmDBAh544AHsdjtTp07luuuu4/HHH+dnP/sZZWVlzJ07l/Ly8q1W3O0zcuRInn76ae68806+8pWv4HA4OOGEE7jzzjsJBAIAXHfddRQWFnLXXXfR2trKmDFjuOGGG/jyl7+ct9dMZF9ktVpzvaNTp07t91g6naa5uZnq6mpqampy62LX1NQQiUQ+WX6KbRTdstnA5cJwucDpxLA7wOHAcNjBZs+ukW2zZXvCbTawWrNh1mLJVjQ3LNnh633fcZmAmQ2+ZjqTXR4rY2K2tZFpbMyG50Qiu9Z17jaO2Rd8E4lBhd988Hq9uWrfJSUllJSUUFZWxrBhwygvL6e0tBSr1drvmGg0yqpVqwbcLyIiIrI/Msw9PYFPtuuDDz7AZrMxefLk3H0vvvgiP/rRj3j33Xf3q7nQfYG/bw1w2Xf0hZhJkybhGUSvpwxkmiadnZ1s2rSJ+vp6GhoaaGpqyq2n3dbWRjweH+pmbpPFYsnNV3a5XP3mLDscDux2e26z2WzYbDbsdjtWqxW73Z7bp+8Yt9uN1+vF6/Xi9/sJBALY7dsfSr41em/KvkjvS9kX6X0p+6KD5X25Mzln/0lvB6hVq1Zx5513cvvttzNp0iSqq6t54IEHOPPMM/ercC1yoDMMg8LCQgoLCzn88MMHPG6aJtFolK6uLrq6ugiHw4TD4dza3H1rd/cVbesr5JZIJHKF3lKpFJlMhkwmk6vjYBgGVqsVq9WKzWbD4XDgcDhyIbkv6Ho8Hrxeb67wV9+w+b7fnU6npn6IiIiI7GFKcEPsy1/+Mi0tLfz0pz+lqamJoqIizjzzTC6//PKhbpqI7ATDMHI9usOHDx/q5oiIiIjIEFDAHmKGYXDppZdy6aWXDnVTREREREREZDdozRMRERERERGRPFDAFhEREREREckDBWwRERERERGRPFDAFhEREREREckDBWwRERERERGRPFDAFhEREREREckDBWwRERERERGRPFDAFhEREREREckDBWwRERERERGRPFDAFhEREREREckDBWwRERERERGRPFDAFhEREREREckD21A3QETkQJRMJmlpaaG5uZm2tjY6Ojro6uoiEokQjUaJx+Mkk0kymQwAVqsVu92O3W7H7Xbj8Xjwer34/X4CgQDBYJCCggIKCgoIBAJYrdYhvkIRERER+TQFbBGR3dDR0UF1dTU1NTXU1NRQW1vLpk2baG5uxjTNPfKcFouFYDBIYWEhoVAot/X9XlhYSGFhIQUFBfh8PgzD2CPtEBEREZH+FLD3IRMmTODWW29l3rx5u3R8R0cHf/nLX/jSl760w33r6uqYPXs2Tz75JDNmzNil5xM5mCQSCaqrq6mqqmL9+vVUVVVRVVVFV1fXtg+yWjF8fgyvFzweDJcbw+kEuwNsNrBYMCzZmTpmJgOZDKRSkExiJhMQj2PG45jxXuiNYcayt5lMho6ODjo6OtiwYcN2222z2QgGgwSDQQKBAIFAAL/fj8/nw+/34/V6c5vH48ltfb3oNpv+NyEiIiIyWPrkdAC54447qKurG1TAFpGty2QyNDU1sXHjxlyIrqqqoq6uLjec+9OMQACjIIRRWIhRUIglGASvF0xgkL3Hg+5jzmQg3osZ68WMxTDjMYjFsj/HYpi9MYj3QqwXUklSqRRtbW20tbUN9hn6cTqd/YK3z+frN3Td7/fnhq739aQXFBRgsajEh4iIiBx8FLAPIHtqOKrIgSgWi9HQ0EB9fT11dXXU1tbmhnn39vZu/SCnC0tREUYou1lCRRiFIQy7PbeLmUqSfPWvZKqrIJ3eS1ezCwwDfD6MgsJsr3kiAYkEZjIJyUSu7fF4nHg8TkdHx6BPbbVaKS4upqSkhLKyMsrKyhg2bBjl5eWUl5dTXFysAC4iIiIHJAXsfVRLSwsXXHAB5eXlPPTQQ7hcLt555x3uvvtuVq5cSSgU4pRTTuHqq6/G5/Nx7bXX8txzzwHZoearV6/GNE2efPJJ/uu//ouGhgYqKiq4+OKL+fznP597nvfff5+77rqLVatWUVZWxiWXXMK55547VJctsl2maW47/G6WSqUIh8N0d3fT1dWVG0rd14vbV3iss7Nz2ycxDCgsxCgIYSkMYYRCWEIhcHu3Op/ZTCZzPydf/QuZqu0P294nmCaEwxjFJdhPPWPgw+n0J0PVN4dusy+EJ/qGr/di9vZCb2+25zwahd4Y6XSapqYmmpqa+Pe//z3g3DabjeHDh1NeXk5JSQkA4XCY0aNHU1paitfr3eOXLyIiIrInKGDvg9rb21m4cCEjRoxg6dKlOJ1OPv74Yy688EIuvvhibrnlFlpbW7njjjtYtGgRv/vd71i8eDG9vb00NjbywAMPAPDoo4/y4IMPsnjxYmbMmMFrr73GNddcQ3FxMSNHjgTgiSee4Oabb+bQQw/lV7/6FT/+8Y85+uijGT169FC+BHIACYfDJBIJIDv8um9Lp9OkUqncbSqVIpFIkEwmSSaTJBIJEokE8XicRCJBLBbjz3/+8y4Pdd4ppgnt7Zjt7QxlH/ScOXOorKxk2bJlrFixYo+MUslUbSBe9XDez7s9qVQqN1qgzx//+Mfczx6Ph+Li4lzBtr75433D0z0eDy6XC5fLhcPhwG63U1paisfj2avXISIiIvJpCtj7mM7OThYuXMjw4cN58MEHcTgcADz22GOccMIJfOc73wFgzJgx3H333Zx66qn84x//YMaMGbhcLux2OyUlJZimyRNPPMHXvva13JzsCy64gN7eXlKpVO75vvvd7zJr1iwArrzySn7729/y4YcfKmBLXixfvpx77713qJux36qsrKSiooLKykqWL18+1M3JG6O4BOsxx0G4G7O7CzMczt72hCEeJxqNDgjgO+Lz+XjqqafU+y0iIiJDSgF7H3PvvfeSTCY54ogjcuEa4KOPPqK6uprp06cPOGb9+vUDKoF3dHTQ0tLCtGnT+t3/rW99C8hWEQcYO3Zs7rFgMAhk51yK5MOQrtVsd4DbBS43hseD4fFieL0YPh+G14/h94PTlfclrPI5RHzZsmW5HmzDMPZID7Zl7CHYP3dq3s+7LWY6jRmLQbhrc+V0M1u4zTSzP+8iwzC0HJmIiIgMOQXsfczxxx/Pueeey2WXXcbcuXM58cQTgezQ2rPOOivXg72lUCg04D77FkWXtmdrhYZULE3y5bTTTuOzn/0siUQC0zT7DQ/v2/qGifcNDd/aEPG+rbe3N7fFYjFisRiRSIRoNEokEqGnp4dIJJJ98mQiu3V3Y5It6D2A3YERDGIEC7AUFGAUFGaLlgULMHbxywH7KaeSNPJT5GzFihUsX758z4RrqxXL6LHYPzcLwza4vxeDYabTmNEI9PRg9oSzvdM92R7qTHc3RHqyYXo7/H7/doeIu91u3G43TqcTp9OJ3W6nuLgYt9udt+sQERER2RUK2PuY008/ndNOO425c+dy/fXX8+KLL+Lz+TjssMNYt25dv6Hb69ev58477+Sqq67C7/f3673x+/2UlpaycuVKZs+enbv/8ssvp7y8nAsuuGCvXpccvPrC0N6STqdzRc46Ozvp6Oigvb2d1tZWWltbc8W32trasoW7WlswW1votwCXYcEoCGIUFm2uGl6MpagIvL4d9pIaNjuOU0/HTKUwY9HduhYzGsEMhzH8fgxPfoc+G24PxjbWuDZNM/vlQCKRK3JmJuKfVBrPrc0dzy0LZkaj2evdQRE6yC79VV5ezvDhw3NTWqZNm8bo0aMpKSlRUBYREZH9lgL2Pmrx4sXMnTuXO+64gyVLlrBo0SLmz5/PTTfdxIIFC+ju7uamm26it7eXMWPGANnCQM3NzdTW1lJRUcFFF13EPffcw9ixY5k+fTqvvvoqr7zyCr/+9a+H9uJE9iCr1Zpbl3nUqFHb3C+RSAxYpqu6upqamhqi0ShmRwdmRweZDes+Ocjh2Lw8VzFG0RbLdG0xnaOPYbNh+AO7dzH+AJSV79KhpmlCKpkdjt1X5bs3W/XbjPdCPLE5NMcx44nsbV/F8ERih73M29PXo1xaWrrVZbpCoVDui4poNMqqVauYNGmSipSJiIjIfk8Bex9VXFzMNddcw+LFi5kzZw4zZ87k0Ucf5b777uOcc87B4/Ewc+ZMfvjDH+bmap999tm8/PLLfP7zn+ell15iwYIF9Pb2ct9999HS0sKYMWO49957OfbYY3NzsEUOVg6Hg9GjRw8o6GeaJi0tLWzcuJGqqqrcVltbSyqRwGxsIN3Y0P9kPj+Wwk+Gl1uCBRiBIHi3vqzX7jDTaYhFMWOxbK9xNJL9PRr9pBe573aLgoa7yu124/F4ctW7vV4vPp8Pv9+P3+8nEAgQDAYpLCyksLCQoqIiAoGA5kOLiIjIQckwNeFW8mTlypUATJkyZYhbIp+mXsLdl0wmqampoaqqig0bNuQC+HaXDbNYMLy+bND2eDBc7mxhNbsdbDawWrNrbkO2xzidhlQKM5XcYjh2L2ZvHHpj2d7oxM4VIXQ6nbk5zH23fr8fn8+Xm9Ps8/n6hei+zeVybbVOQz7pvSn7Ir0vZV+k96Xsiw6W9+XO5Bz1YIuIDILdbmfcuHGMGzeu3/3d3d1UV1dTXV1NbW0ttbW1bNq0icbGRjKZDGa4O7scVR7bYrVacz3GoVCo39Z3f9+m+cwiIiIie48CtojIbggEAkyZMmXAN5rpdJqWlhZaWlpobW2ls7OTrq4uenp6iMViuTXpM5lseTWLxYLD4cBut/cblt03FLtvXnkwGMTv9+/xnmURERER2XkK2CIie4DVamXYsGEMGzZsqJsiIiIiInuJukBERERERERE8kABW0RERERERCQPFLBFRERERERE8kABW0RERERERCQPFLBFRERERERE8kABW0RERERERCQPFLBFRERERERE8kABW0RERERERCQPFLBFRERERERE8kABW0RERERERCQPFLBFRERERERE8sA21A0QEdlfpVIpenp6iEaj9Pb2kkgkSKVSpNNpAAzDwGq14nA4cDqdeL1ePB4PLpcLwzCGuPUiIiIikm8K2CIi2xAOh6mtraWuro6GhgYaGxtpbW2lra2Njo4OIpHILp3XbrdTWFhIYWEhJSUllJSUUF5ezvDhwxkxYgTDhg3DarXm+WpEREREZE9TwBYRAVpaWli9ejVr165l3bp1VFVV0draOriDbXaw28Bqw7Baoa932gQyacx0GlIpSCbANEkmkzQ3N9Pc3Mzq1asHns5mY8SIEYwePZpRo0YxZswYRo8ezYgRI7DZ9GdbREREZF+lT2r7qAkTJnDrrbcyb968oW6KyAGnt7eXtWvXsmrVKlatWsXHH39MW1vb1nf2erEECzGCBRj+AIbPDx4vhseD4XKDw4lhGVw5C9M0IZnE7I1BbwwzEsGM9GD2dGN2d2N2d2F2dZJKpaiurqa6urrf8VarlZEjR1JRUUFFRQUjRoxg+PDhDBs2jFAohGWQ7RARERGRPUMBW0QOaOl0mpqaGtasWcPq1av5+OOP2bBhA5lMpv+OhoERKsJSXIpRXIqlqBgjVIThcOZ2MVMpzFj0k9+TyWxg3tlGGQa4PRhuD0ZxSf/HTBMiPWQ2h22zu5NMZyd0d5LeRvCGbPguLi6mqKiIgoICgsEggUAAv9+fm/vdN/+7b3M6nbjdblwuFw6HQ/PCRURERHaTAraIHBDS6TRNTU3U1dVRU1NDdXU1VVVVbNy4kUQiMfAAjxdL6TAsZcOwlA7DKC7FsNu3em4zlST56l/IVG+AzQXMhpRhwfD7weuDnjBmTzh3/U1NTbt0SovFgtvtxu124/V6c5vP58Pv9+duA4FAv60vwGvOuIiIiIgC9n4hk8nwyCOP8Oyzz1JfX4/D4eCoo47ihhtuYNSoUUB2SPmSJUt44YUXWLlyJSNHjuSWW25h7dq1PPTQQ3R3d3PSSSdx22234XK5ePbZZ/nZz37GpZdeyv33308kEuH444/nhhtuoKysbIivWA52pmnS29sLQDQapaenh3A4THd3N93d3XR2dtLV1UVbWxutra00NzfT0tKSHYK9NTYbFBVjKSnDUlyCpXQYeHwDemzNZHKrhydffZlM1bq8XuNuMTOY3V1Yikqwn/EFzEwGYpHskPNYBDO6eQh6ohcznoBEHBIJzHQKNve6k0pBKgmbe/IzmQyRSIRIJDL4uedb8Pl8eL3eXOD2+/14PB58Ph8ej6dfaC8oKMjtbxjGwNEEIiIiIvspBez9wJNPPsljjz3G7bffzvjx46mpqeH666/ntttuY+nSpbn97r33Xn76058yZswYrr32Wr7zne9wxBFH8PDDD1NVVcXVV1/NM888wwUXXABAe3s7TzzxBD/72c9wOBzceOONfPOb3+S5555TISXZoTVr1lBbW7vNYcWmaWKaJul0mmQySTKZJJFI5LZ4PE48Hqe3tze3xWIxotEomzZtIpVK5a+xqRQ0NZJpamQoo9ycOXOorKxk2bJlrFixYttfCAxSpmod8X0k+Pf09NDT07PLPeh9Ped9Q9ndbnfu9tPD2h0OBw6HA7vdnvtbZZpm7r04evRoxo0bl7drExERERkspaj9wKhRo7j99ts55ZRTABgxYgRnnHEGK1as6Lffueeey6xZswD44he/yJIlS7jhhhsYM2YM48eP59FHH2Xt2rW5/ZPJJLfffjtHHHEEAHfeeSdz587lzTff5LOf/exeujrZH73xxhvcdNNNQ92M/U5lZSUVFRVUVlayfPnyoW7OPiUWixGLxfJ2vrvvvpspU6bk7XwiIiIig6GAvR+YNWsW77//Pvfddx9VVVVUVVWxbt26AUO5R48enfvZ7XYD5IaQA7hcrn5zUb1eby5cA4wbN45gMMiaNWsUsGW7ysrKsNvtJLcxpHqPczjBs7lImNcHXh+WQBDD58cIFoDLndeCXfkaIr5s2bJcD7ZhGLvdg20Zeyj2z/3HbrdrZ5imCYk4ZrwX4nHM3l5I9GLG49nf+4alx+OYiXh2abJ4PDtMPZ+jErbD4/EQCoX2ynOJiIiIbEkBez/w8MMP8+CDD3LOOecwc+ZMFi5cyCuvvMKf/vSnfvttbVj39pbtsW+loFM6nVaxItmhQw89dMD7D7Lvn0wmQyqVym3JZJJUKkUikeg3TLxveHjfbSwW6zdMvG8+cDQaJRwOEw6H6enpyQU8EnHMzo5cBe9+Q78dDozCEJbCYoyiYizFJRhFxRi2rRcx2xH7Kf9B0jB2u8jZihUrWL58+e6Ha6sVy+hDsH/u1EFfk5nJZOdcJ5PZueap7Dzs3M/JJGYykb1NZOdtm4kExHs/CdObb9nNLwbsdntuPrbb7cY0TUpKSggEArmh4n0F17asfO50OnPbp4eJ22w2rFar/n6JiIjIkFLA3g/84he/4Lvf/S4XXXRR7r7HHntst3u/Ojs7qa2tpaKiAoC1a9fS09PD5MmTd+u8cvDqCzhb+/ImH9LpdK7IWUdHB21tbbS0tNDU1ERjYyMNDQ00NTVhJhKYTY2kmxo/ObhvGa6SMozN1cONgtCgeroNmx3HqXMGLNO1s8xoBDPcnV1P2+Pd5fMYbg+GzYaZSZPp7syuoR3pgUjP5kJn0U/W2t4clvPde+xyufpVEt9y66s43heit/zZ4/HgcDhy54lGo6xatYpJkybh8Xjy2kYRERGRvU0Bez9QXl7OG2+8waxZs7BYLLzwwgu89NJLFBcX7/a5f/CDH/DjH/+YVCrFTTfdxPTp0znmmGPy0GqR/LNarRQWFlJYWMjYsWO3uk8ikaC+vp6NGzdSVVXF+vXrWbduHR0dHZhtraTbWuHjD7M7OxzZJbpKh2EpLcuGb/e2Q55hs2H4A7t+Af4AlJXv9GFmIo7Z0U6mox2zoz3bc9/VgRnu3une5L7luPp6hLcsINZXYGzLqt994bgvSPfdbhmSRURERCRLAXs/cMcdd7BkyRLOPfdcvF4v06ZN46abbuLGG29k06ZNDB8+fJfPfdZZZ3HRRReRSCSYNWsWixcvzuvcVZG9zeFwMHbsWMaOHZsrDGiaJq2traxevZrVq1ezatUqVq9eTTweJ1NXA3U15AZ++/zZIeWhYiyhYozCEEYgiLGHhx6bppntce7qJNPZjtnRgdnZTqa9DSI9273eYcOGUVpaSklJCUVFRRQUFFBQUJDrUe7rOXa73djtdv0bFxEREdlDFLD3UatXr879fPjhh/O73/1uwD7nnXfeVvcHmDdvHvPmzet331NPPTXgHPPnz2f+/Pm721yRfZphGJSUlFBSUsKJJ54IZIebV1VVsWrVKj7++GM+/vhjamtroSdMpicMGzd8EroNI1tALRDMFVUz3B4MlxucTgyHA+x2sNqyQbwvwJpmdu5zOrV5vnPik8JgsWh2yHhPD2ZPGDPclV2fehuKiooYNWoUY8aMoaKigpEjRzJy5EiKiooUmEVERET2EQrYInJQslqtHHrooRx66KGcddZZAEQiEdatW8e6detyFftra2vp7e3FDHdnh2TvQX1fBFRUVFBRUcHo0aMZM2YMo0aNwu/379HnFhEREZHdp4AtIrJZ3xSMadOm5e4zTZO2tjYaGhpobGykpaWF9vZ22tvbc9XNI5EI8XiceDxOKpUivbnSuMViwWq14nA4cDqd/eY1980lLykpobS0lGHDhjFs2DDNbRYRERHZjylgH6S2NoRcRAYyDIPi4mKKi4uZMmXKUDdHRERERPZh214kWUREREREREQGTQFbREREREREJA8UsEVERERERETyQAFbREREREREJA8UsEVERERERETyQAFbREREREREJA8UsEVERERERETyQAFbREREREREJA8UsEVERERERETyQAFbREREREREJA8UsEVERERERETywDbUDRARkaFlmiaJRIJoNEosFiMWi5FIJIjH4yQSCRKJBMlkMrelUilSqRTpdBoAwzCwWq04HA7cbjd+v5/CwkJKSkoIBoMYhjHEVygiIiKydyhgi4gcgEzTJBwO09bWltva29tpb2+nra2Nzs5Ouru76e7upqenh1QqtUfa4fV6GT16NIceeiiTJk1i6tSplJSU7JHnEhERERlqCtgiIvuAZDKZC72RSIRoNJrrOd6yxzidTud+TyQS9Pb2EovFiEajhMNhurq66OrqorOzk2QyufMNsdvBZsew2cBmA4sNw2YFqw2sVrBYMawWMCxgsYBhgGlCJoOZTkEygdkbx4z2QCxKJBLho48+4qOPPuJ//ud/AKioqGDGjBnMnDmTMWPG5PeFFBERERlCCthDZMKECdx6663MmzcvL+czTZPnn3+ek046iaKiorycU0TyyzRNmpubWb9+PRs3bqSmpoZNmzbR1NRER0fHnnlSpwvD48Xw+rK3Hh+GxwNuD4bbg+F0ZfdxOMFuz+twbjOVwuzuJNPeSqaliUxjPWZrM7W1tdTW1rJs2TIKCgqYNGkSANOnT8diUWkQERER2X8pYB8g/vnPf3LttdfyyiuvDHVTRGSzcDjMqlWr+Pjjj/n4449Zs2YN3d3d2z7AsIBrc9h1OLK9yBbr5s3I9hibgJnZ3Ju8uXfZZsewO8DhxHA6s6HZ5QaXO/v4jpgZzHgM4jHMXbxWw+3NtnfL+2w2jFAxllAxHDox+1TxXtJ11WSqN5CuqaKzs5M333yTN998k5KSEk466SROOukkJk6cqLnbIiIist9RwD5AmOaufiwWkXxIJBJs3LiR1atX5wJ1bW3twB0NC0ZhCEtRSfY2UIgRCGB4/dlAvI1QaaaSJF99iXTNethcXGyfYrViHT0O++dOw7DZt7mb4XRhGzcBxk3ATKfJ1NeQXr+a9Mb1tLS08Ic//IE//OEPFBcXM3PmTGbMmMGUKVNwu9178WJEREREdo0C9j4gk8nwyCOP8Oyzz1JfX4/D4eCoo47ihhtuYNSoUUB2SPkNN9zACy+8wKpVqxgzZgxXXHEFs2fP5q233uJrX/saALNnz84NPX/33Xe59957+fDDD7HZbMyaNYtrrrmGwsJCAGbNmkVlZSVvv/02//znPykrK+Oiiy7iS1/60pC9FiL7ukgkQmNjI5s2baKuro7q6mo2btxIdXV1rqp2P/4gltJhWErKsBSXYYSKMKzb+NObSm2zBznx6v+SqVqbt+vIu3Sa9IY1mKaJ43OnD/owS/lILBVjsKfTZGo3ZsN2TRWtra28+OKLvPjii9hsNsaPH8/kyZM57LDDGDt2LMOHD8fhcOzBCxIRERHZeQrY+4Ann3ySxx57jNtvv53x48dTU1PD9ddfz2233cbSpUtz+9111118//vf57bbbuPZZ5/l0ksv5Te/+Q3Tp0/ngQce4LLLLuOZZ55h/PjxfPDBB1xwwQV85Stf4T//8z9paWlhyZIlfOMb3+CZZ57Bas0OG126dCnf+c53WLx4MX/729+44YYb8Hq9zJ07d6heDpG9LhKJ8Kc//Yn6+npM08QwDEzTxDRNIpEIXV1ddHR00N7eTjQa3faJ+gp+bSncRSbcRWb96j17Ebtozpw5VFZWsmzZMlasWLHbo2EyVWvp3ckvAixlw3F84ctYxx6KdeyhmKlUtme7egOZuo2kesK5Qmm5YywWioqKKCkpIRQK4fV6GTlyJOecc46Ct4iIiAwZBex9wKhRo7j99ts55ZRTABgxYgRnnHEGK1as6LffvHnzmD9/PgDf//73+cc//sHTTz/NPffcQzAYBCAUCuFyufjVr37FhAkTuP766wEYN24c99xzD1/84hd5/fXXOfnkkwE48cQTufTSSwE45JBDeP/993niiScUsOWg8pvf/IZly5bt9HFGSRnWUWOxFJVCUTHJv67AbNq0B1q451RWVlJRUUFlZSXLly8f6uYA2bnb1tGHYB19SPaLjnAXmcZ60lXryVSvB7Ijf1paWmhpael37MiRIznhhBOGotkiIiIiCtj7glmzZvH+++9z3333UVVVRVVVFevWraOsrKzffjNmzOj3+/Tp03njjTe2es41a9YM+JA5ceJE/H4/q1evzgXsrZ3z1Vdf3c0rEtm/TJ8+fZcCttnSRKqtBSNYiKWoBMuYcViOmpGdX23Pby/qnhoivmzZslwPdl/P/e6wjD1sp4aIA2CzbXXueaanm0xtNZlNtaQb6yHSs93TOJ3O3LQaERERkaGggL0PePjhh3nwwQc555xzmDlzJgsXLuSVV17hT3/6U7/9bJ+q0JtOp7e5pM22PiSbpond/kkBok+fM5PJaJkcOegcc8wxvPTSS7nfTdMkmUwSiUQIh8N0d3fT0dFBW1sbra2t/eZg9/b2Yna0ke5og3UfkwYwjGz17NJhWErLsZSVYwQLd6sqtuOU00kaBunq/BY5W7FiBcuXL9/9cD3IImfbY5pm9rXcsIb0xvWY7a39HrdYLFRUVDB27FgqKiooLy+nuLiYUChEMBjE5/Plpr+IiIiIDAUF7H3AL37xC7773e9y0UUX5e577LHHBnzYXblyJbNmzcr9/u6773L44YcDDPjgPmHCBN5+++1+93388cf09PQwbty4fufc0jvvvMPkyZN374JE9nOGYeBwOHA4HLmigFvTN0y5b9TJunXrWLNmDa2trZhtLaTbWkiv2vxvzOHMFjorKcNSXIoRKsYIFGAM8gstw2bHceqZ2bWlY5F8XCYAZjSCGe7G8AcwPN5dPs/WlukarExnR7a42frVmJ3tufstFgsTJ07kqKOOYtq0aYwfP17VxEVERGSfpoC9DygvL+eNN95g1qxZWCwWXnjhBV566SWKi4v77ffEE09wyCGHcMQRR/D73/+e1atXc8sttwDg8XiAbIguLCzkwgsv5Pzzz+fmm2/m/PPPp7W1lZtvvpnJkyczc+bM3Dn/9Kc/MW3aNE444QT+8pe/8PLLL/OLX/xi7128yH7MYrFQVlZGWVkZxx13XO7+trY2Vq1axUcffcSqVatYu3YtiUScTH0NmfqaLU+A4Q9iBIIYXh+Gx4vhcmfXs7Y7wGbbvN61NRvEP7UZVlt2H7tj0EF9AH8Qyobv5iux8zKd7aSr1pHesBazrTl3v81u55ijj+bEE09kxowZBAKBvd42ERERkV2lgL0PuOOOO1iyZAnnnnsuXq+XadOmcdNNN3HjjTeyadMmhg/Pfvg977zzePzxx1mzZg0TJ07kscceY+LEiQCMHz+ek08+mSuuuIKrrrqKRYsW8eijj/Kzn/2Ms88+G5/Px6mnnsrVV1/db4j4Oeecw8svv8xtt93GmDFj+NnPfpabny0iu6aoqIgTTzyRE088EYBUKsWGDRtYs2YNa9euZcOGDWzcuJF4PI7Z1YHZ1bH7T2qzg9OJ4XRhuD3ZzeMFjxfD48PwbnG7i0O4d4cZi5JpaiBdX0OmbiNmV2fuMYvFwpFHHsns2bM5/vjj8Xp3vSddREREZCgpYA+R1as/WbLn8MMP53e/+92Afc4777x+vx966KFcc801Wz2fw+Hg4Ycf7nffzJkz+/VWb01ZWRk/+clPBttsEdkFfes4jx8/Pndf3/DyTZs20djYSEtLC52dnXR1dRGJROjt7SUej5NIJEilUqTT6X5bIpEgmUySyWSyJ0wlIZXEjPRscy3tHLtjcwh3g9OF4XR90mvusGcDuM2eLT5mtYJ1c0+61YphsW7uVbdklyXrW5osk4F0CjOZhN4YZjSK2dNNpqsDs70VM9w94DU58sgjmTFjBoWFhRx99NG5kTgiIiIi+ysFbBGRIbDl8PJd1VeMLRaLEYlE6Onpobu7m87OTtrb23Nrd7e2ttLW1kZbWxvxeBySCcxkArO7M38XNAijRo1i6tSpHHXUUUyfPh2v10s0GmXVqlV7tR0iIiIie4oCtojIfmrLYmzBYHCH+5umSTQapaOjg46ODrq6ugiHw4TDYSKRCNFolFgs1q/3PJFIEI/HSSaTJJNJUqlUbstkMrlijDabDbvdjtvtxu/3EwqFKCkpYfjw4YwePZpx48bh9/v39EsiIiIiMqQUsPcTWw4pz5e//vWveT+niOy7DMPA6/Xi9XoZOXLkUDdHRERE5ICjBY9FRERERERE8kABW0RERERERCQPFLBFRERERERE8kABW0RERERERCQPFLBFRERERERE8kABW0RERERERCQPFLBFRERERERE8kABW0RERERERCQPFLBFRERERERE8kABW0RERERERCQPFLBFRERERERE8kABW0RERERERCQPbEPdABGRA10ikaClpYXm5mZaW1tpb2+nvb2dcDhMOBwmFosRj8dJJpO5Y2w2G06nE4/Hg9frJRgMUlBQQGFhIcXFxRQVFVFaWorX6x3CKxMRERGRLSlgi4jsJtM06erqoqGhgcbGRjZt2kRDQ0Nua2trwzTNPfLcHo+HkpISSkpKKCoqori4mFAoRGFhIYWFhfj9fnw+H16vF4fDgWEYe6QdIiIiIqKAvU+ZMGECt956K/PmzeOBBx7gueee469//etQN0vkoNcXoJubm2lqaqK5uZnm5mYaGxtzWywW2/5JrDYMXwDD58fweDHcXgy3G8PpArsDw2YHqxUwwMxgZjKQSkIygRmPY/bGMGOR7BbpwYz0QLyXaDRKdXU11dXVO7wOi8WCy+XCbrfnNqvVimEYWCwWrFZr7tZqtWKz2XI96S6XC7fbjcfjwe/34/f7CQQCFBYWEgqFCIVCuN3u/LzgIiIiIvspBWwROehtOYT701vf/YlEYofnMbw+jEABhj+IJVCQ+9nwejEz5k71Hg9mTzOZxIxFINKTDd7RCGY0itnbt/VCIg7JbNszmQzRaHTQbdhZHo+H4uJiSktLKSkpoaysjLKyMoYNG8awYcMoLCzEYlHpDxERETlwKWCLyAEvFovlAnNTU9OArb29fXAncnux+AObe6IDGP4AFn8QIxDE8AUxbP3/pJqpJIlXV5CuXg/p1B64sj3IYsFSPAzrhCMwMDFTKUjEMTdv9PZmQ3wsmg35ySTRaJSamhpqamq2ekq73d4vcJeXl1NYWEg0GmXEiBG43W4NYRcREZH9mgL2fmLNmjXcfffdvPPOO8RiMcrKypg/fz6LFi0C4IEHHuDtt9/m6KOP5r/+67+IxWKcddZZXHzxxdx44438/e9/p7S0lMWLF/O5z30OgE2bNnHnnXfy97//ne7uboqKijjrrLO4+uqr1csk+zzTNIlGo3R3d9PZ2UlnZ2eueFhraystLS20trbS2tpKT0/Pjk9osYI/gOH1Y/gCWLy+7HBur3/zsG4fhtW6nQZlMJP9e7kTry4nXbV2N690iGQyZJo3YXi9OD43Z4e7m4kkZiyM2RPBjHST6QljRsKY4S7MSBh6wiSTSerq6qirq9vqOVwuF6WlpZSWllJcXJwr5hYKhSgoKMhtLpdLQVxERET2SQrY+4FYLMaiRYs44YQT+O///m+sVivPPPMMt99+OzNnzmTSpEkA/Otf/6KoqIjf/OY3vPPOO/zoRz/ilVde4Qc/+AHXXHMNd955J9deey1vvvkmhmFw8cUXU1JSwq9//Wu8Xi+vvPIKt956K9OnT+fUU08d4quWg8FHH33Eo48+OvgeZLLDnGOxGD09PaTT6fw1JpOGrg7Mrg5MIJO/M++2OXPmUFlZybJly1ixYsUeK5i2NemqtcT29JcEFgtkMvT29m63B7yPzWbD5/Pl5nxvK2wPHz6cb3zjG4wbNy7vTRYRERHZGgXs/UAsFuNrX/sa8+fPzy3Jc/nll/Poo4+yevXqXMDOZDLcdNNN+Hw+xo4dy5133slxxx3H2WefDcBXv/pV/u///o+WlhYCgQBf/OIXmTNnDuXl5QAsXLiQRx55hNWrVytgy16xZMmSnQrXg2IYYLPn5h0fCCorK6moqKCyspLly5cPdXPyzlJSjmNuJUTCZLo6yDTVk2naRKalEVIDh9anUqncqIXt2bRpE4lEgrvuumsPtVxERESkPwXs/UAoFOL888/nj3/8Ix999BE1NTV8/PHHQDZU9ykqKsLn8+V+93g8jBo1Kve7y+UCsgWdXC4XCxYsYMWKFXzwwQdUV1ezevVqWltb+51TZE9asGAB999/f35Papr9w7XNDpuHelt8/k8qefuC2Vu3lz012jhfQ8SXLVuW68E2DGOv9mBbxx42qCHig2WmUpg9XZjhbjLhbsxIN2ZPmMSL/02mpxt6d1CNfSd94QtfyOv5RERERLZHAXs/0NLSwle+8hVCoRCzZs3ixBNPZMqUKZx88sn99rPb7QOO3dZc6mg0yoIFC+jt7eWMM87gnHPOYerUqcyfP3+PXIPI1nz+85/n85///KD2NU2TZDJJJBIhEonQ09NDOBymq6uLrq6ufnOw29raaGtrIxwOZ5e66mzH7GxnqwPKLdZs0PYHMLyB/kXM+uZg23btT6XjlLkkjN0vcrZixQqWL1++d8O11YZ19Dgcnzsju4TYIJnJRHbudU94c4juwuzpxgx3kenuglhkh+dwu925db37tr7518FgkEAggM/nw+fz4fF4sO3ifx8RERGRfNOnkv3AH//4Rzo7O/nf//3fXIhevXo1wC5/2H799df58MMPeeONNyguLgags7OTtra2vdo7JjJYhmHgcDhwOBwUFhYO6phYLJZbZqulpSW3hnVjYyNNTU20tbWRyaQxuzsxuzsBth7C3R4suZ7vvgriwWwY9wcxHM6tt9lmx3nqWdle20EEy20xoz1kwt3Z5/P4dnzAzpzbNMHMQMbM9v6bJmBiOJ2AJbv0VyqZrSKeTGQriPety52rIh7FjH6yNveOeDyeXCXx4uJiTNNkypQpVFRUUFZWhtfrVREzERER2S8pYO8Hhg0bRiwWY8WKFXzmM59hw4YN3HrrrQCDWpt3W+cE+J//+R9OP/10GhoauOeee0gmk7t8TpF9jdvtZtSoUf2mSmwplUrR2trab/muLcN4S0sL8XgcYlEysSi0NG79iZyuT5brChRk18D2F2R/39wDbviDu34h/iDWshHbfDjba9yT7TmO9GRDcSyCGYthxmO55bVIJjFTyWxvejqTLey2B3g8nn7rYG+5NNewYcPw+/25AB2NRlm1ahWTJk3C4/HskfaIiIiI7C0K2PuBM844gw8//JDbbruNnp4eRowYwZe+9CVeeeUVVq5cyVe/+tWdPufUqVO57rrrePzxx/nZz35GWVkZc+fOpby8nJUrV+6BqxDZ99hstlzo2xrTNAmHw/2C96fX0u7q6oJ4L5l4L7Q2DTyJxbLFkPMAhs+H4fFjeDwYLg+G0wV2R3YYutWaLdJmmpBOf9JrHO/F7I1BbzQbniM9ZCLh3FDswfQa7+rrY7PZcDqduFwu3G43Ho8Hv9+Pz+cjGAxSUFBAKBTKDeUuKSnJFWMUEREROdgYpsYDS570BfMpU6YMcUvk09RLuOdEo1GamppoaGgYsDU2NpLaShXsPcHtdufWjg6FQhQWFlJQUJCbr+z1enG73TidThwOB3a7HZvNhtVqxWKx5La+361W614Zpq33puyL9L6UfZHel7IvOljelzuTc9SDLSKyGzweD2PHjmXs2LEDHkun07S1teXmfDc3N9PW1kZraysdHR2Ew2HC4TDRaHSra3rbbDZcLleutzgYDBIKhSguLs71FpeUlFBaWqpeYxEREZF9gAK2iMgeYrVaKS0tpbS0dIf7ptPpXP0DwzCw2+1YrdY93UQRERERySMFbBGRfYDVasXtdg91M0RERERkN2x9kWQRERERERER2SkK2CIiIiIiIiJ5oIAtIiIiIiIikgcK2CIiIiIiIiJ5oIAtIiIiIiIikgcK2CIiIiIiIiJ5oIAtIiIiIiIikgcK2CIiIiIiIiJ5oIAtIiIiIiIikgcK2CIiIiIiIiJ5oIAtIiIiIiIikge2oW6AiMiBJJPJkEqlSKfTmKaJYRgYhoHVasVms2EYxlA3UURERET2EAVsEZEdyGQytLa2Ul9fT0NDA01NTbS1tdHe3k5XVxc9PT1EIhFisRjJZHK757LZbDidTpxOJy6XC7fbjcfjwev14vP58Pv9+P1+gsEgBQUFFBYWEgqFCIVCuFyuvXTFIiIiIrIrFLD3ggkTJnDrrbcyb968PbL/p0WjUZ577jnmz5+/S8eLHMyi0Sjr169n3bp1bNiwgQ0bNlBTU0M8Hs/L+VOpFKlUikgkstPH+nw+SkpKKC0tzd0OGzaMsrIyhg0bRkFBgXrIRURERIaQAvYB6Fe/+hXPPvusArbIDiQSCaqqqli9ejUff/wxa9asoba2FtM0B+5ssWD4CzAChVj8AQyvH8Pjw3B5wOXGcDjBbsew2sFqAcMCfWHXNCGTgUwaM52GdAqSScxUEpIJzEQ8exvvxYzHMHtj0BvFjEUxoxHMWARSSXp6eujp6aGqqmqr1+N0Ohk2bFgudJeWlua24uJiQqEQNpv+7IuIiIjsKfqkdQDaajgQOcglEgk2btzIunXrWLt2LWvWrKGqqopUKjVgX8Prx1JchlFUhqWoFEthMUagEMPySV1IM5XCjPX0P9A0MVMJGHjK/iwWcDoxnM7s8+1gd9MEknHMWBQiPZjRMJlID2YknNuIRYjH41RXV1NdXb3V8xiGQSAQIBQKUVBQQDAYJBAI5Iane71e3G43LpcrN4zdbrdjt9txOBy5n202GzabDYfDgdVq3UHrRURERA4eCthD4NVXX2Xp0qWsXbsWr9fLmWeeyZVXXtlvfuWGDRs477zz+Pe//01FRQWXX345c+bMASAWi/GTn/yEV199le7ubsaNG8cll1zCaaedxgMPPMDPf/5zIDvU/JVXXmHkyJH84Q9/4NFHH6W+vp4RI0Zw3nnnccEFF2CxWKirq2P27NlcddVVPPnkk7hcLl544QV8Pt+QvD4iu8o0TTo7O2lsbKS+vp7a2lpqa2vZuHEjmzZtIpPJDDzI6cZSWo6lpBxrSfbW8Hi3/RypJIlX/0y6em22J3pfZLFkvxAIlUC0B7OnGzPSg2lm6OrqoqurK49PZckFcKfTicPhwOVy5eaXu91uvF4vHo8Hn8+XC/J+v59AIIDNZqOnp2erX3SIiIiI7G8UsPeyl19+mcsvv5zLLruM22+/nQ0bNnDjjTdSW1vL0qVLc/s98cQTLF68mFtvvZUXXniBK6+8koqKCo444gjuu+8+Vq9ezcMPP0wgEOCZZ57hyiuv5H//939ZtGgR0WiUP//5zyxbtoxQKMTvfvc77rnnHm644QamTp3KRx99xM0330xTUxPXXHNN7jmfe+45nnjiCWKxmMK1DLl0Ok08HicWixGLxYhGo0QiEcLhMOFwmLa2tlxYbG9vp62tjba2NhKJxLZP6nRhhEqxFJVhKS7FUjwMwxcYMG/ZTG77HIlX/0S6anW+LnPPyGQwO9uwFBbjmPNlYPPIlt4YZrQnO/S8N5odkt4bg0QvZiIBiXh22HoqkR3KnkpCKgWZNKTT2dtPfUmRyWSIx+PE43HC4fBuNdvr9RIIBHJbMBjMFX0LBAK5gO73+3Oh3ePx4HK5sFi06qSIiIgMPQXsvezhhx/mP/7jP7jkkksAGDt2LKZp8t3vfpd169Zx6KGHAnD++edz3nnnAXDFFVfw97//nccff5y77rqLmpoavF4vFRUVBAIBvve973HMMccQDAZzHzqtVislJSUALF26lIsvvpgzzzwTgIqKCnp6erjpppv43ve+l2vb+eefn3t+kZ2VSCR4/PHHWbZs2VA3ZdvivZgNNaQbakgPdVs2mzNnDpWVlSxbtowVK1bkdYpHumo1sX39y4AtRCIRIpEIDQ0Ne+T8gUCA73//+xx33HF75PwiIiIiCth72Zo1a3JBt8+xxx6be6wv4H7mM5/pt8+0adP4+9//DsC3vvUtvvOd7zBz5kymTp3KCSecwFlnnYXf7x/wfO3t7TQ2NnLPPfdw33335e7v63Wqq6vDuXke6OjRo/N3oXLQ+eijj/btcL2PqqyspKKigsrKSpYvXz7UzRkSltLh2E88DbOrA7OrnUxne+6WZH6qtwN0d3fzxBNPKGCLiIjIHqOAvZdtrXeqb17oltV9Pz3cMZ1O43A4AJg+fTqvvfYab7zxBm+++SbPP/88Dz30EI8++igzZ87c6rmvu+46jj/++AHPXV5eTnNzM4DW2JXdMnnyZL761a/y29/+dqibkq3qHSjACISwBEMYBSEsoWIM78Dh4Dsr30PEly1bluvBNgwjrz3Y1rETcHzuzB3vOEimaYKZgXQmO2TcTGOmU9mfU6nsz6nU5mHm2c1MJDZXSt9iGHq8FzMZh94YxHvJNG8i/uzjeWvnthQXF7No0aI9/jwiIiJy8FLA3ssmTJjAO++8w8KFC3P3/etf/wJg3Lhxufs+/PBDTj311Nzv77zzDhMnTgTg/vvv5zOf+QyzZ89m9uzZXHfddZx55pn87//+LzNnzuwXIIqKigiFQtTW1vbrof7zn//Myy+/zO23///s3Xl8XHWh///XObPPZLLve7eEIggoiAqyFL2IgGxVUZYLuKGCG4ogUqGIbAICisjiAqjfe6kgbu0PBFxQLygFLNC96ZY2eybJZDLbOef3x3SGpE33SZPS9/PxOI+ZnDnncz5nMpS857PdMlG3KgcYr9fLxRdfzMUXX5yX8hzHIZVKEY/Hc2Ows8tUDQ0NMTg4yMDAAP39/fT19dHT00NXVxexWCwz1jg+gtO1mTEjhr2+zKzgZVWYFdWZCc2KSncrdHtPPI2kYeZtkrNFixaxcOHC/IZrlxtX0yy8J3wIw+0BwLGtzJJfsWhm2a+RWOY9io/gJOOZ4JtMbFk+LJkZe22lcbY85sZhTxDTNMeMvx69Zcdhh8PhMROlZYfEeDyeCauXiIiIyO5QwN7HPvWpT/GlL32Je++9l1NOOYW1a9dyww03cOKJJ44J2D/72c9obGzksMMO4//9v//HihUruP322wHYsGEDv/3tb7nhhhtobGzk1VdfZdOmTRxxxBEABINBBgYGaGtro76+nk9/+tPceeed1NbWctxxx7F8+XKuu+46TjrppFyruMhUYxgGXq8Xr9dLYWHhLp8XjUbZvHkzmzZtys0ivm7dOtavX086mcDevAF784Y3T/D4MCszYTu7GaHwdkO34fbge/8Z4y/TtQecWBR7aAAzXIQR3PPJBZ1UKrNc1/AQdjIBsSjJ536PEx3Ejg7CyPBe13Vr2d/RzmYRDwaDuUA8eqKycDiMx+Nh8+bNHH744YRC25+9XURERGR/oIC9j5188snccccd/OhHP+Lee++ltLSU0047jS9+8Ytjjvv85z/PI488wrXXXsvMmTO5//77mTZtGgDf/va3ueWWW/j6179OJBKhrq6Or33ta5xxxhkA/Nd//Rf/+7//y4c//GEeffRRLrnkEnw+H4888gg333wz5eXlfPSjH93mmiJvBQUFBcyaNYtZs2aN2Z9Op1m/fj2rVq1i1apVrFixgtWrV5NIJLDb12G3j1o7OhDELK/OtHaXVma6lxeVYrje/CfTcLsxwsV7X+FwMa6q+h0ekpkBPIYzPIQdHcIZHsQZGsSJDuAMDWAPDUA8ttNLuVwuSkpKxqyDPbpVODsrd3YN7Gxg3noN7OzzfKyBHYvF6O/v3+uu+yIiIiJTgeHkc8CfHNCWLFkCwKGHHjrJNZGtxWIxli5dyuzZswkGg5NdnSnDsizWrl3LsmXLWLFiBcuXL2ft2rXjr5dtGJklvQqLMQqKMq3cwQKMQBDD58fw+sDjBbcHw3SBaYIBOMCWscuOtaWbtbVlnHIqmVkSLJXMdM9OxHNLZznxWKYb98gwTmw4M/Z5J8LhMJWVlVRXV1NVVUVVVRWVlZVUVFRQUVFBUVHRlFvOSp9NmYr0uZSpSJ9LmYoOlM/l7uQctWCLyAHL5XIxY8YMZsyYkZvdP5FI0NbWxsqVK2lra2PNmjWsW7eO4eFhnKFMi/FkKSkpoby8nIqKilx4rq6uzgVqrV8vIiIiMrkUsEVERvH5fBx00EG5SQUh00U7EomwceNGOjo66OzspLe3l76+PgYGBhgaGmJ4eJh4PE4ikcDazmRg2e7V2fHKgUAAv99PMBjMTdyVndSrqKiIoqKiXJfukpISTeYlIiIiMsUpYIuI7IRhGJSUlFBSUrJLXYNs28ZxHCzLwjAMTNPENE2NMxYRERF5i1PAFhHJs+w453xMAiYiIiIi+4+pNduNiIiIiIiIyH5KAVtEREREREQkDxSwRURERERERPJAAVtEREREREQkDxSwRURERERERPJAAVtEREREREQkDxSwRURERERERPJAAVtEREREREQkDxSwRURERERERPJAAVtEREREREQkDxSwRURERERERPLAPdkVEBHZ36TTaXp6eujv72dwcJDh4WESiQSpVArbtgEwTROXy4XH48HtduPxeMZsLpcLt9uNy+XC5XJhmmbunOxr2fN8Ph8ul2uS71pEREREdkYBW0RkOxzHoauri2XLlrFq1SrWrFnDhg0b6OrqygXpfcXj8RAMBgmFQhQWFlJcXExpaSnl5eVUV1dTU1NDXV0dRUVFGIaxT+smIiIiIhkK2FNYa2srN910E2efffYuHb9p0yZefvllTj311Amumchb1+bNm3nllVd45ZVXWLJkCT09PeMfaLowggUY/gB4/RhuN7jckA23jgO2BbaFY9lgp8GywLJwtuzHtsG2cRwn89yxR5235fkWqVSKgYEBBgYG2LRp03brX1hYSGNjI9OnT2fGjBnMnDmTpqYmvF5vPt8mERERERmHAvZbyDe+8Q3q6uoUsEV2w/DwMK+88govvfQSixcv3ja8miZmaSVmZW3msaQCo6gkE64nuKXYcRyw0pBO4aRSkErgJOI48RjOSAxneAhneBB7aABnsB8nOsjg4CCvvfYar732Wq4ct9vNtGnTaGlpyW2NjY14PJ4Jrb+IiIjIgUYBW0QOKCMjI7zxxhv85z//4ZVXXmH58uVju3sbBmZVHa7aZly1TZiVdRjjBFEnncYeie7DmgMeL4bHi1FQOO7LTiqNPdSPExuGSC9Wbyd2TwfpxAgrV65k5cqV/OEPf8gU5fHQ1NTE9OnTaW5uprGxkfr6eqqqqjTeW0RERGQPKWDvR/785z9z7733snLlSkKhEKeeeipf+cpX8Pv9XHDBBbz44osAvPjiizz77LPMmTOHs846i8svvzxXxuh9lmVxxx138Pvf/57e3l7q6+v57//+bz7+8Y9P1i2K5FUymWTdunWsXr2alStXsmzZMlavXr3N+GmjqBRX/bTMVtuM4fVtt0wnlSLxl99jrV2RaV2eilxuXM0t+E/+CLjdONEB7K7N2N2bsXoyj6lkglWrVrFq1aoxp5qmSXl5OWVlZRQXF1NYWEggEMDn8+HxeDBNE8dxsG2bVCpFMpkkkUjktng8TiKRIJlMkkqlsCwr935nJ33z+/0EAgGCwSDBYJBkMklbWxvV1dWUlZVRXl5OaWmpgr6IiIjsdxSw9xNPP/00X/ziF7n88su55ZZbWLNmDddddx0bNmzg3nvv5Z577uHSSy+lurqaefPm7VKZv/zlL1m0aBF33nknVVVVPPfcc1x33XXMmjWLI488coLvSGTPOY5DIpEgGo0yNDREJBKhr6+P3t5eOjs72bx5M5s2baKjo2PcyciMgkLM6kbM6vpMK/VWLcJOKrndayee+x1W27K831NeWWms1W+QsG18J56O4Q/iapyBq3EGHjLvnxMdwO7twu7rxo70YA/0wUA/tm3R1dVFV1fXPq3yM888M+Zn0zQpKSnJhf2ysjJKS0spKSmhpKSEwsJCCgsLKSgoIBQKaYy5iIiITAkK2PuJ+++/nw984AN8/vOfB2DatGk4jsMXvvAFVq1axcyZM3MtQ6WRVlCjAAEAAElEQVSlpbtU5vr16wkGg9TX11NZWcn555/P9OnTmTZt2kTeisgue/7555k/f/7eFeILYJZVYpZX46qszXT5Ligk/uTDpFa9Rio/Vd1jp5xyCnPnzmXBggUsWrQoM+46T6y2ZcSm4JcBRnEZ7sPejZFM4CRGMuPJR4ZxYtHcZts2vb299Pb27lbZHo+Hm266ibe//e0TVHsRERGR7VPA3k+sWLFim8nL3vWud+Vemzlz5m6Xed555/GnP/2J448/ntmzZ3PMMcdw6qmnUlZWlpc6i+ytp556ao/PNSvrcE1rwVXbnJmYbNQ4asdxYIqsZDV37lwaGhqYO3cuCxcunOzq7BOGP4Cn9bAxk8Q5jgPJRCZcRwexezqwu9qxuzbhxHZ9rHsqleKFF15QwBYREZFJoYC9nxivVSvb9dXt3vVfYzr95pjR5uZmnnrqKV588UX+/ve/8+c//5kHHniAm266ibPOOmvvKy2ylz7zmc/g9Xppb28HMv8dZEOZ4zhYlsXQ0BADAwNYljXm3Ew4a8+0UBsGRkk5rorazARm1Q34Tr8AYw/GUOe7i/iCBQtyLdiGYeS1Bds17SB8J56+0+Mcx8m0IA/0Y0cjONEhnNgQTnwEJxHPzF6e3rK0mGMDRmY5MpcLw+UClwfD7QG3G9yezJJlbndmKTPDlfkywwEcB2fLcmWJZ34DyXjmGvFMCzbpXf99BAIBCgsLCQaDGIaRe++ampr48Ic/vKdvmYiIiMheUcDeT7S2trJ48WIuuuii3L5///vfAMyYMWPcczweD9Homy0/0Wh0THfLhx9+mLKyMk499VSOOeYYrrzySi6++GL++Mc/KmDLlFBfX8+3vvWtnR7nOA6Dg4P09PTQ1dVFR0cHGzduZP369axdu5aBgQGcvm7Sfd2w/NXMSYEQrtqmzNYwHTNcvEt18p34YRKmmbdJzhYtWsTChQvzG663THLmO/60bWZAd9Ip7L6uTAtxT2fmeX8PJBN7dClnq8e9FQqFcuOuKyoqxh2DXVxcrDHXIiIiMiUpYO8nPvWpT/GlL32Je++9l1NOOYW1a9dyww03cOKJJ+YCdigUor29nY6ODqqrqzn88MP54x//yMknn0xhYSF33333mFl5+/r6+OEPf4jf7+eggw5izZo1LF26lAsvvHCyblNkjxiGQVFREUVFRdt84eQ4Dr29vaxYsYJly5bxxhtvsGzZMpIjw1ir38Ba/UamjKJSXHXTcDVMw1XThOHzj38tjwf/+8/CSadx8rBMlxOLYg8NYIaLMIIFe10egBEowHC7cdJprK5N2FtmDre7N2P3dcM4Qd40Taqrq6murqaqqio3i3g4HCYUCuHz+XC73ZimCYBlWaRSKVKpVG7m8NEziSeTSdLpNOl0Gtu2MU0T0zTxeDx4vV5CoRDBYBCfz0dfXx+HH344NTU1BAKBvLwHIiIiIpNBAXs/cfLJJ3PHHXfwox/9iHvvvZfS0lJOO+00vvjFL+aOOffcc/nGN77Bhz/8Yf75z3/y1a9+lUgkwsUXX0w4HOaSSy5hcHAwd/xll11GKpXiO9/5Dt3d3VRUVPDxj3+cz372s5NxiyITwjAMysvLKS8v573vfS+QWb5r2bJlvPLKK7z88sssXboUe6CP9EAf6TdeyqyFXVGTmWG8ugFXVR2GPzi2XLcbYxdbvXcoXIyrqn6vinCsNM5gBHugF7u/NzMzeF8XTqQHxplFvaioiFmzZjFz5kymTZtGc3MzdXV1k9IqHIvFWLp0KdXV1QrXIiIist8znHwO+JMD2pIlSwA49NBDJ7kmsrVsiJk9ezbBYHDnJxxghoeHeeWVV1i8eDGLFy/OjfkezQgXYZZVYZaUYxSVYhYUYYTCGP4AeP0YW1p2x+PYdqY7uWXh2BZYW8Yz2zbYNo5jZ1qV7exj5rXcsekUTjqVmQQsO245tmXW7eFBnOGh7V67qKiImTNn0tLSwqxZs2hpaaGiomLMBGOTSZ9NmYr0uZSpSJ9LmYoOlM/l7uQctWCLyAEvFApxzDHHcMwxxwDQ1dXFq6++yn/+8x9ef/11Nm7ciDM0gDU0kBl7PR7TBS5XZvIveDMw29a4XbLzLRAIUFdXR0NDA83NzTQ3NzNjxowpFaZFRERE3uoUsEVEtlJZWckHPvABPvCBDwAwNDTEqlWrWLt2LevXr2fz5s10dXXR19dHLBbLnGRvaZXeCcMw8Hg8uN1uXC4XpmmOeRz9PDte2ev14vf7CQaDFBQUUFhYSHFxMaWlpVRUVFBVVUVRUZGCtIiIiMgkU8AWEdmJcDjMEUccwRFHHLHNa+l0muHhYRKJRG5CLyAXkt1uNx6PJ7e5XC4FYREREZG3KAVsEZG94Ha7KSoqmuxqiIiIiMgUsP1ZeURERERERERklylgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBe7IrICKyP7Ftm3Q6TTqdxrIsbNvOvWYYBi6XC7fbjcfjwTT1HaaIiIjIgUQBez/y+OOPc/XVV7N8+fI9On7OnDmcddZZXH755RNZTZFJlU6nSSQSuS0ej+cet34+MjIy5nG8faPLSqVSpFKpXa6Lx+PB7/fj9/sJhUIUFBRQWFhIUVERxcXFFBcXU1ZWRllZGRUVFZSVleFyuSbw3RERERGRiaSAfQBZsGABPp9vsqshMoZlWQwPD4/ZYrFY7jG7jYyM5B6zWzYUjw7C6XR6sm8pJxvIh4aG6O7u3unxpmlSVlZGVVUV1dXVVFdXU1NTQ21tLTU1NZSUlGAYxj6ouYiIiIjsCQXsA0hpaelkV0HeQhzHIR6P58Lw6EC8dTgeHZqzWzQaZXh4mEQiMXGVdLkzm9uD4faA2w0uD4bbveVnz6hHN7h9GJ7M8ZnNi+Fyg9udeXS5MVwuMF1gmmCYYBiZLfOmgG2DbYFt46RTGB5P5nkyAYkRnMQITjyGE4tijwzjxIZwhodwhgexbZvu7m66u7t57bXXtrkdv99PbW1tbquurs49VlZW4nbrn3QRERGRyaS/xnZBa2sr8+fP58knn2TJkiXU19dz4403snLlSn70ox8xODjIcccdx80334zf7wfgscce4+GHH2bdunWYpsnBBx/M1VdfzaGHHgpkumufd955vPLKKzz//PN4vV5OP/10rrrqqtwfyU8//TR33303a9eu5dBDD+W9733vmHrF43Huu+8+fve739HV1cX06dP5/Oc/z8knnzzufYzuIn7PPffw0ksv8d73vpdHH32U/v5+DjvsMK6//npmzJgxge+mTCXJZJJoNEo0GmVoaCj3ODQ0xPDwcG5fNgxnH7NhefT4473m9mB4feD1Y3h9GB4feH2ZfS431ua1OJE+cHbjmlY6syXjOKN2O9s9YQK43LibW/Edf0YmbG+H4zg4sShOdAB7KIIz1I892I8zGMEe7MOJDhCPx1mzZg1r1qzZ5nzTNCktLaW6upqKigoqKiooLy+nrKyM0tJSSkpKKC4uJhAIqBVcREREZIIoYO+iO++8k+9+97s0Nzdz1VVXcemll3LIIYdw//3309bWxhVXXMFjjz3GBRdcwNNPP838+fP5zne+w5FHHkl3dzc33HAD3/rWt3jyySdzZd5111187Wtf48orr+TFF1/kmmuu4ZBDDuHMM89k8eLFXH755Vx22WWceuqp/Pvf/+aGG24YU6evfvWrvPHGG1x33XU0NTXx+9//ni996Uv84Ac/4P3vf/9O7+nf//43Pp+P+++/n1QqxZVXXsn111/Pww8/nPf3T/ae4zhYlkUymSSVSuXGBI/uJp0dO5zdsmE4EonQ2dmJYRiMjIzkgnTeWo9Hh2GPD8PjxfD6wevB8Pi3BOfMPsM96vnoIL2Dscfx536D09+Tn7rua1aa9OrXcWwb/4ln7vBQw+vDKK3ELK3c5jXHSmfCdzZwD/Vnng9FYCiCbVv09PTQ07Pj98ntdlNUVERBQQGhUIhQKEQwGCQQCBAIBPD5fPh8PjweDz6fD7fbnZu0zeVy5TbTNDFNM/fcMIzcvuxzwzDw+/25/aNfc7lcGIZBIpHIfWEzuozRx4uIiIjsLxSwd9E555zDnDlzADjjjDOYP38+8+bNo7m5mZaWFh588EFWrlwJQHFxMTfeeCMf/vCHAairq2Pu3LnMnz9/TJnHHnssF154IQANDQ088sgjLF68mDPPPJNHH32Ud7zjHVx22WUATJs2jRUrVuTC7+rVq3nmmWe47777OOGEEwC4/PLLWbZsGffdd98uBex0Os2tt95KUVERAOeeey633XbbXr5Tki///Oc/+fa3v71vLubzY/gCW0KxH7u3AxIju35+KgGpBM5w5sd92kI8QU455RTmzp3LggULWLRoEY6zd3dltS1luG1pnmq359LpNL29vfT29k52VfaJj370o3zqU5+a7GqIiIjIAUIBexc1NTXlngcCAQAaGxtz+/x+P8lkEoCjjjqK1atX88Mf/pA1a9awbt06li9fvk132q27YofD4dwMxStWrOCYY44Z8/oRRxyRC9jZmcHf+c53jjnmqKOO4o477tileyovL8+F662vL5NvyZIlE1e4L4AZLsYsLMUIF2H4gxhbQrbj9ZP6v6ewdydgvwXNnTuXhoYG5s6dy8KFCye7OrKHnnvuOQVsERER2WcUsHfReJMHbW+N29/97ndcddVVnH766bzjHe/g3HPPZcWKFdu0YHu93m3OzbaSGYaxTSD37GD85ujzd3Wio/GuL1PHeeedR2lpKT09PTiOg2EYYx7T6TTJZHLMslOju4hnJxgbd5x0YgQ7MYLds3nXKuPxZVq5s13As927vV7wjH6e6fJteL2Zbt+eUV3A92JN6Phzv8Hax62/CxYsyLVgZ9/zveGaNnunXcR3leM4OCPDOIP92NFIZpx2NII9NIAzPAjDg5kJ1/aA2+3G5/Ph9XrxeDx4vd5tuohn1/se3UV8vO7h2dez52zd/ds0TSzLoq+vj9LSUjweT+betvq8A9t8/rPvw9b7Rx/v9Xo57bTT8vKei4iIiOwKBewJcP/99zN37lyuv/763L5nnnkGYMwfgDty0EEH8fLLL4/ZN3pW4dbWVgBeeuklTjzxxNz+f//738ycOXOv6i9TQygUYu7cuXtVRnam756eHpYsWUJVVRWpVCo3cdnoSc3G+znbKyPXBTxb7p5UJjeJ2ZsBPTeh2Tg/Z8d0Gx4f3nd/gCRgrV+ZmbRsH1i0aBELFy7c+3C9i5Ocbc2xrMzM4oN9OAN92IPZSc8yz0nvuLeJaZqUlJRsM8lZUVERhYWFFBYW5tbmDgaDBINB/H7/Pl+HOxaLsXTpUmbPnk0wGNyn1xYRERHJNwXsCVBTU8PixYt5/fXXCYfDPPvsszz66KNAZtbmXVmL+pJLLuEjH/kIt9xyCx/96EdZsmRJrgzIdC8/8cQTuf766zEMg6amJv7whz/wzDPP8P3vf3+ibk32M4ZhEAgEcmsr726IGT3L+OhZxLe3ZvXox+wka7mQnk7hpFMQi+7dGO0ty2fh2bK0lsu75dGdW4rLcHvAdGeW3HJ5cq/j9rz5s9ubW5LLcG0pb1Qrux0bwhkawAgXYQbDe1xdI1CQud4ojmXhxIdxYtllugaxo4OZx6EITnQAJzqww1Zo0zSpqKigpqaGmpoaqqqqcltlZSVlZWX7PCyLiIiIHOgUsCfAtddey7x58zj//PPxer0cdNBB3HrrrXzlK19hyZIlHHnkkTstY/bs2TzwwAPcdtttPProo8yaNYtLL72U733ve7lj7rjjDu644w6uueYaBgcHaWlp4Z577uEDH/jARN6eHEC8Xi+lpaV7tYZ6KpXaZk3sXQ3r2ecjIyNvtiKnU5ktzt61qI/H5QKPF8PtxfB4M+Hb431zLe0ta2JjujJhfLx1sB0bLAvHtiCdxkklM63/yQROMo4Tj0Fy12Zv93q9VFdXU1NTk1v7uqamhrq6OiorK3dp2IiIiIiI7DuGs7cDC0W2yE7KlV3rW6aO/b0bbrar++glyGKx2Jjx59nn2cdkMjnu/tHnZMvK63reu8g0TYqLiyktLaWsrCy3dnW2Fbq6upqSkpLtzvXwVrG/fzblrUmfS5mK9LmUqehA+VzuTs5RC7aITHnZru7ZGfzzyXGcMeuJj4yMjHkcHdZTqRTJZJJ0Ok06ncayLGzbzrWuZyfu8ng8uS1b7+x45+z453A4/JYPzyIiIiIHGgVsETmgZWeb9nq9FBYWTnZ1RERERGQ/puYTERERERERkTxQwBYRERERERHJAwVsERERERERkTxQwBYRERERERHJAwVsERERERERkTxQwBYRERERERHJAwVsERERERERkTxQwBYRERERERHJAwVsERERERERkTxQwBYRERERERHJAwVsERERERERkTxQwBYRERERERHJA/dkV0BEZKoaGhqivb2drq4uurq6GBgYYHBwkFgsRjKZJJ1OY5omLpeLYDBIKBSiqKiIsrIyKioqqKmpoaqqCrdb/9SKiIiIHAj0V5+IHPAsy2L9+vWsXLmS1atXs2bNGtauXcvAwMBel+1yuaitraWpqYnp06czY8YMZs6cSXl5OYZh5KH2IiIiIjJVKGCLyAGnt7eXN954g6VLl7Js2TJWrlxJIpEY91gjGMYsLMEIFWIEwxj+IIbXDy43hmmC4+DYFiSTOIkRnPgwdmwIZyiCPdSPlU6xYcMGNmzYwPPPP58rt7i4mJaWFlpaWjjooINoaWmhuLh4H70DIiIiIjIRFLDf4n79619z5513Mjg4yO23385ll13GTTfdxNlnnz3ZVRPZJxKJBKtWrcqF6aVLl9Ld3b3tgR4frvIazPIaXKXVmGVVmEXlGF7fHl/bcRyc4UHs/m7s/k6s3g7sns3Y/d1EIhFefPFFXnzxxdzxVVVVtLa20tLSwqxZs5g5cybhcHiPry8iIiIi+5YC9lvcLbfcwkknncRll11GaWnpZFdHZELF43HWrl3LqlWrWLlyJStWrKCtrQ3btsceaBiYpVW4qhpwVdZjVtZjFpdjGPmd99EwDIyCIsyCImiYmdvvpFPYvR1Y3e1YXRuxu9uxIz10dnbS2dnJX//619yx1dXVTJ8+nenTp9Pc3ExzczO1tbUa1y0iIiIyBekvtLe4gYEBjjzySOrq6ia7KiJ5k0wm2bRpE+vXr2f9+vWsXbuWtrY22tvbtw3TgBEowFWVCdKuqkZcFbUYnt1rmXbSKZyRaL5uASNYgLupFXdTK0agACwrE7h72rG72rF6NuMM9dPR0UFHRwf/+Mc/cue6XC5qamqoq6ujtraW6upqqqqqqKiooLy8nKKiIkxTi0SIiIiI7GsK2PtQa2sr8+fP58knn2TJkiXU19dz4403snLlSn70ox8xODjIcccdx80334zf7wfgscce4+GHH2bdunWYpsnBBx/M1VdfzaGHHsrPf/5zvv/97/OPf/yDQCAAgG3bnHDCCXz2s59l/vz5AHzzm9/khz/8Ic8++2yuLn19fRx33HF85zvf4cwzz8ztv/322/nHP/7Br3/96333xohsJZVK0dfXR09PT24G746ODjZv3symTZvo6uoaN0gDGIEQZlkNropazPJaXJX1mfHTezihmJNKEv/LE6TXLgMrvTe3tX0uN+7mg/Affxbu+hlvXjsey3Qr7+3A7uvE6u/C7uvCSifZuHEjGzduHL84l4vi4mJKSkoIh8MUFhYSDocJhUIEg0H8fj9+vx+fz4fX68Xr9eJ2u3G73bhcLlwuF6ZpYppm7n0zDGPc93D069nH7HnZMrLlZcv3eDy43W59CSAiIiJvOQrY+9idd97Jd7/7XZqbm7nqqqu49NJLOeSQQ7j//vtpa2vjiiuu4LHHHuOCCy7g6aefZv78+XznO9/hyCOPpLu7mxtuuIFvfetbPPnkk5x++uncdtttPPXUU5xxxhkA/OMf/6C/v58PfehD/Nd//RfHHnss3/zmNzn99NPH1KO0tJQTTjiB3/zmN7mAbds2v/3tb/nMZz6zr98WGYfjONi2vc1mWdYOn2/9aNs2IyMjtLW1YVkWXq8Xx3HGvWY2RGW3bFDaOjSNPmbrOmfrbVkWlmWRSqVIp9Mkk0kSiQSJRIKRkRFisRjDw8MMDw8zODjI4OAgAwMD9Pf3MzQ0tPM3yOPDLKnALK7AVVqFUVKBWVSGGRxnzHI6xfh3vHPx535Nuu2NPTx7F1lp0qtfI27b+E885839LjeuynpclfW5XY7j4MQGsSO92EP92IN9ONEB7GgEZ3gQRoaxLIve3l56e3sntt57yTRNvF4vpmkSCARygd/n843Zsl8GbP2z1+vF7/fnviTw+Xx4PB68Xm8uxI/esl8euFyu3HVFRERE8kkBex8755xzmDNnDgBnnHEG8+fPZ968eTQ3N9PS0sKDDz7IypUrgcwswzfeeCMf/vCHAairq2Pu3Lm5lunS0lLmzJnDb3/721zAfuKJJ5gzZw4lJSW5a4bD4XHHX59zzjl8/vOfp7Ozk6qqKv75z3/S19fHaaedNqHvgWwrGo3y+c9/no6OjsmuytRhujBCYcyC4sw45nBJZjbvcClmcRlGoCAX8B3HIfbkg9id6/dJ1U455RTmzp3LggULWLRo0Xa/sNhd6bY3iE50mB/N68MorsSwLbDTYNuZGdFtBxwbcvflkPmGwsn9ONabOxzHyZyX27aUY1vbXN62beLxOACxWCzfd7dD4XCY+++/n7Kysn16XREREXlrU8Dex5qamnLPs926Gxsbc/v8fj/JZBKAo446itWrV/PDH/6QNWvWsG7dOpYvXz6ma+w555zD5z73Obq6uggGg/zpT3/i7rvv3qW6HHfccZSVlfHkk0/ymc98hieeeIKTTjqJoqKifNyq7IZYLEZXV9dkV2Pq8PozrdKhQsyCIoyCYsxwMUZhCWa4BMPt2eaUfbmk9Ny5c2loaGDu3LksXLhw3104zwyPL9OF3rbAtraEa/vNUJzdcgE7w9kmaI9+cdQ5o4K6Y9tgpXDSqUyPglQSkgnGSev7xNDQEMPDwwrYIiIiklcK2PvYeDP/bq+b4u9+9zuuuuoqTj/9dN7xjndw7rnnsmLFilwLNsCxxx5LeXk5v//97ykuLqawsJBjjz12l+ricrk488wz+d3vfsf555/Pn/70J+666649uzHZK5WVlTz66KO53gvjMQxjTEvp9rqGb/3ctm0SiQQdHR1UVFTgdrtz5Ywub3R3b5fLBbBNt/Ctu4dv3U18627t6XQ6t2W7iMfjceLxeK6LeDQaZWhoiMHBQVKpVKagZByrY9323olMi3ZxGWZxRaabeEkV/pPPw3Dl/5+08bqIL1iwINeCvfXvZW+4px08tov4DjipBPZgP/ZQf2bN7WgEZ3gIOzaIMzwE8eFRLdDbKWN4kPRr/8xH1fPO4/HkuoJnu4GP9/PWXcOz3cOz48pHdxUfraGhgfr6+u1cXURERGTPKGBPYffffz9z587l+uuvz+175plngEyQMQwjF5KffvppCgsLOeOMM3LhaFecc845PPDAAzzyyCOEw+FdDueSf+Xl5ZSXl09I2bFYjKVLlzJ79myCweCEXGNvOY7DyMgI/f399PX10dvbS09PD93d3bnlqzZv3kwsFsOJRrCiEayNq8eUYRQUYZZV48pOclZRhxkq3Kt6+U88h7hpjpnkbNGiRSxcuDB/4XrUJGeGxzvmJSeVzExw1tuB3d+V2SI9mfHWuyAYDBIOh7c7yVk2nGZDaHZSsuzEZDB2grOtx91vb5IzIFfG6EnOTNPE4/HkrmlZFuvXr2f27NkUFRXlQvLu/DsmIiIiMlUoYE9hNTU1LF68mNdff51wOMyzzz7Lo48+CmSWKfL5MssMnX322Tz44IO4XC6uvPLK3brGtGnTeMc73sG9997LBRdcoD9qZdIYhkEwGCQYDG53WTnHcYhEImzatIkNGzawfv161q1bx9q1a+nu7saJDmBFB7DWLX+z3GA4t9Z1ZsKwut1aosvweAm8/2NjlumyY0M4QxGMcPH4k6rtJiNQgOH24CTjpDe1YXe3Y/VswurehDPQx/a6URcVFVFTU0NNTQ2VlZVUVlZSXl5OWVkZxcXFFBcX4/V6xz13qojFYsRiMcrLy6fslz8iIiIiu0oBewq79tprmTdvHueffz5er5eDDjqIW2+9la985SssWbKEI488EoDm5mYOO+wwbNtmxowZOyl1W2effTaLFy/mrLPOyvctiOSVYRiUlJRQUlLC2972tjGvRaNR1qxZw+rVq1m1ahUrV65k/fr12LEh0muXwtql2UIwS6twVTbk1sY2i8sxjB3PKG24PRjhzOSBZrgEqhp3ePzOOFYau7cDq6sdq7sdu2sjdqSH8cJ0aWkp06ZNY9q0aTQ1NdHY2Eh9fT3h8N6HexERERHJHwXsfWj58uVjfj777LM5++yzx+x75JFHcs8bGhr46U9/uk05H/rQh8b87DgOXV1dXHrppTu95tY/A3R0dPCOd7xjj8K5yFRRUFDA29/+dt7+9rfn9o2MjLBq1SqWL1/OsmXLWLp0Kd3d3Zl1pXs7SC39V+ZArw9XeR1mRS2u8lrMsirMojIMMz89OpxEHLu/K9PNu2czVs8m7L7OcWfWrqiooLW1lVmzZjFz5kxmzpw5ZlUAEREREZm6FLD3Y6lUimeffZb/+7//IxaLceqpp+7W+S+99BJtbW08/PDDYyZOE3mrCAQCHHrooRx66KG5fT09PSxdujQXuFeuXEkikcDatAZr0xpS2QNdbszC0kzQLizBDBVhBAsw/EEMrx9cbjBdmVmybRsnmYBkHHskihMbyqxNPdiXGS8dG39d78LCQlpaWmhtbc1tCtMiIiIi+y8F7P2Yx+PhO9/5DgC33Xbbbo9ffO6553j00Uc555xzOOWUUyaiiiJTTnl5Oe973/t43/veB4BlWaxdu5YVK1awcuVKVq1axdq1a4nH47lJxfJ13enTpzN9+nRmzpxJS0sLVVVV20waJiIiIiL7LwXs/dzf/va3PT73a1/7Gl/72tfyWBuR/Y/L5WLGjBnMmDEj90WTbdt0dnayceNGNm7cSHd3N11dXUQiEQYHBxkeHiaVSpFOp3MzbgeDQUKhEEVFRZSVlVFeXk5NTQ11dXU0NjYSCoUm+U5FREREZKIpYIuIbMU0zdzs3EcdddRkV0dERERE9hM7njZXRERERERERHaJAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHrgnuwIiIrL/SCaTDA8PE4vFGBkZYWRkhEQiQSKRwLIsLMsCwOVy4fF48Pv9hEIhwuEwpaWl+Hy+Sb4DERERkYmjgH2AeuGFF7jwwgt55plnqK+vn+zqiLwlDA8P09XVRXd3N729vfT39zMwMMDQ0BDDw8PE43ESiQTpdBrbtnPnZcOo1+vF5/MRCARyWzAYJBgMEggECIVCBAIB/H4/fr8fn8+Hx+PB4/HgcrlwuVwYhgGA4zg4joNlWaTTadLpNKlUimQySTKZzAXjkZER4vE48XicWCyW24aHh8ds0WiU4eFhUqnUXr1H4XCYqqoqampqqK+vp7q6Gtu2mTVr1l6VKyIiIjIVKGCLiOwix3GIRCJs3LiR9vZ22tvb2bRpE5s3b6ajo4NoNDrZVdx33F5wezA8XnC5MVwe8HgwTDfggG3j2BakkjjJEZx4DKw0Q0NDDA0NsWrVqjHF/fCHP2T69Om0tLTQ0tJCa2srjY2NuFyuybk/ERERkT2ggC0iMkoymaS7u5uuri46OjpyAXrTpk1s2rSJWCy2w/MNfxAjVIQZKsQIFGD4CzD8AXB5SK96BatnE9jWPrqbCZROQjqJEx8GwAFwuXE3H0zg+LmZ4D2K4ziQjGMPD2AP9WMP9GBHurH7O7H6OkgnE6xYsYIVK1bkzgkEArnA3dLSwqxZs6ipqcm10ouIiIhMNQrYu6G1tZX58+fz5JNPsmTJEurr67nxxhtZuXIlP/rRjxgcHOS4447j5ptvxu/3A7B48WJuv/12lixZQmlpKSeeeCJXXHEFBQUFAMyZM4fzzjuPV155heeffx6v18vpp5/OVVddhdud+fW8/PLL3Hnnnbz++uu43W7mzJnDlVdeSUlJSa6Mk08+mb/85S/09vZyzz330Nraym233cZf/vIX+vr6KCws5KSTTuKaa64hEAjk7ukvf/kLv/rVr1i7di1NTU18/etf54QTTti3b6zIbnIch3g8vtPj0ul0bpzw1t2dBwcHGRoaIhKJEIlE6Ovro6+vj4GBgZ1XoKAYs7AMs7A0s4VLMz8XFGF4xh9jPPLc/2J1bdjdW92/WGnSq//DiG0TOPGj275uujLvVbgUamfkdjsuFwxFsHrasbo3YnVtwOpuZ2RkhFdffZVXX301d2wwGGT69Ok0NzfT2NhIfX09dXV1VFZWqrVbREREJp0C9m668847+e53v0tzczNXXXUVl156KYcccgj3338/bW1tXHHFFTz22GNccMEFLFu2jIsvvpjPfe5z3HjjjfT09HDrrbdyySWX8D//8z+5Vpi77rqLr33ta1x55ZW8+OKLXHPNNRxyyCGceeaZ/Oc//+GCCy7gYx/7GN/+9rfp7u5m/vz5fPKTn+Sxxx7L/UH56KOP8uMf/5hwOExraytf+tKX6Ozs5Ac/+AFlZWUsXryYb37zm8ycOZOLLroodz8PP/ww8+fPp7Kyku9973t8+ctf5u9//zuhUGgy3l55C3Ach56enkyLJWDbNo7jYNt2bhIs27Zz44K3HiOc3ZLJ5Jgxw9ktkUjw/PPP71oQnijRCHY0gr1p9eTVYTeccsopzJ07lwULFrBo0aLc72aipNteY6jttV0+3lXdRPDDl+IpKsMz4+0AOLaN3d+F1b0hE7q727F7NxOLxXjttdd47bWx5ZumSVlZGeXl5ZSWllJSUkJhYSEFBQWEQiGqq6s5/PDD1fotIiIiE0oBezedc845zJkzB4AzzjiD+fPnM2/ePJqbm2lpaeHBBx9k5cqVADz00EMcc8wxXHrppQA0Nzdz++238/73v58XX3yRo48+GoBjjz2WCy+8EICGhgYeeeQRFi9ezJlnnslPfvITWltbufbaawGYMWMGd9xxB2eccQbPP/88xx9/PADHH388733ve3P1POaYYzjqqKNobW0FoL6+nkcffXRM90uAb37zm7l6fOELX+BPf/oTq1ev5u1vf/uEvH/y1ve9732Pp59+erKrIaPMnTuXhoYG5s6dy8KFCye7OrvEME1cZdW4yqrhoKMAcCwLO9KF3deB1deR6WIe6cEe6Ma2bbq7u+nu7t5umd/5znd417veta9uQURERA5ACti7qampKfc829W6sbExt8/v95NMJgF44403WLduHUccccQ25axevToXbGfMmDHmtXA4nJupd8WKFRxzzDFjXj/ooIMIh8MsX748F7BH1wvgE5/4BM8++yxPPPEEa9euZdWqVWzcuJHp06ePOW7atGm554WFhQC71PVWZHs8Hs9kV2F8bi/4/BheP4Y3kBkr7Q9i+AswAwUYwQKMQBizoBAjEMYw89vdeOS5/yW9G626+bRgwYJcC7ZhGBPegu2edsj4XcS3e4Jn11qWbQusNE46BenMo2OlYBfvR63XIiIiMtEUsHdTdlz0aKZpjnusbducfvrpuRbs0UpLS3PPvV7vNq9n/wDe3h/CjuOMCTLZMd/Z6372s59l5cqVnHbaaXzoQx/ibW97W64VfGd1n+g/vuWt7ctf/jKf/vSnsSwr1zU8u2W7h2e7hWe7jGe7h49eSmp0V/FEIpHbl30++jG7ZZebGr38VG45rOykXMOD7PQTbpgYocKx46uLynKPhte/sxK2ETjxo4yYJum1b4CV3u3z98aiRYtYuHDhxIfrHUxytrscK43duxmra+OWbuLt2JGu7YZpn89HRUUF5eXllJSU5LqIh8PhXBfx2bNn71WdRERERHZGAXsCzZo1i1WrVo1pXV69ejW33XYbX/3qVwmHwzsto7W1lZdeemnMvmXLlhGNRrdp+c5aunQpf/3rX/nf//1fDjvsMABSqRTr16+noaFhL+5IZNdMlTH8juOQSCRyaztHo1Gi0WhuqaiBgQEikQj9/f309fXR09NDb29v5suBaAQrGsFizTblGoECzKLyTOguKs9NeGYUlGRaxcdpKTU8XoLv/0Sm1XVkKI/3CDg22Fu23NcHBhgGmCZ2fBgnGsEMl2AGd/7vzp4yAmEM9+73YHBsCzvSnZnkrGsjVvdG7O3Mtl5cXJyb5KypqSk3yVlJSYlaqEVERGTSKWBPoEsuuYTzzjuP66+/nvPPP5/BwUGuv/564vE4zc3Nu1TGxRdfzCc+8QluuOEGPvGJT9DT08MNN9zAwQcfzHve855xzykvL8ftdrNw4UJKS0uJRCLcd999dHd357qvixwIDMPA7/fj9/vH9BrZEcuy6O/vp7OzM7e+9ebNm3NrXkciEZyRKNZIFKtj7bYFuD2YoSKMUKaruRkIYfiC4PVjeLyZAOpyZ8IvRiYh21ZmzWgrjZPa0tKeSuAkE5BKbHkez7yWSmw5Zkv3aCu9a12kDRNcrsx61W43xuh1rN1eDI8vs3l94PFt6Uq/ZfMFMvXf8tzw+jNrX+9GoHVsG2ckihMbxB7swx7oxR7oxurrxO7vHLdVv7CwkJaWFg466CBmzZpFS0sLpaWlCtIiIiIyZSlgT6DDDz+cBx98kLvuuouzzjqLYDDIe97zHr7xjW+M2y18PIcddhgPPvgg3//+9znzzDMpKCjg/e9/P1dcccV2x7pWVVVx8803c8899/CLX/yCiooKTjjhBC666CKeffbZfN6iyFuOy+WivLyc8vJy3va2t23z+vDwMO3t7bktuz52R0cHfX19kE5hD/TAQM8k1H4HHBvSdmb8coKdd5PfGdPMBHGPNxPWXW4wXRhGZtiJ49hbxksnIRHHSYywo6v6/X5mzpxJS0sLra2ttLa2as1rERER2e8YjgbcSp4sWbIEgEMPPXSSayJbi8ViLF26lNmzZxMMBie7Om9ZyWSS7u5uenp66Onpob+/P7fedrabejKZzI0/h0wru8vlwuPx4PV68fl8+P1+AoEAwWAw95h9HgqFcq3y2XM8Hg9utxvTNMfMq7D1kmijlzvLjlWPx+PEYrHcYywWG3fd8OxjLBbb43HcpmlSXFxMdXU1NTU11NfXU11dTTqd5phjjqGgoCAvvweRvaV/M2Uq0udSpqID5XO5OzlHLdgiInni9Xqpq6ujrq5usqsyYWzbZmRkJBfER0ZGxkxC5zgOjuPgdrtxu925LwgKCwspKirC5Ro7O3v2f8zbmyxSREREZH+igC0iIrvMNE1CodCUmchOREREZCpRk4GIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHrgnuwL7s/7+fv70pz/xkY98ZLKrIiJ54DgO8XicaDRKNBolFosxPDzM8PAwsViMkZGR3GM8Hicej5NIJIjH4ySTSZLJJKlUilQqRTqdxrIsLMvCtm0cx8FxHAAMw8AwDEzTxOVy4XK58Hg8uN1uPB4PXq83t/l8Pvx+f+5x9BYIBMb9ORAIEAgE8Hg8GIYxye+qiIiIyIFDAXsv3HrrrWzcuFEBW2QKSqfTDAwMMDg4SCQSYXBwMPfz0NAQg4ODuedDQ0O5UG1Z1mRXPW8Mw8Dn822z+f1+wuEwwWBwTDAfHeK39zz7s8/nw+VyTfYtioiIiEwpCth7IdsaJSITz3EcotEo/f39RCKRHW4DAwMMDQ3t+cVME8MbwPD6cTw+GB7ESQzDfvbffLZFPh6PT0j5Ho9nm+A+OpBnH7duWQ8GgwQCAUKhEKZp0t3dTU1NDR6PB4/HMyF1FREREdkXDpiA3drayvz583nyySdZsmQJ9fX13HjjjaxcuZIf/ehHDA4Octxxx3HzzTfj9/sBWLx4MbfffjtLliyhtLSUE088kSuuuIKCggKuuuoqnnjiiVzZy5cv54ILLqC5uZlly5bR1tbGvHnz+PCHP8xvfvMbfvKTn7B27VrKy8uZO3cun/3sZ3G5XGzcuJGTTjqJu+++mwcffJClS5dSWVnJZz/7WT72sY/l6r8rZdxxxx088MADrF69mlmzZnHbbbexaNEifvGLX5BOpzn11FOZN29ersvoc889xz333MOqVauoqqri1FNP5fOf/zxer3ff/4LkgGJZFrFYjGg0mmtNHt2qnG1tzm7Z0LxHrcu+IIY/hOELZR79AUxf5tHwhTC8fgxfEMMXyGzeALjf7Fode+5XpHs35fkdmDrM4kpc9a2QTuKkkzjpFKS2PFqZRyeVhHQK0kmwUrlzs93ho9Fo3urj8/koKCigoKCAcDi8zWNhYeE2rxcUFBAKhfRvl4iIiEy6AyZgA9x5551897vfpbm5mauuuopLL72UQw45hPvvv5+2tjauuOIKHnvsMS644AKWLVvGxRdfzOc+9zluvPFGenp6uPXWW7nkkkv4n//5H6655hri8TgdHR3cc889uWs89thj3HbbbbS2tlJRUcHPfvYzbr/9dq666iqOOeYYXn31VebPn09/fz/XXHNN7rybbrqJa6+9lpaWFn76059y3XXX8d73vpeGhoZdLiN7f4WFhVx22WV8/OMf5/jjj+eRRx7hxRdf5LrrruN973sfc+bM4a9//Stf/vKXufrqq3nve9/L+vXrueGGG2hra+Ouu+7ap78XmfpSqRT/+te/xgQpy7JIp9O5kJUdg5xMJnOtptktO3Y5O6Z5ZGRk31U+EcNJxHDo3nfX3A2nnHIKc+fOZcGCBSxatGif94yxI13Yka59es1tGEaud0AikSCRSNDb27vbxXg8HkKhEMFgMNdKnu0Gn92y49qzY92zreYul4twOMxRRx2F231A/a9RRERE8uiA+ivinHPOYc6cOQCcccYZzJ8/n3nz5tHc3ExLSwsPPvggK1euBOChhx7imGOO4dJLLwWgubmZ22+/nfe///28+OKLHH300fj9fjweDxUVFblrzJ49m9NPPx3IdM984IEHOP/88znvvPNy5UQiEW677Ta++MUv5s676KKLOOmkkwD4yle+wi9+8QteffVV6uvrd7mMSy65hHe9610AfOADH+CRRx5h/vz5BAIBZsyYwT333MPKlSuZM2cO9913Hx/96Ec599xzAWhsbOT666/nv//7v9m4cSP19fX5/wXIfuuRRx7h//2//zdh5Ru+IGZROUaoGNO/pcXZH8LwF2AEQpiBAvCFGHnmUazOtRNWj8kwd+5cGhoamDt3LgsXLpzs6kwKV1UTwdM+D6kEJEdwEiOZL0Wyj8nMox3f8vPIEPZgL05scEw5qVQqN0xgT11++eW5f8NFREREdtcBFbCbmppyzwOBAJAJlll+v59kMgnAG2+8wbp16zjiiCO2KWf16tUcffTRO71GX18fPT09vPOd7xxzzLve9S5SqRRr1qyhrKwMgBkzZuReD4fDQOaPxd0pY/S1g8Eg5eXlufsc7/7+85//sGDBgtzr2Zaz1atXK2DLGA0NDRNavpOIYXWtB/fmTHdtfyZUvxmyCzD9IbxvPx7De/KWnwvA453wWbJjz/2KdNuSCSt/wYIFuRZswzD2eQu2e9qhBE/8+D69pmM7kErgpOI4yTiObWG1r3gzVI8J2dmg/WboJp2csLpVV1dPWNkiIiLy1ndABezxuv2Z5vhLgdu2zemnn55rwR6ttLR0u9fIjt+G7U+CZtv2NvUZb+zg6GV9dqWMre9ve/eWPf9Tn/oUZ5111javjW6RF4FMj4g5c+aQTqdzy0+NXo4quzxVIpHIdRHPLl81MjKS27LLXWVn7B4eHs7N4m3bNqRTOOkBnOEB7F2pmMuNEQhnwnig4M0wHghhBMKZgL4lnBv+ELh3P5AHT/wEI+b/kFr7GljpPXr/dmTRokUsXLhw34drlxtP8yEEjv8Yhmfsvz+O42z5XSTHH5s9et9Wj5nx2tl9CZxU5thMoE7kXt9bhmHkxl5v/Ti6e3h2YrXRE69ll0Ab3U3c7XbnXhcRERHZUwdUwN4ds2bNYtWqVWNahVevXs1tt93GV7/6VcLh8E7/UC8vL6e8vJyXXnqJ97///bn9//73v/F4PDQ2NjIwMDDhZWzv/tra2sbc3wsvvMDDDz/MddddRzAY3O0y5a0tu17zRAQQx3GIxWJjltLaepKz7ERnkUiE/v5+EokEWGmcaD9WtH8Xb8K9ZcKzbDf0IKYvOGqSs2Bm9nBfALz+3EzigRPOxe84EM/fZF5ZdmwQe6gfM1yCGSzc5fMcxwHbejP4WqPDbXaSsjf3kUpljsmGZsfBHoky/PsfjQrBydzr+4LH4yEQCOB2uykpKRkzgdl4E52N3oLB4A6/RBQRERGZDArY23HJJZdw3nnncf3113P++eczODjI9ddfTzwep7m5Gch0w+7q6mLDhg3b7UL7yU9+kjvvvJOGhgaOOeYY/vOf//CDH/yAj33sY4TD4V0Kx/koY2uf/vSn+fKXv8wPfvADTj31VDo6Orjmmmuor69XC7bsc4ZhEAqFCIVC1NTU7NI5IyMj212ia+vHgYEBUqlUJpAPZ1rId5vpwvD4wOPD8Pgyrb5uL4bbi+H2ZGYed3nA5QaXC8N0gekC0wTD3OYLOce2MxN72RY4NlbPRrCsTB2tVKYFOfs4ujV5VBjG2aV2/r2SnRRsvOW3vF7vmHWxx1szO7tlW5JHtyx7vV5isRhLly5l9uzZ+mJPRERE9nsK2Ntx+OGH8+CDD3LXXXdx1llnEQwGec973sM3vvGNXHfuM888k6effprTTjuNp556atxyLrnkErxeLz//+c/57ne/S3V1NZ/+9Kf55Cc/uct1yUcZW/vgBz/InXfeyY9//GPuu+8+iouLmTNnDl/72tf2uEyRfSkb1nYlkDuOw8jIyJhlwEYvDZZdLmx01/XsYywWyxRiWziJWGZW8gm+t93l8XjGBNnRj1s/H+/nrbfRYdnlck327YmIiIjsNwxnX8+oI29ZS5ZkJoI69NBDJ7kmsjW1Eu4527bHLDOWHU+eHV+eHWueHYOeXbps9Hh127Zz46sdx8l1bXa5XJimidvtxu1258YCZ5eRyrYMjw6844Xl/TkE67MpU5E+lzIV6XMpU9GB8rncnZyjFmwRkR0wTTPXfV1EREREZEc0Q4yIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHihgi4iIiIiIiOSBAraIiIiIiIhIHrgnuwIiIlNdNBplw4YNdHd3Mzg4SCqVwjAMfD4f4XCYkpISqqqqKC0txTT1vaWIiIjIgUoBW0RkK/39/bz44ou88sorvPbaa3R2du7SeV6vl7q6OhobG2lsbKSpqYnGxkbq6urweDwTXGsRERERmWwK2CIiwODgIH/961959tlnef3113EcZ8zrRqgIs6AEw1+A4fYC4KSTOPEoTmwQOxohmUzS1tZGW1vbmHNN06S2tpa6ujrq6+upq6vLbeXl5Wr1FhEREXmLUMAWkQOWbdu8/PLLLFq0iL//4x+kU6nca67yetwNB+OunYWrogHTF9xhWY5tYQ/1YUe6sCKd2P2bsfo7sPo7sFMJNm7cyMaNG3nhhRfGnOfz+WhoaKChoYHm5mamT5/OjBkzKCsrwzCMCblvEREREZkYCtgicsDp7u7mqaee4v/7//4/Ojo6cvvN0lq8LUfhnX4EZrh0t8o0TBeuogpcRRV4mt6W2+84Dk5sAKu/E3uwOxPAB7qxB7qwh3pJJBKsWrWKVatWjSmvuLiYWbNm0draykEHHURLSwvFxcV7dd8iIiIiMrEUsKeAxx9/nKuvvprly5dPdlV47rnnaGhoYObMmZNdFZG8Gh4e5p///Cd/+tOfePnll9/sAu4N4J35Tryz34O7vCHv1zUMAyNUjBkqBlrHvOZYFvZQL3akM9Pa3bcJq3cTdqSTSCTCv/71L/71r3/ljq+urqa1tZWWlhZmzZrFjBkzCIfDea+ziIiIiOwZBewp4EMf+hDve9/7JrsatLe3c+mll/Lwww8rYMtbQmdnJ//617944YUXeGnx4rFdwGtm4jvo3XimHY7h8W63DCedwh4ZnLhKuly46w/C03zoqGsmsXrbsbrXk+5aj9W9DjvSRUdHBx0dHfzlL3/JHVtVVUVzczPNzc00NjbmupuHQqGJq7OIiIiIjEsBewrw+/34/f7JrsY2kzqJ7C8cx2FwcJB169axevVqli9fzuuvv77N7N9mcRXeGe/A03IUrsLyHZeZShL7yy9JrV0CVmqHx+41lwdP86EEj/8EhseL4fbirpqGu2oavi2H2IkYVvcGrK51WD0bSHdvwIn20dnZSWdn5zZju4uLi6mtrc1t1dXV1NTUUF1dTUlJiSZWExEREZkACtgToLW1lfnz5/Pkk0+yZMkS6uvrufHGG1m5ciU/+tGPGBwc5LjjjuPmm2/G7/dv00W8tbWVG2+8kd///vcsXryYwsJCzj33XC677DIgMzHTAw88wOOPP057ezter5d3vOMdzJs3j8bGxlwZX/jCF3jiiSdIpVI8+uij1NbWctddd/Hb3/6WaDTKrFmz+OIXv8ixxx7Lxo0bOemkkwC48MILueyyy7j88ssn5w0UASzLYmRkhOHhYaLRKENDQ/T19TE4OEgkEiESidDb20tPTw8dHR0MDw9vW4hhYFY04qmfjafpYMzi6tzEYU4qscPrx557lFTbqxNxa9uyUqRWLyZmWwRPPH/cQwzThbuqGXdVc26fnRjB7tuM1b85M7FapBNroBtGhnLv0RtvvLFNWW63m/Ly8txWWlpKSUkJ5eXlFBcXEw6HKSgoIBQKEQgE8Hg8mnBNREREZBcoYE+QO++8k+9+97s0Nzdz1VVXcemll3LIIYdw//3309bWxhVXXMFjjz3GBRdcMO75t9xyC9/61re44YYb+MMf/sCdd97J0UcfzVFHHcXDDz/MQw89xC233EJLSwvr16/n2muv5eabb+bee+/NlfHLX/6SBx54AMuyaG5u5oorrmD16tV873vfo6qqiueee45LL72UH/zgB7zvfe/jscce4yMf+Qj33HMPxxxzzL56q2QSbdiwgccff5xkMglkxgtv3ZPBcZydhqsdHZMtz7ZtbNvGsizS6TSWZZFKpXJbIpEgHo8Tj8cZGRkhkdhxAN4ljoPdtY5E1zoSixftfXnbccoppzB37lwWLFjAokWL9rg3SKrtVQb2QahPp9O57ua7wjAMPB4PHo8Hl8uFy+Ua8/t2HAfHcXK/Y9u2cz9nX8syTRPDMHC5XLjdbkzTxHEcQqEQPp8Pr9eLz+fD4/Hg9/vxer24XK5dqufRRx/Nscceq9Z5ERERmTQK2BPknHPOYc6cOQCcccYZzJ8/n3nz5tHc3ExLSwsPPvggK1eu3O75Z555JmeccQYAl156KQ899BCLFy/mqKOOorGxkVtuuYUTTzwRgLq6Oj74wQ+yaNHYAHHGGWdw6KGZcZ3r1q3j97//Pb/5zW+YPXs2ABdffDHLli3joYce4oQTTqC0NDNrclFRkcZvHgAsy+Lyyy8nFotNdlX2e3PnzqWhoYG5c+eycOHCya5O3jmOQzKZzH0RMxEikchel/H0009z00038c53vnPvKyQiIiKyBxSwJ0hTU1PueSAQAMh134bMuOsd/bE6Y8aMMT+Hw2FSWyZomjNnDq+++ip33XUXbW1ttLW1sWrVKqqqqrZbh2w30U984hNjjkmlUhQWFu7OrclbhMvl4uSTT+aJJ56Y7KrsOZcHo6AEs6AUs6gMV1ElrpIaXGV1O5y4bFfsThfxBQsW5Fqwx+sFsKs80w7bbhfxPeVYKexoP/ZgH3a0D3uoHzvaiz0cwY4OwERO4LaPtba2Mm3atMmuhoiIiBzAFLAniNu97Vu7O90Wvd5tw0H2j/b777+fH/7wh5x11lm85z3v4aKLLuKZZ57hD3/4w5jjR0+clj33F7/4xTat0+pOeeD63Oc+x+c+97k9Pj/b5dtxHCzLwrbt3P5s1+DRXYUty8odl0qlSKfTpFIpkskkiUSCRCLByMhIrpv48PAwsViMaDRKNBplcHAwNwY7FouBlcIZ6MIa6MJqh9xUZIaBWVKDu3YmnroW3HWtGB7fdu9jPMETLyBmunZpkrNFixaxcOHCPQ/XW01ytrscx86E6P7OLWOxu7AHurEGu3GiEWDHdTJNk+LiYkpKSigsLKSwsJBQKEQwGCQYDOa6brvd7ly37vG6iGd/16M/C9l92eNHdxHPdg/v7OykubmZgoKCXBfx7GP2udfrxePx6N8rERERmdIUsPdD9913H1/4whf4zGc+k9v30EMP7fAP+1mzZgHQ3d3NwQcfnNt/5513YpomX/rSlzSJkew20zQnLfDE43F6e3vp6sosX7Vx48bcLOK9vb3YfZtI9m0i+dpfwXThrmvFM/1wPNPejukL7rR8w+Ml9P6LdmmZLjs2iD3UhxkuxQzufo8QM1CI4fbs0rGZJbw2YfVsyCzl1duO1bcZ0tvvEeP3+6mtraWqqorq6mqqqqqorKyksrKS8vJyioqKdnmcc77FYjGWLl3K7NmzCQZ3/nsRERERmcoUsPdDNTU1/P3vf2fOnDmYpsmTTz7JU089RXn59pcdmjVrFieeeCLf/va3mTdvHrNmzWLRokX8+Mc/5qabbgLI/XG7YsUKDj74YMLh8D65H5E94ff7qauro66ubpvXenp6eOONN3jllVd46aWX2Lx5M+kNb5De8AYjf/sfPE2H4G19N+6GgzDMHQdLw+3BFS7b4TGucBlU5b9rsmPb2JEO0l3rsLash231bYItrcOjud1u6urqcutgZ9+b2tpaiouL9QWaiIiIyD6ggL0fuvXWW5k/fz7nnHMOoVCIww47jOuvv57rrruOTZs2UVtbO+55d955J3feeSfz5s1jYGCAxsZGbrzxRs466ywASkpKOOecc7j11ltZt24d3/rWt/blbYnkTXl5OccddxzHHXccjuOwYcMG/va3v/GXv/yFtWvXkmp7lVTbqxihIrwtR+M96D24CnccoieaY6WwI12ZFumejaS7N2D1boRxlhMrLi5m5syZzJo1i2nTpjF9+nTq6uomrRVaRERERDIMZ09n4xHZypIlSwByM5fL1KFuuBmO47BmzRqeeuopnnnmGQYH3+z67a5rwdt6NJ7mt+/2eO3dub4TG8yNj7YjmfHjdqQTe6AHnG1bpv1+Py0tLRx00EG5x4qKirdMi7Q+mzIV6XMpU5E+lzIVHSify93JOWrBFpEDhmEYzJgxg8997nN88pOf5J///Cd//OMfefnll0m3ryDdvgLcXjxNh+CZ9nbc9Qft0njtrTmWhT3Yg9XfgR3pwOrvzDwOdI/bIp1VUFDA9OnTmT59OrNmzWLWrFk0NDSoZVpERERkP6GALSIHJK/Xy/HHH8/xxx9PR0cHTz31FM8++yybNm0itXoxqdWLAQNXeR2u8kZcpTWZJcECBeDyAA6kU9jxaKZVeqgvE6ojndgD3WBb417XNE0qKyupq6ujvr6e+vp6GhoaaGpqorS09C3TMi0iIiJyIFLAFpEDXnV1NRdeeCEXXHABy5Yt4+9//zv//Oc/2bBhA1bPRqyejbtdpt/vp7GxkcbGRpqamnJBurq6etxl+ERERERk/6eALSKyhWEYzJ49m9mzZ/OpT32K3t5eXn/9dVavXs369evp6elhaGiIRCKBYRh4vV4KCwspKSmhqqqKmpqa3CzeFRUVWrNZRERE5ACjgC0ish1lZWW52chFRERERHZGzSsiIiIiIiIieaCALSIiIiIiIpIHCtgiIiIiIiIieaCALSIiIiIiIpIHCtgiIiIiIiIieaCALSIiIiIiIpIHCtgiIiIiIiIieaCALSIiIiIiIpIHCtgiIvsZ27axLAvHcSa7KiIiIiIyinuyKyAicqAbHh6mq6uL7u5uent76enpob+/n/7+fiKRCIODgwwPDxOLxUgmk9i2nTvX4/EQDAYJh8OUlJRQXl5OdXU1dXV1NDY20tTURCAQmMS7ExERETlwKGCLiEwwy7Lo6Oigvb2d9vZ2Ojo62Lx5M52dnXR2dhKLxfa47FQqxcDAAAMDA2zcuHGb1w3DoK6ujpaWFlpbWznooIOYMWMGXq93b25JRERERMahgC0ikieO49Dd3c3q1atZs2YNbW1trFu3jvb2dtLp9A7PNXwhzIISzFAJZqgII1iEGSjEDIQx/AUYviCGx4/h9oDpBgNwbJx0Gic1ghMfxo4NYEf7sQd7sAY6sPo244wMsnHjRjZu3Mizzz4LZFq9Z82axcEHH8xBBx3EQQcdREVFBYZh7IN3SUREROStSwF7P+M4Dr/5zW847rjjKCsr4/HHH+fqq69m+fLlALS2tnLTTTdx9tlnT3JNRd76BgcHWbZsGcuWLWP58uWsWLGCgYGB8Q92eXAVVWIWVeIqLMcsrMAMl+EKl2EWlGJ4fBNSRzs2SLpnPVb3OtJdbaQ720jFo7zxxhu88cYbueNKS0uZNWsWM2bMYPr06TQ1NVFbW4vH45mQeomIiIi8FSlg72f+9a9/cdVVV/HMM88A8KEPfYj3ve99k1wrkbe+dDrN2rVrWbp0aW5rb2/f9kDDxFVSg6usHldZHa6SWlwlNZjhUgzjzXklnXQKO5YJ4/bIEIwMTVjdXcXVuIqr8c46GgcHUgmsng2kO9eQ7mrD6m2nr6+PF154gRdeeCF3nmmaVFRUUFlZSUVFBSUlJRQVFVFQUEAoFMLv9+PxePB4PLjdbkzTxDRNDMPIPXe73bhcLrxeLz6fL3eOWstFRETkrUgBez+z9azBfr8fv98/SbUReWtKJpOsX7+eNWvWsGrVKlasWMHq1atJJBLbHGsWVeGumoa7shl3RTOusjoM9/bHNzupJMN//jnJta+ClZrI29g+lwdv82GETvhvDI8XJ5Ug3bsRq3sdVu9G0n3tWP0d2Kl4bpx4Pnk8HkKhEIWFhYTDYUzTpKmpierq6lygr6qqorS0FNPUYhciIiKy/1DAzqPW1lZuvPFGfv/737N48WIKCws599xzueyyy4DM0joPPPAAjz/+OO3t7Xi9Xt7xjncwb948Ghsbc2Vs3cU7u6+uro4LL7wQgJNOOombbroJYEwX8dHuuecennjiidy4y/H2/eUvf+Guu+5i9erVBINBjj/+eK6++mqKioom5k0SmQKSySQDAwP09fXR29tLV1cXmzdvZtOmTWzcuJHNmzePmak7x+PHVdGUCdOV03BXNGH6Q2OPcRyc1LZBPCv67M9ItS3O8x3tJitFcvW/cWybgjkXAeAuq8ddVp87xHEcnJEo1mAXdiyCHY3gjAxhJ6I4iRhOKoGTToCVxrEtsGxwspuT+TLQscC2wbYyXyY4mfc0lUoRiUSIRCK56y1ZsmSbarrd7jGBu7KykvLycsrLyykrK6O4uJiioiLcbv2vTERERKYG/VWSZ7fccgvf+ta3uOGGG/jDH/7AnXfeydFHH81RRx3Fww8/zEMPPcQtt9xCS0sL69ev59prr+Xmm2/m3nvv3WnZRxxxBPfccw+XX345jz32GC0tLfzxj3/c47r29fVx2WWXcdVVV3HCCSfQ0dHBlVdeya233sqNN964x+XKgaWtrY0f//jHuRmsR3f9zfa42F534K17ZBiGMe6+HdnRWtCjy3McB8uyGB4eHrcleptzfUFcpfW4yhtwVzTiqmhi+M8PY21ajrVpOTsvYWKdcsopzJ07lwULFrBo0aI9WhM71baY/ocmOewDZrgcz/QjcIYHsIf7sIf6sIcjpNNpNm/ezObNm3d4fkFBwTZLkRmGQU1NDZ/61KdobW2dyOqLiIiI5Chg59mZZ57JGWecAcCll17KQw89xOLFiznqqKNobGzklltu4cQTTwSgrq6OD37wgyxatGiXyvZ6vbmW5dLS0r3uGt7Z2UkymaS2tpa6ujrq6uq47777sCxrr8qVA8sdd9wxbg+K/Y0ZKsHTcDCeprfjrmzGCBZt82XBVBo3PHfuXBoaGpg7dy4LFy6c7OrsFTNURPDd54x9v20LeziC1b+ZdMcq0ptXke5YnWsFHy0ajRKNRrfZ39XVxc9+9rNcbx8RERGRiaaAnWczZswY83M4HCaVyoyznDNnDq+++ip33XUXbW1ttLW1sWrVKqqqqiajqsyePZvTTjuNSy+9lIqKCo455hhOOOEEPvCBD0xKfWT/9LGPfYz58+dPdjX2mj3cT2LZ30ks+ztGsBhXaS3usjpc5Y24KxoxiyoJn/F1SCf36jr56iK+YMGCXAv2eC3/u8Iz7R25LuL7muM4kE5gx6PYiRFSaxZjD0ewo31Y0S2t2EO9OPG9m/zt5JNPzlONRURERHZOATvPvN5tJzfK/uF7//3388Mf/pCzzjqL97znPVx00UU888wz/OEPf9hueTtbO3d3bV3e7bffzhe+8AX++te/8o9//IOvf/3rvPOd7+TnP/95Xq8rb13HHnssTz311GRXY4csyyIejzMyMkI0GmVoaGibMdidnZ1s2rSJvr4+nFiEdCxCeuOby1gZXj+uii1jr6un466chhkI73ZdCuZczPCfzb2e5GzRokUsXLhwz8L1VpOc7YhjpbCjEezhfuzYIE48ipOM4STjmTHY6TSOnc6Ms3bsLWOvM+OwcTLjrx3LyozVTidx0onMuYkY2Lv271sgEKCysnKbMdglJSUUFxfnJksLhUK4XK7dey9ERERE8kgBex+67777+MIXvsBnPvOZ3L6HHnpozB/HHo9nTFfHdevWjSljd7qoejwehoeHx+wbXd6rr77KH/7wB775zW8yffp0LrroIn7729/y9a9/nd7eXsrKynb5WiJTmcvlIhQKEQqFKC8v3+Gx0WiU9evX09bWlptFfPXq1SSTcdLty0i3L8sdaxZW4q7aErorp+Eqr8dw7XjdaMPjpeADnx6zTNeesGMD2EO9mOEyzODuTUpoBosw3GPr6aSTWL3tpHs3YPW1Y/Vvxh7owo5GgN1vHd9VXq+XUCiUm8Rs9KRmVVVVVFRUEA6Hp1T3fBEREZHtUcDeh2pqavj73//OnDlzME2TJ598kqeeemrMH/yHH344jz32GEcddRSO43DTTTeNaRUPBoMALFu2jJKSkh1e7/DDDycSifDQQw9x8skn8/zzz/PXv/6V4uJiIDMx0C9/+Us8Hg8f/ehHSSQS/PGPf6S5uXmnZYu8VRUUFHDwwQdz8MEH5/ZZlsXatWtZtmwZy5YtY+nSpaxfvx57sIvkYBfJlS9mDjRNXKVbupWX1Weel9ZhBgq2uY7h9uAq3HHY3xFXYTlUz9j5geNwHDsztrlzzZa1sNdi9W0ad3wzgM/no7y8PLcOdjgcJhgM4vP58Pl8uN3uMetgj14Le7x1sLNfdhQWFmLbNsuWLWP27Nm5f99ERERE9lcK2PvQrbfeyvz58znnnHMIhUIcdthhXH/99Vx33XVs2rSJ2tparrvuOq677jo++tGPUllZyZe+9CU6OjpyZbS0tHD88cfz5S9/ma9+9au5sDyed7/73Vx++eX85Cc/4e677+a4447ji1/8Ig8//DCQGS9+zz338IMf/IBf/vKXmKbJu9/9bh544AGtPSsyisvlYsaMGcyYMYNTTz0VgKGhoVzgXr58OcuXL2dgYACrZwNWzwZGj9Q2/GFcxVW4iqswiyoxw+W4Cssxw+UY/tCEt87a8WgmRHetJd3ZRrpzDU4yts1xJSUlzJgxg2nTptHU1ER9fT21tbUUFRVNWB1jsW3rISIiIrK/Mpw9mRlHZBzZdWwPPfTQSa6JbC0Wi7F06VK1Ek4gx3Ho6upi5cqVrFq1KjeR4egvyMbl8eEqKMUsKMEMlWIWFGOESjCDhZiBQoxAYWatbbd3hyHXSScz3caj/diD3ViRTqz+TVi97djRvm2O9/l8tLS0MHv2bA466CBaW1spLy/f512x9dmUqUifS5mK9LmUqehA+VzuTs5RC7aISB4YhpEbN3zsscfm9o+MjLBhwwba29vZuHEjmzZtoqOjg82bN9PX1wepBFb/Zqz+Ha/1jGliePyZoG1u+afbsXHSKZxUfKcTptXX1+cC9ezZs5k+fTput/4XICIiIpJP+utKRGQCBQIBWlpaaGlp2ea1ZDKZm8G8u7ubnp4eenp66O3tpbe3l0gkwsDAQGapP9vOzLydiG13yjGv10t5eTnV1dXU1dXR1NTEtGnTmD59OqFQaGJvVEREREQUsEVEJovX66W+vp76+vrtHuM4DvF4nGg0ysjICIlEIrfcnmEYuYnDCgsLCQaDmm1bREREZBIpYIuITGGGYRAIBAgEApNdFRERERHZCU0VLSIiIiIiIpIHCtgiIiIiIiIieaCALSIiIiIiIpIHCtgiIiIiIiIieaCALSIiIiIiIpIHCtgiIiIiIiIieaCALSIiIiIiIpIHCtgiIiIiIiIieaCALSIiIiIiIpIHCtgiIiIiIiIieaCALSIiIiIiIpIH7smugIjIW0EymSQWizEyMkI8Hicej5NKpUilUliWhWVZuWNdLhculwuPx4PH48Hv9xMIBAgGg4RCIVwu1yTeiYiIiIjsKQXsKaC/v58//elPfOQjH5nsqogI4DgOQ0ND9PX10d/fT19fH5FIJLcNDg7mtmg0SjQaJZVK5e36oVCIoqIiCgsLKSkpobi4mLKyMkpLSykvL6e8vJyKigoKCwsxDCNv1xURERGRvaOAPQXceuutbNy4UQFbZB8YGRmht7eXnp4eent7t3ne29tLX1/fHgdmw+3FcPswPV4MlwfDdIPpwjDfHJHjODbYNo6VxrFS2KkETiqOY2WuOTw8zPDwMJs2bdrhtbxeby5sZ7dsAC8rK6O8vJyioiK1iIuIiIjsIwrYU4DjOJNdBZH9muM4DA8P09/fn2txHr2NDtGxWGyXyzV9QVzBYkx/AaY3iMsfwvSHcPlCmL4gpi+E6Q1gev2YngCGx4dh7PnUFo6dxknGsRIj2Mlh7HgUKzGMFRvEGhnCGhnEig1gxQaxE1GSySSbNm3aYRA3TZPi4mJKS0spLi7ObdkW8nA4TDgcpqCggIKCAkKhEMFgENPUFB0iIiIiu0sBO08ikQh33XUXzz77LP39/Rx88MF85Stf4eijjwbgb3/7Gz/4wQ9YtmwZRUVFnHXWWXzxi1/kmmuu4YknngCgtbWV5cuXY1kWjzzyCL/61a/YtGkTtbW1XHTRRXz84x8H4IUXXuDCCy/knnvu4dZbb6Wnp4fDDz+ca6+9lhkzZgBwwQUXUFdXx80335yr49b7HnroIX71q1/R0dFBZWUl55xzDp///OfV5VQmnW3bRKPRXDfsgYGB3GMkEmFgYCD3vL+/n0gkslstzobHhztUgitUjDtUknvuChbhDhXjChbjDhXh2Dbdf/4psbZXcq3LU4nhcuOrnknBrPdgjwySHu4nHe3DGo6QHu7HGhnEtu3cFw27w+/3EwwGCQQC+P1+/H4/Pp8Pn8+H3+/H6/Xi8/nwer1jNo/HM+ZxvC1bjs/nw7btCXp3RERERPY9Bew8sCyLSy65hFQqxW233UZpaSkPP/wwn/zkJ/nlL3+JZVl85jOf4eKLL+a73/0u7e3tfP3rX8ftdnPNNdcQj8fp6OjgnnvuAeDmm2/mySef5Nprr+XQQw/lr3/9KzfeeCOJRIKLLrood92bb76Zb3/721RXV3Pbbbdx4YUXsmjRIsLh8E7r/Oyzz/LjH/+YO++8k2nTpvHKK69w5ZVXUl9fzxlnnDFRb5UcABzHIZlM5ib7GhkZYWRkhOHhYWKxWK77c3bscjQaZWhoKPeYfb5Hwcvjxx0oxBUI4woWZQJ0oBBXqAhXYMvPwSJMb2Dn92HbdD37ELE1L+3Bu7BvOFaaePsyTF+Iyjmf3PZ128q0eo8MYsWGsOPZlvAhrPgwVjyKnYxhJ4axEyPYyRjYmcnYshO17QumaRIIBHa4ZcP+6Oej92W37JcB6hYvIiIik0EBOw+ef/55Xn/9dX73u9/R0tICwPXXX8+SJUt46KGHcLlcHHbYYVx55ZUAzJgxg/nz59Pb20s4HMbv9+PxeKioqCAajfKrX/2Kq666itNPPx2A5uZmNm7cyP33389///d/5677jW98g+OPPx6A733ve5xwwgn84Q9/4Nxzz91pndevX4/X66Wuro7a2lpqa2uprKyktrY232+P7Mdef/11brvttp2OBZ4yUnHSqTjpwa7JrskuOeWUU5g7dy4LFixg0aJFezxcJLbmJdZO4S8Cdsa27dwXL/va9OnT+frXv57r/SMiIiKyNxSw82DFihWEw+FcuAYwDIMjjzyS559/HpfLxTHHHDPmnJNPPnncstasWUMqleKd73znmP3vete7+PnPf05vb29uX7b7OUBxcTHTpk1jxYoVu1TnD3/4w/z617/m5JNPZubMmbz3ve/l5JNPVsCWMX79619PeLg2vQHcRZV4CivxFFZknhdV0ffP/yXR1Tah155sc+fOpaGhgblz57Jw4cLJrs6k8ZTUUnTEKdjxocx489gAVmyAdGwAa7gfO7Hr4+Z315o1a1i0aBFf+MIXJuwaIiIicuBQwM6D7bU6OY6D2+3era6K2ysr213W7X7zVzb6OWS6qu9oYqJ0Op17XlpaypNPPsnLL7/M3//+d55//nkefvhhLr/8ci677LJdrq+8tZ177rl0dHSwatWqCbuGnRwh2b2OZPe6cV83fAW4AiFcvgJMf0Gm+7cvhCtQiCtQgOkP4woW4vKHMf2hvZpkbGsT3UV8wYIFuRZswzD2uAU7OP2d43YR312ObWEnR7BTcexUHCcZx04lt8xwnsRJJ7HTmUcnncKxMpttpXDS6S0/pzOv2W++nnstncKxkrlu6Fmp/k30PPvQXtd/Txx88MGcdtppk3JtEREReetRwM6D1tZWhoaGWLFiRa4V23EcXnrpJWbOnIlpmixZsmTMOT//+c/5/e9/z2OPPTZmUrEZM2bg8Xh46aWXmD17dm7/v//9byoqKigqKsrtW7JkCe95z3sA6OvrY926dVx88cUAeDweotFo7ljbttmwYQNNTU0A/Pa3v2VoaIjzzjuPd77znXzxi1/kW9/6Fn/84x8VsCWnpaWFe++9d7fPGz0Oe2RkhFgslhuHPXoM9vDw8Jjx19mJzYaGhhgZGcmUlYiSTkRJ07nzCxtmJmwHinAFC0dNWDbqMVSMK1A4Ztms7amc80m6TXPCJjlbtGgRCxcu3ONwbbg8BKcdTsUJF2N6fNu8bqcSmQnPYpEtM5Fnt6HMDOXxKHZiGCs+jJ2I4aQT+bit3eLxeHC73QSDQYLBYG5yta0fxxt7vfUY7OxEbFt/+SgiIiKyr+ivkDw49thjmT17NldccQXXXnstZWVlPProo6xYsYJvf/vb+Hw+zjnnHO666y7OOOMM1q1bx7333suFF14IQDAYpKuriw0bNtDQ0MDHPvYx7r77boqLizn00EN5/vnn+eUvf8lXv/rVMWH8+uuv54YbbiAcDnPLLbdQUVHBBz/4QQAOP/xwfvrTn/LXv/6VpqYmfvaznzE4OJg7N5FIcMsttxAKhTjyyCPp6OjgX//6F0ceeeS+ffPkLckwjNws0cXFxXtURjKZZGhoiMHBQSKRSG4W8dFbdgbx/v5+hoaGwLGxhiNYw5GdVNB8c8bwUEkueOdmFg8W4woVYXqDVH3gUux0Cis2sEf3sSPpWIT0UC/ucBnuYPEun+c4Dk5qBGwLa2SI6Mr/Ix3tIx3txxruJx3tJx2L4CRH9qheXq93TOAdPXmY1+vdZhZxn883Ztbw0TOJZ18b/Ti6jEQiwdKlS5k9ezbBYHCP6isiIiIyVShg54HL5eInP/kJt9xyC5dddhnJZJJDDjmEn/3sZxx++OEA/PCHP+Tuu+/mgQceoLKykgsvvJDPfe5zAJx55pk8/fTTnHbaaTz11FNcffXVlJSU8L3vfY+enh6am5uZN28eH/3oR8dc92Mf+xhXXnklkUiEd7/73Tz88MMEApnZkS+55BLWr1/Pl770JbxeL3PnzuXUU0/NtZJ95CMfIRKJcO+997J582aKioo4+eST+drXvrbv3jiRHfB6vZSVlVFWVrZLx6dSqVzYzq6F3dvbm3vMbv39/di2jTWcCaOw/XHehsudmY08UDhqC2MGCt7ssr7Veti7sxa2p7AcqmcCmVnL7VR8y4zemRm+31z7enDL0luRTIAe7sdJJ3fpGoFAgNLSUkpKSigpKcmtgV1cXEw4HM6thZ1dBzsYDKoFWERERGQPGc6eDvqTSZNdB/uZZ56hvr5+squTk+0Gf+ihh05yTWRrsVhMrYRbWJZFf38/PT09udDd09NDX19fbl9fX1+mRXwPGW5vZnN5MptpwujQ7dg4to1jp7eMZ07ucmAerbCwkPLycioqKnJbeXl5bisrK5vyv299NmUq0udSpiJ9LmUqOlA+l7uTc9RMISIHFJfLlQugO5JMJunr68u1iGdbx7Pd07NjxUev552djHBPAzOAz+ejoKCAoqKiXEtzSUkJpaWllJaW5gJ1eXk5Pt+2465FREREZPIoYIuIjMPr9VJdXU11dfUuHZ+d2C0WixGPx0kkEiSTSVKpFJZlYdt2boiGy+XC5XLlxir7fL7chF1er3cib0tEREREJpAC9n7o6KOPZvny5ZNdDREZZfTEbiIiIiJyYMrfgrEiIiIiIiIiBzAFbBEREREREZE8UMAWERERERERyQMFbBEREREREZE8UMAWERERERERyQMFbBEREREREZE8UMAWERERERERyQMFbBEREREREZE8UMAWERERERERyQMFbBEREREREZE8UMAWERERERERyQMFbBEREREREZE8cE92BUREDmSWZdHb20t3dzf9/f1EIhEGBwcZHh5mZGSEeDxOKpUilUph2zYAhmFgGAYulwu3253bvF4vPp8Pr9eL3+/H5/Ph9/sJBAIEg0ECgQChUIhwOEw4HMbr9U7y3YuIiIi8tShgi4hMMNu26ezsZP369WzYsIH29nba29vZvHkz3d3dueC8r/l8PoqLiykuLqa0tJSysjIqKiqorKykurqampoaSkpKMAxjUuonIiIisr9RwN5P3HPPPTzxxBM8++yzE3aNOXPmcNZZZ3H55ZdP2DVE3sps26ajo4N169axdu1a1q1blwvViURiu+cZpgtPqARPsAh3oBC3vwCXL4jL48d0+zDcHgzThWGYYBjgODiODY6NY1vYVhrHSmNbKRwrhZ1OYqcSmcd0AisZx07FsZJxrGQMKxkDxyGRSNDZ2UlnZ+d26xYMBqmrq6OhoYHGxkYaGxuZNm0a1dXVuFyuiXgbRURERPZbCtiSs2DBAnw+32RXQ2TKcxyH7u5u1q5dO2bbUZA2XG58RdX4S2rwF1fjK6zEV1SFr7ACd7AwE573Wf3tTNiOR0nHh0jFBjLbcD/JoV6S0T6Sg90ko33EYjFWrlzJypUrx5Th9XppbGykubk5tzU1NVFZWakWbxERETlgKWBLTmlp6WRXQWTKGR4eZu3atbS1tbFmzRra2tpYu3Ytw8PD4x5vuNz4i2vwl9YRKKnDX1qLv6QWX2ElhrltiLbTKZJDfRN9G+MzTNyBItyBIgJl4AkWYbo9b9bNSpEY6CIR6SAe2Uy8fzMjfe3EI5tJJpOsWrWKVatWjSkyEAjQ2NiYa/FuaGigoaGBmpoaPB7P1jUQEREReUtRwJ5CIpEId911F88++yz9/f0cfPDBfOUrX+Hoo4/e5tif/exn3H777dx9992ceOKJbNq0idtuu43/+7//Y3BwkLKyMk4//XSuuOIKTNPk8ccf5/vf/z6XXXYZd999N8PDw7z3ve9l3rx5VFVVAeoiLge2eDzOxo0bWb9+PevWraOtrY22trbtd582XfiLqgmU1eMvrd0Spuu2G6S3ZqcSrPvzT4i0vYxjpfJ8N3vGcHkonnYETSdcgunxYbo8BErrCJTWjTnOsW0Sg13E+9oZ6W9npHcj8b5NxAc6GBkZYfny5SxfvnzMOaZpUl1dTW1tLbW1tdTU1FBTU0NxcfEOu8+LiIiI7E8UsKcIy7K45JJLSKVS3HbbbZSWlvLwww/zyU9+kl/+8pdjjv3FL37BHXfcwQ9+8AOOP/54AD73uc9RUVHBT3/6U0KhEM888ww33XQTRxxxBO9///sB6Ovr4+c//znf//738Xq9XHfddXzqU5/iiSeewO3WR0HemhzHIR6PMzQ0RCQSIRKJ0NvbS09PD11dXXR0dNDe3k5PT892y/CEigmUNuAvq8dfXE2gtA5vUTWma9v/bmwrBdbO67Xu2QeJrPn33txa3jlWiv5VL+LYNk1zPrXDYz2hEjyhEsINh4w6P50J3v2ZFu/EQAfxSAeJSCe2lWTTpk1s2rRp3PIKCgqorKykoqKCsrIyysrKKCkpobi4mKKiotzM58FgEL/fr27oIiIiMiUpVU0Rzz//PK+//jq/+93vaGlpAeD6669nyZIlPPTQQ8ycOROA//3f/+XWW2/l3nvv5dhjjwUyLW9nnHEGp5xyCjU1NQBcdNFFPPDAAyxfvjwXsFOpFLfccguHHJL5g/i2227jQx/6EP/85z953/vet69vWWRC3XrrrfzpT3/arXNcvhD+kloCpbX4S+sJlNYTKKvH7S/AcRxW/Oa7dL2ycIJqvHtOOeUU5s6dy4IFC1i0aBGO4+St7Miaf09Y+PcVVlI0/Z2ZMd5DPSQGu7ESw0SjUaLRKGvWrNntMuvq6pg/fz4NDQ0TUGMRERGRXaeAPUWsWLGCcDicC9eQWev2yCOP5Pnnn2fmzJl0dXVx3XXX4fF4qKt7s8um3+/n/PPPZ9GiRfznP/9h3bp1LF++nJ6enjHL/4RCoVy4BpgxYwZFRUWsWLFCAVveUizL4i9/+csuHx+um01h49spqJ6Fr6QGty+4nSOnTqvp3LlzaWhoYO7cuSxcODVC/65wB4uoe/dHAEiPDJIY7Cbet5Ho5hVEN68iOdS922W2t7fzyiuvKGCLiIjIpFPAniK21/rkOE6u+7ZhGDzwwAN8//vf55vf/Ca/+MUvME2TWCzG+eefTzwe54Mf/CBnnXUWb3/72znvvPPGlDXeBEOWZWmpHXnLcblcfOUrX+GPf/wjyWQSgGQyyeDgIJFIZJt1p4falzLUvjT3sydUnJmkrLSeQFkDgbIG/CU1tJx5NXY6mZc67m0X8QULFuRasA3DyGsLdvH0I3faRXxXOI6DFRsgPtBJYrCTRKSTxFAvS//nWhJD3Ti7+F4Gg0HC4TAFBQW4XK5tuocfeuihzJkzZ6/rKyIiIrK3FLCniNbWVoaGhlixYkWuFdtxHF566aVc9/CKigqOOeYYysvLOeecc3j44Ye56KKLct3L//73v1NeXg6QG2c6+o/uSCTChg0bcq08K1euJBqNcvDBB+/juxWZeO9///tzwyNGs22bgYEBuru7c2OwN23aRHt7Oxs2bKCnp4fUcITUcIShDa+/eeKoSc0CZZnu4/7Serzhsj0aD9w851OsM809nuRs0aJFLFy4MK/heutJznaV49gkh/qI97dnZhnv30S8fzPxyGbs5Mh2zzNNk7KyMgoKCmhqaqKmpmabMdhFRUV4vd583J6IiIjIhFPAniKOPfZYZs+ezRVXXMG1115LWVkZjz76KCtWrODb3/42f/vb33LHtra28slPfpLvf//7zJkzh+rqagB++9vfcvLJJ7N582buuOMOUqlUrvUu6+tf/zrf+ta3SKfTXH/99RxxxBEcddRR+/ReRSaTaZqUlJRQUlIyZkhG1vDwMOvWrdtmaa5oNEq8v514fzv9q154szyPf8u47botS3PV4i+twxMq2WHwNj0+pn3gc9jpFKnYwG7fRyoWITnUizdchidYvNvnj2frZbq25jgO6dgAI/3txHvbGenbmAvUdio+7jmjZw+vr6+nrq4uN5N4ZWUlqVSKpUuXMnv2bILB7XXNFxEREdk/KGBPES6Xi5/85CfccsstXHbZZSSTSQ455BB+9rOfcfjhh48J2ACf//znWbRoEd/85jd55JFHuPrqq/nZz37G97//faqqqvjQhz5ETU0NS5YsGXPe6aefzmc+8xmSySRz5szhmmuu0Wy8IqOEQiEOPvjgMT07HMehu7t7TOheu3YtGzZsIJ2KE+taQ6xr7ORcLm8Af0lmDWx/ad2W5zV4C0oxjDeX8TLdHnyF5btdT19hOVTP3PMb3QErFSc52E1isJtEpDOzBnakg3j/JqzE+Ot/ezwe6uvraWpqorGxMbfV1tbusAU6lZoaS5SJiIiI5IPh5HPgnkxZjz/+OFdfffU2a9PmUzbMH3rooRN2DdkzsVhMrYQTIJ1O59bOXrt2LWvXrmXdunW0t7dvM847y3B78RdV4SuuxldYga+wAk9BGd6CUjzBIly+UF6/9HJsGzsVx0rFsZIjmS0Rw0oMk44PkR4ZIjUySCo2QGq4n2S0Dyse3W55pmlSU1NDc3Nzbps2bRq1tbV7tNyfPpsyFelzKVORPpcyFR0on8vdyTlqwRYR2UNutzsXMo877rjc/mQySXt7O+vWrcttGzZsoL29nXQ6yUjvBkZ6N4xfqOnC7Qvh8gZxef2Ybh+G241hurcE70z4dhwbHBvHtnCsNLaVxrFS2OkUtpXETiWw0wkcK71H9xYOh6mpqaGuro66ujoaGhpobGykvr4en2/Xx2eLiIiIHEgUsEVE8szr9TJt2jSmTZs2Zn86naazszMXtjdv3kxHRwfd3d309PQwNDQEtkV6ZJD0yGBe6+RyuQgGg4RCIQoKCigoKKCoqIjCwkJKSkooLS2lvLyc8vJyqqqqCIVCeb2+iIiIyIFAAfsAcfbZZ3P22WdPdjVEDmhutzvXIjyeZDLJwMAAg4ODDA8PMzIyQjweJ5lMkk6ncRwH27YxDAPTNHG5XLjdbtxuNx6PB4/Hg8/ny21+vx+/308gEMDj8Wi+BREREZEJpoAtIjJFeL1eKioqqKiomOyqiIiIiMgeMHd+iIiIiIiIiIjsjAK2iIiIiIiISB4oYIuIiIiIiIjkgQK2iIiIiIiISB4oYIuIiIiIiIjkgQK2iIiIiIiISB4oYIuIiIiIiIjkgQK2iIiIiIiISB4oYIuIiIiIiIjkgQK2iIiIiIiISB64J7sCIiL7k3Q6TX9/P5FIhGg0SiKRIJ1OYxgGbrcbn89HKBSisLCQkpISvF7vZFdZRERERPYRBWwRkXFYlkVbWxsrV65kzZo1rFu3jvb2dnp7e7Fte5fLKSwspLKykurqampra6mvr6exsZGmpiZCodAE3oGIiIiI7GsK2CIiQDKZZOnSpbz66qssWbKEZcuWkUgkxj3WMF14AmHc3iAujw/DdAFgW2nsdJJ0IkYqHsWx0wwODjI4OMiqVau2Kae8vJxp06Yxffp0ZsyYwYwZM6itrcXlck3ovYqIiIjIxFDAPoC0trZy0003cfbZZ092VUQmneM4rFmzhsWLF/PSSy/x2muvkUwmxxzj8gYIV0yjoLyRYGk9weIa/IXleAKFGMaOp7BwHId0YpjkcD/xoV7ig12MDHQSi2wm1r+J5HA/PT099PT08K9//St3ns/nY9q0acyYMYPp06czffp0pk2bRjAYnJD3QURERETyRwFbRA4YXV1dvPzyy7mtv79/zOveYBFFtbMpqj2IoppZBEtqdxqkt8cwDDz+Ajz+AkJlDdu8nk4MM9zXznDvBoZ7NxDtWc9w3wYSiQTLli1j2bJlY46vqqqiubmZpqYmGhoaqK+vp7a2luLiYgzD2KM6ioiIiEh+KWCLyFuSbdusX7+epUuX8vrrr/Of//yHjo6OMceYbi/FtbMprn8bJfVvI1hat0th1U4nScYG9rqOvlAJvlAJpY1vBzKt3vHBbob72xnp38Rw/yZGIptIjQzR2dlJZ2cnL7zwwpgyvF4vpaWllJaWUlJSQmFhIQUFBYRCIfx+P2VlZYRCIdxuN6ZpYpomtm1j2zaWZZFOp0mlUqRSKRKJBMlkkmQymXuefS2dTpNOp7Esa8wYdNM0cblceDwePB4Pfr8fv99PIBAgFApRUFBAOBymsLCQoqIiwuEwpqkFLEREROStSQE7z1pbW5k3bx5PPvkkS5cupbm5mS9/+cucdNJJQOaP/gceeIDHH3+c9vZ2vF4v73jHO5g3bx6NjY0A9PX1ccMNN/C3v/0Nl8vFRz7yEf7zn/9w1FFHcfnllwPw5z//mXvvvZeVK1cSCoU49dRT+cpXvoLf7wego6OD66+/nv/7v/8jHA7z9a9/fUw9d6UeIvsDx3EYGhpiw4YNrF+/nra2NlavXs3q1auJxWJjDzZMwpXTKK47mJL6t1FYPRPT5dnla1mpBCv+/BC9bYuxrVSe72TPJJNJOjo6tvnyYKoyTZPi4mJKSkooKSmhqKgIy7JYs2YNNTU1uS8LSktLNQO7iIiI7HcUsCfA9773Pb72ta9x88038/jjj/P/s3ff8XXVhf/HX3fve5ObnTRt2tLFbssGGQWUAgqUfJUlVn7IkCFK4QsiCPSLtLIFK1NBiwNr2baooCiIIBSh0tLdpkmzk5vcvX9/pDk0dLdpEuj7+Xic7x3nnM/5nMu137zvZ1155ZU8/fTTTJo0iV/+8pc88cQTzJ49m7Fjx1JXV8fNN9/MrFmzmDNnDrlcjksvvZRsNsvjjz+OzWbjzjvv5N133+XQQw8F4M9//jNXX301V111FbNnz2b16tXceuutrF+/njlz5pDJZLj44ovxer3MnTuXVCrFbbfd1qeO26uHyGDI5/Nks1mSySSJRIJ4PE4sFiMajRIOh+nu7iYUCtHR0UF7ezstLS00NTURjUa3WJ7Z6sBXOhJ/+Rj8ZfvgLanBand9cr1cjmxuyxOZbcmy1x6lbfW7u32fg8Fic2JzByCfB8BkNmMyWzCZrZjNVswWG2aLFbPVhtliw2S1Y7baMZssmCxWzBZrz/EmS08rv8kE+Tz5fI58LkculyGfTZPNpsmlk2TTcbKpBJlUjHQiSjoRIZeOk8vl6OjooKOjo0/9/va3v21WZ4/HQ2FhIQUFBQQCAQKBAH6/H5/PZ7TSezwe3G630XLudDqx2+3Y7XasVqu6z4uIiMiAUsDeA6ZNm8b5558PwIwZM3jnnXeYO3cukyZNYvjw4cyePZsTTjgBgKqqKk455RQWLlwIwDvvvMOHH37IggULGDVqFAD3338/U6ZMMcp/9NFHOfnkk/n2t78NwMiRI8nn81xxxRWsXLmSxsZGVqxYwZ///GejNfrOO+/kzDPPNMrYXj1EBsrs2bN59dVXd7scuyeIu7ACT1E1nmA1vpIRPWOozRby+TwfPPd/dDdtPpP3QJk6dSq1tbXMmzePhQsXkt8YdAdKNp0g25UY0GvuKLs7gK90H9LxLpKxEKlYF/lsmmg0SjQapb6+vt+udfHFF/PVr36138oTERER2ZQC9h5w+OGH93k9ceJE3nzzTQCmTJnCBx98wAMPPMCaNWtYs2YNK1eupKysDIAlS5YQCASMcA2fLOXTa/ny5Zx22ml9rnHYYYcZ+xobGwkEAn26ek+YMMHoPr4j9RAZCLlcjnfeeWe3ynB4gxQM2w9v0XBcBRV4ioZhd29p4q/Bbcmsra2lurqa2tpaFixYMKh1GWrsnkKqDj6FdKyL1MaAHe9sJNK+jkR3a79e69///rcCtoiIiOwxCth7gNXa92PNZrPGpD6PPvooP/3pTznrrLM48sgjmT59Oq+++iovv/wyABaLpc8EQluypZav3nN6u0RuqYxN67W9eogMBLPZzL333strr71GNpvtsy+bzW61i/imY6uTkQ6aP/4HzZuca3V68RaPwFc6Cn/ZaPzlYzjozJvIZfouw7WzdqeL+Lx584wWbJPJNOAt2N7iGsrGH73xVU8Xb/Onu4hbbZg2Pva+NputPe+ZN3YRN5v7zKze00U8Sy6bIZ/NkM2myKaTPS3mqRjZVJx0sqeLeDoRIRPvJhULk050kYp2kU3HibSu5cPn7tih+7Barfh8Pnw+n9E93O1243K5jO7hJpNpsx9Y8vk8Xq+XU045pb8+UhEREZHNKGDvAYsXL+7Tpfv9999nv/32A+Dhhx/miiuu4JJLLjH2P/HEE8Yf2+PHjyccDrNq1SpGjx4NQGdnJ+vWrTOOHzduHIsWLWL69OnGe+++2/NH/+jRo/H5fITDYVasWMGYMWMAWLt2LZFIxDh+e/UQGSgjRozgm9/85k6dk0gk+ozBbmxspL6+nnXr1tHQ0EAmESFU/xGh+o+Mc9yFlQQqJ1BQNYGCyvHYXL6druu4KZdgMlt2aZKzhQsXsmDBgkEJ1wCRtrVE3lg74NfdEVarlWAwSHFxMcFgkKKiImMStE3HYBcUFOB0OjWuWkRERIYsBew94KmnnmLUqFHsv//+PPPMMyxbtow77uhpnamoqODNN99kypQpmM1mnn/+ef70pz9RXFwM9HQvP+igg7j++uu5+eabcTqd3HXXXcTjceOPyosvvpjvfOc7zJkzh6lTp7J27VpmzpzJCSecwOjRoxk5cqRRxg9/+EMsFgszZ87sszTO9uohMpQ5nU6qqqqoqqrabF8ymWTdunUsX76cZcuWsWTJEtavX0+scwOxzg00fvQqYMJbPJzC6v0pGLY/gYoxOzSbuMXmYMLJ396lZbpSsRCJcBtOXzF2d8F2j08nosRCPXWOhxqJhRqJd7WQ306wN5lMeL1eY+Kv3uW6bDZbn38Depfp6l2GK51Ob7ZEV++2M3qX6nK73cYkZF6v15ikLBAIGEuKBYNBXC4XdXV17Lvvvrjd7p26loiIiMhQo4C9B5xzzjk8+eSTLF++nPHjx/PEE08wfvx4AH784x9z++23c/bZZ+PxeDjooIO47bbbuPXWW9mwYQOVlZU8+OCD3H777UyfPh2Hw8F5553H6tWrsdl6AsCXvvQl7r33Xn72s58xZ84cgsEgp59+OldffTXQ0+32kUce4f/+7/+46KKLcDqdXHrppTQ0NBh13JF6iHwWORwOxo4dy9ixYzn99NMB6OrqYvHixXzwwQf85z//Yd26dUTaerb177+M2WonUDGOgmH7UlA1AW/RCEzbWKvZbLXj9JfsVL2c/hL85WM2ez+fz5HoaiHSvp5I2zqi7XVE2upIRTu3WI7NZqOyspJhw4ZRUVFBeXk5ZWVlFBcXU1RUhN/v79d1pvP5vLEGdu862Pl8nnw+b3TF3nQdbIvFslPlx2IxtUiLiIjI54Yprz7B/WrcuHHceeedTJs2bZfO7+jo4IMPPuCYY44xAnUqleLwww/nhz/8YZ+ZwIeaxYsXA3DAAQcMck3k02KxGEuXLmXChAlqJQTa29t5//33WbRoEYsWLdpsySiL3YW/bB/8ZaPxlY7CWzICmyuwW0Ewn8uRjLQTCzUR62wg1rmBaHs90Y56cpktLxVWWVnJqFGjGDlyJCNHjqSmpoaKioqdDrFDmb6bMhTpeylDkb6XMhTtLd/Lnck5asEeYqxWK9/97nc555xzOPfcc0mn0zzxxBPY7XaOPfbYwa6eyOdCUVERJ510EieddBL5fJ61a9fy/vvv8/7777N48WJisRid6xfTuX6xcY7V4cFdWIHTV4LDG8Tm8mO1uzHbHJjNPYE3l82QzSTJJmOkExFS8S6SkQ6S4XYS4TbyucwW62O326mpqWH06NHGNnLkyM/1/6MSERER+TxSwB5i/H4/Dz/8MPfffz+/+93vMJvNTJo0iV/+8pcEg8HBrp7I547JZDJaiKdNm0Y2m2X16tV89NFHfPzxx6xYsYL6+noyySjdTSt3ay1tm81GRUUFw4cPZ/jw4dTU1DBq1Ciqqqo+V63SIiIiInsrBex+tmzZst0u44gjjuC3v/1tP9RGRHaWxWJhzJgxxgz80DNreUNDA/X19TQ3N9Pe3k4oFCIajZJMJkmn05jNZiwWCw6HA4/Hg9/vp7CwkOLiYkpLSykvL6ekpERBWkRERORzTAFbRGQ7nE6n0XVbRERERGRr+m+qWREREREREZG9mAK2iIiIiIiISD9QwBYRERERERHpBwrYIiIiIiIiIv1AAVtERERERESkHyhgi4iIiIiIiPQDBWwRERERERGRfqCALSIiIiIiItIPFLBFRERERERE+oECtoiIiIiIiEg/UMAWERERERER6QcK2CIiIiIiIiL9QAFbREREREREpB9YB7sCMnAefPBBnn32WV577bXBrorI50I0GqW1tZW2tjY6OjoIhUJ0d3cTDoeJxWIkEgkSiQTpdJpMJkM2myWfzwNgMpkwm81YLBZjs1qtWK3WzZ5bLBbMZrNxnslkMuqQz+f7bLlcrs9j7/V69Z5rNpuN7dN12NLrTetjs9mMx9737XY7drsdh8OBw+HA6XTicrlwuVxG3UVEREQ+7xSwRUS2Ip/P09XVRX19PevXr2fDhg00NDTQ1NREU1MTkUhksKs45JlMJtxuN16vF7/fTyAQoLCwkGAwSFFREX6/n0gkQlVVFS6Xq8+PByIiIiKfNQrYIrLXS6VSNDU1UV9fb4Tp3i0cDm/zXJvDg9MTxO4O4HD7sTt9WB0ebHY3FpsDi9WB2dLzT20mFcdk6mnNzZMnn8uRz2XJs/Fx4+tcLkM+lyOXy0I+Rz6fg3yePPmNjz2MKGoyG8HUhBlMpo07TZsFVqNFO99b1ibXzvdcs+d6OXLZbE998tk+9TOZTUb98rkMuWyWXDZNNpMyHrPpBPl8Tyt6NBolGo3S3Ny8zc/S5XJRXl5ORUUFlZWVVFZWUlVVRWVlJcXFxVgslh38LyoiIiIyOBSwB8G4ceO45ZZbeP7551m6dCk1NTVcc801nHjiiQDkcjkee+wx5s+fT0NDA3a7nUmTJnHLLbcwfPhwo4w77riDl156iUWLFuH3+znnnHO48sorjev87ne/4/HHH6e5uZmjjjqKYcOG9anH8uXLueeee1i0aBHxeJyysjLOP/98LrroooH7MEQGQCaToaOjg9bWVlpbW2lubqapqYkNGzbQ2NhIS0sLuVxuK2ebcPmK8BSU4w6U4wmU4faX4vKX4PIVY7U5t3ntbDrJ4r89TvOaReSy6f6/uUFgttgoGzmJA46/GIvNscVj8vk8uWyaTCpOOhkjnYyQTkRIxrtJxbtJxkIkIp0koh0kIu0kY13E43HWrFnDmjVrNivPZrNRVlZGVVUV5eXllJeXU1ZWRllZGSUlJQQCAbV+i4iIyKBTwB4kd999NzNmzGDWrFnMnz+fK6+8kqeffppJkybxy1/+kieeeILZs2czduxY6urquPnmm5k1axZz5swxypg9ezY/+MEPmDlzJi+//DL33Xcfhx9+OIceeigvvfQSt99+O9///vc56qij+POf/8x9991HRUUFAPF4nIsuuoijjz6a3/72t1gsFn7/+98ze/ZsjjzySCZMmDBYH43s5bLZrLHlcjkymQyZTIZ0Om1syWSSZDJJIpEgHo8Tj8eJxWKEw2EikQjd3d10d3cTCoXo6Oigu7t7s7HIn2a2OnrCc6AMT6AcT2E5noIK3P4yLFb7Vs/LpJPbLPfD1x6lefW/d+mzGKpy2TSNK98ml8tx4JRLtnmsxebEYnPi9Aa3fozVTi6bJh5uJ9bdQry7hWhXM7HuZmJdLcS6W0in00YPgy2x2WxGt/NAIEBBQQF+vx+fz4fX68Xj8RhjwsvKyigtLd2tz0BERERkSxSwB8m0adM4//zzAZgxYwbvvPMOc+fOZdKkSQwfPpzZs2dzwgknAFBVVcUpp5zCwoUL+5Rx5plncsYZZwBw2WWX8cQTT7Bo0SIOPfRQfvWrX3Hqqaca17jkkkv4z3/+w8cffwz0BOwLL7yQ888/H4/HA8DVV1/N448/zrJlyxSwZVC8++67fP/7398jZZvMFpyeQpzeIlzeIpy+IppWvkOsu6fbci6TJNxeR7i9bo9cf6BMnTqV2tpa5s2bx8KFC7f7w8LuaF79b/7cDz8eFJaP4fAzf4C3sAJvYcVm+/O5HPFIT/iOdbcQ62ohHm4lHm4jHm4nFe8inU7T3Ny83W7ovebMmcM+++yz23UXERER2ZQC9iA5/PDD+7yeOHEib775JgBTpkzhgw8+4IEHHjC6S65cuZKysrI+54wePbrPa5/PRzrd0wV1+fLlnHbaaZtdozdgB4NBzjvvPF566SWWLFlCXV2dsW/rXWVF9qy2trY9Uq7JbMVfVI3TW4TTG8TlK8bpLaK17oM9cr3BVFtbS3V1NbW1tSxYsGCwq9MvTGYzbn8JNocbm92Fze7G5vRgc3ixO33EuluIhhp3qsxoNLqHaisiIiJ7MwXsQWK19v3os9mssZTNo48+yk9/+lPOOussjjzySKZPn86rr77Kyy+/3Occu33zbqubtlZ9OijbbDbjeWtrK1/72tcIBoNMmTKFY445hgMOOIDjjjtut+9NZFedcsop7LPPPnR2dvb5LmezWaOreCqV2qyLeCKRIBqNEolEjC7iXV1dxizf+VyGrtY1dLVuPrYXwO7y4/aX4S7Y2D08UI6nsAKntwizefcm1hroLuLz5s0zWrBNJtMebcEuG3XodruI7wiL1W7UNRUPf9I1vKuZaFfTxlbrZtLJ7Ydim81GQUEBgUBgq13EKyoqOOCAA3a73iIiIiKfpoA9SBYvXsyUKVOM1++//z777bcfAA8//DBXXHEFl1zyyR+uTzzxxE79oTxhwgQWLVrE9OnT+1yz10svvUQoFOKVV14xgveyZcsA9ugf5CLb05/ddtPptDEOu62tjba2NlpaWoxJzhobGwmHw6Q2TrwVal7R53yT2YonUIanoGc8tqegvCeIB0pxuAt2aFKtg6ZcwmKzecAmOVu4cCELFizYo+F6RyY5+7RsNk06ESEVD5OMd5GMhkhGO4lHeiY56+nu3Uo2k9pmOYWFhVRUVFBRUUFpaakxyVlxcTFFRUX4fD5NdiYiIiKDRgF7kDz11FOMGjWK/fffn2eeeYZly5Zxxx13AFBRUcGbb77JlClTMJvNPP/88/zpT3+iuLh4h8u/5JJLuPzyy3n88cc56aST+Mc//sErr7xiTOxTXl5OPB5n4cKFTJ48mdWrV3PnnXcCPUsWiXwe2Gw2SkpKKCkpYdy4cVs8JhwO09DQQENDQ59luurr60mlUkQ6G4h0Nmx2ntliM8ZyOz2FONwF2F1+7C4fNocHq92F1ebCYrUx7oivMfaIr5KKRz4Jf3m2vERW79JXuRzke/fljSWv4NOh2bRxRS4TJpOZVDJKOt6F3V2Aw+Vjk8W8DD3LfW0st7f8jctz5XuvmcuRz/fUI99br411NFusmIDl78wjl82Qy2V6HrNpspkk2XSKbCZJJp0gk4qTScbIZrY9GZxxNyYTJSUlxlJdVVVVVFRUGI8ul2uHyhEREREZDArYg+Scc87hySefZPny5YwfP54nnniC8ePHA/DjH/+Y22+/nbPPPhuPx8NBBx3Ebbfdxq233sqGDRuorKzcbvnHH38899xzDw8++CAPPPAABx98MBdddBEvvfQS0NMV96OPPmLWrFlEIhGqqqr4n//5H1599VUWL17Mueeeu0fvX2So8Pl8jB8/3vjfX69cLkdzc3Of0L1hwwY2bNjQs6xXNk20q4loV9Mg1fyzx2w24/f7KSwspLCwkOLiYgKBAJlMhgMPPJARI0ZQWlq6xeEvIiIiIp8Fprz6Aw+4cePGceeddzJt2rTBrkq/6u2CrrGNQ08sFmPp0qVMmDABt9s92NX5zMtkMkZX896u5x0dHYRCIbq7uwmHw8RiMeLxOMlk0lhebEvMZjNWqxWr1YrFYsFms2GxWIzXFosFs9mMxWIxju9tBc/n88ZcC73Pe1/ncjmji3jvY+95JpMJs9ncZ+u95qbPe+uwrec2m83Y7HY7drsdp9OJ0+nE5XLhdrvxer34fD48Ho8x10QvfTdlKNL3UoYifS9lKNpbvpc7k3PUgi0ispOsViuVlZU71JtkU5sG4k2DsoiIiIh8Pihgi4gMEJPJZLREi4iIiMjnjwL2IOidrVtEREREREQ+P8zbP0REREREREREtkcBW0RERERERKQfKGCLiIiIiIiI9AMFbBEREREREZF+oIAtIiIiIiIi0g8UsEVERERERET6gQK2iIiIiIiISD9QwBYRERERERHpBwrYIiIiIiIiIv1AAVtERERERESkHyhgi4iIiIiIiPQDBWwRERERERGRfqCALSIiIiIiItIPrINdARER2XWZTIZoNEokEiEcDhOJRIhEIkSjUaLRKPF4nEQiQTKZJJ1Ok81mjXMtFgs2mw2Hw4HL5cLj8eDz+fD5fBQUFFBQUEAwGMThcAziHYqIiIh8dihgDwEPPvggzz77LK+99tpgV0VEtiKfzxOLxQiFQoRCIbq6uowwG4vFSCQSJBIJUqkUmUzGCLO5XI58Pk8+n+9Tnslkwmw293nsfb/32FwuRyaTIZvNkk6nSaVSxnXi8TjRaJRkMrnH793r9VJUVGRsxcXFm22BQACzWZ2iREREZO+mgD0EXHTRRZx//vmDXQ2RvVo+n6e7u5sNGzawYcMGGhsbaW5uprm5mba2Ntra2kgkEoNdza2yWO1Y7W7sdhdWmwur3YXN7sRidWKx2jBb7JgtVsymT0JwPp8jm81gMpnIZdOkU3FSyQipRIRkvJtkvJtcNm38kLBu3bqtX99iIRgMUlxcbITwTQN5SUkJRUVFOJ3Ogfg4RERERAaFAvYQ4PF48Hg8g10Nkb1CIpFgw4YN1NfXs379ehoaGqivr6ehoYFwOLzd8602Jw6XH7vTi83hwW53Y7W7sdocWKwOLFY7ZrOlJ8yaLeRyOeqWv0FXex35XHa75e+qbCZFNpMiGQvt9Llmi43KmklMOv5bWG2fdAfP5/OkUzES0RCJWIh4tIN4tJPExsee550kYl1ks1laW1tpbW3d5rV8Ph8lJSXGVlhYSCqVIp/PM3z4cIqKirBYLDt9DyIiIiJDgQL2ABg3bhy33HILzz//PEuXLqWmpoZrrrmGE088Edi8i3hdXR0zZ87k3Xffxev1ctFFF/HrX/+ayy+/nGnTpgHwhz/8gccff5yGhgaqqqo455xz+PrXv2500WxsbOSee+7hrbfeIhqNMnnyZK677jrGjx8PwA033ABAYWEhzz33HLFYjCOOOILbb7+dsrKygf6IRPpNOp2mo6OD1tZWWlpaaG5uprGx0WiZbmtr2+b5TnchHl8Jbn8Jbl8xbl8RLncQp7cQpyvQJ4DuiHdfe5RQ65rduaU9LpdNU7/qbXK5HIdMuaTPPrPZgttXhNtXBIzeyvlZEokuktEQ8WiIRKyTRDREPBYiGe0kHg8Rj3SSy6YIh8OEw2FWr17dp4zf/e53G69n7hPAe7felvBgMEhhYSE2m22PfBYiIiIiu0MBe4DcfffdzJgxg1mzZjF//nyuvPJKnn76aSZNmtTnuHg8zvTp0xk5ciS/+c1viEQi3Hbbbaxfv9445ne/+x333nsvt9xyCwceeCBLlixh5syZNDc3c/311xOJRDj33HOprq7mZz/7GXa7nQcffJALLriA559/nqqqKgBeeuklvvzlLzN37lza29v53ve+x/3338+dd945oJ+NyKflcjnWrl1LPB43xh4nk0lj7HHv+OPeib26uroIhUJ0dnbS1dW13fJtDg8efxmxcCupRN9W60Ssk0Ssk/bm5Xvq9gbE1KlTqa2tZd68eSxcuHCzMeBbsmHNv3nhiX8PQO36stpc2BweErFOcrms0TV/W3w+H4FAgEAggN/vx+fz4fV68Xg8uFwu3G43TqcTu92Ow+HAbrcTCASoqakZmJsSERGRvZIC9gCZNm2aMc56xowZvPPOO8ydO3ezgP3HP/6Rjo4O5s+fT0FBAQB33XUXZ5xxhnHMnDlzuPzyyznttNMAqK6uNoL4d77zHV544QU6OzuZP38+wWAQgHvuuYeTTjqJp59+muuvvx7o+QP19ttvx2azMXr0aE499VRef/31Pf1RiGzXY489xh/+8IfdKsPjL8XlLcLtLcLjL8XjL8UbKMMTKMPh9JHP5/n78/9He9P2u4V/FtXW1lJdXU1tbS0LFiwY7OpsU6CommPP+AHk8yRiIWKRduKR9o2PHZ90TY+FiEfaAYyW8Pr6+p261nXXXcfJJ5+8J25DRERERAF7oBx++OF9Xk+cOJE333xzs+OWLFnCyJEjjXANMH78eHw+HwAdHR00NTVx77338sADDxjH5HI5kskk9fX1LF++nJqaGiNcAzidTg488ECWL/+kVW748OF9uln6fD7S6fRu36vI7rLb7btdRjoVw5pykUl7yKTjpFM9WyYVx273YDKbOfaMH5DN7NlZuN997VE2rBn4VuF58+YZLdibzky+LZUjD92si/hAsFgdmEwmMpkk6XTc+O+VSSd6tlTve7Hdvpa6louIiMiepIA9QKzWvh91Npvd4pI2FkvPpEhb07vvxhtv5Kijjtpsf0VFxVb/kM7lcn3q0R8hRmRPmD59OqeccgqJRIJMJrNZF/FYLNani3h3dzehUIiOjg46OjpIJpOkEj2zYXe1bT7ztdlsxRMowxsox1dQgbegHF+gAk9BGQ6n31gyqz8cMuVSFv3NzIa1i8hlB+4HrIULF7JgwYIdCtdbm+SsP+WymU8mSot0bNJK3bHxsY1UIrJDZTkcDmOd7kAgYKzd3dtFvLd7uMvlwuFwGF3EfT6f5pgQERGRPUoBe4AsXryYKVOmGK/ff/999ttvv82OGz9+PM888wyhUMhoxV61apUxu3FRURHBYJD169czYsQI47w//vGP/PnPf2b27NmMGzeO5557jvb2doqKigBIJpP897//5cwzz9xzNynST0wmExUVFbt0bj6fJxKJGJOcNTU10djYaEx01tjYSDqdJtzZQLizgcZPnW+1OfEEynq6lfs2TnTmLcLpCeLyFPQE8J1Y79lqc3DYyVeSzaRIxLY/Pry/JGIhYuE23L5inO6CbR7rdAewWHftB7dPZhr/ZFZxY4bxWO/zDpKxbmD7rehut5uysrI+E5xtusxXUVERbre7X38EEREREekvCtgD5KmnnmLUqFHsv//+PPPMMyxbtow77rhjs+NOP/10HnzwQWbMmMGMGTNIJBLcfvvtQE/oMJlMfOtb3+K+++6jsrKSY489lmXLlnHrrbdy4oknYrfb+fKXv8wjjzzCNddcw3XXXYfdbuenP/0psViMr33tawN96yIDymQyGS2ao0aN2mx/73JS9fX1xvJc69evp76+ntbWVjLpBF1t67bY8r3xCtidXhxOHzaHB5vDjc3uwrpxvWmL1Y7ZYsNstmIymzGZera+8j2tyvk8eeP5p3uumIzzzWYrZosFi8XesxSYzYHN5ty41nXPBGE2m6tP8Pf4SygqH7Nbn2U2myYZ6+ppeY6FesJz5NNLdXWQzaR2qDyr1UpRUZERnEtLSwkEAiQSCSZNmsTw4cPxer27VWcRERGRwaSAPUDOOeccnnzySZYvX8748eN54oknjCWzNmW323n88ce5/fbb+epXv0ogEOCyyy7jo48+MsYOXnTRRTgcDn71q18xa9YsiouL+epXv8rVV18N9Iylnjt3LrNmzWL69OkATJ48md/85jdUV1cP2D2LDEUWi4Xy8nLKy8s55JBD+uxLpVJGK3dTUxNNTU00NzfT1tZGW1sboVCIXC5HKhHebPbxwWfaGLbdPYHbvjH421wb1+i2bwz9FqPbeD6fJZfNkEknyaYTpFNxUsmervXJePdOjXn2+XxGC3NxcfFmz4uLiykoKNhsaEwsFjOWL3S73f39oYiIiIgMKFN+R2a+kd0ybtw47rzzTmMN622pr69n7dq1HHPMMcZ7zc3NHHvssTz99NObBYKhZPHixQAccMABg1wT+bTeEDNhwgSFmN2QzWbp7u6ms7OT7u5uIpEIkUiEeDxOIpEgkUiQSqVIpVJkMhlyuRzZbNaYOyGfzxs9UXq33sBpNpv7dHvO5/PG+b3j0Lc0Fj0SiZBK7VgL8q6wWq0Eg8E+gXnT0Nz73Ol07lL5+m7KUKTvpQxF+l7KULS3fC93JueoBXuISSaTXHLJJVx77bV88YtfJBwOc//991NTU8NBBx002NUT2atZLBYKCwspLCwc7Kr0kUqliEajhMNhI/RHo1Gi0agR/lOpFOl02gj8ZrMZs9lsrBPtdDrxeDz4fD78fj+BQIDCwkJ8Pp/GO4uIiIjsIAXsIWb06NHce++9PPzww/zkJz/B6XRy5JFH8otf/ELLy4jIFtntdux2+5AL/iIiIiJ7GwXsAbBs2bKdOv6UU07hlFNO2UO1ERERERERkT1hx9eaEREREREREZGtUsAWERERERER6QcK2CIiIiIiIiL9QAFbREREREREpB8oYIuIiIiIiIj0AwVsERERERERkX6ggC0iIiIiIiLSDxSwRURERERERPqBAraIiIiIiIhIP1DAFhEREREREekHCtgiIiIiIiIi/UABW0RERERERKQfWAe7AiIie7NYLEZ7ezuhUIhwOEw8HieZTJLJZAAwm83Y7XYcDgcejwePx0MgECAQCOB2uzGZTIN8ByIiIiLSSwFbRGQPy2azNDQ0sGbNGtatW8f69etpaGigqamJSCSyy+Xa7XaCwSDFxcUUFRVRXFzcZysqKiIYDGK32/vxbkRERERkaxSwP2MefPBBnn32WV577bXBroqIbEEikWDNmjWsXLmSlStXsmrVKtauXUsqldrqOTa7C4fTj8PpxWZzYbHZMZstAORzebLZNNlMknQqTjIZIZWIkMkkSaVSNDU10dTUtM06+Xw+gsEgBQUFFBQU4Pf78fl8eL1ePB4Pbrcbl8uF0+nEbrdjt9ux2WxYrVYsFgtmsxmTyWRsvTZ93nuM2WzGYrFgs9mM90RERET2FgrYnzEXXXQR559//mBXQ2Svl81maWpqoq6ujrVr17J69WrWrFlDfX09uVxus+OtVgeB4DAKgtX4CyrxFZTj9ZfhdPrJZJI7f/1MkmQiQiLeRTzWRSLWRTzeScJ43vOYz2cJh8OEw2HWrVvXH7e+w3q7tzudTtxuNx6PB6/Xa3RxDwaDeL1eotEofr+f6upqnE7ngNZRREREpD8pYH/G9I7BFJE9J5/PE41GCYVCdHR00N7eTmtrKy0tLTQ3Nxvdu3vHSX+a0+WnsLiGwuIagsU1FBaPwOsvxWT6ZF7JTDrJv/72KA1r3yObTQ/UrQ2oXC5HIpEgkUgQCoW2eezPf/5zAAoKCigvL6eiooKKigoqKyuprKykoqKCYDCoFnEREREZ0hSwh5hx48Zxyy238Pzzz7N06VJqamq45pprOPHEE4G+XcRvuOEGnn322c3KqKqq4rXXXmPcuHFbvMZVV13FlVdeyYYNG7jrrrv417/+RXd3N0VFRXz5y1/m2muvxWzWBPMyuPL5PIlEYpvH5HI5UqmUsaXTaZLJJMlkss/zZLKnO3UymSSRSBiP8XicRCJBLBYjFosRiUSMLZvNbreOZosNf6Acf2EVgcJhFASrKAgOx+Up2OzYbKZvF/G3XnuY9Wv+vVOfyVBRPfJQjpxymfE6n88DefK5PHny5HJZctlMT9f2bIpMJkU2FSeVipFKRUkmoiTj3STi3cRjIeLRDmLRDjLpniAeCoX4+OOPN7uuw+GgvLzc2EpLSyktLdV4cxERERkyFLCHoLvvvpsZM2Ywa9Ys5s+fz5VXXsnTTz/NpEmT+hx30003ce211xqv33vvPb73ve9x1VVXAfDGG2/0Of5HP/oR7777Lv/zP/8DwOWXX05JSQm/+MUv8Hg8vPrqq9x5551MnDiRk046aQ/fpXxWLV26lDVr1mAymTYGq75jcXvf630/n8+Tz+fJZrNkMpk+WzqdJpVKGc97t2QyyX//+1+i0eiA39/OyGXThDrWE+pYP2DXnDp1KrW1tcybN4+FCxf2+bwHyvo1/2b9E/3340BJ+VhO/epsMuk4kXArke4WIl3NRMIthLuaiXS3EIu0kUwmWbdu3Ta7uns8HgoKCggEAvh8PqPXj9vtxul0Ul5ezvHHH4/FYum3+ouIiIj0UsAegqZNm2aMs54xYwbvvPMOc+fO3Sxg+3w+fD4fAHV1dfzwhz/koosu4qyzzgKgpKTEOPbJJ5/kr3/9K08//TRlZWUkEgnOOOMMpk6dSkVFBQDTp0/nscceY9myZQrYskVvvvkmt91222BXY69WW1tLdXU1tbW1LFiwYLCr029MJhN2h4egw0OwuGaz/dlshlikrSd8h1uJhluJhtsItdfR1dlgHBeNRolGozQ0NGxWRq9AIMAhhxyyJ25DRERE9nIK2EPQ4Ycf3uf1xIkTefPNN7d6fFdXF5dccgmHHnponxbtXq+99hp33XUX9913H/vttx8ATqeTCy64gIULF/Lhhx+ybt06li1bRltb2xYnaBIBqKiowO12E4vFBrsqu8RisWOxOrDaHFit9o2PLmx2Jza7G5vDhd3uwe5w43D6cTp9ONwFuFwBbHZnv47/3dUu4vPmzTNasDftRTCQPt1FfHdZrI6tfrbpdKInVHc3b3xsIdLdSjTSSizcvksTxAWDwd2tsoiIiMgWKWAPQVZr3/8s2Wx2q2Oi0+k0V155JS6Xix//+Meb/ZG6dOlSrr32Wq6++mq++MUvGu/HYjEuuOACEokEp5xyCmeddRYHHnigZiiXbRo1ahTPPffcNo/J5XJks1lyuRyZTIZsNrvV7uGf7hreu/WOp/702OpN39t0nPWm47A3HW+dTCb7jKXOZlNksylSyfBO37vV5sTjLcLjK8HrL8UXKMNfUIm/oBK3t2inw/eRUy7H9DfLTk9ytnDhQhYsWDAo4dpisVFVM5kjjr8Eq83RL2VmMymjC3g03EYk3EYk3EK0u4VwdwuJWGi7Zfj9foqLi/ssRRYIBPB6vfh8Ptxut7EUWVFREX6/v1/qLiIiIvJpCthD0OLFi5kyZYrx+v333zdanj/tlltuYc2aNcybNw+3291nX3NzM5deeilf/OIXufTSS/vse+ONN/joo4948803KS4uBiAUCtHe3j4oLWLy+WE2m40fhByO/glhuyObzW42udmmWzQa7TPJWe+SVl1dXXR2dtLZ2Uk0GiWTTtDV2dCnO3Ivq81JQbCagqLhFBYNp7C4hoJg9TZDqNXm4JiTryKbSRGPde3w/cRjIaLhVjy+Elzugl35SPrI5XNk0wkymSTZTIpsNkMumyaXz5LLZcnncuRzOSCHze7GbLHS1PDfnpM3/lvR+3/z+XzP8flPJjnLZFJkMkkyvZOcJaMkE+GNk5x1kUxEtltHn89nzCReUVFBeXk5ZWVllJWVUVxcPCS+ZyIiIiKggD0kPfXUU4waNYr999+fZ555hmXLlnHHHXdsdtwjjzzCH//4Rx555BFsNhutra3GPo/Hw2WXXUZlZSXXXnstbW1tRnC22WyUl5cD8MILL/ClL32JxsZG7r33XqOFUOTzwmKxGC2YuyqRSNDW1kZzczNNTU00NjZSX1/P+vXr2bBhA5l0grbmFbQ1rzDOMZlM+AsqNy7XNYLCohEEgtW43IG+9bPa8fpLPn3JrfL6SygpH7PV/fl8nlQyQizaSTzaSTzWszZ2PBYiEe/uCbeJMKlEhFQqRia97ZnaB4LNZjNmBO+dIXzTQN0714SIiIjIUKeAPQSdc845PPnkkyxfvpzx48fzxBNPMH78+M2O+93vfkcikeAb3/jGZvvuvPNOlixZAsAXvvCFPvsOO+wwfvWrX3HjjTfy5JNPcv/991NWVsapp55KRUUFixcv3jM3JvIZ5XQ6GTZsGMOGDdtsXzqdpr6+nrVr17J69WpWrVrFypUrCYVCRov32hWfzKHgcPo2di2vwOsvxe0txu0pxOnyY3f6sNmcWKz2Pl3Oc9kMmUyK9CYtwIl498bg3GmE6Vi0g3i0Y5fW1bZYLDidThwOBzabDZvNhsViMTaTydRn69X7vPd9i8WC2Ww2yrDb7TidTtxuNx6PB6/XSyAQIBAIEAwGcblcrF+/nn333Xe3fgQRERERGQoUsIegffbZh+uvv36L+6666ipjGa7XXnttm+VMmzZtm/unT5/O9OnTd6mOItLDZrMxcuRIRo4cyQknnAD0tCK3t7ezcuVKVq5cyerVq1m9ejWNjY0kE2Fam5bR2rRsm+WazBZMsHHSwZ0ftrHpuOSioiIKCgoIBoMEAgH8fj8+nw+v12ssYTVY60fHYrF+nTxOREREZDApYIuI9DOTyURxcTHFxcUcccQRxvuJRIK6ujrq6+tpaGigsbGR1tZW2tvb6erqIhz+ZPK1fC67Way22Wx4PB4CgYAxmVdvgC4pKenzOFiBWURERGRvpoAtIjJAnE4nY8eOZezYsVvcn8vljInYemdit1gs2Gw2nE6nQrOIiIjIEKeAPcQsW7btbqMi8vllNptxuVy4XK7BroqIiIiI7IItL64sIiIiIiIiIjtFAVtERERERESkHyhgi4iIiIiIiPQDBWwRERERERGRfqCALSIiIiIiItIPFLBFRERERERE+oECtoiIiIiIiEg/UMAWERERERER6QcK2CIiIiIiIiL9QAFbREREREREpB8oYIuIiIiIiIj0AwVsERERERERkX6ggC0iIiIiIiLSD6yDXQERkc+qZDJJV1cXXV1dhMNhIpEIkUiEaDRKPB4nHo+TTCZJJpOkUimy2SzZbJZcLmeUYTabsVgs2Gw27HY7NpsNp9OJ2+3G7Xbj8XjweDz4/X58Ph+BQAC/34/Vqn++RURERIYa/YW2hzz44IM8++yzvPbaazt0fD6f57nnnuPYY4+lqKhoD9dORLYml8vR1dVFR0cH7e3txtbR0UFnZyednZ10dHQQCoVIJBKDVk+fz0dhYSGFhYUEg0HjMRgMUlRUZLzn8/kwmUyDVk8RERGRvYkC9hDx73//mxtuuIFXX311sKsi8rmUSqUIhUJGQO597A3SvY+dnZ1ks9kdLtdkMmN3eLDbPTjsbmwOFzabC6vVidVmx2KxY7FasZhtmC1WTCZzzwbkgXwuSy6fI5/Nks2nyabTZLIpsukk6UyCdDpOKhUnlYz2bKkYAOFwmHA4TF1d3TbrZ7VajbBdUFBAQUGB0Qru8/nw+XxGK7nH48HpdOJ0OnE4HGolFxEREdlJ+utpiMjn84NdBZHPjEwmYwTMcDhMd3e38djV1UV3dzehUMjovh0KhYhGoztxBRMulx+XpxC3uwCXu2DjYyEuVwC73c1Hi/9IY8NHZLNpkokwyUSY8B67412XyWRoaWmhpaVlp881m83YbDasVitWqxWLxYLZbMZsNmMymfpsm55jMpmM4ywWi9EF3mq14nA4sNvtOBwOXC4XVquVSCTCqlWrCAaDeL1efD5fnx8ALBZLf34kIiIiInuMAvYuGjduHLfccgvPP/88S5cupaamhmuuuYYTTzxxi8cvX76ce+65h0WLFhGPxykrK+P888/noosu4u233+bCCy8E4MQTT2TmzJncd999nH/++Vx55ZVGGb/97W956KGH+Nvf/sY3v/lNxo8fT3t7O6+++iqBQIALLriAb33rW5hMJqPMV199lWHDhgFs9t7atWuZOXMm//nPf8jlckyaNInrr7+ecePG7fkPUPZa+XyedDpNPB4nFosRi8WIRqPG1juGedPxzL3jm7u7u4lEIsTj8V26tslkxukK9IRnVwCXuwCnK4DbHegJz+4A7o3vmc1bD3X/+OvD1Nf9Zxc/gcFRUjqG0WOOJh7vJpkMk0xESCYjpFNxksko6XSCdCpOJvNJt/dcLmeMIR8sJpMJr9dLIBAwWt57n2/aEv/pFnm73T5odRYREZG9lwL2brj77ruZMWMGs2bNYv78+Vx55ZU8/fTTTJo0qc9x8Xiciy66iKOPPprf/va3WCwWfv/73zN79myOPPJIJk6cyIMPPshVV13F73//e8aOHcuqVat44YUX+gTs5557jq985StGt83f/OY3nH322cyfP58PP/yQW2+9FYBLLrlkh+r/ve99j/Hjx/OHP/yBTCbD7NmzufLKK/nzn//cPx+QfK6k02kWLFjARx99tM3j8vk8qVSKVCpFIpEgmUySSCSMCb/i8TiZTGaAav3puuWIxzqJxzoH5fpbMnXqVGpra5k3bx4LFy7cY71ZWltW0NqyYo+UvbucrgBl5eNIp+MkExFSqejGxxj5fN7oqVBfX7/DZdrtdjweD263G5fLhcvlMrq+22y2zY4/6KCDmDp1qsari4iIyG5RwN4N06ZN4/zzzwdgxowZvPPOO8ydO3eLAfvCCy/k/PPPx+PxAHD11Vfz+OOPs2zZMiZMmEAgEAAgGAzidDo5++yzefLJJ3n//feZOHEia9as4f333+f//u//jHJHjhzJrbfeislkYvTo0axatYpf/vKXfOtb39qh+tfV1XHUUUdRVVWFzWbjRz/6EatXryaXy2E2awU36eutt97ioYce2uPXcXuCeL3FeH0leH0luD2FOBwebDY3773zWzo7tj3m+LOmtraW6upqamtrWbBgwWBXZ1D4A2WccPJ3Ngu3uVx2Y0t7mEQ8TCIRJpHoJhJupSvUSFeoga5Q4xbL7P2Rp7Nzx35M+etf/8rIkSOZMGHCbt+PiIiI7L0UsHfD4Ycf3uf1xIkTefPNNzc7LhgMct555/HSSy+xZMkS6urq+PjjjwH6LNezqbFjx3LAAQfw3HPPMXHiRJ577jkOPPBA9tlnnz7X3/QP0okTJ/LYY4/t8B+U3/3ud/nRj37Er3/9aw477DC+8IUvcPrppytcyxaNGTOGiooKGhu3HGj6SyzaQSzaQUvzcgDMZit2h7snZNs9VA47AIfDi93hxm734nB6cDi8OBweHE4fTqcXh8OHxWrfY62R//jrw6xb806/lDVv3jyjBdtkMu2xFuwRIw/jCydctkfK3hW5bJZMpmcit1w2S0vzClKpKKlkjGQyYnRhTyZ6g3WYRLybZCJMNpvu9/pUV1dTVVXV7+WKiIjI3kUBezd8eobdbDa7xXDa2trK1772NYLBIFOmTOGYY47hgAMO4Ljjjttm+WeffTb33XcfN910Ey+++CIXX3zxNq/fG9a3NiHQp2dGPv/88znllFN4/fXXeeutt/jJT37Cz372M5577jmKi4u3WTfZ+1RUVPDUU09tcV8ulyOTyZBOp401n1OplNE9fNNt07HX8XjcGHu96Vjs3rHXuVyOXC5DIt5NIt69U/W1WGw4XX6cTh9OVwCnMe46gMvVO3FZzzhsu92zU2H82BMu5w2zmbq17+122Fu4cCELFizYY+HaYrExvGYyxxx3KVabg0w6SSIRNsJrKhXrGYOdivdsmSSZTIJMJkU2kyaXS5PNZj6Z7TyXI0+up675PHk21nlj3fMb38vncuTzOfL5rPHfMZtN92yZFLncjs/UviU2m80Yj+33+/H7/cYEaR6PB6/Xa6wj/uku4k6nE7vdjt1u1w+KIiIi0q8UsHfD4sWLmTJlivH6/fffZ7/99tvsuJdeeolQKMQrr7xijP1btmwZ8Mns4Vv64/70009n1qxZ/OIXv6CtrY3TTz99s+tvatGiRQwbNoxAIGBcJxKJGPvXrl1rPG9vb+enP/0pl1xyCdOmTWPatGk0Nzdz7LHH8s4773DqqafuzEchezmz2WwElt5hELsrn88bobt3krPesbibTnjW3d292Szi6XRPkItG2olG2rd7LYvFtjFwF+L29MwW7t44g7jbXdjz2l2A3dETxK02B8efdDWZTIp4vGu37jMWCxEJt/Z0h3cX7FIZ+Y1dqePxLhLx7p7HRJhEvIt0KkEk3Mazv7+eRLybTGbwJizbEqvVit1uNyYo6w3JPp+PQCCAz+ejoKCgT5guKCjA6XRqvLSIiIgMOQrYu+Gpp55i1KhR7L///jzzzDMsW7aMO+64Y7PjysvLicfjLFy4kMmTJ7N69WruvPNOoGecIIDb7Qbg448/prCwEI/Hg8/n4+STT2bOnDmceOKJ+P3+PuW+++67/OQnP+ErX/kK7777Lk8//TQ33ngj0NPF3O128+ijj3LNNdewbt06fvGLXxjnBgIB/va3v1FXV8e1116L1+tl/vz52Gw29t9//z3yeYnsDJPJZKzNXFpausPn5fN54vG4sURXV1cXnZ2ddHV10dHRQSgU6vMYDvd0OY6EW4mEW7dZttls3dgCHjBmI3c4/T3d0p1eHA4vNrsbu92Fze7CZnVitTmwWuyYzJYtBkKfr4SysjHk83lyuZ5u05lMkkw6QSoVM9bA7u023dtVOhHvIr5xS8TDwI63flut1j6zbnu9XqOl1+1243A4jOW0bDYbNpvNWG5rS8t09f732nTb0jJdNpvNKLN3ve1MJsPSpUuZMGGC8e+giIiIyGeVAvZuOOecc3jyySdZvnw548eP54knnmD8+PGbHXfKKafw0UcfMWvWLCKRCFVVVfzP//wPr776KosXL+bcc89l7NixHHfccVxzzTV873vf46KLLgJ6JlJ78cUXmTZt2mblnnjiiaxatYqvfOUrlJaWcuONN3LuuecC4PV6ueuuu7j77rs59dRTGT9+PP/7v//LFVdcAfT8gf3YY48xe/Zspk+fTjweZ8KECTz66KMMHz58D35qInuWyWTC7XbjdrupqKjY7vGpVIqOjg7a29vp6Oigra3NeN37Xm8Qz+UyO9wqvoWaYbFYMZnMmExmMAH5npnNc7nsxi7Tu95F3Gw2U1hYSDAY7LP1vldYWEhBQQEFBQW43e4h0/o7WDPKi4iIiOwJCti7YZ999uH666/f4r6rrrqKq666Cuj5g3/GjBnMmDGjzzHf/OY3jed2u51HH310s3KampqorKzk6KOP3myf3+9n1qxZW63fSSedxEknndTnvd6u6QCjR4/e4jVF9iZ2u53y8nLKy8u3eVwqlSIUCtHe3k4oFDK2rq4uo4t6OBw2xpDH43Hi8fgm46rzOzxe22KxGOOGe1uXe1uce9d/7g3MvQHa7/dvdf4FERERERkYCthD1EcffcTq1av5yU9+wgUXXKCJeEQGmd1up7S0dKe7q/dO/JZOp8lkMmSzPZN+5fN5oyu1xWLBarUaazTbbLYh08IsIiIiIjtOAXuI+s9//sOPf/xjjj/+eL7xjW8MdnVEZBeYTCZj8jcRERER+fxTwN5Fm3a13hPOP/98zj///K3u/9WvfrVHry8iIiIiIiI7R/2ORURERERERPqBAraIiIiIiIhIP1DAFhEREREREekHCtgiIiIiIiIi/UABW0RERERERKQfKGCLiIiIiIiI9AMFbBEREREREZF+oIAtIiIiIiIi0g8UsEVERERERET6gQK2iIiIiIiISD9QwBYRERERERHpBwrYIiIiIiIiIv3AOtgVEBEZqlKpFE1NTTQ3N9PW1kZ7eztdXV2Ew2Hi8TjJZJJsNksul8NkMmG1WrHb7bhcLjweD16vl0AgQEFBAcFgkKKiIkpKSnC5XIN9ayIiIiKyByhgi8heL5vNUldXx6pVq1izZg1r166lrq6OlpYW8vl8v1/P6/VSWlpKSUkJZWVlfbbS0lIKCgowmUz9fl0RERER2bMUsPciN9xwAw0NDfzqV7/a4v63336bCy+8kFdffZVhw4YNcO1EBkY2m2X9+vUsX77c2FavXk0qldri8TabE5+vBK+nCLe7AJfLj8PhxW53YbU6MJutmEyQz0MulyGTSZFOJ0ilYiSTURKJbmLxLmKxELFoJ6l0nEgkQiQSYfXq1Vu8pt1up6SkxNiKi4spKioiGAxSWFhIIBAgEAjg8XgwmzXSR0RERGSoUMDei9x0001ks9nBrobIgMlmszQ0NLBixQpWrFjB8uXLWblyJYlEYrNjbTYXRUXDKQoOJxisJlg4jECgApfLb7QmZzIpYvGu3apTOhUnFg8RjYaIRTuIRDuIRjuIxjqIRDpIJLpJpVI0NDTQ0NCwzbJMJhNutxuXy4XL5cLhcGC327Hb7VitViwWC2azGbPZjMlkMlrjc7kcuVyOfD5PLpfDYrEYn1dvl/fefZteq7csq9VqdIe32+04HA6jDi6XC6/Xi8fjwefz4fP5CAQC+Hw+7Hb7bn12IiIiIkOdAvZexOfzDXYVRPaIXC5HW1sb69evp66ujrVr17JmzRrWrFlDMpnc7Hir1UFJyUhKikdRWjKK4uKRBAJlmExbbg1OZ5L87W+PsHbde2Sz6T19Ozssn88TjUaJRqODXZUd4na7KSgooLCwkMLCQoLBID6fj3g8TiwWo7KykmAwSCAQUMu8iIiIfCYpYPeDcePGccstt/D888+zdOlSampquOaaazjxxBPp6Ojg2GOP5f/+7/8488wzjXPuuece/vnPf/KHP/yBKVOm8KUvfYnXX3+d9vZ2HnzwQcaNG8ddd93F66+/TkdHB36/nxNPPJGbbroJl8vF22+/zTe/+U0eeOAB7r77bhobGzn44IOZPXs2TzzxBM899xw2m40LL7yQyy+/HNi8i/i7777L7NmzWbZsGTU1NZx99tmD8fGJbFMmkyEcDhMKhQiFQrS3t9Pe3k5rayvNzc00NTXR1NS0xSANYLHYKSoaTnHRcIqLR1JcNJJAoHyzAJfJbLmLOMBrf3uYNWve6df7GopKikey774nYTaZwWTe2HJvAvJAnnwuRy6fI5fLkstlyGbTZDJpMpkUmUyCdDpJOp0gmYqSTsc3dpGPkkxGgDyxWIxYLMaGDRs2u/b8+fON5xaLxQjgvWG8sLCQgoICCgoKCAQC+P1+fD4fXq8Xt9utMesiIiIyJChg95O7776bGTNmMGvWLObPn8+VV17J008/zaRJkzj++ON57rnnjICdy+V44YUXuOSSS4zz586dyyOPPILP52PcuHF85zvfobm5mYceeoiioiIWLVrE97//ffbZZx+mT58O9HTn/NnPfsbdd99NJpPh0ksv5YwzzuDss8/m97//PS+88AL3338/U6ZMYdy4cX3qu379ei666CLOPPNMZs2axcqVK7nlllsG6uOSvVBnZyc///nPeffdd433tjeBWDweJx6P71D5ZpMFf6CMgkAlrW2riUY7AMhmU7S0rKSlZeWuV76fTZ06ldraWubNm8fChQv3yERqu6K1bQ2v//2xAb+u3e7G6y0mHg8Rj4fJZrO0tbXR1ta2Q+ebzWbcbvcOdUE/7rjj+MY3voHb7d7daouIiIhsRgG7n0ybNo3zzz8fgBkzZvDOO+8wd+5cJk2axNlnn823v/1tmpubKSsr46233qKjo4PTTz/dOP+4447jqKOOMl4fffTRHHrooUYwHjZsGHPnzmX58uV9rvud73yHAw44AIAjjjiCDz74gOuvvx6TycSll17KnDlzWLFixWYB+5lnnqG4uJgf/vCHWCwWRo8eTWNjI3feeece+XxEnnvuOV555ZV+K8/vL6OifByVlftSXjYWr68Yi9lKPp/n+RduMwL2UFRbW0t1dTW1tbUsWLBgsKsz6IKFwzjjKz/EZDKRzWWIx7uJhNtoa19He/ta2tvraO+o22r3/FwuRyQS2aFrPfvss4wZM4aTTjqpP29BREREBFDA7jeHH354n9cTJ07kzTffBODYY4+lqKiI559/nksuuYRnn32WE088kUAgYBw/YsSIPuefd955vPbaazz77LOsXbuWlStXUl9fz6hRo/oct+l5brebYcOGGV0lnU4nwBZnR16+fDn77ruvMbkRwKRJk3bl1kV2yPHHH8+//vUv1qxZ0y/ldXc3093dzLLlf8dqdRAIlFMQqKCwsIr99z+FY46ejs9X2i9jefu7i/i8efOMFuxNJx8bbCNHHsaU4y/bY+Xn83nS6YQxs3o83kUs1kUiEeavrz9CLNZpzLaeSO5YYN5ZBx54IBMnTtwjZYuIiIgoYPcTq7XvR5nNZo0/7C0WC2eeeSYvvvgiF1xwAX/5y1944IEH+hzfG4ahpzXm0ksvZcWKFZx++umceuqp7Lffftx8883bve6OhgmTydRnhuAtlSXSn0aOHMkjjzyyQ8em02ljvG44HKa7u9sYg93R0WGMwW5qaqK9vZ1MJkl7+zra29f1KcdqdVAUrO4Ze11cQ0nJKIKFwzCbLVu58pZNOeFy/mYy99skZwsXLmTBggVDJlybzVYqKydw8IGnEw63YTKbMJnMmPhkXHOePPl8rmccdi5LduMY7Gw2TSadJJ1Jkk7HSaU2LlGWipJKRkkkIyQSYRLxMPFE9059fpuOxe6dHK13/HUgEMDr9eLz+fB4PMZYbJfLpX/LREREZNDor5B+snjxYqZMmWK8fv/999lvv/2M12effTaPPfYYv/rVr/D5fBxzzDFbLWvp0qX8/e9/55lnnuGggw4CegJHXV0d1dXV/VLf8ePHM3/+fFKplDFu8b///W+/lC2yu2w2m7HWc0VFxTaPTaVSNDc3U19f32cW8XXr1pFMJmluWUnzJuOvLRabEbZLS0ZTUjKSgkDFVmcQB7BZHZx80tX9skwXQCwWIhxuxecrwe0u2PyAfJ5UOk4s2kks1kU80bXxsZtEPEwiGSGZjJBKxUmlYuTzu7f8Xi6Xob5+MfX1i3ernB3ldDqNCcz8fj8Ao0aNoqKigmAwaKz57fP5NJu4iIiIfKYoYPeTp556ilGjRrH//vvzzDPPsGzZMu644w5j/8iRI5k0aRJz5szh61//ep+u2Z9WXFyM1WplwYIFBINBQqEQDz/8MK2trVvs7r0rzj33XJ5++mm+//3vc/nll1NXV8eDDz7YL2WLDCS73U51dTXV1dUceeSRxvu9a2CvWrXKWAd7xYoVxGIxmptX0Ny8wjjWZnNSVDSC4qIRFBWNIBisprCgEru970RYVqsdv69kt+vs8xbh8xUTCbfR0rKScLiNcKSVSLiNcKSNSKSddHrHJnfblMPhMNbCttlsWK3WPutgA8b61ptuvWtf9z72Pu893mQy9VkH22Kx9FkH2+l0Gmthu91uYw3s3hbmTVudCwoKcLlcRp1jsRhLly5lwoQJmnhMREREPvMUsPvJOeecw5NPPsny5csZP348TzzxBOPHj+9zzLRp01i0aBFnnXXWNssqKytj1qxZPPjggzz99NOUlJRw/PHHM336dF577bV+qW9ZWRlPPfUUP/rRjzjrrLOoqKjg8ssv57bbbuuX8kUGm8ViYfjw4QwfPpwTTjgB6Bl+sWHDBpYtW8by5ctZtmwZq1atIplM0NS0jKamZX3KcLsL8PvL8PtK8HqLcbsCOF0BnA4PNrsLq9WOxWzFZDKT37h8VSaTIp3e2E06GSWe6N441jhENNZJNNJBJNpBLpfZ7j34fD5KSkooLi42WnU/vVSV1+vF4/HgdDq3+cOdiIiIiOx5pvxQGAD4GTdu3DjuvPNOpk2bts3jHnzwQf75z3/ym9/8ZoBqNrAWL+7pXto7q7kMHWol3LpsNsv69etZuXIlq1atYs2aNaxdu5aOjj07C7nZbCYYDFJWVkZpaSnl5eXG87KyMkpKSvrMzfB5pe+mDEX6XspQpO+lDEV7y/dyZ3KOWrAHwHvvvceaNWv45S9/ye233z7Y1RGRTVgsFmpqaqipqemzdFMkEqG+vp7GxkZaWlpoaWmhs7OTUChEOBwmHo+TTCaNbtUmk8noNu1yuYxu0r1jyXvHFhcXF1NaWkpRUZEm4xIRERH5nNFfdwPgr3/9K3PnzuXss89m6tSpg10dEdkBXq+X8ePHbzbUQ0RERERkaxSw+8GyZcu2uX/GjBnMmDFjgGojIiIiIiIig0Hrn4iIiIiIiIj0AwVsERERERERkX6ggC0iIiIiIiLSDxSwRURERERERPqBAraIiIiIiIhIP1DAFhEREREREekHCtgiIiIiIiIi/UABW0RERERERKQfKGCLiIiIiIiI9AMFbBEREREREZF+oIAtIiIiIiIi0g8UsEVERERERET6gXWwKyAisivy+TyxWIxwOEw0GiUej5NIJEgmk2QyGdLpNJlMps/W+146nSaZTJJKpUgmkySTSRKJhLH1vpdKpUin06TTaXK5HABmsxmLxYLNZsPpdOJ2u/F6vQQCAQoKCggGg5SWllJSUkJ5eTmlpaVYLJZB/rREREREZCAoYH9Gvf3221x44YW8+uqrDBs2bLCrI7JHdHd3s27dOtavX8+GDRtoamqipaWFtrY2QqEQmUxmUOvX1dW13WMsFgvl5eVUVVVRXV3dZysoKNjzlRQRERGRAaOALSJDQltbG8uXL2f58uWsXLmSVatW0d7evt3zLBYbDrsHu82J1erAarVhMdswW6xYzFbMZitmswWLZeOj2YrFYsNqtfc8WuzYbA6sVjs2a08ZNmvPa6vFbpxnMpkxmUzk83lyuSzZbJp0JkkqFSeZihJPhInFQ0SjnURiHXSHWwlH2shm0zQ0NNDQ0MA777zTp+5+v5/hw4dTXV1tPFZXV6vVW0REROQzSgFbRAZcNBplxYoVLFu2jI8//phly5bR1ta2xWN93mIKC6oo8JcT8Jfi8xbjcRficRfgcvqxWu1kMili8e23Ju+ufD4PgNlswWy2YLM5cbsCWz3e5fSRTEUJdTXR2dVIqKuRjtAGOkMNhCNtdHd389///pf//ve/fc6z2WxUVlZSWVlJVVUVlZWVlJeXG13O7Xb7Hr1PEREREdk1Ctj9YNy4cVxxxRU8++yzpNNp5s6dS2VlJQ888AAvvPACkUiEMWPGcPXVV3PMMccQjUY55phjuO666zjvvPOMch566CHmzZvHa6+9Rj6f51e/+hW/+c1v2LBhA5WVlUyfPp1zzz13s+vPnz+fH/7wh7z55pv4/X7j/ZNOOonTTjuN7373uzQ3NzNr1iz+8Y9/YLFYmDhxIjfccAM1NTUA3HDDDcRiMSKRCP/5z3+4/PLL+da3vrXHPzv5fMvn83R0dLBmzRrWrFnDqlWrWLFiBfX19UZY7WUymQgWDKO0ZBSlxSMpDo6gOFiN3e7eavnpTJKFr/2E1eveI5tN7+nb2WkWi41RIyZz4rGXMqxyvz770pkkoVAjHaEGOkMNPcG7awOhribS6TTr1q1j3bp1Wyy3sLCQkpISioqKKCoqIhgMUlhYSGFhIYFAgEAggN/vx+PxqCVcREREZAApYPeTX//61zz22GNks1lqamq49tprWbVqFXfffTdlZWX89a9/5bLLLuOhhx7i+OOP55RTTuGll17qE7BffPFFzjjjDMxmM3fccQfPP/88N998MwcccAB///vfueOOO0gmk0yfPr3PtU855RRmzpzJK6+8wv/8z/8AsGjRItavX8+0adOIxWJ8/etfZ7/99mPu3LmYzWZ+8Ytf8NWvfpUXX3yRsrIyAF555RWuu+46br75ZpxO54B9dvLZlUql6O7uprOzk87OTtra2mhubqapqYkNGzZQX19PNBrd4rleTxGlxTWUFo+itHgUJUU12GyOzY5LpxNbvf6fX3+YVWvf2er+wZbNplmx+l/kcjlOPu6yzfYXBMopCJTDiMnGe7lcjnCsna6uJrq6m+kKtxAOt9IdaaU73EY2mzI+7x3ROwmb2+3G4/Hgdrtxu924XC5cLhdOpxOfz2e853Q6cTqdOBwOHA4Hdrsdm81mbBaLBavVitlsxmz+ZCGKfD6/sft8ztiy2ayx9b7ufew9PpFI0NzcbNSxdxI5q9WK1Wo1rtt7TREREZGhTAG7n5xxxhkccMABAKxbt46XXnqJ5557jgkTJgDwzW9+k48//pgnnniC448/nrPOOosLL7yQhoYGqqqq+PDDD1m7di3Tpk0jEonwm9/8hhtuuIEvf/nLANTU1FBfX8+jjz7KN77xjT7XdrvdnHLKKbz44otGwH7xxReZNGkSI0aM4Pe//z3d3d3cddddWK09/8nvuOMO3n77bZ555hmuuuoqAAKBABdffPGAfF4y9HV2dvLAAw/wz3/+c7fKMZlMBPzlFAerKQ6OoKR4JCVFNSz4y/2sXvceq9e910813nOmTp1KbW0t8+bNY+HChZu1vm/PqrXvDNoPAbFYjFgsNijXHiquueYaTj311MGuhoiIiOwFFLD7yYgRI4znS5YsAejTOg2QTqeNLtyHHnoow4YN46WXXuLSSy/lhRdeMALxhx9+SDqdZvLkyX3OP+yww3jqqae2OPHTtGnTuPDCC2lubiYYDLJgwQKuvfZaoz5dXV0ceuihfc5JJpOsWrVqi/cg8q9//WuXw7XZZKG6an9GDp/EyBGT8HqK+uzP5/Ng6o9aDoza2lqqq6upra1lwYIFg10d2UkPP/wwX/rSl9RdXkRERPY4Bex+smmX6t7WraeffhqPx9PnuN4ujiaTiTPPPJMXX3yRiy++mAULFnDNNdf0Of/Tetfh7W2F3tQhhxxCVVUVL730EqNGjSKRSDB16lTjvJEjR/Kzn/1ss/Pc7k/Gt6pbuGzq6KOPZsmSJbzyyis7fW4un2Vd/Qesq/+Av/3zF7icfoqDwykuGkFp8UhKikcy7bSbd3vc9EB1EZ83b57Rgt07k/jOGF1z2Ba7iO+sbDZDONpOJNpBNNZBJNpJPB4iGusilugiEe8mngiTSsd3+1qfF36/nyuvvFLhWkRERAaEAvYeMGbMGABaW1vZd999jffvu+8+zGYz3/nOdwA466yzeOihh/jtb39LNBo1AvHo0aOx2Wy89957RhdzgHfffZeSkhICgc1nLTaZTJx11ln86U9/orq6mpNOOgmv1wvA2LFjef755/H5fASDQaCnNf3aa6/llFNOUddJ2SK/38+1115r9ITYmng8TigUMsZgt7S00NjYaIzBbm5uJp7oZv2G/7J+wyezZdvtbsqKR1FWug9lJaMpKxmNx12wU3U8+fjLMf/dvMcnOVu4cCELFizY6XC96SRnNuvm48u3JJVOENo443ioe+M47O4WusOtRGOdwI5f3+Px4PV68fl8xvjrT4/D/vTYa5fLhcPhMMZh22w2Yxy21WrdqaCay+XIZDJbHH+dy+WMMdgrVqxg7NixuN1uLBaLsfVez2T6DHV3EBERkb2aAvYeMGbMGE444QR++MMfcssttzBmzBgWLlzII488wp133mkcV1VVxeGHH84999zTJxB7vV6+9rWv8ZOf/ISCggIOOOAA3njjDX7961/zve99b6t/bJ511ln89Kc/Zfny5fz0pz813v/KV77Co48+ytVXX811112H1+tlzpw5/P3vfzfCvsiu6p0sq6KiYov74/E4dXV1rF692phFfNWqVaRSsc1Ct9cTpLR4NKXFNZQU11BUOByvJ7jV77zN6uCUKVfv8WW6orEQ4UgrPm/JTv0I4HYFsFo3X1Irn88Ti4eMJbt6ZhLfQGeokWisY5tlOhwOSkpKKC0tpbi4uM8s4gUFBRQUFOD3+/H5fIPeams2m7e7pFgsFsPv91NYWNinR42IiIjIZ5EC9h5y3333cd9993HLLbfQ1dXF8OHDueOOOzjrrLP6HDdt2jT+9a9/MW3atD7v33jjjRQWFnL33XfT1tZGTU0Nt9xyC1/96le3es3KykoOO+ww1q5dyxFHHGG87/P5mDt3Lj/+8Y/5f//v/5HNZtlvv/34+c9/zujRo/v3xkU+xeVyMW7cOMaNG2e8l8lkWLt2bZ91sNetW0ck2kEk2sHqdf82jrXbXD3rYAfKCfh61sH2eoK4XAHcLj9Ohxer1Y7fV7LH7sHvK6GibMxOn5dOJ2jrqCPU1USou4nQxqW4OkIbSKW2PvFYIBCgqqqKYcOGUVlZSUVFBRUVFZSXlxMIBNSiKyIiIjJEmfI7O5hQZCsWL14MYMymLkNHLBZj6dKlTJgwYci2EsZiMVauXMny5ctZsWIFq1evZv369cbcA9tisdiw2ZzYrA4sFtvGzYrFbMVstmIxWzD3PrdYsFhsWC32nkerHZvVsfHRidXqwGZzYLXYsVrtWCxWzGYLJpMZE2by+Ry5fJZMNk0mkySVipNMRoknwsTiIaKxEJFoO+FI2zZb1c1mM+Xl5QwfPtzYqqurGTZsGD6frz8/2iHts/DdlL2PvpcyFOl7KUPR3vK93JmcoxZsERkS3G43Bx54IAceeKDxXiqVoqGhgfXr17NhwwYaGxtpbW2lvb2djo4OwuHwxnG9abLZNAnCg3gHW+bz+aisrDRapHuDdFVV1Xa7T4uIiIjIZ4sCtogMWXa7nZEjRzJy5Mgt7s/lcsY6z9FolGQySSqVIp1Ok06nyWQym229+1KpFMlk0tgSiYSx9b6XSqVIpVLGBF35fB6z2YzZbMbhcGC323G73Xi9XgKBAIWFhQSDQWOMdHl5+V7VGi0iIiKyt1PAFpHPLLPZjNfrNSYIFBEREREZTObBroCIiIiIiIjI54ECtoiIiIiIiEg/UMAWERERERER6QcK2CIiIiIiIiL9QAFbREREREREpB8oYIuIiIiIiIj0AwVsERERERERkX6ggC0iIiIiIiLSDxSwRURERERERPqBdbArICLyWZDJZNiwYQMNDQ20t7cTi8VIpVLYbDY8Hg+FhYVUVFRQVVWFw+EY7OqKiIiIyCBQwBYR2YJMJsNHH33EokWL+PDDD1mxYgWpVGq755nNZoYPH86ECRM44IADOPjggykuLh6AGouIiIjIYFPAFhHZKJ1Os2jRIl5//XX+9a9/EYlE+uy3WR0UBirwuoM4HV4sZgvZXJZkKkok1kmou5lkKsratWtZu3YtCxYsAGDkyJEcdthhHHnkkYwfPx6zWaNzRERERD6PFLBFZK+Wz+dZsmQJr776Kq+//jrhcNjY53L6GFF1IMMr9qOqbBwF/jJMpq2H43w+TzQeorltNQ3Ny1jfuITmtjWsWdOz/e53v6OwsJCjjjqKo48+moMPPhirVf8Mi4iIiHxe6C87Edkr1dXV8dprr/Haa6/R1NRkvO92BRg78gjG1hxOZenYnWptNplMeN2FeIdPZvTwyQDEE2HWNnzI6vXvs2b9+3R2dvLyyy/z8ssv4/V6OeKIIzj66KOZPHkyTqez3+9TRERERAaOAvZnxJQpUzjrrLO46qqrtrh//vz53HjjjSxbtmyAayby2ZDP56mrq+PNN9/k73//O6tXrzb22awOxtQcxoTRx1BdsV+/duF2OX1MGH00E0YfTTabYX3jR6xc9y4r1/2bSKSbv/zlL/zlL3/B4XAwadIkjjjiCA477DCKior6rQ4iIiIiMjAUsD8nTj31VL7whS8MdjVEhpRoNMqHH37IokWLeOedd2hsbDT2mU0WaoYdyPhRRzN6+CRstj3femyxWKkZdhA1ww5iypHfZEPLMiNsd0faeOutt3jrrbeAnnHbEydO5IADDmDfffelsLBwj9dPRERERHaPAvbnhNPpVPdS2aulUinq6upYtWoVy5cvZ+nSpaxevZpcLmccYzFbGV51AGNGHMroEYfgcni3W24mkyIa79ojdfZ5ipm47ykcPemrdHY3snr9IlbVLeozbnv+/PkAlJaWMnr0aIYPH05lZSWlpaUEg0H8fj9utxuHw6HJ00REREQGmQL2EDRu3DiuuOIKnn32WdLpNHPnzgWgtbWVK6+8kjfeeAOHw8GZZ57J9ddfj8Vi2ayL+Lhx47jjjjt46aWXWLRoEX6/n3POOYcrr7zSuM7f/vY35syZw4oVK/B4PJx22ml897vfVVCXISmVStHZ2UlHRwetra20tLTQ3NxsrE3d1NTUJ0z3KvCXMbxyf2qqDmR45QHYd7ClOp1J8qd/PMLKuvfIZtP9fTt9WCw29hk+mS9+4VKOOHga8UQ3dRs+Yn3jEhqal9EeqqelpYWWlhajhXtLzGYzFosFk8mEyWTqs89kMmGxWLBardjtdlwuFy6XC4/Hg8/nw+fzUVBQQCAQoKCgwNgCgQA+nw+LxbJHPwMRERGRzwMF7CHq17/+NY899hjZbJaamhoA5s2bx//+7//yv//7v7z99tvcdNNNjBkzhtra2i2WMXv2bH7wgx8wc+ZMXn75Ze677z4OP/xwDj30UP785z9z9dVXc9VVVzF79mxWr17Nrbfeyvr165kzZ84A3qnsTfL5PKlUing8TjweJxKJEI1GiUQiRCIRwuEw3d3ddHd309XVRSgUIhQK0dXVRTQa3W75dpub4sLhlBaPoLx4FOUl++Bz9+1anU4ndqiuC//+MCvWvbNL97mzstk0y9b8i1wuxynHXobVYmdU9URGVU8EIJmO09q+jvZQPR1dTXSFW4jGOojGu0imPvlccrncFn9k2F0mkwmv14vf78fr9eLz+fB4PEZId7lcRi8ah8Oxxc1ut2/2aLPZ+r2uIiIiIoNJAXuIOuOMMzjggAP6vPfFL36Rb3zjGwBUV1fzy1/+kv/+979bDdhnnnkmZ5xxBgCXXXYZTzzxBIsWLeLQQw/l0Ucf5eSTT+bb3/420DPeM5/Pc8UVV7By5Ur22WefPXh38nmUSCSYNWsW//znPwetDql0jA0tH7Oh5eMBu+bUqVOpra1l3rx5LFy4kHw+v8tlrVj3Dit+NTChHiAYqOTQA79CMhUlnowQT3QTi3cTT4SJxbuIJbpJpqLk83nC4XCfJcwGw5e+9CWuueYataaLiIjIkKWAPUSNGDFis/d6W7J7BQIBksnkVssYPXp0n9c+n490uqer6/LlyznttNP67D/ssMOMfQrYsrPq6uoGNVwPltraWqqrq6mtrWXBggWDXZ2d4nR42XefL/TpTp7P50gko8Q2hu1ovJOO0AY6uxoJhZsJdTf3aTUfSK+88goXXHABZWVlg3J9ERERke1RwB6itjQOekutNttqLbPb7Vs9fkvn9XYttVr1tZCdN2bMGK677jr++Mc/ks/njdC2te9oPB4nFosRjUaJRqM73fJrNlvxe4rwe0sI+EsJ+isIFgyjOFiN0+7e7fvZ0S7i8+bNM1qwTSbTbrVgjxlxGKcce9l2j0tn0kRi7cTj3STSMZKpONlMkmwuQz7ft4t4T3Xy5PN5crkc2VyGTC5FOpMkm0nxwqv39WnBjifCm5Wxqz7dPbz3ee9kbCaTiWw2Szwex+VyYTab+3yGmz63WCzU1tYqXIuIiMiQpiS1lxo3bhyLFi1i+vTpxnvvvvsusHnLt8iOMJlMnHzyyZx88sk7fW4ulzPGYm86Brt36+zsNCY4a29vJxQKkctlelpUw83Q2Le8gK+U8pJ9qCwdQ3XFvhQVDNts0q/tOeW4yzH/w7zdSc4WLlzIggULditcbzrJmc3qMN7P5/OEuptobFlBc/sa2jrX0xHaQDQe2qXr7Ayv12tMdOb3+43JzrxeL16vF4/Hg9vt3uIYbKfTic1m26HPPBaLsXTpUiZMmIDbvfs/jIiIiIgMJgXsvdTFF1/Md77zHebMmcPUqVNZu3YtM2fO5IQTTlDAlgFnNpuNmawrKiq2e3w6naatrY3m5mYaGxupr6+nrq6OtWvX0tzcTFe4ha5wC8tW93RZd7sC1FQdyKjqidQMOwi7zbXda9isDk474ertLtMVjYXojrTi95bgcRfs8D1vyuMKYLX29DgJRztY1/Ah6xo+ZH3TUmJbubbT6SQYDOLz+XC73Uao7W0F/jSz2YzVajVmEXc6nX1mEe8N0b2BWhOQiYiIiOw8Bey91Je+9CXuvfdefvaznzFnzhyCwSCnn346V1999WBXTWS7bDYbFRUVVFRUcPDBB/fZFw6HjXWwFy9ezJIlS4jFu1iy8h8sWfkPLGYrI6oOYOzIIxg9fDKO7XQnt1rtBHwlW90f8JVQWTZml+8ln8/T0r6WVXXvsaruPVo71m12r2PHjmXs2LF91sH2+Xw73SovIiIiInuWKb87AwZFNrF48WKAzWY/l8G3N3fDTaVSLFmyhHfeeYe33nqLhoYGY5/FYmN09SQm7HMMNVUHYbEMzG+OuVyOxpblrFj3b1au+zfdkTZjn8lkYty4cRxyyCFMnDiRcePGbXE+hc+Lvfm7KUOXvpcyFOl7KUPR3vK93JmcoxZsEflcs9vtHHzwwRx88MF861vfYt26dfz973/nb3/7G/X19Sxf+zbL176N0+Fl3MgjGD/6aCpLx/Z763Amm2Z94xJWrvs3q+re69P12+FwcMghh3DkkUdy2GGHUVBQ0K/XFhEREZGBoYAtInsNk8lETU0NNTU1fP3rX2flypW89tpr/PWvf6Wjo4MPPv4LH3z8F3yeIsbUHMbo4YdQVTYWs3nX1l0OR9pZt2Exa+r/w7qGxaTScWOfx+PhiCOO4JhjjmHy5MlbXDlARERERD5bFLBFZK9kMpkYM2YMY8aM4eKLL+b999/nr3/9K2+++SbhaDuLPlrAoo8WYLe5qK7Yl4rSMZQW1RAMVOBxF2Ixf/LPZy6XJZboprOribbOOprb1rChZRmh7uY+1wwGgxx55JEcffTRHHTQQZpITERERORzRgFbRPZ6FouFQw45hEMOOYSrr76ad999lzfffJN33nmH7u5uYwKyT5iw25xYLFZyuSzJVBzYfDoLs9nMmDFjOPTQQznssMMYO3assQa0iIiIiHz+KGCLiGzC4XBw9NFHc/TRR5PNZlm1ahUffvghH3/8MWvXrmXDhg1kMpme7t6bLI9tNpspKytj+PDhjB49mn333Zd9990Xr9c7eDcjIiIiIgNKAVtEZCssFouxRFavXC5HV1cXsViMdDqN1WrF4/Hg9/uxWHZtrLaIiIiIfD4oYIuI7ASz2UxhYSGFhYWDXRURERERGWI0GFBERERERESkHyhgi4iIiIiIiPQDBWwRERERERGRfqCALSIiIiIiItIPFLBFRERERERE+oECtoiIiIiIiEg/UMAWERERERER6QdaB1tERHZKNpsllUqRy+WAnrXB7XY7FotlkGsmIiIiMrgUsEVEhGQySUtLC83NzbS2ttLa2kpHRwednZ10dXXR3d1NOBwmFouRTqe3WIbD4cDn81FQUEBJSQmVlZUMHz6c0aNHU1NTg91uH+C7EhERERlYCtgiIp9z6XSa7u5uOjs7aW9vNwJ0U1MTzc3NNDU10dHRsdvXSSaTJJNJ2traWLlyZZ99NpuNMWPGcNBBBzFx4kT2228/bDbbbl9TREREZChRwP6cWrFiBQ0NDRx//PGDXRUR2YpwOMyGDRtobGykpaWF1tZW2tvbCYVChMNhotEoiUSCVCpFNpsln88DYLFYsFgs2Gw2bDYbFosFq9VqdNHO5XJkMhlSqRTxeJxkMrlD9bFZHQS8Jfg8QfyeIryuQjyuAG5XALfDi9PhwW5zYbM6sVpsmE1mMJnI5bJks2mS6TjxZIRoPER3pI2O7mbaQvW0dKwlnoywZMkSlixZwm9+8xtcLheTJ09m8uTJ+Hy+PfYZi4iIiAwkBezPqUsvvZSzzjpLAVtkkOVyOVpaWqirq6Ouro5169axfv16Ghoa6Orq2uUy0+k0iURih88xmUy4HX487gJ87iB+bxEBb4mxFXhLcDq8mEymna+QxQY2Jy6njwJf6Wa78/k8oXAz65uXUdf4EWs2LCYW7+aNN97gjTfewGw2s99++3Hsscdy5JFHUlq6eRkiIiIinwUK2CIi/SCTybBhwwbq6upYv369Eajr6uq22YLsdRUQ8JUS8Jb0tBq7C3A7A7gcXhx2N3arE6vVRi6XI54MkwfyuZ7W7Ew2TS6fI5dLk8vlyOV7Jh0zYcJstmCx2LBbHdhtThx2F6ZtLByRSidIpXc8sG+JxxXAat18nLXJZKLQX06hv5wDxxxHPp+jqX0NK9e/z4q692jtrGPx4sUsXryYn/70p+yzzz4cfvjhHHrooYwbN06Tp4mIiMhnhgL2HjZu3DiuuOIKnn32WdLpNHPnzqW8vJyHH36YF198kZaWFkaNGsW3v/1tvvSlLxnnvf/++9x333189NFHWK1WpkyZwvXXX09hYSEAH374IbNmzWLp0qVYrVaOOOIIbrzxRiorK5kyZQoNDQ089NBDvPPOO/zqV78iHA7z4x//mD//+c+k02n2228/rrvuOg444AAAHnzwQd5++21KSkp4/fXXOeuss7j55psH5TMTGapSqRQtLS00NjbS2NhIQ0MDGzZsoL6+nqamJrLZ7BbPM5stBP0VFBVUURyoIhiopChQQaG/HLvNuc1rpjNJ/vjGo6xc/x6Z7JYnFxsqrBYb+1RP5tRjLsFmdWz1OJPJTEXxaCqKR/OFibV0djezou5dlte9S0PLClauXMnKlSt5+umn8Xg87L///uy///6MHz+effbZB4/HM4B3JSIiIrLjFLAHwK9//Wsee+wxstksNTU1fPvb32bJkiXceuutjBgxgpdeeonvfOc7PPTQQ5x00kl8+OGHfP3rX+drX/saP/zhD2ltbeX222/n//2//8fvf/97oKcL+Fe/+lVmz55Nd3c3t9xyC9///vd58sknmTdvHmeddRannnoql156Kfl8nm9961s4nU4eeeQRvF4vzz//POeeey7PPPMM++67LwD//ve/ufDCC3n++ee3GhREPi96l5pKJBLEYjGi0SjRaJRwOEx3dzehUIiOjg7a29uNicE6Ozu3WabVYicYqKDIX0EwUEkw0PNY4C3FbN5y6/H2Wo1ffuNhlq/79y7f50DKZNN8vPZf5PJZTjvmsh0+r8BXymH7n8Zh+59GNN7Fqvr/sLrhA9ZuWEw0GuXtt9/m7bffNo4vLS1l+PDhVFZWUlpaSnFxMYWFhQQCAbxeLx6PB6fTqZZvERERGXAK2APgjDPOMFqKV61axauvvsrDDz9sjI++6qqr+Pjjj3n44Yc56aST+PnPf864ceOMFuTRo0dz7733csYZZ/DGG29w8MEH09nZSWlpKVVVVVRXV3P//ffT3t4OQDAYxGKx4Ha7KSgo4K233uI///kP//rXvygoKADge9/7HosWLeKXv/wls2bNMup69dVXa8Ih+dz6yU9+wksvvbRbZfROBFbgK6XAV8rKukWEIi0AZLIpWjrW0dKxrj+qO+CmTp1KbW0t8+bNY+HChcakajtr+bp/79SPAlWlYzl/6i2YTCY8rgAHjjmOA8ccRy6Xo7ljLeubP6ahZTlNbavpjrbT0tJCS0vLNst0OBzMmTOH6urqXboHERERkV2hgD0ARowYYTxftmwZAJMnT+5zzKGHHsq9994LwPLlyzn66KP77B8/fjw+n49ly5Zx3HHHcfHFFzNz5kx+8pOfcMQRR3DccccxderULV7/o48+Ip/Pc8IJJ/R5P5VK9RkbWlRUpHAtn2vvvffeLp9rszqoKh1DedEoAr4SCn1lFHhLaWxbbQTsz7ra2lqqq6upra1lwYIFg10dzGYzFcWjKC6ooqJoJI1tq1nXtITV9f/Z7rnJZJINGzYoYIuIiMiAUsAeAE7ntsdYQs8su1ar1Xi+tWN6142dMWMG5513Hq+//jpvvfUWM2fO5PHHH+e5557Dbu87yVAul8Pr9TJ//vzNytz02B2pp8hn2axZs3j11VdJpz8Zy5zL5UgkEn26iHd1ddHV1UV3d7dxXDqTZO2G/7J2w3/7lGk2WSkKVBqTeAX9FRu7hldgt+7+/6YGsov4vHnzjBZsk8m0yy3YY0cculNdxG1WR5/Zy3O5LBtaV7K64UPqmj6isW01udzmw1bMZjPBYHCzLuI2m42qqioOOeSQXaq/iIiIyK5SwB5g48aNA3pa0jZtUX733XfZZ599jGM+3dL28ccfE4lEGD16NKtXr+app57i+9//Pueeey7nnnsu7733Hueddx4ff/wxBx54YJ9zx44dSyQSIZ1OG9cA+MEPfsD48eO54IIL9tTtigwpFRUVO/V9T6fTdHZ20tbWRmtrKy0tLTQ1NdHY2EhTUxNNTU1kMhnauzbQ3rVhs/N9niKKApUUF1QZE5wVFVThcnh3uA6nf+Fy/miyDMgkZwsXLmTBggW7HK53dJKzLUmm46yu/4AVde+yuuEDkqlYn/3BYJDx48czZswYRo4cyfDhwykrKzN+dBQREREZChSwB9jo0aM54YQTuO222zCZTIwYMYKXX36ZV199lfvvvx+Ab37zm5x33nnMnDmT8847j7a2NmbOnMm+++7LkUceSSQS4eWXXyaRSHDJJZdgNpt59tlnCQQCjBo1CgCPx8PatWtpa2vjC1/4AhMmTOC73/0uN910ExUVFfz6179m/vz5PPHEE4P4aYgMbTabjdLS0q2uy5zNZmlpaaG+vp76+nrWr19vLNHV2dlJONpOONrO2g2L+5zndvp7Wrn9FT1dzf1l+D3F+D1B3M5AnwnRbFYHZxx/FZlMimh819bN3lGRWIiuaCsBTwled8FOn7+1Zbq2Jhrv2rhU179Zu+EjsrlPfkDw+XxMnjyZSZMmcdBBB1FeXr5ra3SLiIiIDCAF7EFw7733cu+993LTTTfR3d3N2LFjefDBBzn55JMBOOigg3j88ce5//77OfPMM/F6vZx00klce+212Gw2CgsLeeyxx7jnnnv46le/Sjab5eCDD+YXv/gFXm9Py9jXv/51Zs+ezYoVK3jhhRf4+c9/zl133cU111xDPB5n9OjRPPTQQxx55JGD+VGIfKZZLBYqKiqoqKjg0EMP7bMvHA5TV1fHunXr+qyJ3dLSQizRTSzRTX3zss3KNJnMuB0+nE4vTrsbm9WJ1WLDbLZgwkSePPl8nmwuQy6XIZvNkt24DnZ+4zrYmMBssmCz2rFZnTjsblwOHx6XH4+rAJ8niN9TRMBT3CcQB3wlVDFmj31ePZOWrWFNw2JW1f+HDa0rgU9ayquqqjjqqKM48sgjmTBhgmYBFxERkc8cU35XB9mJfMrixT2tdL0zpsvQEYvFWLp0KRMmTMDtdg92dfZq8Xic9evXG63evWtqNzc309nZSS6XG9D6eFwFG2dFLyHgLdnYkl6EzxPE5w7isLt3qeU4l8vRHW2jLVRPU/saGltX0dCygmS6b9fv0aNHM2rUKL785S8zbtw4tVLLkKB/M2Uo0vdShqK95Xu5MzlHLdgiIgPI5XIxduxYxo4du9m+bDZLKBQiFArR3d1NNBolHo+TTqfJZrPGuGiz2YzVasVqtWK327FYLFitVsxmMyaTiVwuRyaTIZlMkkgkiEQidHd309nZSXt7O21tbbS0tBCPx4nGQ0TjITa0rthifS1mKy6nr6dV3eHBbnNhszqwWuwbu7KbyOWzZLNpkqk48WSEaDxEONaxxYnJ3G43Bx10EIceeiiHH344Ho+HpUuXMnz4cIVrERER+cxTwBYRGSIsFgtFRUUUFRXt8Wvl83m6u7tpbm42Jmxrbm6mpaWF1tZWWltbCYfDZHMZIrFOIrHOnb6GzWZj2LBhjB49mjFjxrDffvsxevToPl2/Y7HYNkoQERER+WxRwBYR2QuZTCYCgQCBQGCLrekAqVSKzs5OQqEQ4XCYcDhMLBYjkUj0aVW3WCzY7XZcLhd+v5/CwkJKSkooKirSOGoRERHZqyhgi4jIFtntdsrKyigrKxvsqoiIiIh8Jpi3f4iIiIiIiIiIbI8CtoiIiIiIiEg/UMAWERERERER6QcK2CIiIiIiIiL9QAFbREREREREpB8oYIuIiIiIiIj0AwVsERERERERkX6ggC0iIiIiIiLSDxSwRURERERERPqBAraIiIiIiIhIP1DAFhEREREREekHCtgiIiIiIiIi/UABW0RERERERKQfKGAPMfX19YwbN4633357sKsiIiIiIiIiO8E62BUQEekP+XyedDrdZ8tkMsZjJpMhm82SzWb7vO59TKfTffb1bqlUqk85vWVv+v62rtW75XI58vk8+Xx+s7qbzWZMJhNmsxmLxYLFYsFqtRrPN3296ftWq9U4x2w299k2LRfAZDIZz3vf772myWTqcy2bzYbNZsNut2Oz2XA6nTidTlwuF263G4/Hg9frxeVyGWWKiIiIiAK2iAyibDZLJBIhEonQ3d1NNBolEokQjUaNLRaLEYvFiMfjxGIxEomEsSWTSVKplPEoA8tsNuPz+fD5fAQCAQKBAAUFBRQUFFBYWGhswWCQwsJCBXIRERH53NsrA/brr7/OAw88wKpVq3C73Rx33HHceOONBAIB/vKXv/DII4+wYsUKstksY8aM4bvf/S5f+MIXWL9+PWeccQZnnXUWN998MwC/+93vuP322/n1r3/NQQcdRGNjI/fccw9vvfUW0WiUyZMnc9111zF+/HgAbrjhBlKpFAUFBTz33HM4HA7OOOMMvve972G32406fvDBB9x9990sXbqUsrIyvv3tb3P22Wcb+5977jl+/vOfs3btWoqLi6mtreXSSy/FYrFQX1/PiSeeyE9+8hMef/xxli5dSmlpKZdeeilf+9rXjDL+8Ic/8Pjjj9PQ0EBVVRXnnHMOX//6143WL5EdkcvliMViRlAOh8NEo1HC4TDhcNh4b0tbLBbbY/Uymy1YzFbMJguZbIpsLrPHrvVZZjKZKfSVMqJsX0ymnh89svkM2WyaTDZDJpsinUmSyiRJpeOk0gkS6Ri5XE+rfFdXF11dXdTX12/3Wg6HwwjbwWCQgoICvF4viUSCrq4uSktLjaDu9Xr1b5GIiIh85ux1Abujo4Mrr7ySG264geOPP56mpiauv/56fvzjH3Puuedy1VVX8b//+7+ceOKJRCIR7rnnHq6//npef/11qqur+f73v8/NN9/MqaeeSlFREbNmzeLqq6/moIMOIhKJcO6551JdXc3PfvYz7HY7Dz74IBdccAHPP/88VVVVAPzpT3/i+OOP57e//S3r16/npptuIh6Pc9tttxn1fOqpp5g5cyb77LMPP//5z/nBD37AIYccwogRI3jyySe55557uOGGGzj66KP54IMPuP322+ns7OSmm24yyrjzzju5+eabGTt2LL/4xS+49dZbOeqoo6iuruZ3v/sd9957L7fccgsHHnggS5YsYebMmTQ3N3P99dcP+H8X2X35fJ5kMkk+nyeXy/XpmhyJRGhvb6e+vh6bzbbF7s69WzKZJJlMGi3EiUTCaD2Ox+PG894W5ng8vsVuzzvDZnXgtHtw2d3Y7W6cVhcOuxu7zYXD7sJhdWGzOrDbnNhtTmxWOzaLA6vFjs3qwGqxYrXYsVhsWC1WLCYLJlNPOHvhzYf5uO7f/fERfy7l8zk6upsoLajmK0dftoPn5Mnk0iRSURLJKPFkhHgqQiwRJpboJpoME4t3EU2Gica7iMa7SGd7vleNjY00NjZu9xpmsxmv14vP5zMePR4Pbrcbt9ttdFd3Op04HA7jsbdb+6Zbb3f63u71m3alt9vtCvIiIiLSb/a6gN3c3EwqlaKyspKqqiqqqqp4+OGHyWaz5PN5br75Zs477zzj+AsvvJBvfetbtLe3U1FRQW1tLX/961/54Q9/iNvt5sADD+Rb3/oWAC+88AKdnZ3Mnz+fYDAIwD333MNJJ53E008/bQRXv9/PXXfdhcvlYuzYsbS0tHDHHXdw3XXXGde94oormDJlCgDf/e53+c1vfsNHH33E8OHDeeyxx7jgggs4//zzAaipqSEUCnHXXXdx9dVXG2VMnz6dE0880Sjj6aef5oMPPqC6upo5c+Zw+eWXc9pppwFQXV1NJBLhtttu4zvf+Q4Oh2NP/SeQPWTmzJm88cYbg3Z9i9mGy+HBYXfjtLlp724kkYru0LnpTJJ0Jkk41rGHazm0TJ06ldraWubNm8fChQt3+4eK3fFx3b8H5IeIkoJqvnDgWUQTPcG79zGWDBNNdBNLdJNMx8nlcnR3d9Pd3b1H6xMIBHjssccoKCjYo9cRERGRvcNeF7AnTJjA6aefzmWXXUZJSQlHH300xx9/PCeffDJWq5VAIMCjjz7K6tWrWbduHR9//DHQ022y18yZM5k6dSrJZJJXXnnFaP1Yvnw5NTU1RrgGcDqdHHjggSxfvtx478ADD8TlchmvJ06cSDqdZs2aNRQWFgIwcuRIY38gEAAgmUzS0dFBW1sbkydP7nNfhx12GOl0mtWrV1NUVATA6NGjjf0+nw+AdDpNR0cHTU1N3HvvvTzwwAPGMblcjmQySX19fZ9z5bNhR1oF95SApxiPK4DT5sbp8OCwueiOte9wwN5b1dbWUl1dTW1tLQsWLBjs6gwIu9VBaWE10YSfqDPQE7CdXUQT3XgS3cSSYcKxDkKR1gGpT1dXF/F4XAFbRERE+sVeF7Chp1X5iiuu4O9//zv//Oc/ue6665g8eTJXXHEF/+///T+OP/54Jk+ezJe//GXi8ThXXHFFn/Pr6uoIh8MALFq0iKlTpwJstfUpl8thtX7yUdtsts32A1gsFuO9LXVZ3NoMxJuWsel1Nh3TvWkZvcfeeOONHHXUUZsdU1FRscVryNB23333sXTp0j7v9f73jkajrFu3joqKCiwWy2ZdxJPJpNFVvLdbeCqVMrqHx+NxEolEn27im+qKttEVbdup+ppNFlwOL067G8fG7uEOuxuHzd3zns2N3ebEYXPhsDmxWZ1GF3G79ZPu4WbTtrv3DuUu4vPmzTNasE0m06C2YI8ffugOdxHfVD6fI5GKEU9GiCbCxFM93cJjiW6iiTDRRIjo/2fvzuOsrgv9j7/Ovs+ZfZ9hGHYVU8eV8SaF3tI0ywhzK9I0t8r8OQhYpmmJIppghaHXcMGbl5tIV6DbzRtmdjVREVl1WGaBmWH2Ofv6+2M8J4Z9OcOgvJ+Px/dxtu/38/18D8fxvM9nC/XiD/bgC/bQ3P4R81+uO3DBu7DZbLjdblwuFy6Xa0D3cIfDke4ibrVasdls6RnQU93Cd+8e3l/vJAaDgfLycgoKCg75ukVERET25rgL2KtXr+aVV15h5syZVFdXM3XqVJYuXUpdXR1Wq5WzzjqLefPmpfd/9tlngX+G50AgwLRp07jkkksoLS3lnnvuoaamhsLCQsaMGcOSJUvo6OhItyKHw2E++OADvvKVr6TLXLt2LfF4PB2o3333XRwOB8OHD6ejo2O/9c/Pzyc/P59Vq1Zx/vnnp59/++23sVgsVFZW0tPTs98y8vLyyM3NpbGxkWHDhqWfX7ZsGX/605948MEHD+KdlGON3W7n1FNP3etrgUAAt9vNuHHjcDqdR3yueDyeHoudmvU7NcnZrpOdpWYH3/W2r6+vf2x4Mt7fehna/+f1QIxGExaTFbPJ0j8G22jBZDJjMvZvBqMRl91LINRLkqELsHuzYsUKli9fPqTh2mg0UZQzjMqicbxf/xrxRJx4IkY8ESMWjxKLRYjGU5OchYhEQ4SjgXSoDkcDh1x3h8ORnuzM4/GQTCYZPnw4+fn56UnOsrKyyMrKwuPx7PXHQhEREZFj0XEXsN1uN4sWLcJisTBlyhTC4TDLli2jqqqK0tJSXn31Vd5++22Ki4t58803012oU0sAzZo1i0AgwMyZM3E4HPz3f/83M2fO5Mknn+SSSy7hiSee4LbbbksH9l/+8pcEAoEBs3c3Nzdz77338q1vfYv6+nrmzp3L1VdfPaDb+P5cd911PProo1RUVFBbW8v777/P448/zuWXX47H4zlgwDYYDFx//fU8+uijlJaW8tnPfpaNGzdyzz33MGnSJH2ZlQMymUy43W7cbjeFhYWHdGwymSQYDO4RwHfdUsE9NZlaaqmu1PJcu06slkjECSeChKPBA5z52JO6hqFsuU4k4uzo2MyOjs1HVI7T6SQ7O3vAUl27zhi+67Jdu/6tCwQCrF+/PmM//oiIiIgMpeMuYI8YMYJ58+bx+OOPs2jRIoxGI2effTYLFizA4/HQ2dnJjTf2d5McOXIkP//5z6mrq2PNmjU0Njbyu9/9jl/+8pfpcdE///nP+cY3vsHzzz/PVVddxXPPPcesWbOYOnUqADU1NbzwwgtUVFSk63DKKadgNBqZPHkyHo+Hb37zm9x0000HfQ3XXnstVquVhQsX8vOf/5zi4mKuv/56rrvuukMqw2az8eyzzzJr1izy8/OZMmXKgEnSRAaDwWBIzwRdVFR0WGUkk0mi0Wh6pvNUF/dwODyg63s0GiUej+9xG4/HicVixGKx9P1dn9t127Ws3R/vvqXOEYvFMhKajUZjumvz7repzWw2D5gV22g0YjAY0l2hU49T733q/q77GQyGPc5hNpvTs3KnZuhOdc1OdddO/ciSlZW1x9AXERERkeORITmUTSfHoenTp9Pc3Jzuev5psmbNGgDGjx8/xDWR3amV8OhLBfnUUmmpiRJTcyDAPwNvKuimtlR4ToXhTzN9NuVYpM+lHIv0uZRj0fHyuTyUnHPctWCLiBwNqZAsIiIiIseP/U+/KyIiIiIiIiIHRS3YR9msWbOGugoiIiIiIiIyCNSCLSIiIiIiIpIBCtgiIiIiIiIiGaCALSIiIiIiIpIBCtgiIiIiIiIiGaCALSIiIiIiIpIBCtgiIiIiIiIiGaCALSIiIiIiIpIBCtgiIiIiIiIiGaCALSIiIiIiIpIBCtgiIiIiIiIiGaCALSIiIiIiIpIBCtgiIiIiIiIiGaCALSIiIiIiIpIB5qGugIjIp0kwGKSjo4Pu7m66u7vp6+vD7/cTDAYJh8NEIhFisRjxeJxkMpk+zmAwYDKZMJlMmM1mzGYzFoslvVmt1gGb3W7HZrNht9ux2+04HA4cDgd2ux2TyTSE74CIiIjI8UsBexBNnz6d5uZmnn322aGuiohkUE9PD42NjTQ2NtLc3ExzczMtLS20tbXR19c31NXDZrPhcDhwOp3p29SWCuOpYG6z2bDZbOngvmu4TwX+3YO/2WxO72+z2bBYLBgMhqG+bBEREZEhp4AtIrIXyWSSrq4uGhoa2LZtW3praGigp6dnv8dazTZcNi92qxO7xYHN4sRisWE2WjCbrBiNRoxGEwb+GUoTyQTJZJxEIkkiESOejJNIxIknYsTjMWKJKLF4lFgiRjweJRqPEouHicUiRBIRotEISRIAhMNhwuEw3d3dg/kWpRmNRpxOJy6XC4/Hg9frxev1kpubS25uLvn5+RQUFFBUVERubi5Go0YniYiIyKeTAraIHLcSiQTd3d20trbS0tLC9u3b0y3SjY2N+Hy+vR5nwIDXlU9+Vgl5WcXkuovIcReS7S7AaXWz4p3n2NC0ii5/21G+osyymu24bFkkSRBPxEkkBwb+VBf3RCKBz+fD5/PR2tq63zItFgtFRUWUlpZSWlpKfn4+sVgMr9dLVVUVZrP+tyQiIiKfXPomcxBWrlzJY489Rn19PU6nk/POO48ZM2bg9XrZtm0bs2bN4q233sJsNlNbW8tdd91FXl4eANFolAcffJCXXnqJUCjEhAkT+OlPf0p+fj4AO3bsYM6cOfz973/H7/dTU1NDXV0dY8eOTZ9/yZIl/Nu//Rtbt24lPz+fyZMn893vfheTyURTUxOTJk1i7ty5PPnkk6xfv57CwkK++93vcvnll6fL+M///E+efPJJmpubKSsr4xvf+AbXXHMNRqMxXcbtt9/OM888g91u5+WXX8btdh/dN1rkICWTSUKh0IDnEokEoVCIQCBAMBjE7/fj9/vTwa+3t5eenp702OiOjg46OzuJxWL7PVeOu5B8Twn53lIKskrJ95aRl1WC1Wzd6/4vvTGfdY3/yNi1DqVILMTIkvF8dcKNe309nogTiYWJxcKEoyFCkQChqJ9A2Ic/1Ic/3E1foJveYBe9/g56g51Eo1GamppoamoaUNZvf/tbjEYjRUVFlJSUUFJSQlFREUVFRRQWFlJQUEBOTg4Wi+VoXLqIiIjIYVHAPoDOzk5uvfVWpk+fzsSJE2lpaWHatGk89NBD3HnnnVx11VWMGTOGhQsXYjQaufvuu7ntttvS467fffddRowYwaJFi9i5cyc//OEPeeihh3jooYfw+XxcccUVVFRU8Otf/xqr1cq8efO4+uqrefnllykrK+O3v/0tc+bMYfr06dTW1rJ69Wp++tOf0tXVxV133ZWu5wMPPMCPf/xjRo8ezdNPP80999zDhAkTqKio4He/+x2PPPIId999NyeffDLr1q3jvvvuo7W1lWnTpqXLeOmll1i4cCHBYFDh+hMqmUyyfft24vH4gOeDwSBtbW243W5sNhvJZJJEInFQW2rfZDKZvg+kb1Pn3ddtaksdkyojHo+nb2OxWHrir2g0uscWiUSIRCKEQiHC4TCbN2/eI2APli5fG12+Nj7csfqonO9ALrzwQiZPnszixYtZsWLFgInSBsO6xn+w7neZ/cGg0FvOGaMvoNvXRqevlY7eFjp9rcTiUXbs2MGOHTv2eazX6yU7O5vs7Gy8Xi8ejwe3250eY54aX54aG56VlcWIESM0RlxERESOCgXsA2htbSUSiVBaWkpZWRllZWXMnz+feDzOsmXL8Pv9PPLII3i9XgDuv/9+XnnlFSKRCAAFBQXcd999GI1Gqqurueiii3jjjTcAWLp0KV1dXfz+978nNzcXgDlz5nD++efz/PPPU1dXx4IFC7j66qu56qqrAKiqqqK7u5vZs2fz/e9/P13PqVOnMmnSJAB++MMf8vzzz7N69WoqKir41a9+xU033cSXvvQlACoqKvD5fNx777384Ac/SJdx5ZVXMnLkyEF+R2Uw3X///fz1r38d6mrIIJo8eTIVFRVMnjyZ5cuXD3V1Dovd6uSMUZMGhN5EMoEv2E1nX+vHP2rspNu/k25/O72BDrp8O4H+CeZ6enrYtm3bQZ/v+9//PhdffHHGr0NERERkdwrYBzBu3DguvvhibrzxRgoKCqitrWXixIlccMEFvPjii1RVVaXDNcDYsWMHdO+urKwcMKGP1+tNt7xt2rSJqqqqdLgGsNvtnHzyyWzatInOzk7a29upqakZUKczzzyTaDTK5s2b013RR4wYkX7d4/EA/d3TOzs7aWlp4ZFHHuGxxx5L75NIJAiHwzQ1NWGz2QAYNmzYEb9fMrRcLtdQV+GYYTXbsVuc2G1OHFY3Tqsbh82Dy+7BZcvC48zB48ghy5mH0+bKWAvnYHcRX7x4cboF22AwDHoL9gkVZ+yzi/jhsphse7zfsXiEQNhHMOIjEPYRCPf9cwsd2czsVuveu/OLiIiIZJoC9kGYM2cOt9xyC6+99hpvvPEGdXV11NTUMGbMmAMeu7/1aPf1xTiRSGA2m/f7OjBgMqC9fYHctTvvjBkzmDBhwh77lJSU0NbWPxGT3W7fZ13lk+H222/nlltuGdClO5lMEggE2LBhA6NGjUp3EU+tw3woXcR3L3f3z+juXcN3v586PtU9PNVFfNdu4rFYbEDX8Gg0SjgcTt+mtlSX8dQWDAYJBoPpz3wkFiISC9Eb7Dzg+2Yx2chxF5DjLiTXU0Sep5j8rBLyvWW47d5DCt9fnXATxv8zsaFpFbF49KCPO1grVqxg+fLlgx6uzSYLY8truPTsG7CabUdcXjKZJBjx0eXbSZevjc6+Vjp9rXR+3D28L9h9wDKcTmd6ZvLUTOUejweXy4XL5Up3Ed916TGPx0NRUdER119ERETkYChgH8Dq1at55ZVXmDlzJtXV1UydOpWlS5dSV1dHbW0tW7dupa+vL91qvHbtWr7zne/w0ksvHbDsMWPGsGTJEjo6OtIt0eFwmA8++ICvfOUr5Ofnk5+fz6pVqzj//PPTx7399ttYLBYqKysPuFxQXl4eubm5NDY2DmihXrZsGX/605948MEHD+dtkWNYqkfCroxGIy6XC6/Xi9PpHIJaHR3JZJJIJILf7ycQCAyY4Cw1yVlXVxddXV20t7fT3t5OV1cX0XiYtp4m2nqa9ijTbnVSkFVGgbeMwuxyCr3l5HtLyXLk7jV4W802vn7u94jGI/iC+//v83D0Bbvp9u8k21WAx5Gd8fJT3A4vFtOeP9wlkokBy4ZFY5H+HzOiQYIRP6GIH3/Yhz/Ugy/UQ9/HE5z1BDqJxPY/bt7j8VBaWkpJSQnFxcUUFxdTWFiYnuTM4XAM1uWKiIiIZIQC9gG43W4WLVqExWJhypQphMNhli1bRlVVFddccw2LFi2irq6O2267jVgsxj333MPo0aMpLi4+YNmXXHIJTzzxBLfddht1dXVYrVZ++ctfEggE0jOAX3fddTz66KNUVFRQW1vL+++/z+OPP87ll1+Ox+M5YMA2GAxcf/31PProo5SWlvLZz36WjRs3cs899zBp0iR1nZRPFYPBkG693HXoxf5EIhF27tyZnlyrubk5Pct1S0sLoUiAxvYPaWz/cMBxNrOdvKxS8rKKyfMUk+MuINtVQJYzD48zG4vJSo67IOPXmOMuoLJg1IDnEokEkXiISLS/1T4c7Q+84ViIcDQ44HFqn0gsTDQeJhqLEI2F04E5tQxXIvnxJHTJGInEP+8faat5bm5uepbw0tJS8vLyCIfDTJgwgcLCwiMqW0RERGSoKWAfwIgRI5g3bx6PP/44ixYtwmg0cvbZZ7NgwQIcDgdPPfUUDzzwAN/4xjew2+1MnDiRO++886DK9ng8PPfcc8yaNYupU6cCUFNTwwsvvEBFRQUA1157LVarlYULF/Lzn/+c4uJirr/+eq677rqDvoZrr70Wm83Gs88+y6xZs8jPz2fKlCkDJkkTOV5Zrdb0BIa7i0QiNDU1sW3btvTW0NBAc3Mz4ViI7Z2b2d65ea/l2i1OXPYsHFYXdqsLq8WO1WzDZLRgNpkxGkzpFvD0DO3JBIlEjHgyTjwe6w+7iRixeDQdgGPxSH8oTt1+HI6HgsFgwGq1prtmu1wu3G53eobvnJwc8vLyOpM2PgABAABJREFUKCgoSG+797AIBAKsX79eKxeIiIjIp4IhOdgz5MhxY82aNQCMHz9+iGsiu0uFmHHjxn2qu4gfLdFo/3JSDQ0NbN++nebmZlpaWmhtbaW9vT29isDRZjQacTgcOByOdOhNLV+VerzrlmrtT41XtlqtWCwWzGYzZrMZk8mEyWTa477ZbMZisWCxWI54cjh9NuVYpM+lHIv0uZRj0fHyuTyUnKMWbBGRQ5SaA6GysnKP15LJJH19fXR3d9Pd3U1fXx9+v59gMEgoFEpP4Jaa5A36W4KNRiNGozEdZlNBNxVkUwHYarUOCMZ2ux273Y7D4chI4BURERGRw6eALSKSQQaDgaysLLKysvYawEVERETk08t44F1ERERERERE5EAUsEVEREREREQyQAFbREREREREJAMUsEVEREREREQyQAFbREREREREJAMUsEVEREREREQyQAFbREREREREJAMUsEVEREREREQyQAFbREREREREJAMUsEVEREREREQyQAFbREREREREJAMUsEVEREREREQyQAFbREREREREJAMUsEVEREREREQyQAFbREREREREJAPMQ12B49X06dNpbm7m2WefHeqqiHwqxGIxAoEAfr+fYDCY3kKhEOFwmEgkkr6NRCLEYjFisRjxeDy9JZNJkskkAAaDAQCTyYTRaMRkMmEymTCbzVgsFqxWK1arFYvFgt1ux2azYbfbcTgc6dvUZrVah/KtEREREZGjRAF7iNx1113E4/GhrobIMSORSOD3+/H5fPT19eHz+fa4v+vW29tLX18fgUCAYDBINBod6kvYJ7PZvEfo3nVzOp3k5uaSlZWFy+XC6XTicrnSr6X2s9vt6eAvIiIiIsceBewh4vF4hroKIhmRTCaJRqPpoJvaAoFAevP7/enbVIhO3abu+/3+dOvxp00sFktf65EwGAwDWslTreZWqzV9u/tmsVgGbKkW+NStyWQa8Dh1f/fHqVb71DEiIiIisicF7CO0cuVKHnvsMerr63E6nZx33nnMmDEDr9fLtm3bmDVrFm+99RZms5na2lruuusu8vLy9ugi/tRTT/HCCy/Q0tJCYWEhX/va17j55psxGAwEg0Huv/9+/vKXv9Db28uIESO4+eab+dd//VcA4vE4zz77LC+88ALbt2+ntLSUqVOncsUVVwDw5ptv8u1vf5vbbruNp556irKyMhYvXszSpUtZsGABDQ0NZGdn88UvfpG6ujp1Z/0USSaT6XDX29vLjh07MBqNhEIhfD4f4XB4QBfq3btTh0Kh9PO730+9HgwGMxqMzUYrdqsTp9WJ3erCbnFitzhxfPx4Y/N7tPQ0ZOx8xxqXLYtsVx7haJBwNEQ4GiQSDwP9/56pHzCGktFo3CPE22w2bDbbgC7zqW3Xx7v+MGC32wFob2/H7XaTnZ09YF+11ouIiMgnjQL2Eejs7OTWW29l+vTpTJw4kZaWFqZNm8ZDDz3EnXfeyVVXXcWYMWNYuHAhRqORu+++m9tuu22PcdevvvoqTzzxBI8++ijDhw/nvffeY9q0aZSXl3PppZfy2GOPsXHjRn7zm9+QlZXFf/zHf/DDH/6QP/7xj5SXlzNr1ixefvllfvzjHzN+/Hhee+01fvaznxEOh5k6dSrQH8JXrlzJ7373O4LBIJs2beJHP/oRDz/8MCeffDL19fX8v//3/8jJyeHmm28egnfz06ejo4M33nhjr6/tGkhTISI1/jc1Ljg1Rji1RaPRAVtqLHE0Gh0wtnj38caJROKoXG+mxBIRfKEIvlD3UFcFgAsvvJDJkyezePFiVqxYMeit7P5wL/5w76Ce40glEon0Dy2DadcW+lToToX61P1dW9Z3b6FPbanx88CA0L77v+XeAn1VVRUnnXSSwr6IiIgcFAXsI9Da2kokEqG0tJSysjLKysqYP38+8XicZcuW4ff7eeSRR/B6vQDcf//9vPLKK0QikQHlNDQ0YLVaKSsro7S0lNLSUgoLCyktLU2/7nK5qKioICsrix/84AecccYZeL1efD4fL7zwAtOnT+eSSy4B+r8QNjU18Zvf/IZvfetb6fNce+21VFVVAfA///M/GAyGAed86qmncLvdR+Gd+/SLRCJ85zvfwe/3D3VV5AhNnjyZiooKJk+ezPLly4e6OseVcDhMOBwe6mrwox/9iM9+9rNDXQ0RERH5BFDAPgLjxo3j4osv5sYbb6SgoIDa2lomTpzIBRdcwIsvvkhVVVU6XAOMHTuWsWPH7lHOl7/8Zf7zP/+TL3zhC4wcOZIJEybwhS98IR2wr7/+em688UbOOeccTj75ZGpra7nkkkvweDy8//77RKNRampqBpR55plnsnDhQjo6OtLPpcI1wL/8y79w6qmnMnnyZMrLy6mtrWXSpEmcdNJJGX6Xjk8Wi4UTTjiBf/zjH0NdlUNiMpixmK1YTNaPb23/vDVZsJpsWMw2LOb++1azHYu5/9Zm7n/NZrZjNTuwW+z9z1scmE2Z+1Oz+P+eYG3T0XtfFy9enG7BNhgMg96CfWL5GUw++7uDVn4imSSeiJFIxIknYsQSMeKJOImPb+OJGPFkjFg8ln49EY8RS0SJf3wbS90mosTiEaLxCNFYjFg88s/H8QiReJhYLEI0HiUSCxOJhYklIgeu5DHE4XBQVlY21NUQERGRTwgF7CM0Z84cbrnlFl577TXeeOMN6urqqKmpYcyYMQddRm5uLi+//DLvvvsuf/vb33j99dd55pln+N73vsett97KqaeeysqVK/nb3/7G3//+d5YsWcKvf/1rnnzySZxO517LTHULNpv/+U9ss9kG3H/mmWdYt24dr7/+Oq+//jo33ngjX/nKV3jggQcO892QFIPBwM9+9rN9vp5MJkkkEunloVL3d106KlNdxMPhMIFAgJ6eHoxGI9FoND2eevcWwngyRjwaIxQNZPT9MBnNH4+ldmC3OtPjqu1WJw6LC7vVhSN934nD6hqwmYz//BxPPvtGjG+ZWN+8ilh88GcOX7FiBcuXLx/0cG02WRhbehoXn3Y1wYifcDREKBrsH4sdCxKJhT4OqSHC0RDReJhILEI0Fk4H2mg64EaJxaPEEzGi8Uh/UP44MCeSx87qBanJ2YxGI263G6fTudfx2rt2D9/99lC6iO9632g0pjd1/xYREZFMUcA+AqtXr+aVV15h5syZVFdXM3XqVJYuXUpdXR21tbVs3bqVvr6+9Izha9eu5Tvf+Q4vvfTSgHKWLl1KX18fV111FTU1NXz/+9/nRz/6EcuWLePWW29l7ty51NTUMGnSJCZNmsSMGTP40pe+xB//+EfuuOMOLBYLq1atYty4ceky3377bQoKCga0oO9q5cqVrFmzhltvvZUTTjiBG264gV//+tfMnz9fAfsoMBgMA8aFDrZAIMD69esZN27cHj/KJBKJAWF79wnNdn1u1/upCc5St7tvfr8/Hd7jidgRjS22mm0fT3TWH7jtFicnlJ2ByWjCarZjtziwWuwft57b+lvaLXYsJitWsxWL0YrZbMFkOPQ/eX3Bbrr87eS48vE4sge8liTZ3wIcj37civvPVttIvL/FNhwLEYmGPn7cfz+8623s44nMYmE+aHyTDxrfPKz36HCl1vje1yzju9/fdVKz3e/vOl5698nMdr2femw0Gvf72RQRERH5pFHAPgJut5tFixZhsViYMmUK4XCYZcuWUVVVxTXXXMOiRYuoq6vjtttuIxaLcc899zB69GiKi4sHlBMOh3nwwQdxuVycfvrptLS08I9//IPTTz8dgMbGRpYuXcp9991HZWUlq1evZvv27Zx66qm43W4uv/xy5s6dS3Z2NuPHj+f1119n0aJF3H777ftsmbFYLPzyl7/E7XYzadIkenp6+Mtf/sKpp5466O+bHFuMRuOAGZ0zKR6Pp5fvSi3F5ff70+tX77pM197Wvk6NYU91L+4Ndh1RfYwGI2aTBbPRgsloxmQ0YTSaMBqMGA0mMBgwsMskWCRJJhMkkgkSiTiJRPzjLtUfd5+OR0mS+VZts9mM0+lMb3a7fcCtw+HY6+zcu4bdvbXu7h6Wj+aPPCIiIiLHAwXsIzBixAjmzZvH448/zqJFizAajZx99tksWLAAh8PBU089xQMPPMA3vvEN7HY7EydO5M4779yjnK9//et0d3fzq1/9ih07duD1evnCF77AHXfcAcBPfvITHnzwQerq6uju7qasrIw77riDSy+9FIAZM2aQk5PDww8/THt7O1VVVdx9991MmTJln3WfMGECP/vZz/i3f/s3Hn30Uex2O+eddx7Tp08fnDdLjksmkwmPx3PY677H4/F0+N513ezd18/edZ3tXdfjTrW0p4ZMJJKJ/rBO5ifOMplM2Gy2dBB2OBzpLRWUXS7XgPsOhwOXy5XeUs9rqTwRERGRTyZDcrBn7JHjxpo1awAYP378ENdEdnc8d8NNJpN7jFOPRCIDxrunxrxDf5d5g8GQ7v2RGq+76zjeVAvwruOBd53vQA7e8fzZlGOXPpdyLNLnUo5Fx8vn8lByjr4RisinmsFgSHeZFhEREREZTMahroCIiIiIiIjIp4ECtoiIiIiIiEgGKGCLiIiIiIiIZIACtoiIiIiIiEgGKGCLiIiIiIiIZIACtoiIiIiIiEgGKGCLiIiIiIiIZIACtoiIiIiIiEgGKGCLiIiIiIiIZIACtoiIiIiIiEgGKGCLiIiIiIiIZIACtoiIiIiIiEgGKGCLiIiIiIiIZIB5qCsgIvJpk0wm6enpob29nY6ODrq7u+np6cHv9xMIBIhEIiQSCQwGAxaLBZvNhtvtxuv1kpubS2FhIcXFxbhcrqG+FBERERE5BArYIiKHIR6Ps3PnTpqamti+fTvNzc3s2LGDHTt20NLSQjgcPuJzeL1eKioqGDZsGMOGDaO6uprhw4fj8XgycAUiIiIikmkK2CIi+xEMBmlsbKShoYHGxkYaGxtpamqiubmZaDS632PdtiyyHDl47Nm4bB4cVic2swOLyYLBYCSZTBJPxAjHQoSiAXzhXnqD3XQHOvCHe+np6aGnp4cPPvhgQLmFhYWMGDGC6urq9FZSUoLRqFE/IiIiIkNJAftTYt68ebz00ku8+uqrQ10VkU8kn89HQ0MD27ZtY9u2bTQ0NNDQ0EBbW9s+jzEZzeS5C8l3F5PvLibPXUieu4gcVwHZzlwsJuth1ycUDdLua2Fn7w5ae5vY0dNIS08TXf6dtLW10dbWxt///vf0/jabjaqqKqqqqqisrKSyspLy8nKKi4sxmUyHXQ8REREROXgK2J8S1157LVddddVQV0PkmJZMJuns7Ey3RKdCdENDAx0dHfs8zm3LojCrlAJPCQWeUgqzSslx5mMymvfZatwX6jni+jqtboblj2JY/qj0c6FIgLa+Hezs3U5rbzOtvc20+/q7pG/cuJGNGzcOKMNsNlNcXExpaSklJSUUFRVRVFREQUEBBQUFZGdnK4CLiIiIZIgC9qeEy+XShEgiQCQSob29ndbWVlpaWtLjopubm9m+fTuBQGCfx3oduRRmlVKUVU5RVtnH98tw2tz/LD8W5j/+sYC121cRi++/i/jRZDaaKcsZzojCE9It3zv7dhCLRWlqaqKpqWmvxxmNRrKyssjOzsbr9eLxeHC5XDidTux2O3a7HavVisViwWQyYTQaMZlMGAwGDAbDgLJSzxkMhvS+FosFs9mMzWbDarXicDhwOp3p8kVEREQ+TRSwD9PKlSt57LHHqK+vx+l0ct555zFjxgy8Xi/btm1j1qxZvPXWW5jNZmpra7nrrrvIy8sDYMmSJfzbv/0bW7duJT8/n8mTJ/Pd734Xk8lEU1MTkyZN4vbbb+eZZ57Bbrfz8ssvU1NTw913383LL7/M+vXrqaqq4rbbbmPSpEnAnl3Ed+zYwZw5c/j73/+O3++npqaGuro6xo4dC8D06dMByMnJYcmSJQQCAc4++2x++tOfUlRUNATvqMg/JZNJQqEQ0D+ZmN/vx+/34/P58Pl89Pb20tvbP0a5q6uL7u5uOjs76ejooKfnwC3Hua4C8t3FFHhKKPSUUugtJd9dgsPq2Ov+kVgoff93bz3BmqZ/ZOZCMyiWiLGt40OyHNlcfuZ3AUgkk/QEOunwt9Lpa6Mr0E6Xv4PuYAe9gS76Qt0kEgm6u7vp7u4+6nU2GAy43W6sVisFBQXk5OQMCPvZ2dnp+16vl6ysLIVyEREROaYpYB+Gzs5Obr31VqZPn87EiRNpaWlh2rRpPPTQQ9x5551cddVVjBkzhoULF2I0Grn77ru57bbbePbZZ/ntb3/LnDlzmD59OrW1taxevZqf/vSndHV1cdddd6XP8dJLL7Fw4UKCwSBud3/r2cMPP8wdd9zBrFmz+P3vf8+tt97K888/z2mnnTagfj6fjyuuuIKKigp+/etfY7VamTdvHldffTUvv/wyZWVlAPzXf/0Xl1xyCc899xwdHR3cfvvt/OIXv+CBBx44em+mfGK1t7fz4osv0tnZmX4umUzu0aq5LwaDgWQySSKRIBKJEA6HCYfDBINBtm/ffsAJxI5Ep38nnf6dbGpdM2jnOFgXXnghkydPZvHixaxYsYJkMnlE5a1p+scx+QPA3iSTSfr6+gD220V/VxaLBY/Hg9vtTre0OxyOAV31U++hyWTioosu4pRTTsl43UVERET2RgH7MLS2thKJRCgtLaWsrIyysjLmz59PPB5n2bJl+P1+HnnkEbxeLwD3338/r7zyCpFIhAULFnD11Venx0tXVVXR3d3N7Nmz+f73v58+x5VXXsnIkSMHnPeyyy5LH3fHHXfw1ltv8dxzz+0RsJcuXUpXVxe///3vyc3NBWDOnDmcf/75PP/880ybNg0Aj8fDT3/6UywWCyNGjOCiiy5i5cqVg/OmyafOfffdx/r164e6Gp94kydPpqKigsmTJ7N8+fKhrs6QKM4q54ITL8Mf6aPD19Y/trynia5A+x77RqNROjs7B/ywsz9//etfWbx4sYbQiIiIyFGhgH0Yxo0bx8UXX8yNN95IQUEBtbW1TJw4kQsuuIAXX3yRqqqqdLgGGDt2LGPHjqWjo4P29nZqamoGlHfmmWcSjUbZvHlzuhv5sGHD9jjvWWedNeDxqaeeyt/+9rc99tu0aRNVVVXpcA1gt9s5+eST2bRpU/q5yspKLBZL+rHH4xnUVkP5dPnCF75wzARso8FElj0bjyMbryMHrzOXbEce2a4C8pwF5LjysZgtBy7oIGS6i/jixYvTLdipVv0jMb78jHQX8cORSCaJxEKEokEisQixRIRYPEosESWeiJNMJkgkkyTpr+fu9U2SJJlMfLxfgngiRiweIxaPEk1EiMbChGJBwtEQoUiAQCxAKOJnybvPEIj0EU/Ej+j6d3fuuefidDozWqaIiIjIvihgH6Y5c+Zwyy238Nprr/HGG29QV1dHTU0NY8aM2ecx+/rinEgkgP7ZflP2Ns5w19ehf2zq3mYw3t95di3Daj38JYRELrroIi666KLDOjaZTBKNRolGo+nu4ZFIhFAolN6CwSCBQCC9+Xw++vr60ltPTw/d3d34/X4SyTjdwf6xxY37OKfXkUu+p/jjmcBLKPSUUJhVhteZi9Fw8OtHX37mjRgNpoxNcrZixQqWL19+xOHabLJwYmkNXz/jeqxm2x6vJxIJekNddPl30hXooCfQQU+wfxx2X6gHX7iXQNhHMOJPh+eh4nA40uOuU+OwPR5P+nb3LuKpCdNsNpvWAhcREZEhpYB9GFavXs0rr7zCzJkzqa6uZurUqSxdupS6ujpqa2vZunUrfX19eDweANauXct3vvMdXnrpJfLz81m1ahXnn39+ury3334bi8VCZWXlfidoWrNmDZ///OfTj999911OPPHEPfYbM2YMS5YsoaOjI90iHg6H+eCDD/jKV76SoXdB5PAZDAasVitWq/WIu+5GIpH0BGcdHR3s3LmTnTt3DphFPBAI0BPspCfYSX3bugHHW0y29GzhRVmlFGaVUZRVRq6rcK9hzWq2cdU5txKNRzKyFFdvsJuuQDs5znyyHNmHXY7H7sVisuIP99HctYW23h209W2nva+Fdl8Lnf6dxBOxgy7PaDTidDrTs3+bzWYsFgtGoxGj0Zgea7/rbOK73qZmEU8dZ7VasdlsOByO9ObxeLBarXR2dnLSSSdRWFhIdna2fvwTERGRTywF7MPgdrtZtGgRFouFKVOmEA6HWbZsGVVVVVxzzTUsWrSIuro6brvtNmKxGPfccw+jR4+muLiY6667jkcffZSKigpqa2t5//33efzxx7n88svxeDz7DdgLFy6kurqak046iRdffJGNGzfys5/9bI/9LrnkEp544gluu+026urqsFqt/PKXvyQQCHD55ZcP5lsjctRZrVaKi4spLi7e6+vJZJLe3l6am5tpamqiubk5vQ52c3Mz0ViY5q4tNHdtGXCc2WShwFPSv1yXpz94F2aVkOcuwmKyYjFZyXUVHHH9c10FVDHqwDvuJhaP0trbzI7uBnb0NLCju5GW3iZ8+wn9JpOJgoKC9DrY+fn55OXlkZOTQ3Z2NllZWenWYavVetAT1h2JQCDA+vXrqa6uVlduERER+cRTwD4MI0aMYN68eTz++OMsWrQIo9HI2WefzYIFC3A4HDz11FM88MADfOMb38ButzNx4kTuvPNOAK699lqsVisLFy7k5z//OcXFxVx//fVcd911BzzvN77xDX7729+yadMmxo4dy1NPPZVedmtXHo+H5557jlmzZjF16lQAampqeOGFF6ioqMjoeyFyrDMYDOnuxieccMKA1+LxOM3NzTQ0NNDQ0MC2bdtoaGigsbGRSCTSH167G/YoL8dZQMHH3c3zPcXku4vJ9xST7cjLeBflZDJJX6iblp6mdJje3r2Ntt4dJJJ7H69cVFREZWUl5eXlVFRUUFpaSmlpKQUFBZhMpozWT0RERET+yZA80hl15KgYM2YMDzzwAJdddtlQV2Wf1qzpX/Jo/PjxQ1wT2V2qlXDcuHFqJTwI8Xic1tZWtm3bRmNjYzqANzY24vf793mcyWgi25lPrquAHGc+XmceXkcOHrsXly0Lh9WFzWzDYvpn63AsHiMSDxOM+PGFe+kNdtEd6KDT18ZOXws7e7cTjAb2ej6Px0N1dTXV1dVUVVUxfPhwhg0bhsOx9/W8j0X6bMqxSJ9LORbpcynHouPlc3koOUct2CIiuzGZTOlW33POOSf9fDKZpKuri6ampnQX81TX85aWFqLRKB2+Vjp8rRmtj9FopLS0lOHDh6cD9YgRIygoKDgq3bhFRERE5OAoYIuIHCSDwUBubi65ubmcfPLJA16Lx+N0dHSwY8eO9ARr7e3tdHR00NXVRU9PD36/n1AolF45IMVms+FyucjOziYnJ4fCwkKKioooKytLd/PWxF8iIiIixz4F7E+IjRs3DnUVRGQ/TCYThYWFFBYW7ne/ZDJJLBZLL8llNpu1tJSIiIjIp4QCtojIUWQwGLBYLENdDREREREZBGo2EREREREREckABWwRERERERGRDFDAFhEREREREckABWwRERERERGRDFDAFhEREREREckABWwRERERERGRDFDAFhEREREREckABWwRERERERGRDFDAFhEREREREckA81BXQETkkyyRSODz+fD5fASDQSKRCIlEAgCTyYTFYsFut+NwOHC5XNhstiGusYiIiIgMFgVsEZEDSCaTdHR08OGHH7J161YaGxvZvn07bW1tdHZ2pgP1wbDZbHi9XnJycsjPz6egoICioiJKS0spLy+npKQEs1l/mkVEREQ+ifQtTkRkN4lEgi1btrB69Wo++OAD1q1bR2dn536PsZps2Mx2zCYLJkP/6Jt4MkEsHiUajxCOhUiSJBwO09bWRltbGxs3btyjHLPZTHl5OcOHD2fEiBGMGjWK0aNH43K5BuVaRURERCRzFLBF5LiXTCbZvn077777Lu+88w6rV6+mr69vwD5Gg5EiTyml3kqKPKUUuIvJcebjdeTgtmVhNu7/z2kymSQUC+KP+PCFe+kLddMT7KIr2EGHfyftvlZ2+lqIxMJs3bqVrVu38r//+7/p4ysqKhg7dizjxo1j3LhxVFVVYTKZBuX9EBEREZHDo4A9xK655hrKysqYNWvWUFdF5LjS1tbG+++/z+rVq3nvvfdobW0d8LrNbKc6bzTV+WMZnjeaiuwqrObDHz9tMBhwWJw4LE7yXYV73SeRTNAd7GRHTxPbexpo7tlKY9cWOgPtNDY20tjYyJ/+9CcAHA4HY8aMYezYsYwZM4YxY8aQl5eHwWA47DqKiIiIyJFRwBaRT71QKMTmzZvZtGkT69evZ926dXsEapPBRFXeSEYXnsToghOpyBmOaR+t0tF4hL5Qz6DVtySrjJKsMmoqzgHAH/HR3L2Nnb5WGru30NBVTzAY5L333uO9995LH5ednc2IESMYPnw4FRUVVFRUUFJSQk5ODkajFo0QERERGWwK2CLyqRCPx+no6KClpYUdO3bQ3NxMY2Mj27Zto7m5mWQyOWB/o8FIeXYVI/LHMqrgRKrzR2Mz2/d7jkgszL+/s4APtr9DNBEdzMvZK4vRwkmlp3HPhXPpDLSzrfMjtnXW09i9mZbeZrq7u1m1ahWrVq0acJzZbCYvL4+cnBy8Xi8ulwuHw4HNZsNisWAymTAajSSTSRKJBMlkkng8vse2+2RuRqMxPVO61WrFZrOlZ0x3Op243W48Hg8ejyd9XrWwi4iIyKfZcR+wV65cyWOPPUZ9fT1Op5PzzjuPGTNm4PV6qa+vZ9asWbz99tu4XC7OOusspk+fTkFBAQA9PT3Mnj2blStX0tnZSVZWFpMmTeKuu+7C4XAcdB38fj8zZszgT3/6E8lkkgsuuIC7774bp9MJQH19PbNnz+bdd98lFotRW1vLnXfeSVlZGdDfzbyqqooNGzawZcsW7r77bmpra7n33nt58803CQaDnHDCCdx+++2ceeaZAEQiER577DGWLl2Kz+dj1KhRfP/73+fcc8/N8Dsscnii0Sh+vx+fz0dfXx8+n4/e3l56e3vp7u6mp6eHzs5OOjo66OzspLOzc48QvSu3NYvy7GFU5FRTmTOcypwR2CwDA3U4FtpvnRa9/Rve3/6PjFzf4Ygmorzb9CbxRIIrT7+BPFcBp33cyh2NRWjpa2J7TyOtfdtp87XQ7mulO9hBLBajtbV1j1b7o81kMuH1evF6vWRnZ5OdnY3L5SISidDQ0EBBQQFZWVl4vV48Hg9utxur1TqkdRYRERE5FMd1wO7s7OTWW29l+vTpTJw4kZaWFqZNm8ZDDz3E97//fa688kouueQSpk+fTjAYZN68eVx++eX813/9F06nk+nTp9Pa2srjjz9OXl4e77zzDjNnzmTkyJFMnTr1oOvx3//939x44438/ve/58MPP+SHP/whJSUl/OAHP6C5uZnLL7+cCRMmsHDhQsLhMLNmzeLqq6/mD3/4A263G4D/+I//YPbs2YwZM4aCggLuvvtuIpEIzz33HFarlfnz53PzzTfz2muv4XQ6mTFjBvX19Tz88MMUFRXxv//7v9x44408/vjjTJw4cXDecDkurVixgmeeeYZo9OBafBOJBKFQ6KD3P1i+SC8b2tawoW1NRss9EhdeeCGTJ09m8eLFrFixYr8/EOzq/e3/4P2lQxf0D4XJaMZkMBGJh4nH4+kfQw6W1WrFbu//IeRgWr+zsrK44YYbOOussw67ziIiIiKH67gO2K2trUQiEUpLSykrK6OsrIz58+cTj8d54YUXKC4u5kc/+lF6/1/84hecffbZrFixgssuu4za2lrOOOMMxowZA0B5eTnPPfccmzZtOqR6nHzyyfzwhz8EoLKyktraWj744AMAFi1ahNPp5OGHH0635MydO5dJkybx8ssvc9VVVwEwbtw4LrnkknSZDQ0NjB49moqKCux2O3fddReXXHIJJpOJbdu28V//9V8sWbKEcePGAfDtb3+bDRs28NRTTylgS8Z0dHTwyCOPDErZxZ5y+sI9+CN9B975GDV58mQqKiqYPHkyy5cvH+rqDIrKnGq+99kfEUtE8Yd99IS6aOltpqW3iZbeJnb0NtET6trn8ZFIhEgkctDn6+np4f7772fJkiWaZV1ERESOuuM6YI8bN46LL76YG2+8kYKCAmpra5k4cSIXXHAB69at48MPP+TUU08dcEw4HKa+vh6AK6+8kldffZWXXnqJrVu38tFHH9HU1ER1dfUh1aOqqmrAY6/XS3NzMwCbNm3ipJNOGtBNsqCggOHDhw8I8sOGDRtQxq233kpdXR1//OMfqamp4dxzz+Xiiy/GZrOxbt26dP13FY1GycrKOqS6i+xPbm4uX/va1/jP//zPjJfd0tc04LHd7MDryCXXkUeuq4B8VyH5nmKK3KV47NlkYuhvpruIL168ON2CbTAYDroF++TSM7jy9BsO+jzJJIRjQXzhPgJRH8FIgHA8TCwWIZ6IEU/GgdS5DRgNRoyG/nHZRoPp48dGDAYjBgxg6N89kUyQSMaJJ2LEElEi8QiReJhINEQwFiQYDRCOBvnFX+7BH/HhD/cRigUP+X06VFOnTlW4FhERkSFxXAdsgDlz5nDLLbfw2muv8cYbb1BXV0dNTQ0Wi4Wzzz6bn/zkJ3sc4/F4SCQSfPe73+XDDz/k4osv5qKLLuLEE0/kxz/+8SHXYX9fBPf1hTuRSGCxWNKPU10oUy644AL++te/8te//pU33niDp59+mscff5wXX3wxXebzzz+Py+UacJxmGpZMMhgMfPe73+W73/3uAfdNJpOEw2GCwSDBYBC/358eg50ah93X10dvby89PT10d3fT1dVFR0cH4XCYUCxIqK+Z1r7mPcp2Wd2UeodRkVPFsJwRDMsdideRc8jXc9Xp38X0jjFjk5ytWLGC5cuXH3S4Tk1y9o3Trt/rkmGhaJDtvY209DbR2reddl8rHf42ugIdROLhI65vphiNRrKzs/F6vekf9SoqKsjLy0uPv87KysLtduNyuXC73TidTszm4/5/WSIiInKMO66/raxevZpXXnmFmTNnUl1dzdSpU1m6dCl1dXVcdtllvPHGG5SUlKRbj7u7u7nzzjv59re/jcfj4bXXXuPFF1/kM5/5DNDfAtzQ0EBFRUXG6jhmzBiWLl1KJBJJ16O9vZ1t27bt0QKdEolEmDNnDpdeeikXXXQRF110EaFQiNraWv7yl7+ku4Dv3LmTE044IX3co48+itFo5Ac/+EHG6i9ysAwGA3a7HbvdTk7OwYffZDJJIBCgvb09PZHXrrOIb9++HX/Ex4c71/LhzrXp43KdBYzMH8uIgnGMKjiBHGfeAc9lNdv45pm3ZmyZrt5QN52BdnKd+WTZsw+4v8fuxWLq/zsQjUdo7N5KQ2c9DV2baezaQrt//5OYORyOdHDdfRbx1Pjm1AziiUSCeDxOLBZL30/NIp5MJjEYDOlZxM1mc3oWcYfDgcPhwOVy4XK50rOIpyYv83q9uN3u9I95gUCA9evXM27cuPTEjiIiIiKfVMd1wHa73SxatAiLxcKUKVMIh8MsW7aMqqoqbrrpJv74xz9yxx13cPPNNwPw4IMPsnHjRkaPHk00GsVsNrN8+XJyc3Pp7u5m/vz57Ny585DGCx7IFVdcwQsvvEBdXR033XQTkUiEBx98kJycHL70pS/t9Rir1cqaNWt4++23+fGPf0x+fj6vvfYagUCAU089lVGjRvG5z32On/zkJ9x9992MGjWKFStW8MQTT/DAAw9krO4iR4PBYEiHud2HSkD/sI5t27ZRX1/Pxo0b2bBhA1u3bqUzsJO3GnbyVsNfAShwFzO68ERGF5zEyIJxOK2uPcpKsZis5LoKjrjuua4CqvJGHXC/ZDJJV6CdNdtXsa2znq2dH9Lcve3jrt0D5efnU1VVRWVlJeXl5ZSUlFBUVER+fv4ePV1EREREJLOO64A9YsQI5s2bx+OPP86iRYswGo2cffbZLFiwgMrKSp577jnmzJnDFVdcgclk4rTTTuOZZ54hNzcXgFmzZjFv3jyef/55CgoKmDhxIlOnTuXVV1/NWB1TE6fNnj2byy+/HKvVSm1tLbNnz97veOlHH32UBx54gJtuuom+vj6qq6t5+OGHOf3009OvP/roo9x999309PRQWVnJz372M7761a9mrO4ixwKbzcbo0aMZPXo0F154IdC/NN66det4//33ee+99/jwww/Z6Wthp6+Fv23+MwYMlGVXMapgHNX5YxieOwqXzXNU6ptIJugOdNDc00Bz9zYau7fQ0LUZX7h3j32zs7MZN24cY8aMYfTo0YwcOZLs7OyjUk8RERER2ZMhebCz6ogcwJo1/csfjR8/fohrIrtTN9z98/v9rF69mnfeeYd3332XxsbGPfbJdxVRkVNFqbeSIk8ZBe5icpx52MyH1iqcTCYJx0L0hXvoCXbRFeigI9BGu6+Nnb4dtPZt3+t63GazmerqasaNG8cJJ5zA2LFjKS4uPqilq45l+mzKsUifSzkW6XMpx6Lj5XN5KDnnuG7BFhEBcLlcTJgwgQkTJgD9y4u9++67rFmzhg8++IDGxkba/a20+1t5t+nNAcfaLU48tiwcFic2sx2z0YLR0D++OJFMEEvEiMTDhGNBgpEAgaifaHz/w0jMZjOVlZWMGDGCUaNGpVund11NQERERESOPQrYg2TBggX86le/2u8+M2fO5Otf//pRqpGIHKy8vDzOP/98zj//fAB6e3v58MMP+fDDD9myZQtNTU00NzcTCAQIRfu3Q2W328nPz6egoICioiJKS0spKyujsrKSsrIyzZgtIiIi8gmkb3CDZMqUKfzrv/7rfvfJyzvwrMUiMvSysrKoqamhpqZmwPM+n4/Ozk66u7vx+/0Eg0EikUh6tm2TyYTFYsFqtQ6YVTs7OxuHwzEUlyIiIiIig0gBe5CklqMRkU8vt9uN2+2msrJyqKsiIiIiIscA41BXQEREREREROTTQAFbREREREREJAMUsEVEREREREQyQAFbREREREREJAMUsEVEREREREQyQAFbREREREREJAMUsEVEREREREQyQAFbREREREREJAMUsEVEREREREQyQAFbREREREREJAMUsEVEREREREQywDzUFRARkaETiUTYuXMnra2t7Ny5k507d9LZ2UlnZye9vb309fURCAQIh8PEYjGSySRGoxGbzYbT6cTtdpOTk0N+fj7FxcWUl5dTWVlJSUkJRqN+wxUREZHjiwK2iEiGxONx2tvbaWtro6Ojg66uLnp7e/H5fOmQGo1GSSQSABgMBsxmMzabDbvdjsPhwOVy4Xa7cbvdeDwePB5P+r7L5cJisRxUXZLJJMFgkJ6eHrq7u+no6KCjo4OdO3fS1tZGW1sbLS0tdHZ2Hta1+v3+/R5rt9sZMWIEo0ePZty4cZxwwgkUFhYe1rlEREREPikUsEVEDlFvby9bt26loaGBxsZGGhsbaW5uprW1NR2eB4vFYsHpdGKz2bBYLJhMJoxGI8lkklgsRiQSIRQKEQgEiMfjB1Wm1WQlx5FPrjOPbHsuXnsOWXYvbqsHl9WN3ezAarJhNprBAIlEgmgiQigWwh/uozfcQ1ewk/ZAK22+Flr7thMKhVi7di1r167lpZdeAqCoqIiTTjqJk08+mZNPPpnS0tLBfKtEREREjjoFbBGRfYhGozQ2NrJ582a2bNmS3jo6OvZ5jNlo7g+pjhyybP0h1WFx4bA4sJismI1mTAYTAIlkgnAsTF+kh1g8SigWIhwPEYoGCUYDBGNBQtEAgWiASDycrlNPT89BX4PZYMZpdeOxZZFl85Jlz8ZrzybbkUu2PYdsey5OqwuDwXDQZWY7c7CYrPt8PZ6I0+ZroaF7C9u6N7Ol8yOae7fR2tpKa2srf/7znwHIy8tj3Lhx5ObmYrfbGTt2LCaT6aDrISIiInKsUcAeJCtXruSxxx6jvr4ep9PJeeedx4wZM9iwYQPf/va3+fWvf83s2bPZunUr5eXl3HHHHZx//vlAfzfTZ599lhdeeIHt27dTWlrK1KlTueKKK9Ll19fXM3v2bN59911isRi1tbXceeedlJWVAXDNNdcwduxYOjo6+POf/4zX6+Xqq6/m+uuvx2Aw8JWvfIVx48bxwAMPpMv861//ys0338xf//pXsrOzj+r7JTKUQqEQ27dvp6mpiYaGBrZt28bWrVtpamraZytwriOfkqwyitylFLlLKHQXU+AqIsuejdFw4LHHkViY595bwJod7xBNRDN9SWmxZIzecDe94W6aM1SmxWhhfMlpXH3K9VjNtj1eNxlNlGSVUZJVxlmV5wIQjoXY3Pkh9R0b+bBjA9u66uno6OD1118HYOnSpTgcDsaMGcOYMWMYMWIE1dXVlJWVKXSLiIjIJ4YC9iDo7Ozk1ltvZfr06UycOJGWlhamTZvGQw89xJe//GXi8TizZ8/mrrvuoqSkhEceeYQ777yT1157DZfLxaxZs3j55Zf58Y9/zPjx43nttdf42c9+RjgcZurUqTQ3N3P55ZczYcIEFi5cSDgcZtasWVx99dX84Q9/wO12A/DCCy/wta99jd///ve8//773HPPPQDccMMNXHbZZfziF7/gJz/5CXa7HYAlS5bw+c9/XuFaPjXi8Th+v5/e3l56enro6uqis7MzPZlXW1sbO3bs2G+LtMPspMRTRrGnjNKsckqyyil2l2G32Pe6fzQeOai6PfvOb3hvxz8O67qGWjQR5Z3mN0kkElxz2g0HfVx17ijGFpyEwWAgEo+wtaue+o4NfNSxkW1d9QSDQd577z3ee++99DEWi4WysjLKy8spLi6mqKiIgoIC8vLyyM7OJisrC7vdfkgt8CIiIiKDRQF7ELS2thKJRCgtLaWsrIyysjLmz59PPB5Pd+287bbbOOeccwC4+eab+eMf/8imTZsYNWoUL7zwAtOnT+eSSy4BoKqqiqamJn7zm9/wrW99i0WLFuF0Onn44YexWvu7ac6dO5dJkybx8ssvc9VVVwEwfPhw7rnnHgwGAyNGjKC+vp5nnnmG66+/nksuuYSHHnqI//mf/+Hiiy/G5/PxP//zP8ydO3cI3jGRw/c///M/PPTQQ0dcjsPiTLdGl2SVUeIppzSrHK8th1/87X7eaPjLkVd2iFx44YVMnjyZxYsXs2LFCpLJZEbKfW/HP3jvlUP7kaA6dzQ/PPdHWE1WRuePY3T+OKC/u/yOvma2ddWzrXsLTd1b2dHXRCQaYevWrWzduvWgz5Gdnc2PfvQjTj755EOqm4iIiMiRUsAeBOPGjePiiy/mxhtvpKCggNraWiZOnMgFF1zAqlWrAKiurk7vn2pxjkajbN68mWg0Sk1NzYAyzzzzTBYuXEhHRwebNm3ipJNOSodrgIKCAoYPH86mTZvSz5111lkDWnVOPfVUFixYQFdXF7m5uUyaNIklS5Zw8cUXs3z5cjweD+eee+6gvCcig2XRokWHfWx17mhG55/AuMKTqMyuxmLac4bu/jD6yW4dnTx5MhUVFUyePJnly5cPdXX2ymgwUpZVQVlWBROGTQQgGA2wtnU177esYl3rakKx0EGV1d3dzYoVKxSwRURE5KhTwB4kc+bM4ZZbbuG1117jjTfeoK6ujpqaGm6++WaAAeE4JZlM7rNlKTUzsdls3u8+uy7hYzab93gdSI9n/NrXvsaNN95IR0cHS5cu5dJLL9VYR/nEuf766/nVr35Fa2vrIR+7uXMTmzs3sWLTEgwYyHMVUOQupcRTSvHHLdjFnjJ+eO6P0pOMZcrR7CK+ePHidAu2wWDIWAv2KSVnHFIXcQCrybbX7tzBaJCG7s1s7aqnoXsLTT1b6Qi0H1a9Ro4cyVe+8pXDOlZERETkSChgD4LVq1fzyiuvMHPmTKqrq5k6dSpLly6lrq6Oyy+/fL/HjhgxAovFwqpVqxg3blz6+bfffpuCggK8Xi9jxoxh6dKlRCKRdFBvb29n27ZtXHnllelj1qxZM6Dsd955h/LycrxeLwDnnnsuBQUFvPjii7z99tvpMdoinyTnnHNOerjF3iQSCQKBAN3d3XR3dw8Yg93a2kpLSwvbt28nGAzS7m+j3d/G2tb30scbMFDoLqY0q5yyrEpKsyoozaog15l/UJOZ7cs3T/suxveMgz7JGcCKFStYvnx5xsL1gSY5Oxi9oW4+6tjIRx0bqO/YxPbeRpLsWbfc3FwqKyv3Ogbb6/Wm55AQERERORYoYA8Ct9vNokWLsFgsTJkyhXA4zLJly6iqqiInJ+eAx15++eXMnTuX7Oxsxo8fz+uvv86iRYu4/fbbMRgMXHHFFbzwwgvU1dVx0003EYlEePDBB8nJyeFLX/pSuqy3336buXPn8uUvf5m3336b559/nhkzZqRfNxqNfOUrX2H+/PmMHz+eESNGDNp7IjJUjEYjbrcbt9tNeXn5XvdJJpN0dnam17Tetm0b27ZtY8uWLfT29tLq20Grbwfvbv9ni7PVZKPYU0qxpyw9i3i+s5A8ZwEOi/OAk25ZzTauPf1WovEIveH9L7sVi8cIxYKEokHC8RCRWJhIIkoiESeejJNIJjAYDJgMJsxGM1aTFZvZjt3ixGVxEYgG6Ap2kOvMx2vPPuT3cHdZNu9+l+nam65gR3+gbt/ARx0baPXt2GOfoqIixo4dy5gxYxg5ciTV1dVkZWUdcX1FREREjhYF7EEwYsQI5s2bx+OPP86iRYswGo2cffbZLFiwgB079vxSubsZM2aQk5PDww8/THt7O1VVVdx9991MmTIFgPLycp577jlmz57N5ZdfjtVqpba2ltmzZw/4Mjpp0iTq6+v58pe/TGFhITNmzBiw1BfAZZddxvz587nssssy+yaIfIIYDAby8vLIy8vjlFNOST+fTCbp6uraYx3shoYGItEwDd1baOjeskd5drMdrz0Hj82Lx9a/Drbd7MBqsmE2mjEajBgMBuKJOPFkjGg8SiQeJhQLfbzutZ9ANEAg4iMQ9RM5yJnJ98VispJl8/ave+3II9eRR44zjzxnPrmOAnKdedjMmWsJDkT9NPU00Ni9hW1dm9nS9RFdwYEztRsMBoYPH864cePwer2cf/75+/wBREREROSTQgF7kHzuc5/jc5/73B7PV1ZWsnHjxgHPlZeXD3jObDZz6623cuutt+6z/BNOOIGnn356v3XIyspi1qxZ+92npaUFh8MxoOVbRPoZDAZyc3PJzc3l9NNPTz8fj8dpbm5m27ZtNDY20tTURHNzM9u3b6enp6c/KH/c6p3JujidTpxOJw6HA5vNhtVqxWQypbt+x+NxwuEwoVCIQCCAz+cjEokQjUfoCOykI7Bzn+W7rG5yHHlkO3LJTv84kIXT4sJhcWAx2TAbTRgwkkjGicajhGJB/BEfveEeuoIdtPvbaPPtoDvUtUf5RqORkSNHMn78eE4++WROOukkPB4PgUCA9evXk5ubm7H3SkRERGSoKGAfp+rr69m0aRPz58/nq1/9Kh6PZ6irJPKJYTKZqKyspLKyco/XQqEQO3fupKOjg66uLnp7e+nr6yMYDBIOh4lGo8TjcaA/dJrNZmw2G3a7HYfDgdPpTHdpz8rKwu124/F4cLlcGI2HPuY7GAzS3d1NR0cH7e3ttLe309bWRmtrK62trbS1teHz+fBH+remnm1H/P5Af3fvESNGMGbMGMaOHcvYsWNxOBwZKVtERETkWKWAfZzatm0bM2bM4DOf+Qw//OEPh7o6Ip8adrudiooKKioqhroqADgcDhwOByUlJfvcx+fz0dbWlp78bfcfBwKBAOFwmFgsRiKRwGg0YrPZcLlcuN1ucnJyyM/Pp7i4mLKyMiorK9PLD4qIiIgcTxSwP6WeffbZ/b7++c9/nvfee+/oVEZEjmmpFvPq6uqhroqIiIjIJ9rhrzEjIiIiIiIiImkK2CIiIiIiIiIZoIAtIiIiIiIikgEK2CIiIiIiIiIZoIAtIiIiIiIikgEK2CIiIiIiIiIZoIAtIiIiIiIikgEK2CIiIiIiIiIZoIAtIiIiIiIikgEK2CIiIiIiIiIZoIAtIiIiIiIikgHmoa6AiIh88iWTSTo7O2loaGD79u20tbXR1dWFz+cjFAqRTCYxm83Y7Xays7PJz8+ntLSU4uJiEonEUFdfREREJCMUsEVE5JD19PSwbt06NmzYwKZNm/joo4/o6ek5rLKsVitjxozhlFNO4bTTTmPs2LGYTKYM11hERERk8Clgi4jIfiWTSZqbm1m7di0ffPABa9eupampaY/9DBgocBZS6Comz5GH156N0+LGZrJhNBiJJWKE4kH6wn10Bjto87fQ3NdEJBJhzZo1rFmzhmeffRa3201NTQ0TJkzgzDPPxOVyDcFVi4iIiBw6BexPqN///vfMmDGDjRs3ZqyMz3/+83z1q1/le9/7XqaqKSKfQD09PXz44Yds2rSJ9evXs2HDhr22The7SqjOGUlV9giGeaso9ZRjNVkP6VyJZIIdfc181PUhGzvWsaF9LT6fj5UrV7Jy5UosFgunnXYa//Iv/8I555yDx+PJ1GWKiIiIZJwCtojIcSiRSNDZ2cmOHTtobm6msbGRhoYG6uvraW9v32N/s9HCMG8Vo3LHMCJnFCNyRuGyuo+4HkaDkbKsCsqyKjhv2OdJJBNs6arn/bZ3ebflbVr9Lbz55pu8+eabmEwmTjnlFGpraznnnHPIy8s74vOLiIiIZJICtojIIEgmk4TDYfr6+vD5fPj9fvx+P4FAgFAoRCgUIhqNEo1GicfjxOPx9LEGgwGj0YjJZMJsNmM29/+pjkQimEymAZvRaBxwzkQiQSwWIxKJEIlECIVCBINBfD4fPp+Pnp4euru76erqGnDO3eXZ8ynLKqfcU0mlt4oSdxlm0z//lxGMBQnGgkf0HnltXiy7tXgbDUZG5I5iRO4ovjLm6+zwNfNOy9u8s+MfNPc1smrVKlatWsXcuXMZNWoUZ5xxBjU1NYwdOxaLxXJE9RERERE5UsdNwF65ciWPPfYY9fX1OJ1OzjvvPGbMmIHX66W+vp7Zs2fz7rvvEovFqK2t5c4776SsrAzo/9L6zDPPsGjRInbs2EFFRQU33XQTF198MQDt7e089NBDrFy5klgsxumnn87MmTMZNmwYAP/7v//LvHnz+OijjygqKuJLX/oSN998M1Zr/xfLMWPGcMstt/DSSy8RjUZ57rnnqKqqOqjrevHFF5k3bx69vb2cc845/PjHP07Xe/v27cyePZv/+7//o7e3l7y8PC655BL+3//7fwO+lIvIP8XjcSKRCNFolEgkQjgcTgfVUChEIBAgGAymA7PP56Ovr4++vj56e3vT9/v6+ohGo0N9OYetI9ROR6id99veG7RzWIwWPlN0Gt/6zHewmmx7vG4wGCj1lFPqKefiUV+h1beDd1tX8V7LKrZ2b+bDDz/kww8/ZNGiRdhsNk444QROOOEERo8ezahRo8jLy8NgMAxa/UVERER2d1wE7M7OTm699VamT5/OxIkTaWlpYdq0aTz00EPcfPPNXH755UyYMIGFCxcSDoeZNWsWV199NX/4wx9wu908+eST/PKXv+Suu+7irLPOYuXKlUybNo38/HxOP/10rr32WsxmM7/61a/Izs5m1qxZfOc732HFihX87W9/47bbbmPGjBlMmDCBhoYG7rvvPrZs2cJjjz2WruOiRYtYsGAB8Xj8oMM1wLPPPstjjz2G1WrlvvvuSwd1g8HATTfdREFBAU8//TQul4s///nPPPDAA5x66qmcf/75g/BOiwyOVItsOBxOB93U/WAwmH4uGAwOeJzaL7VvKiyntlgslm5FjkajxGIxkslkRutuwIjT4sRpdmKz2LGbHNjMVixGKxajBbPRgslowmgwkoqCiWSSJEniiTgbO9bRGerIaJ2OFdFElLd3vAnA9afdcsD9i9wlfNF9MV8ccTG94R7WtK1m3c41bOhYhy/cx7vvvsu7776b3t/j8VBeXk5ZWRnFxcUUFBRwyimnUFJSMmjXJCIiIse34yJgt7a2EolEKC0tpaysjLKyMubPn088HmfRokU4nU4efvjhdIvy3LlzmTRpEi+//DJXXnklCxcu5Jvf/CZf//rXAbjmmmsIhULEYjH+/ve/s3HjRlasWMHw4cMBuP/++/ntb39LT08P8+fPZ8qUKXzjG98AoLKyknvvvZdvfetbNDU1UV5eDsCll17K+PHjD/naZs+ezdixYwF48MEH+cIXvsDf//53TjvtNC699FIuvPDC9JfJqVOnsmDBAjZu3KiALceEeDzOQw89xP/+7/8OdVUGTZIE/qgPf9QHR9aj+ph24YUXMnnyZBYvXsyKFSsO6YeKVTve4lux72A179mKvS9ZNi+1FZ+ltuKz/ROl+bbzUecmtnTXs617My3+HfT19bF+/XrWr1+fPi4nJ4d///d/V8u2iIiIDIrjImCPGzeOiy++mBtvvJGCggJqa2uZOHEiF1xwAZs2beKkk05Kh2uAgoIChg8fzqZNm+jq6mLnzp185jOfGVDm9ddfD8BTTz2F1+tNh2uAoqIi7rzzTgDWrVvH+++/z+LFi9Ovp7541tfXpwN2qjv5oXC5XOlwDVBVVYXX62XTpk1MmDCBq6++mhUrVvD++++zbds2Nm7cSHt7O4lE4pDPJTIYOjs7P9Xh+ngyefJkKioqmDx5MsuXLz+q5zYajJR5yinzlPMvlRNp8e1ga/dm3mn5B2t26+Le1dV1VOsmIiIix5fjImADzJkzh1tuuYXXXnuNN954g7q6OmpqavY5KU4ikcBisRxw0pzU5EP7kkgk+M53vsNXv/rVPV4rKChI37fb7QdxFQOZTKa9ns9qtRIIBLj66qsJhUJ88Ytf5Ktf/Sonn3wyV1111SGfR2SwFBQUcPfdd/OHP/yBeDxOMpncb8tiauKwXbt/BwKBIRvrbDPZcVqcOMwOnBY3TosTl8WN0/rxrcWFy+LCaXFiNztwWBzYzQ6sRhsWo+WgWlF/u/o3vNPyj6NwNUdm8eLF6RZsg8FwSC3YNSVnHlLr9a6i8Qj1XR+xsWMdH3V+yLaezYTj4X3uf9ZZZ6n1WkRERAbNcRGwV69ezSuvvMLMmTOprq5m6tSpLF26lLq6Oi677DJef/11IpFIuhW7vb2dbdu2ceWVV+LxeCgsLGTNmjVMmjQpXeb3v/99SkpK+OxnP0tPTw/btm1Lt0J3dnZy4YUX8sQTTzBq1Ci2bNkyoIX6zTff5JlnnuGee+7B6XQe9nX19vbS0NBAZWUlABs3bqSvr4/Ro0fz+uuvs3btWv72t7+Rn58PQHd3Nx0dHRkfYypyJM4991zOPffcIyojHo8PGHe9t3HYu05YlprELLXtbTz2rmO1U+O4U2O8Y7EYAOF4iHA8xOG0iRowYDZaMBvNGA3G/jHYHwe/ZDJJIpkgkUwQS0QxYCDJsf3f7YoVK1i+fPkhhetdJzk7FB2Bdt5ve5c1bavZ1LGeaGLgDyx2u53q6mqGDx9ORUUFZWVlFBUVUVBQgMvlOqRziYiIiByK4yJgu91uFi1ahMViYcqUKYTDYZYtW0ZVVRU333wzf/zjH6mrq+Omm24iEonw4IMPkpOTw5e+9CUAbrjhBh555BGGDx/Oqaeeyl/+8hf+/Oc/8/TTT3P66adz0kknceeddzJz5kwcDgcPPfQQubm5nHjiiVx//fXcdtttPP7443zpS1+ipaWFu+66i/Ly8gEt2IfDaDRy2223cffddwPwk5/8hDPPPJPTTz+d999/H4ClS5fyhS98gR07dvDII4+kg4PIp4nJZMLlch218BSJRAbMIr63mcRTt6nXUvuHw/2tq0mSRBMRoonD/+8xtZxXKtQmEonD/gHNZXFT6CyiyF1CibuUUk8Zxa4SjMY9e8rsTU+om45gO3mOfLz27IM6Zm/LdO3Ljr7+5brebXmbxt5tA17Lzc3llFNO4eSTT2bcuHFUVlbutYePiIiIyGA7LgL2iBEjmDdvHo8//jiLFi3CaDRy9tlns2DBAioqKnjuueeYPXs2l19+OVarldraWmbPnk1WVhZAuqv1Y489xs6dO6mqquLRRx/lzDPPBOBXv/oVDzzwAN/+9rcxGAycffbZPPnkk1gsFr74xS/y6KOP8sQTTzB//nyys7P5/Oc/zx133HHE15Wbm8ull17KzTffTDAY5HOf+xw/+tGPADj55JOZMWMGv/3tb/nFL35BUVERF110ESUlJaxZs+aIzy1yPLNarVitVnJycg752Hg8nm4RD4fDxONxYrFYek3qZDKJ0WhMr4NtMpmwWCx7vd1bV+dkMpleaizV6u73++nr60uvgd3Z2UlbWxttbW3s2LGDzs5O/FEfW3p8bOmpT5dlNlqozBrG8JwRjMgZxYicUWTb937N+c4CRjDqkN+PfUkmkzT3NabXwN7ha06/ZjQaOeGEEzj77LM588wzGTZsmLp9i4iIyDHBkFR/YcmQVHA/nNnQZXAFAgHWr1/PuHHjjmhYgnw6BQIBmpqa2Lp1K1u2bGHz5v41pn0+3x775jsLGflx2B6RM4oSTxlGgzEj9YjGI3zYuYk1be/xfuu7tAd3pl8zm82ceuqpnHvuuZxzzjlkZ2dn5Jwie6O/mXIs0udSjkXHy+fyUHLOcdGCLSIi++Z0Ohk9ejSjR49OP5dMJtm+fTvr169n3bp1rF+/ni1bttAeaKM90Mb/Nf8NALvZzjBvNZXeYZR7Kin1lFHoKsJuduz3nIlkgs5gB819jWzt3kx914fUd31EbJfx1FarlZqamnSodrvdg/MGiIiIiGSIAvYxprW1lS9+8Yv73Wf8+PE888wzR6lGInI8MhgMlJWVUVZWxvnnnw+A3+9n/fr1rF27lrVr17JhwwZCoRAbO9axsWPdgOPdVg9eWzYuiwuryYbBYCCejBOKBumN9NId6hoQplPy8vI444wzOPPMM6mpqcHh2H9QFxERETmWKGAfY/Lz81myZMl+97HZDm85GxGRI+FyuTj99NM5/fTTgf7x5A0NDWzYsIH6+no2b95MQ0MDvb29+CJ9+CJ9+y3PbDZTXl5Obm4uZ511FjU1NVRUVGg8tYiIiHxiKWAfY0wm04AlvUREjlUmk4nhw4czfPjwAc/7/X5aW1v7J0/z+wmFQiSTSUwmEw6Hg+zsbPLy8igsLCQcDh8XY7dERETk+KCALSIiGeVyuaiurqa6unqoqyIiIiJyVGVm6lcRERERERGR45wCtoiIiIiIiEgGKGCLiIiIiIiIZIACtoiIiIiIiEgGKGCLiIiIiIiIZIACtoiIiIiIiEgGKGCLiIiIiIiIZIACtoiIiIiIiEgGKGCLiIiIiIiIZIACtoiIiIiIiEgGKGCLiIiIiIiIZIACtoiIiIiIiEgGKGAfA1atWsXbb7+dsfKampoYM2YMb775ZsbKFBERERERkf0zD3UFBK688koeeOABTj/99KGuiojsRzweJxQKEQgECAaDhEIhIpEIoVCIaDRKNBolEokQi8XSWzweJ5FIkEwmSSQSe5RpNBoxGo0YDAaMRiMmkyl9azab07dGoxGz2Zx+LvV86nHqmNT9VHkABoMhfb5kMpmuSyKRIB6Pp7doNEosFktfR+o2tYXD4QGPd90ndeyu17z7dabqbLFYsNls2O12LBYLfr+fLVu2kJubS1ZWFllZWWRnZ5OdnY3Vah3cf1QRERGRDFLAFpHjRjwex+/34/P58Pl89PX10dfXl36865baz+/3EwgE8Pv9hMPhob6E447H4yE3N5e8vDwKCgrIz88nPz+fgoKC9OZyuQb8iCAiIiIyVBSwj5KVK1fy2GOPUV9fj9Pp5LzzzmPGjBmceeaZAMyYMYO33nqLWbNm8fbbbzN37lw++OADIpEIFRUV3HjjjVx66aUATJ8+nUgkQnZ2NkuWLMFms3HppZdy++2377O15z//8z958sknaW5upqysjG984xtcc801GI1GmpqamDRpErfffjvPPPMMdrudl19+GbfbfdTeH5HdJZNJ4vF4utV019biXbdgMDhg8/v9A0JxavP5fAQCgYzUzWQwYTPZsJlsWIwW+qJ9hGIhkiQzUv6nnclgotRVyvj8zxBLxgjGggSiAfxRH76oj75oH75IH/FkPP0jyLZt2/ZZnsPhGBC68/PzycvLS2+5ubnk5ORgMpmO4lWKiIjI8UgB+yjo7Ozk1ltvZfr06UycOJGWlhamTZvGQw89xOuvv865557LzJkzueyyy2htbeW6667j6quv5r777iMajbJgwQLuuusuamtryc/PB+C///u/mThxIv/+7/9OY2Mjd911F8FgkHvvvXeP8//ud7/jkUce4e677+bkk09m3bp13HfffbS2tjJt2rT0fi+99BILFy4kGAwqXB9nUl2Gd+0uvHs35127D+9rS3UV3lsX4309v2vX49Q+qcfJ5OAEVqvRitPswmlx9m9mZ/9jswOnxYXD3P+8w+TAYXZgN9s/vu2/bzFY0mU9+cFvWNX2j0Gp56dVPBmn0ddIobOY75x0A1aTdY8W6GQyiT/mpyfcTXe4m65QF13hLrpDnXSGOukMd9IZ6sAf9RMMBmlsbKSxsXG/5011Pc/KysLr9eLxePB4PLhcLtxuN06nE4fDkQ7slZWVg/k2iIiIyKeQAvZR0NraSiQSobS0lLKyMsrKypg/fz7xeJyCggKA9Be9rq4uvve973Hdddelv3DecMMNLFmyhK1bt6YDdlZWFrNnz8bhcDB69Gja2tr42c9+Rl1d3R7n/9WvfsVNN93El770JQAqKirw+Xzce++9/OAHP0jvd+WVVzJy5MjBfjtkiESjUerq6vjwww+HuipDLpLoD/bdka6hrkrGXXjhhUyePJnFixezYsWKQfuRIhNWtf2DVa/+g5HZo5hxxo8GhGyDwYDb4sZtcVPmLt9nGeF4mK5U6A510hXupCvURXe4P5D3hHvojfSQSCbo7e2lt7f3oOv3k5/8hNra2iO6RhERETm+KGAfBePGjePiiy/mxhtvpKCggNraWiZOnMgFF1ywx76VlZVcdtllPPPMM2zatImGhgY2bNgA9I8fTTn55JNxOBzpx6eeeirRaJQtW7aQk5OTfr6zs5OWlhYeeeQRHnvssfTziUSCcDhMU1MTNpsNgGHDhmX82uXY4ff7+eijj4a6GjLIJk+eTEVFBZMnT2b58uVDXZ1BZzPZKHaVUOwq6W/1jvr6W7o/bvXuiXTTHeqi2d9Ms68Jf9R/0GXv3LlzEGsuIiIin0YK2EfJnDlzuOWWW3jttdd44403qKuro6amhoULFw7Y76OPPuLKK6/kxBNPZMKECfzrv/4rOTk5fP3rXx+wn8ViGfA4NWPv7mMMU8/PmDGDCRMm7FGvkpIS2traALDb7Ud2kXJMy87O5qGHHmLNmjUkk0kMBsOA210ZDIb0LNOpbuK7dhHfW1fxXbt4794VPBqNHvWWVCNGHGYHTrMTu6X/1mF24jI7+5+3fNxF3OzCZXbgsLhwmV3pfc2Gg/vzeKx1EV+8eHG6BXtv/7bHkprCM/bZRXx3qS7j3aGuj1urO9It1qnHXaEuIonIIdXBbrfjdrtxuVy4XK50F/G8vDw+97nPHcnliYiIyHFIAfsoWL16Na+88gozZ86kurqaqVOnsnTpUurq6ujo6Biw77//+7+Tl5fH008/nX7u1VdfBRjwRXnt2rXE4/F0oH733XdxOBwMHz58QJmpCX4aGxsHtFAvW7aMP/3pTzz44IODcs1ybBo1ahSf+cxnjvp5k8lkOpSHw+G9hvLU87suBZW6Hw6HB0x2tusWCATSk52lls9KJpMkSOCP+fHH/BA69DrbTDYcqTD+8fhrh9mBzWTHbranJzkb7h1Oe2gnTX2NxJPxAxc8yFasWMHy5cuP6XBtMVo4Of8zTBn9DbrDXQTj/ZOcBaJ++qI+fNE+eiO99IZ76An30P1xi/TBhmev1ztggrPUlpOTg9frxev1kpWVhcfj2ePHShEREZEjoYB9FLjdbhYtWoTFYmHKlCmEw2GWLVtGVVUVOTk5OJ1O6uvr6erqori4mJaWFlauXMnIkSNZu3Yt999/PwCRyD+/XDY3N3PvvffyrW99i/r6eubOncvVV189oNs49LdEXn/99Tz66KOUlpby2c9+lo0bN3LPPfcwadIkrTErR4XBYMBisWCxWHA6nYN6rkQikQ7bu84gvuvyXPtbois103g4HiYcD9Md/mSN006F6qEI10aMmAwmDAYDBoMRIwYwAMn+ic2SySSxZIxoIsqqtrdZ1fb2IZ8jFZ53XaZr1y0/P19/10RERGTIKGAfBSNGjGDevHk8/vjjLFq0CKPRyNlnn82CBQswGo1ce+21PPnkk+mgvHnzZqZNm0YkEqGqqorbb7+duXPnsmbNGj772c8CcMopp2A0Gpk8eTIej4dvfvOb3HTTTXs9/7XXXovNZuPZZ59l1qxZ5OfnM2XKFL7//e8fzbdB5KgwGo3p7r6pSQQPRWqt7F2DeWrZr1QLeTAYHNCKvvss6NFoND0TezweT3e3h4EBuD+IGjCZ+kOp0WjEaDRiMpkwmUyYzeYB981mM0ajMf38rq+nnk+VkSovdY6UZDKZXgItdbvrrPG7DgHYdab33XsUpF7fVYIEiWSCQ1mtzOFwYLFY0rN7ezwevF4v2dnZ5OTkkJOTQ25ubnrprdScESIiIiLHIkPyWO1DKPs0ffp0mpubefbZZ4e6KgOsWbMGgPHjxw9xTWR3gUCA9evXM27cuEFvQZbjRzKZHPCjwq7LuiUSiQGt6KkfAaxWK2azGZvNhs1mIxgM6rMpxxz9zZRjkT6Xciw6Xj6Xh5Jz1IItIiKHxWAwYLVa1SVbRERE5GPGoa6AiIiIiIiIyKeBWrA/gWbNmjXUVRAREREREZHdqAVbREREREREJAMUsEVEREREREQyQAFbREREREREJAMUsEVEREREREQyQAFbREREREREJAMUsEVEREREREQyQAFbREREREREJAMUsEVEREREREQyQAFbREREREREJAMUsEVEREREREQyQAFbREREREREJAMUsEVEREREREQywDzUFRARkU+GeDxOd3d3euvr68Pn8xEOh4lEIgAYDAZsNhsOhwOv10teXh7FxcVkZWUNce1FREREBp8CtojIcS6ZTOLz+ejq6qKjo4OOjg46Oztpb29n586dtLe3097eTldXF4lE4rDO4fF4GDZsGNXV1YwZM4Zx48ZRVlaW4SsRERERGVoK2ENg1apVJJNJTj/99CMq595772XJkiUYjUbuu+8+fvjDH/LnP/+Z8vLy/R7X1NTEpEmTeOaZZzjrrLOOqA4ikhnJZDK9Hei1eDxOIpEgHo8Ti8WIxWJEo1EikQiRSIRwOEwoFCIUChEMBgkEAgQCAfx+P36/P93y3NvbS09PDz09PcRisYOqpwEDWVYPHosHt9WD0+zAZrJhNpgxGAwkkkmiiQjBWJDeSB9d4S56Ij309fXxwQcf8MEHH6TLysnJ4YQTTqCgoIDs7Gyqq6sxGAyZeUNFREREhoAC9hC48soreeCBB44oYG/YsIFFixZx7733cu6551JYWMjrr79Obm5uBmsqIgcjEonQ2dlJR0cHXV1ddHV10d3dTW9vL319felgGwwGCYVChMNhwuEw0WiUeDyeDsxDzWl24LVmk23zkmPLIceWQ6499+PbHLJt2XitXoyGQ5u+IxwP0xpopdHXRENfA/U9m9nat4Wuri7+9re/AbBkyRKKi4s57bTTOO200zjllFPUrVxEREQ+cRSwP6F6e3sBqK2tTbdYFxQUDGWVRD61/H4/LS0ttLa2Dtja2trYuXMn3d3dQ1o/I0bMRjMWo+XjzYzVZMNqtGI32bCardiNdmxmOw6THYfFgdPswmV24LK4cVtcuMxuLCbLfs8TS8TpCHUesD5eqxfrLmXZTDYqPZVUeiqpLZkAQDQRZXPPFjZ0bWBd5zo+7PmIlpYWli1bxrJlyzAYDIwYMYJTTjmF8ePHc+KJJypwi4iIyDFPAXuQrFy5kscee4z6+nqcTifnnXceM2bM4MwzzwRgxowZvPXWW8yaNYu3336buXPn8sEHHxCJRKioqODGG2/k0ksvBWD69OkEAgF8Ph/vvfceN910Ew8//DAA559/Pl/96lf56le/yje/+c10F/H333+fWbNmsX79esxmM2effTYzZsygtLQ0XcfVq1fz8MMPs379eoqKirj55pv52te+dvTfLJEhFIlE9hhz3NbWlt5aW1vp6+s7YDkWoznd+ptl9eKxevBY3LgsLlxmFw6zA7vJjt3cH3yTySQvbV7C2q51xBIH1z17XxIkiCQiRBKRIyonUyxGC6cVnMp1J1yLzWTb5z5jckYzJmc0l1Z/mVAsxIbujaztWMsHnWvZ7t/ORx99xEcffcTixYsBKCsrY8yYMYwcOZLq6moqKyvJy8tTt3IRERE5ZihgD4LOzk5uvfVWpk+fzsSJE2lpaWHatGk89NBDvP7665x77rnMnDmTyy67jNbWVq677jquvvpq7rvvPqLRKAsWLOCuu+6itraW/Px8AP74xz9SV1fHj3/8Y+x2O8OGDeN73/se//Ef/8Hw4cNZt25d+vzxeJzvfve7TJkyhQcffJDe3l7uvvtuZs6cyW9/+9v0fgsXLuS+++5j5MiR/Nu//Rs/+tGPOP300xk2bNjRfstkkCWTyfSY3Wg0mh7Pm0gkSCQS6fu7Ppd6vOtrexsfvDujsb/7sMFgGLDt/nyKwWAYUO6u4433Vqfdxx+nbqPRKIFAYJ9jkVPjkH0+H319fenxx8Fg8KDeQ5fZRb4jjzz7Lpstjxx7Drm2HFwW1yEFvd+sfZLVHe8f9P6fJNFElDdb3yKeTHDDid/Z535WozX9ntnNdk7J/wyn5H8GgK5wFxu6NrC+cwObujexI9BCc3Mzzc3NvPrqq+ky7HY7xcXFFBUVkZeXR25uLtnZ2Xg8HtxuN6NHj8br9Q7uBYuIiIh8TAF7ELS2thKJRCgtLaWsrIyysjLmz59PPB5Pd+P2eDx4PB66urr43ve+x3XXXZf+onnDDTewZMkStm7dmg7YXq+X73znn19UGxoaAMjNzcXj8Qw4f2o24MLCQsrKyqioqOAXv/gFHR0dA/a75ZZb+PznPw/AD3/4Q1544QXWrl2rgP0p8F//9V/MnTt3qKvxqeKP+fH3+dnW1zDUVcmICy+8kMmTJ7N48WJWrFhxUD+eHKq3297m7ba39/n6KO8o7jp9xl5/mMix5XBO8TmcU3wOAL6Ij829W9jSu4UGXyNNvibagm2EQiG2bt3K1q1b93qO/Px8nnvuufQPPCIiIiKDSQF7EIwbN46LL76YG2+8kYKCAmpra5k4cSIXXHDBHvtWVlZy2WWX8cwzz7Bp0yYaGhrYsGED0N8SnXIooTcVxu+77z7mzp3L2WefzXnnnceFF144YL/hw4cPOAYgHA4f0rXKsam9vX2oqyDHuMmTJ1NRUcHkyZNZvnz5UFfngFwWFyWuEsLxENFElEQyTjwZZ2dw536PC4VCR6mGIiIiIgrYg2bOnDnccsstvPbaa7zxxhvU1dVRU1PDwoULB+z30UcfceWVV3LiiScyYcIE/vVf/5WcnBy+/vWvD9jPbrcf0vnvuOMOrrzySlauXMnf//537rvvPp588kmWLFmS3mdvLTqD0YolR9+3vvUt/uVf/gW/3w/0/3Cybds2hg0bhs2255jYVDft1G08Ht+ja/j+lpFKlQH77iKeen33x7va/TypmbX31j08kUjs0UU8GAwSjUaJRqPpmbrD4TDBYBC/35/uIu7z+QgEAgf9fuZYs8lz9HcJz0t1E7flkufII8eWg9VkPeiyUn6z9sn9tu4OtsWLF6dbsHfvpp8ppxeeftBdxHeXSCZo6GtgQ9dGNnZv4qOej+iN9O51X4vFQkFBwV67iH/mM59R67WIiIgcNQrYg2D16tW88sorzJw5k+rqaqZOncrSpUupq6vbo5v2v//7v5OXl8fTTz+dfi41vvBwv/Bu3ryZhQsXMnPmTK644gquuOIKVq1axZVXXsmGDRu0lNdxIDUDc0ogEMBoNDJu3DicTucQ1uzYEYvF6OnpoaurK73EVkdHR3pm8NQkZ+FwmK5IN12Rbj6ifq9leSxucmz9y1hl27LxWD1kWbJwW9y4rW5cZicOsxO7yYbdZMdisvCdE67FZDDyzs53iSaiR/nqYcWKFSxfvnxQwvXBTHK2N62BNtZ2rmVtx1rWd23AH/MPeN1sNjN8+HBGjhxJVVUVw4YNo7y8nPz8fIVoEREROSYoYA8Ct9vNokWLsFgsTJkyhXA4zLJly6iqqiInJwen00l9fT1dXV0UFxfT0tLCypUrGTlyJGvXruX+++8H+mc3Phw5OTm88sorhEIhbrjhBoxGIy+99BJer5fq6uohX1JI5FhgNpvJy8sjLy9vn/skk0m6u7tpbW2lpaVlwFJdqQAeCoXoi/roi/po8DUeUh1MBhNGjNiMNoxGI0YMwD9b+kk/SjGAAYwYMGLEaDBhMpowG0yYjGbMBjMWoxmLyYLVaMVqsmEz2bAZrdjMduwmG06zA4fZSTwRIxQPU+YqpcBZeGhv3gHsvkzXvvRGetnQtZF1nev4oHPtHt29nU4n48ePTy/TNWrUKKzWQ+8tICIiInK0KGAPghEjRjBv3jwef/xxFi1ahNFo5Oyzz2bBggUYjUauvfZannzySerr65k7dy6bN29m2rRpRCIRqqqquP3225k7dy5r1qzhs5/97CGfPycnhwULFjBnzhymTJlCPB7nlFNO4emnn8btditgixwkg8FATk4OOTk5jB07do/Xk8kkfX19dHR0sHPnznRLeE9PD93d3fT29tLX14ff78fv9xMMBgf8cBZPxokThySQOIoXthur0YrX5iXLmkW21Uu2LZscWw45tmxy7Lnk2nLIseVgNx/aUJVdReIRmv3NbOtroL6nno966tnu3z5gH5PJxLhx46ipqeG0005j9OjRmEymI708ERERkaPGkNSgW8mQNWvWADB+/PghronsLhAIsH79enURPwbE43HC4TCRSIRoNJoeR77r0mh7s+v4992XKkuNO08tUZZammz3JcpSQb+vry+9VFksdvBrcDtMDrJtXrxWLx5rfxd4p8WBzWjDYrJgwEAimSASjxCKh+iJ9NAd7mZncCcdoU6S7HltlZWVlJeX87nPfY4zzjhDn085JuhvphyL9LmUY9Hx8rk8lJyjFmwRkaPIZDLhdDqPif8JJZNJgsEg3d3ddHV17TEevb29nZ07d9LR0UEgECAYDxIMBNkRaDms86WGqYwePZpx48Zx4oknYrFYjov/MYuIiMjxQQFbROQ4ZTAY0mG/tLR0v/v6/f50+O7q6qK7uzs9I3soFCIa/edEbXa7HYfDgdfrJTc3l5KSEkpLS8nOzt5j1vBDmc1dRERE5FingC0iIgfkcrlwuVxUVFQMdVVEREREjlla10REREREREQkAxSwRURERERERDJAAVtEREREREQkAxSwRURERERERDJAAVtEREREREQkAxSwRURERERERDJAAVtEREREREQkAxSwRURERERERDJAAVtEREREREQkAxSwRURERERERDJAAVtEREREREQkA8xDXQERkaEUiUTYsWMHbW1tdHR00Nvbi9/vJxKJkEgkALBardhsNtxuN16vl+zsbPLy8sjPz8fpdA7xFYiIiIjIsUIBW0SOG52dnWzcuJEPP/yQ+vp6tm7dSktLC8lk8rDLdLlcFBYWUlhYSHFxMYWFhRQVFVFQUEB+fj65ubmYTKYMXoWIiIiIHKsUsEXkUykej7NlyxbWrl3LunXrWLduHa2trXvd126yU+DIJ8fmxWP14DDbsZmsGDGSIEksESMUDxOIBvBF/fREeukOdxOIBfH7/WzZsoUtW7bstWyj0Uh2dja5ubnk5OSkt+zs7AGPc3Nz8Xg8GAyGwXxbRERERGQQHVcBe9WqVSSTSU4//fShroqIZJjf72f9+vWsX7+etWvXsmHDBgKBwIB9DBgoc5cwPGsYwzyVVLjLKHOX4LEcXrANxUJ0hDppD3XSEezovw110h7qoDPURXe4m3giQWdnJ52dnQcsz2KxkJ+fT35+PkVFRRQWFlJSUkJJSQmlpaXk5eUpgIuIiIgcw46rgH3llVfywAMPKGCLfMIFAgE2b97MRx99xKZNm9i0aRMNDQ177Gc32RmZXc3o7JGM8lZT7R2Ow2zfY79IPEpPpOew6mI1WSl1FVPqKt7jtUQyiS/qozfSR2+4j76oj75oH76Ij76on76ID1+0j76on0AsQDQaZceOHezYsYM1a9bsUZ7NZqOsrIzy8vL0VlFRQXl5OS6X67DqLyIiIiKZc1wFbBH5ZPH7/TQ1NdHY2EhjYyNbt25l69at7NixY6/7FzjyGemtZlR2NaOyR1LhLsNo2PdiCeF4hCfXLuSdnauJJqKDdRkHZDFaOKPwNC4bcQm+aICOVEt4sIOdoXbaAm20hzoJh8Ns3ryZzZs371GG1+ulrKyMsrIySkpKKC4uTreC5+XlYTbrz72IiIjIYPvUfeNauXIljz32GPX19TidTs477zxmzJjBmWeeCcCMGTN46623mDVrFq2trcyaNYu//vWvmEwmTj31VKZPn05VVVW6vN/+9rc888wztLe3U1NTQ01NDb///e959dVXAdixYwdz5szh73//O36/n5qaGurq6hg7diwAHR0d3Hvvvbz55psEg0FOOOEEbr/99nR9tm/fzuzZs/m///s/ent7ycvL45JLLuH//b//h9Fo5Pe//z0zZsxg48aN6Trt/tznP/95vvCFL7By5Uo6OjqYN28e8+bNo6ysjFmzZqWPu+aaawY899RTT/HCCy/Q0tJCYWEhX/va17j55pvVBVWOing8Tnd3Nx0dHezYsYP29nba29tpa2ujtbWVlpYWent793l8ttVLhaecYZ4KqjyVDPcOI8vqGbDPgULzbz74Lf9oeycj13Mkoolouh43nDSVqqyKPfaJJeJ0BDtoCbTRGmyj1d9Gy8e3PdFeenp66OnpYd26dXs9h9frJScnh6ysLLxeL263G5fLhd1uT29msxmz2YzJZMJgMGA0Gvf698BgMKRft9vtWCwWTCYTFosFm82W3hwOBzabTX9TRERE5LjxqQrYnZ2d3HrrrUyfPp2JEyfS0tLCtGnTeOihh3j99dc599xzmTlzJpdddhmBQIBrrrmGE088keeeew6j0cjTTz/NlClT+MMf/kBRURHPP/88jz76KD/+8Y+pqalhxYoVzJ07l5KSEgB8Ph9XXHEFFRUV/PrXv8ZqtTJv3jyuvvpqXn75ZcrKyrjnnnuIRCI899xzWK1W5s+fz80338xrr72G0+nkpptuoqCggKeffhqXy8Wf//xnHnjgAU499VTOP//8g7725557jieeeAKPx8OYMWMOuP+rr77KE088waOPPsrw4cN57733mDZtGuXl5Vx66aWH/W8gn07RaJTGxsZ0UEokEsTjcWKxGLFYjEgkQjQaJRqNEgqFCIfDBINBgsEggUAAv99PX18ffX199Pb2h8He3t4jmr27O9JDd0cPazrWZuoyD9qFF17I5MmTWbx4MStWrDii69jVP9re4R+vDk7gTwXwo81oNOJ0OnE4HDidTlwu14Bbi8WCz+djw4YNeDwe7HY7NpsNq9WK1WrF8v/Zu+/4qutD/+Ovs/fIXgRCAmi0uFAraiugXvcs1jqvcjvctfrDbVtvby+opa3Fqm21w2u9rXKtG9qqdVdEUUtFViAEQhKyzt7j90fMKZGwE4Lwfj4e356c7/l+P9/P93Aa8z6fZbEMCP52u52amprdfh8iIiIi22OvCtgdHR2kUimqq6sLXSUfeughstksZWVlAHg8HjweD08++SShUIh777230HXyhz/8IQsXLuSJJ57g2muv5ZFHHuHSSy9l+vTpAFx55ZWFGYkBnn32WXp7e3nqqacoLi4GYM6cOZxwwgn8/ve/56abbqKlpYUJEyZQW1uL3W7n9ttv54wzzsBkMpFIJDjrrLM45ZRTCqH9sssu41e/+hXLly/foYB93HHHcfTRR2/38S0tLVitVmpqaqiurqa6upry8nKqq6u3uwzZN+Tzea6++mqam5uHpXyTwUQ2nx2WsofL9OnTqa2tZfr06cyfP3+kqzOirEYrJfZisvkM6VyGRDZBPJMovJ7L5YhEIkQikSG75owZM/ja1742ZOWJiIiIDJW9KmA3NjZy+umnc8UVV1BWVsYxxxzDlClTOPHEEzc7dunSpQSDQY444ogB+5PJJE1NTfT29tLa2sohhxwy4PXDDz+8ELBXrFhBXV1dIVwD2O12DjroIFasWAHANddcw8yZM/nzn//MpEmTOPbYYzn99NOx2WwAXHzxxSxYsIB//OMfrF27luXLl9PV1UUul9uhex8zZswOHX/mmWfyf//3f5x00kmMGzeOo48+mpNOOkkBWwbl9XqHrexcPoff6qPI7qfI5qfEXkKpo5gyeynljlJKHCWYjcOzjvTOdhGfN29eoQXbYDAMWQv2EeWH8c0vXDYkZUHflyPRTIzeRIBAMkgoHSacChNJR4mlY8SycZKZFMlsknQuTTqXIZPPkM/lyZHb7L7y5AuP+Xzfls3nCKZCZPNZ0rk0ufyO/e7aGW63e9ivISIiIrIz9qqADX0tyFdffTWvv/46b7/9NjNnzmTSpEn87ne/G3BcLpdj7NixPPjgg5uV4XQ6C63aW/vDeUuv5XK5wvknnngib7zxBm+88QZvv/02v/nNb7j//vt54oknqKmp4eKLLyaRSHDyySdzzjnncNBBB3HRRRdt9R6z2c1b++z2zWdG/qxMJlP4ubi4mGeeeYYPPviAt956izfffJNHH32Ua6+9lmuuuWabZcm+w2AwcO+99xKPx8nlcgO6h2ezWdLpdKGbeCqVIplMkkgkSCQSxGKxQhfx/lbM/q7Kvb29BINB8vl8X3fvVJA1rN3s+iaDkTJHGdWuSmrc1dS4qhntqaHSWbnLwfubX7gc48fGHZ7kbMGCBcyfP3/IwrXFaOGwsoP5+oH/js1k3aFzM7ksXfEuOmKfjsmObaQz3kVnvJuueDepXGqX67cz+sdn93cN79827SLucDiwWCwEAgHq6urw+XyF8duf7SLeP87barVqxnQRERHZY+1VAfujjz7ihRde4LbbbqO+vp7LLruMZ599lpkzZ9Ld3T3g2AkTJvDMM8/g8XgKLdDpdJobb7yRk08+mVNPPZWamho+/PDDAV21P/zww8LP++23H08//TTd3d2UlJQAfS3g//znPzn77LNJpVLMmTOHs846i1NPPZVTTz2VRCLBMcccw6uvvsqYMWP4+OOPeeuttygtLQUoTPrU/0e7xWIB+sZ797fabE9X3f5xjf1yuRzr1q0rtHQ/++yzhMNhLrroIiZNmsR1113HHXfcwYsvvqiALZsxGAw4nc4hL3fTic42btxIZ2cn7e3ttLe3F5arSiaTtMc6aI91sLjzo8K5FqOZUe4a6jxjGOsdQ4NvLDXuqq3OGv5ZNpOVqw/6xg4v0xVIBumKd1PqKMFv8+3QPQ/GZ/VhNVm2+Ho+nyeYCvWF6FgHbdEO2mIdtEfb2RjvJLuNVmOfz0dJSQlFRUX4/X68Xi8ejweXy4XL5SqEWovFUgiym05wtukkZZvuMxqNGI3Gwhhpi8WC1WotBOTtmdwsFovxySef0NjYOCyfMREREZHdaa8K2G63m8cffxyLxcJXv/pVkskkL774InV1dRQVFeF0Ogvdv88880x++ctfct111zFz5kzcbjcPPPAAr7/+Ot/+9rcB+MY3vsHdd99NfX09kyZN4qWXXuLPf/5zYbz0GWecwS9+8Quuv/56Zs6cidVq5ec//zmxWIzzzz8fq9XKkiVLeO+997jzzjspLS3l9ddfJxaLceihh2K19rVUPfvss5x00km0tbXx4x//mHQ6TSrV1+p0yCGHYDAYmDt3LpdccglLlizhT3/60zbfi0MOOYTf/OY3vP7664wZM4bf/va3A2ZkTiaT3H333bhcLg4//HDa29tZtGiR1giX3cpkMlFSUkJJSQkTJkzY7PVcLkd3dzfr1q2jpaWFtWvX0tzczJo1a4jFYqwJrWVNaC1/a+073m6yUe+rY5yvgQn+cYzz1eO0OLZZD6vJQpmjdLvrXeYoZby/YbuP35Z0Lk1XvJveZIDeZICeRC9dib4W6M54NxvjnSSzyS2e378+dv98Cv3LdFVWVlJWVlb4XSMiIiIiw2uvCtgNDQ3MnTuX+++/n8cffxyj0chRRx3Fr371K4xGIzNmzODhhx+mqamJhx56iMcee4x77rmH//iP/yCbzXLggQfy61//moaGvj+cL7jgAoLBID/96U/p7e3lyCOP5JxzzuH9998H+iZMe+yxx5g9ezaXXXYZAJMmTeJ///d/qa3tW2bnJz/5CbNmzeLKK68kHA5TX1/Pj370o0KQvfXWW/ntb3/LT3/6UyoqKjj11FOpqqpiyZIlANTW1nLXXXfxi1/8gscff5xJkyZx0003cfPNN2/1vZgxYwYtLS18+9vfxmq1Mn36dE477bRCy/h5551HIBDggQceoK2tDZ/Px0knncT/+3//b8j/XUR2ltFopKysjLKyMg477LDC/lwuR3t7O6tWrWLFihUsX76cFStWEI/HWdqznKU9fUvYGTAwyl3DeH8D4/31jPM1UO4o3S3LRuXzecLpCL3JAIFEgEAqSDAZIpjq28KpMMFUmGAySDQT22Z5RqOR8vJyRo0atdlWWlqK0bj9LfciIiIiMjwM+aGanWcv9PrrrzNu3LgBE3/deeedtLS0bDamWyh8KTBx4sQRrol81r7QDTebzdLS0lKY6f/jjz+mra1ts+M8FjdjvWMY46ml1jOKalcVFc7yHR77nMqm6U320p3ooSveTVeih+5EN13xHroTPfQme0nnMtsu6FNms7nQml9WVkZ5eTkVFRVUVlYWWqT7h4zsTfaFz6Z8/uhzKXsifS5lT7SvfC53JOfsVS3YQ+2ZZ56hqamJ73//+5SVlbFo0SKeffZZvve974101UTkM0wmE2PHjmXs2LGcfvrpAHR3dxfC9ieffMKqVasIpyP8o/tj/vGZ9bM9Fg9Fdj8eixun2YHVZP10PHeedC5DMpMklokRTkcJpkJE09Htqpff76ekpITi4mKKi4sL46D7H/v3eTye3dKyLiIiIiLDRwF7K+68805mz57N1VdfTSgUYsyYMdx2222ce+65I101EdkOJSUlfOlLX+JLX/oSAKlUitWrV7Nq1SpWrlzJ2rVrWbduHeFwmHC6b9sRNpuNsrIyKioqCi3O5eXlha2kpGSvbHUWERERkcEpYG+F3+9n9uzZI10NERkiVquV/fffn/3333/A/lAoRGdnJ93d3YRCIaLRKMlkklwuh8FgKMyM7XK58Pl8hVZpt9utVmcRERERKVDAFpF9ntfrxev1FiY4FBERERHZGZp2VkRERERERGQIKGCLiIiIiIiIDAEFbBEREREREZEhoIAtIiIiIiIiMgQUsEVERERERESGgAK2iIiIiIiIyBBQwBYREREREREZAgrYIiIiIiIiIkNAAVtERERERERkCChgi4iIiIiIiAwBBWwRERERERGRIWAe6QqIiMjeKZvNks1myeVyGI1GzGYzRqO+1xUREZG9lwK2iIhst0QiwcaNGwtbV1cXXV1d9Pb2EggECIfDRCIR4vE46XR6s/NtNhsOhwOfz4ff78fn82EwGGhpaaGuro7Ro0dTXFyMwWAYgbsTERER2TUK2Dvh/fffJ5/Pc/jhh490VQqmTZvGOeecw7XXXjvSVRGRz7F4PM7GjRvp6OgoPLa3txceA4HALpWfTCZJJpMEAgHWrl1b2P/aa68Vfna73dTV1VFfX09DQwPjxo2jrq4Oi8WyS9cWERERGW4K2DvhwgsvZNasWXtUwJ43bx42m22kqyGy18lms6TTaTKZTKHLczabJZ/Pk8/nBxxrMBgwGo2FR5PJRCaTIRQKYTKZMJlMGAyG3dI6m8/nSaVSJJNJEokEiUSCWCxGNBottDKHw2GCwSCBQIBgMEhPTw/xeHybZdtMVoptRfjtXnxWLz6bF4/Fjcfqxmlx4DQ7sJmsWI0WjIa+e87nc2TzOWxmK5lshkg6SjAVpjcRoCvRQ2esm/bYRjbGuohEIvzzn//kn//8Z+GaFouFsWPHMn78eCZMmMD48eMZM2aMQreIiIjsURSw9xLFxcUjXQWRPUo+nycWixEKhQiFQoTD4QFbNBolEokQi8UGbP1htD+cZrPZkb6VPU4ym6It1kFbrGOHz7UYLRxWPpGvf+FibCbrZq+nc2naIh2si2ygJdzK2tB6mkMtxNJxVqxYwYoVK3jhhRcAMJvN1NXV0dDQQH19PWPHjmXMmDH4/X51MRcREZERoYC9Ba+99hr33XcfTU1NOJ1OjjvuOG699VaOPPJIAG699VbeffddZs+eTVtbG3PmzOHvf/870WiUSZMmMXPmTPbff38AbrnlFlKpFH6/n6effhqbzcZZZ53FDTfcgNW6+R+Yg+nu7uauu+5i4cKFxONxDjjgAG644YZCfT7bRfy5557jgQceYP369ey///6cccYZ/PCHP2T58uUA7Lfffvzwhz/k+eefZ/HixXi9Xr72ta9xzTXXDPVbKbLd8vk8iURiwL7+ltf+1tf+YNy/9bfI9rfKbhqmc7ncsNTTiBEDfS3R/TEu/+n/5vI5cuS3fPI+Lp1Ls7B9Mblcjm9OvAQAq8laCMQWo4XR3lGM9o7imE/PyefzdMa7aQ61sCbYwprQur7QnYmzatUqVq1aNeAaHo+H2tpaqqurqaqqorKykoqKCkpKSigpKcFut+/OWxYREZF9iAL2IHp6erjmmmu45ZZbmDJlCu3t7dx0003cc889vPnmmxx77LHcdtttnHvuuUQiES644AJqa2t58MEHsVqtzJ07l4svvphnnnmGmpoaAP7yl78wZcoU/vCHP7Bu3Tpuv/124vE4d91113bV6fvf/z6pVIrHHnsMq9XKQw89xFVXXcXrr7+O0+kccOzf/vY3br75Zm688UamTZvGO++8w6xZszYr8+677+aOO+7gBz/4AS+88AI/+clP+OIXv8gRRxyx62+ifC6FQiFeffXVIWu17e9O3d/Fuv8xlUqRTqdJJpMDujGvXr16s4C9J8rxaXDfi3P0KaecwvTp05k3bx4LFizYrDv8rlq08UMWvfwhAOP99dxx5He22OpsMBgod5ZS7izlyMrDgL7Q3RXvpjm0jpZwKy3hVlojbXTGuwmHwyxdupSlS5cOWp7D4cDv9+P1evF4PBQVFfG1r32N2traIb1HERER2fcoYA+io6ODVCpFdXU1NTU11NTU8NBDD5HNZikrKwP6Wkg8Hg+PP/44vb29PPXUU4Vu2nPmzOGEE07g97//PTfddBMAXq+Xe++9F4fDwYQJE9i4cSM//OEPmTlzJm63e5t1amlpYcKECdTW1mK327n99ts544wzMJlMmx37yCOPcPLJJ/Mf//EfAIwdO5bm5mZ++9vfDjju7LPP5qyzzgLgiiuu4JFHHmHx4sUK2PuoXC7HN7/5TXp6eka6KrIHmD59OrW1tUyfPp358+ePdHU2YzAYKHOWUuYs5YjKQwv7U9kUbdGNdMQ20h7rpDPWxZpQCy3h1sIx8XiceDxOW1tbYZ/dbtckkSIiIrLLFLAH0djYyOmnn84VV1xBWVkZxxxzDFOmTOHEE0/c7NgVK1ZQV1c3YAy03W7noIMOYsWKFYV9Bx10EA6Ho/D80EMPJZ1Os2bNGiZOnLjNOl1zzTXMnDmTP//5z0yaNIljjz2W008/fdCJzT7++GP+7d/+bcC+I444YrOA3dDQMOC5x+MZdFkd2TcYjUYmTZrEX//615GuynazGMy4LC5cFgcuixOXxYnb4sJpceG2OHFbXbjNzk+fO3BaXLgsdiyG4Z8Y65dL/odFGz8c9usMl3nz5hVasPsmKRvaFuwjyg8ZtIv4zkpmkrRG22mNtLEh2kH7pyG7M95NMpva5vler3eXri8iIiICCthbNGfOHK6++mpef/113n77bWbOnMmkSZP43e9+N+C4Lf3RmcvlMJv/9fZ+dqbb/rGhg7VAD+bEE0/kjTfe4I033uDtt9/mN7/5Dffffz9PPPEE48ePH3Cs2WzerrGng43/Huo/ouXzZebMmcycOXOHz8vn8+RyuQGzbGez2cLM2+l0ekA38XQ6TSqVKnQPT6VSJBKJATNex+PxAZOP9Y+/7t/y+TzpfIZAKkggFdyh+lpNVlzmvtmuHZ/Oem032bCb7dhNNmwmKxaTBavRgsVowWw0YzaaMBlMmIymvhHYBmPf+Ov+YJjPkwfyn47BPrj8C/QkAzSH1pHNf/4mSluwYAHz588f8nC9rUnOtkcoFaY5uI7m8DrWhtbTEl7PxlgX+a302S8uLqa0tJSSkhL8fv9mXcQPPfTQLZ4rIiIisr0UsAfx0Ucf8cILL3DbbbdRX1/PZZddxrPPPsvMmTPp7u4ecOx+++3H008/TXd3NyUlJUDfOq///Oc/OfvsswvHffzxx2Sz2UKg/uCDD3A4HIwdO3ab9UmlUsyZM4ezzjqLU089lVNPPZVEIsExxxzDq6++ulnA3n///fnoo48G7Pvggw925q0Q2S4Gg6GwDNXukMvlCpOdhcPhAROb9f8cCoUIBoMDZg6PRCJ9y1dlU6SyKXqTOxbM9yZGjH0t/BYXXqsbr9WDz+rBZ/NSZPNjNppI57JUucvx23xDdl2f1YvVtP09CAphOvSvyc26E72DHltUVMTo0aMZPXo0tbW11NTUUFVVRXl5+XZPKCkiIiKyKxSwB+F2u3n88cexWCx89atfJZlM8uKLL1JXV0dRURFOp5OmpiZ6e3s544wz+MUvfsH111/PzJkzsVqt/PznPycWi3H++ecXymxtbeWuu+7i3//932lqauJnP/sZF1988YBu41titVpZsmQJ7733HnfeeSelpaW8/vrrxGKxQVtdvvGNb/Ctb32Lgw46iKlTp/L+++/z2GOPDel7JDKSjEZjYR6Eqqqq7T7vs8G8vzW8v5U8Ho8XWtATiUShpb2/1b2/ZT6XyxV6ieTz+UL35v41rvvXwjaZTBiNRsxm82aPW3qtf+tfM7v/+ab61+D+bM+B/nr2TyDX3yNg014A4XCYdDpNjhyhVJhQKsyG6JbfM7fFRZmjhFJHyaePxZQ5SihxFFNiL8JhHpoZueOZOG3RjbRFO1gfaWN9uG+Zrt5kYNDjR40axfjx42loaGDcuHGMHTuWoqKiIamLiIiIyM5SwB5EQ0MDc+fO5f777+fxxx/HaDRy1FFH8atf/Qqj0ciMGTN4+OGHaWpq4qGHHuKxxx5j9uzZXHbZZQBMmjSJ//3f/x0wI+0hhxyC0Whk+vTpeDweLr30Uq688srtrtNPfvITZs2axZVXXkk4HKa+vp4f/ehHHH744Zsd++Uvf5n//M//5Be/+AVz5szhC1/4AhdccIFCtuzzdjaY720SiQShUIhAIEBvby89PT309PTQ3d1NZ2cnnZ2dbNy4sW8ptHSUSDrKmlDLoGU5zHaKbH58Ni8+q6cwFt5usmM1WTAbTRgwkMvnyeazJLNJYpkEkVSUUCpEbzJIV7yHSHrLKb8/TI8fP54JEybQ0NCAy+UarrdHREREZKcZ8hp0O+xuueUWWltb+Z//+Z/dcr13332X0tJS6uvrC/seeugh5s2bx0svvTRs112yZAnAdk3aJrtXLBbjk08+obGxcbNl3US2JBqN0tHRQXt7e+Gx/+fOzk7C4fCQXs/v9xe6eNfV1dHQ0MDYsWP1mZXdTr8zZU+kz6XsifaVz+WO5By1YO+F3nzzTZ577jlmzZrF6NGj+eSTT/jd737HhRdeONJVE5HPEZfLRX19/YAv6zYVi8Xo6uqiu7ub3t5eent7C2Pd4/E4yWSy0KW+vxu83W7H6XTi9Xrx+Xx4PB7C4TCTJ08uzGMhIiIi8nmlgD3CXnzxRW6//fatHnP55Zdz3XXXbXeZ11xzDbFYjJtuuomenh6qqqq47LLL+PrXv76r1RURKXA6nYUW553V/8339sxHISIiIrKnU8DeDWbPnr3F14477jiefvrprZ6/o+uzWq1W7rjjDu64444dOk9ERERERER2ngL2CHO5XJqsR0REREREZC9g3PYhIiIiIiIiIrItCtgiIiIiIiIiQ0ABW0RERERERGQIKGCLiIiIiIiIDAEFbBEREREREZEhoIAtIiIiIiIiMgQUsEVERERERESGgAK2iIiIiIiIyBBQwBYREREREREZAgrYIiIiIiIiIkNAAVtERERERERkCJhHugIiIvuKWCxGW1sbHR0ddHZ20t3dTTAYJBQKEY1GicfjpNNpstksuVwOo9GIyWTCYrFgs9mw2Ww4nc7C5nK5cLlcuN1u3G534Xn/5nQ6MZlMI33bIiIiIvsMBWwRkSHW29tLc3Mzzc3NtLS0sHbtWlpbW+nt7d3tdXE4HANCd38Q93q9eDwePB4PPp8Pn8+H3++nqKgIn8+nYC4iIiKyExSwt+L9998nn89z+OGH75brzZ07lz/96U+88soru+V6IrJrkskka9eupbm5mdWrV7NmzRrWrFlDIBDY4jkei4tSRzEljiL8Nh9eqxuP1YXT7MBmtmExmjEZTBgNBnL5PLl8jnQuTTqXIZFJksgmSWQSxDIJYuk4sUycWDpOPJMgmo4R//S1dC4NQDweJx6P09XVtd33ZTQa8fv9FBcXU1JSQmlpaeFx05/dbjcGg2FX30YRERGRvYYC9lZceOGFzJo1a7cFbBHZM8XjcdavX09LS0uhRXrt2rW0tbWRy+U2O96AgXJnCaPcVVS7K6lxV1DpKqfSWYbT4hhwbCqbJpgMDXmds/ks8UxfGI9nkiSyCeLpBPFs3/N4Ok40EyeWjpHMpoikY4RSYcKpKLlcjp6eHnp6eli1atUWr2G1WikuLi5sRUVFA1rBN908Ho9axUVERGSvp4AtIvu8bDZLd3c3nZ2ddHR00N7eTltbG21tbbS2ttLd3b3Fcz0WF6M81dR6qqj1VDPKXcUodyU2s22r10xmUzy85H9ZvPGfhdbmkWIxWjis/At8b+J3MBtMhNNRAokgvckQgWSQ3kSQ3mSQ3kSAnk9/jqZjpFIp2tvbaW9v3+Y1DAYDXq8Xr9db6I7u9/txuVzE43ECgQCVlZWFsG6zbf39ExEREdkT7fMB+7XXXuO+++6jqakJp9PJcccdx6233sqRRx4JwK233sq7777LNddcw/HHH88NN9zAo48+it1u55lnnmHDhg3MmTOHxYsXE4/Hqaio4KKLLmLGjBm88sorXHXVVbz99tsUFxcDcPbZZ5PJZHj++ecBCAaDTJ48mUcffbRQp5///Oc8+uijpNNppk2bxh133IHf7wcgHA5zzz338Ne//pV0Os2BBx7IzJkzmThxItDXzXzhwoWUlZXx2muvcc4553DggQfy4IMPctxxx/GnP/2JL37xi2zYsIHGxkZmzZpVuO4bb7zBVVddxRtvvFG4nsjnST6fJ51OE41GCQQCxGIxYrEY4XCYaDRKKBQiHA4TDAYJBAIEAgF6enoIBALk8/mtlu22uKh0lVHtLKfKXUGVq4JRniq8Fteg3aSTmeRWy/vlkt+zqOMfu3S/QyWdS7Ow/QNy+SzfnHgRDpMNh6ucKlf5Fs9J5TIEkkGCyTDBZIhgKtLXAp6MEE5HCacihFN9j/Fsgnw+TzAYJBgMsm7dus3Ke/bZZwc8dzqdhS7q/a3jm7aS+/3+Quu4wriIiIjsKfbpgN3T08M111zDLbfcwpQpU2hvb+emm27innvu4c033+TYY4/ltttu49xzzyUYDALwpz/9id/97nfE43FMJhMzZszgmGOO4Q9/+AMmk4knn3ySu+++m8mTJ3P00Udjs9l45513OPXUU+np6WH58uXkcjm6u7spKSnhzTffxOfzcdhhh/H3v/+d1tZW3nnnHX7zm98QiUS48847ufXWW3nwwQfJ5/N84xvfwG6384tf/AK3280zzzzDBRdcwBNPPMEBBxwAwKJFi7j00kt55plnyGazLF68mJaWFjZu3MjTTz9NIpHg73//Oz/96U/53ve+h91uB+Dpp59m2rRpCtcyrFatWsWTTz5JMjkwgObz+QFB1WAwkM/nNwu+6XSaVCpFMpksPCYSicI2WJftoRBJR1kViLIq0Dws5e+oU045henTpzNv3jwWLFiwzS8Itseijn+MSOh3WZxUOssIpyIEkiFSuXThy5H169dv83yr1brZTOoWi2XA58nhcHD22Wez3377DeetiIiIyD5unw7YHR0dpFIpqqurqampoaamhoceeohsNktZWRlAYZbd/oB94YUXMm7cOKAvoF966aVcdNFFuFwuAK677joefvhhli9fTmNjI5MnT+bNN9/k1FNP5e233+aAAw6gs7OThQsXcuqpp/Lqq68yZcoUjMa+JcltNhs/+clPKC0tBeC73/0uM2bMYO3atWzYsIEPP/yQd955pxCCb7jhBhYvXsyjjz7K7NmzC/d23XXX4fF4AFi8eDEAV111FbW1tQCUlpZyzz338NJLL3H66acTiUR46aWX+NnPfjacb7ns47LZLDfeeCPxeHykq/K5N336dGpra5k+fTrz588f6erskmpXBXd88brClyrxTIJAMkQgGSKYDNER62RtqJWW8AY645t310+lUoUx41uzcuVKHn744eG6DREREZF9O2A3NjZy+umnc8UVV1BWVsYxxxzDlClTOPHEE7d4zpgxYwo/FxcXc+GFF/L888+zdOlSWlpaWLZsGUChFW3atGk88MADALz11ltMnjy50Ep98skn88Ybb/Bf//VfA8rvD9cABx98MND3h2FzczP5fJ6pU6cOqFN/K16/kpKSQrjeVF1dXeHnoqIijj/+eJ5++mlOP/105s+fj8fj4dhjj93m+yays0wmE6eddhrz5s0b6apgwIDP6sFrc+O3+Siy+Si2+yh2FFFqL6bMWbLF7t9DYVe7iM+bN6/Qgt0fTHfVERUH8c2JF+1yOdsjk8sQ/nRitXg6wZut7xJMhTcJ1uFCwE5kt97dfnt96UtfGpJyRERERLZknw7YAHPmzOHqq6/m9ddf5+2332bmzJlMmjSJ3/3ud4Me39+dGqCzs5Pzzz+f4uJipk2bxrHHHsvEiRM57rjjCsdMmTKF7373uzQ1NfH3v/+dH/7wh7S2tvLII4/w0UcfEY/HOeaYYwrHf3aW3Ww2C4DFYiGXy+F2u3nqqac2q5fVah20jluqO8BXvvIVrrjiCrq7u3n22Wc566yzNMuvDLtvfvObfPOb39zu4/vHVfd3Df9sF/H+ruHJZJJ4PE4ikSAejxe6GEcikcIWCoUIBoNEo1Hy5AmkQgRSIVrCGwa9ts1kpcJZ2jcDuKucalc51a4KqtwV2EzWQc/Z7vfhoIsx7sIkZwsWLGD+/PlDEq77Jzn7+sQLdvq+MrkMoVSEYDJMKBUmlIp8Og7707HYhXHZfVssk9ih8m02W2EM9mdnKfd6vQO6iDudThwOB3a7fbOu4iIiIiLDaZ8O2B999BEvvPACt912G/X19Vx22WU8++yzzJw5c6uzBvd7/vnnCQQC/PnPf8ZisQCwfPlygMIfvOXl5XzhC1/gf//3f+nu7mbSpEmMHj2aO++8kz/+8Y8cffTROBz/WranubmZSCSC2+0G+tbiNhgMjBs3jnw+TyQSIZ1OF7qpA9xxxx3sv//+XHzxxTt0/8ceeyxlZWU88cQTvPfee3z/+9/fofNFdgeDwYDVasVqtRaGYuyqdDpNMBgsdCvu6uqis7OTzs5ONm7cSHt7O11dXSSzKVrCGzYL4AYMlDqKGeWpYpS7qjCDeKWzDJNx+76kspmsXH3Iv+/0Ml2BZIiueA+ljmL8Nu8On78pn82L1WQZ9LVsLkswFd5kJvG+2cT7Zxjvb3GOpmM7fF2j0YjP58Nut1NZWVmY0GzTraSkhKKiIpxO5y7do4iIiMjusE8HbLfbzeOPP47FYuGrX/0qyWSSF198kbq6usIfdE1NTfT29g56fmVlJfF4nAULFjBp0iRWr15dmJU7lUoVjps2bRoPPvgghxxyCHa7ndraWkaNGsUzzzzDD37wgwFlJpNJrr/+em644QZ6e3v5wQ9+wNlnn01NTQ2VlZU0Njbyne98h9tvv52qqioef/xxnnrqKR555JEdvn+j0cjZZ5/NQw89xMSJE2loaNjhMkQ+jywWC6WlpQOGY3xWKpWio6OD1tZW1q9fz/r161m3bh0tLS0Eg0E64910xrv5YOM//1Wu0Uy1u7JvqS5P33JdNe4qSuz+LbaiWk0WypwlO3wPZc4SxheN3eHz8vk8yWyKaDpGNB0jko7SFFxLOBUlmAoT+nRW8MAmW57tayE3mUwD1sH2er0DZvv+7D6Px0MikeCTTz6hsbFRIVpEREQ+9/bpgN3Q0MDcuXO5//77efzxxzEajRx11FH86le/wmg0MmPGDB5++GGampq44447Njv/5JNP5uOPP2b27NlEIhFqamo477zzePnll1myZAkXXHAB0Bew77vvPo466qjCuUcffTTz5s3bbDz1F77wBRobG7n00ksxGAyceuqp3HLLLUDfH6+//vWvuffee7n++uuJx+M0NDRw//33M3ny5J16D84991weeughzj333J06X2RvZbVaqa2tLUwMuKlAIEBzc3NhW7NmDc3NzcTjcdaG1rM2NHDma5vJ2tfN3FlGubOUUkcxJXY/RXYfPqsHl8W53S3f6VyGeCZBPB0nlkkQz8SJpuPEMnFinz7GMwli6U8fM4lPH+OfnhMnm9+xmdaNRiPFxcWFLyVKSkoGbP2tzR6PR92xRUREZJ9myA/FzDjyubVw4UK+9a1v8cYbbww6MdqOWLJkCUBhTW7Zc8RiMbUSDrNcLkdHRwerV68uBO7m5mZaW1sLcylsjd1kw2a2YTGaMRmMGA1Gcvk8uXyOTC5DMpsimU2RzW+7rO1hMpnwer14vV48Hk+h1XnTNaf7A7Tf7x+2+Rn02ZQ9kT6XsifS51L2RPvK53JHcs4+3YK9L2tqamLFihU89NBDnHPOObscrkX2dUajkaqqKqqqqgZMXJjJZNiwYUOhq3lbWxsdHR10dnbS09NDKNQ3/jqRTe7QbNl2ux2Xy1WY2Mvj8eB0Ogfs63/ev6//ucfjwW63q7VZREREZIgpYO+j1q5dy6233srBBx/Md77znZGujshey2w2M3r0aEaPHj3o69lslnA4TCwWIx6Pk0qlyGaz5HI5jEYjJpMJi8WCzWbDZrPhcDhwOp2a8V9ERERkD6SAvY+aNm0aH3744UhXQ2Sf1z8xmN/vH+mqiIiIiMguMo50BURERERERET2BgrYIiIiIiIiIkNAAVtERERERERkCChgi4iIiIiIiAwBBWwRERERERGRIaCALSIiIiIiIjIEFLBFREREREREhoACtoiIiIiIiMgQUMAWERERERERGQIK2CIiIiIiIiJDQAFbREREREREZAgoYIuIiIiIiIgMAfNIV0BE5PMqmUyyYcMG2tvbaW9vp6uri56eHgKBAKFQiGg0SiKRIJVKkc1myeVymEwmrFYrNpsNt9uN1+vF7/dTUlJCeXk5VVVVVFdXU1VVhdmsX9EiIiIinyf6601EZBuy2SwtLS00NTWxZs0a1qxZQ0tLCxs3btyp8mKxGAAdHR1bPMZsNlNdXU1dXR11dXXU19dTX19PRUUFBoNhp64rIiIiIsNLAXuE/N///R8/+clPCIVCzJkzh2uuuYZZs2Zx7rnnjnTVRPZpuVyO9evXs2LFCpYvX86KFStYvXo1yWRy0OOdZgcVrhJK7UUUO/wU2bz4bG5cFidOswO72YrVaMFkNAEGcvks6VyWZCZJLJMgnIoSTIXpTQTpiveyMdZNe6yLVCZNS0sLLS0tvP766/+6ntNZCN1jxoxh9OjR1NbWUlpaitE4vKN+stks8XicWCxGLBYjHo+TTCZJpVJkMhmy2Sz5fB4Ao9GI1WrFarXidDpxuVx4PB48Ho++IBAREZG9lgL2CLn77rs5/vjjueaaayguLh7p6ojsk/L5PG1tbaxatYoVK1YUtv4W5k3ZTTZGe6sZ7ami1lNJjbuSanc5bouzEBhT2TTBZHir1zQZTJhMJuwmKz6bhypX2WbH5PI5gskwHbEuNkQ7aY92siHSQUe0m1gsxtKlS1m6dOmAc8xmMyUlJRQXF+P3+/F6vbjdbhwOB3a7HbPZPKDLeTabJZvNkk6nSaVSJBIJkslkIUBvGqQTiUTh511lNpspKiqirKyMsrIySktLyefzZLNZGhoaKC4uVgAXERGRzy0F7BESDAY5/PDDqampGemqiOz1crkc3d3drF+/nnXr1tHc3ExzczOrV68eNDRajRbqfDWM9dVS76tlrG8UFc4SjIbBW4iT2RS/WvIEizs+Jp3LDPftDCqTydDR0bHVbudDxWI0YzNZsZttWI0WLCYLFqMJo8GEAQOQJ5vPkc1lSWZTJLJJYukEiWySTCZDZ2cnnZ2dA8p86qmngL4W+tra2gHbqFGjqK6uxmq1Dvu9iYiIiOwKBewteO2117jvvvtoamrC6XRy3HHHceutt7Js2TIuvfRSXn75ZUaNGgXAwoULB+y75JJLOPjgg+np6eEvf/kLuVyOqVOnctdddxEIBDj++OMBuO222/j5z3/OK6+8stn1X331VR544AFWrlyJy+XitNNO4zvf+Q52u51zzz2Xww47jDvuuAOAl156iauvvpr77ruPk08+GYDZs2ezbNkyfvvb3xIOh7nnnnv461//Sjqd5sADD2TmzJlMnDgRgLlz57Jw4ULKysp47bXXOOecc7jzzjt3x9ssst3y+TyJRKLwPJVKEY/HicfjRCIRotEowWCQUChEIBCgp6eH7u5uNm7cSGdnJ+l0etByTRgZ5amkzlvDaF8NY72jqHGVYzSaBhyXym45OP/yH39gUceSobnRPdghZY18a+LXMJt27j8dmWyGUDpCIBmmNx6gJxmgM9ZLZ7yHjbFuOuO9xGIxli9fzvLlywecazAYKC0tpbq6msrKSioqKigrK6OkpISSkpJCq73JZNrC1UVERESGnwL2IHp6erjmmmu45ZZbmDJlCu3t7dx0003cc889nHnmmdtVxm9/+1tmzJjBvHnzaGpq4sYbb2Ts2LFceeWVvPnmmxx77LHcdtttnHHGGZud+9e//pXrrruOa6+9lrvvvpvVq1fz/e9/n3Xr1vHAAw8wdepUXnzxxcLxb7/9NgaDgYULFxYC9quvvspFF11EPp/nG9/4Bna7nV/84he43W6eeeYZLrjgAp544gkOOOAAABYtWsSll17KM888QzabHYJ3UfYl77zzDg8++CDhcLgwBndr+rsA9x/72S7Bg5URj8fJ5XJDUNuBsuRYG97A2vAGaF005OVvyymnnML06dOZN28eCxYs2K73b6R82PkJV77yvSEvd0JRHT867hYyuSwdsS7aohtpi3ayIdL32BbtJJ5JFFq+P/roo0HLMRgM2O12DAYDBoOBfD5f+GydcMIJfOMb31AruIiIiAwrBexBdHR0kEqlqK6upqamhpqaGh566CGy2SzBYHC7yhg3bhw33HADAHV1dRxzzDF88MEHmEwmysr6xlx6PJ5Bx1//8pe/5MQTT+Sqq64CYOzYseTzea6++mpWrVrFtGnTuP/++2lra6Oqqoq33nqL448/noULFwLQ0tLCmjVrmDZtGu+88w4ffvgh77zzDn6/H4AbbriBxYsX8+ijjzJ79uzCda+77jo8Hs9Ov2+yb0omk9x11136YmYnTZ8+ndraWqZPn878+fNHujojymIyM8pTyShP5YD9+XyeUCpKU2At/+xeySfdTayPtG92fj6fJx6PD1r2M888wxe/+EUOP/zwYam7iIiICChgD6qxsZHTTz+dK664grKyMo455himTJnCiSeeyPvvv79dZdTX1w947vF4CIVC23XuihUrOO200wbsO/LIIwuvnXrqqVRUVPDWW29x9NFHs379eu69917OO+88Ojs7efXVV2lsbKSmpob58+eTz+eZOnXqgPJSqdSAWZFLSkoUrmWn2Gw2vvnNb/Lggw+OdFW2yIiRUkcRFa5SKp2lVLvLqXFXUO2uwGba9RbNXekiPm/evEILdn+r657qiIqJfPOgrw15uTaTZcBEcR2xbjZEOmiLbmRDpJP2WCft0S7imcQ2Stqyww8/nMbGxqGqsoiIiMigFLC3YM6cOVx99dW8/vrrvP3228ycOZNJkyYVWpU3NVjL3a50QxzsD+z+rrH9swBPnTqVt956C4CJEydy0EEHUVFRwcKFC3nttdcK47xzuRxut7swgdCW6mi323e6viLnnHMO55xzzrCVn8/nyWQyhS+GEokE8XicRCJBNBolGo0SDocJhUIEg0F6e3vp6emhs7OTrq4ustksG+PdbIx3s4R/je01YKDSVUqdt4axvlGM9dVS563BbrbtUP2+dfDXMC4x7tQkZwsWLGD+/Pl7dLi2GM0cVn4A3zjo/F3+QiKfzxPLxOmOB+iKB+iM99AR66Ij2kV7tJPOeC95tvw+lJaWDhiDXVpaOmDmdJ/Ph9vt1lhsERERGREK2IP46KOPeOGFF7jtttuor6/nsssu49lnn2XmzJlcc801AEQikcLxzc3NQ3r9/fbbj8WLF3PZZZcV9r333nsANDQ0ADBt2jRuvvlmjEYjkydPBmDy5Mm88sorLFy4kBtvvBGACRMmEIlESKfTjBs3rlDeHXfcwf7778/FF188pHUXGQ4GgwGLxYLFYsHlcu3Qudlslq6uLjZs2EBraystLS2sXbuWNWvWEAgECmN8/972Yd+1MFDtLqfBN5qxvlHU+2updVdh2crEXjaTlWsOuXi7lun6rEAyRFe8l1JHEX6bd5vHp3Jp2j8No+3RLjbGu+mK9dKTCJDJD083/XQuw7vtS1jStQKH2Y7DbMdutmE3WbGarFhNFsxGEyaDqfBFQS6fI5PLkMymSWSTRNNxIqkooVRkm19CuFyuzWYRHzVqFFVVVdhsO/blh4iIiMjupIA9CLfbzeOPP47FYuGrX/0qyWSSF198kbq6Ovbff3+cTie//OUvuf7661m7di2/+c1vhvT6X//61/n2t7/NAw88wCmnnEJzczM/+MEPmDp1aiFgT548mWQyyV/+8hceeeSRwr5bb72VysrKwuRlX/rSl2hsbOQ73/kOt99+O1VVVTz++OM89dRThfNE9mYmk4mKigoqKio49NBDB7zW09NDU1MTK1asYOXKlaxYsYKuri5aIx20Rjp4/dNJz0wGE6PcFYzx1TDaU8UoTxWj3BV4re4BE7RZTRbKnDu2rn2Zs5jxRXWb7c/lc3TGemiNdNASbmPdp1t7tGuLLbxGo5Hi4uLCrNoejweXy4XdbsdisWA2mwv1zWazA3oF9PcIiMVihV4B/bOzp9Np8uSJZRLEdqGb9qa8Xi/l5eWUlpZitVr5whe+QH19PaNGjaKoqEhrYYuIiMjnkgL2IBoaGpg7dy73338/jz/+OEajkaOOOopf/epXeDwe7r33Xn70ox9x6qmnsv/++3PzzTdz9dVXD9n1TzrpJH784x/z4IMP8sADD1BcXMzpp5/OddddVzjGarVy9NFH8+abb3LIIYcAfQE7l8sxbdq0wnEmk4lf//rX3HvvvVx//fXE43EaGhq4//77Cy3fIvuq4uJiiouLOeKIIwr7uru7WbFiBcuXLy88hsPhf800vgmXxUGFs5QKZwmljmKK7T6K7F58Vg9uqxOn2YHNbMVqtAyYOT3z6frQsUyccCpKMBmhJxGgOxGgI9ZNx6et6ltq6fX5fNTV1TFmzBhGjx5NTU0N1dXVlJeXD0vX6FQqVQjb0WiUeDxONBolkUiQTCZJpVKk02my2Sy5XA6j0YjRaMRisWC1WnE6nbhcLrxeL36/n+Li4kJLdCwW45NPPqGxsRGn0znkdRcRERHZnQz5PXXQn3zuLFnSN8lT//rasudQiNl5+Xyejo4OVq1aRVNTE2vWrGHNmjW0t7fv0JhpA31LR+Xy27/UmMVioba2lvr6eurq6qivr2fs2LEUFxfvNS28+mzKnkifS9kT6XMpe6J95XO5IzlHLdgiIlthMBiorKyksrKSY489trA/mUzS2tpKa2srbW1tdHR00NXVRU9PD4FAgHA4TCwWKxyfJ79ZILfZbHg8HoqKiigtLaW8vJzKykqqq6sZPXo0lZWVmqxLRERE5HNEAVtEZCfYbDbq6+s3W5JvU9lsllQqRSKRIJfLkc/nMRqNWK1WbDYbFotlN9ZYRERERIabAraIyDAxmUw4HA4cDsdIV0VEREREdgPjSFdAREREREREZG+ggC0iIiIiIiIyBBSwRURERERERIaAAraIiIiIiIjIEFDAFhERERERERkCCtgiIiIiIiIiQ0ABW0RERERERGQIKGCLiIiIiIiIDAEFbBEREREREZEhYB7pCoiIyK7LZrOkUikMBgNWqxWjUd+fioiIiOxuCtgiIp8T2WyW5uZmli9fzurVq1m3bh0dHR309vYSj8cHHOt0OikqKqK8vJzq6mpGjx5NXV0dDQ0NeL3eEboDERERkb2bAraIyB4qn8+zdu1a3nvvPT744AM+/vhjYrHYdp0bi8WIxWK0trbywQcfDHitoqKC8ePHM2HCBCZMmMC4ceMUukVERESGgAK2iMgeJBaL8cEHH7Bo0SIWLVpEZ2fngNcdZhv1vlGM8VZT46mgzFFEkd2Ly+LAYuz7lZ7Mpoml4wSSYbrivbRHu2iNbGRduJ2NsR46Ojro6OjgzTffLJRbXl7O2LFjqauro7a2lpqaGqqrq/H7/RgMht36HoiIiIh8Xilg7wU2bNjABx98wGmnnca0adM455xzuPbaa7d53o4cKyLDI5VKsXLlSj788EMWL17M0qVLyWazhdctRjP7F49lYul4GksaGO2txGjY+vhqu9mGz+amyl222WvRdJy1oQ2sDqxnTbCV5lArG2M9bNy4kY0bN7Jw4cIBx1utVsrKyigtLaW4uJiioiKKi4vx+/0UFRUVNr/fj8lkGpo3RURERORzSgF7L3DzzTdTU1PDaaedxrx587DZbCNdJREZRDgcZv369axdu5ampiZWrlzJypUrSafTA44rdxZzcNl+HFK+H/sX12M1WYasDi6LgwNKGjigpKGwL5qOsy7czrpQG62RjbRFu+iIdtOTCJJKpWhtbaW1tXWr5RqNRvx+PyUlJZSWllJeXk5ZWRkVFRVUVlZSVVWFx+NRa7iIiIjs1RSw9zLFxcUjXQWRfUo2myUUChEIBAbdenp66OzsZOPGjUQikUHL8Fhd7F88lgNKGphYOo4KV+mA11PZNMHk4OcOlRK7nxK7n0PKG/91b7kMvckwgWSYYDJCJpsmnI4RTEUIJSMEk5HCz7lcjp6eHnp6eli5cuWg13C5XNTU1BS22tpaysrKSKVSw3pvIiIiIruLAvbn3CWXXMK7774LUHjctNv3G2+8wf3338+yZcvw+Xycc845XHfddZt15YxGo3z9618nGo3y29/+VkFdhL5JxsLhcGHMcnt7e6ErdVdXF11dXQQCAXK53HaXWWTzUu0uo9ZTSZ2vhgZ/LRXOkkFbdpPZFL/6x/+xuGMp6VxmKG9tp1iMZg6rOIBvHPQVbCZrYX8unyOUihJIhOhJhOhNhOhOBOiK99IVD9AZ6yGQDBONRlmxYgUrVqzYrOzy8nLGjBnD6NGjqa2tZfTo0dTU1GgMuIiIiHyuKGB/zs2dO5crrriCyspKvvvd7zJ9+vTCax988AHf/OY3ufzyy/nv//5vWltbmTlzJmazecC463g8zhVXXEEikeDRRx/F7/ePwJ2I7F7ZbJZIJEIwGKS3t5eenh66uroKAbo/VEej0e0qz21x4rG68FiduC0uvFYXXpsbv92D3+qm2OGn1F6EzWzd7NxkNj1IifDLfzzJovZ/7tJ9DqV0LsPCtn+Qy+f45kHnDXjNbrJR6Sqj0rX5uG+AVDZFVzxAR7SbjlhfF/T2WBdtkS6imXjhfV+0aNGA81wuF9XV1VRXV1NZWVkYD15SUkJRURE+n0/DYkRERGSPoYD9Oef3+7FYLNjt9s1anf/nf/6Hgw8+mJtuugmAhoYG/vM//5Pu7u7CMclkkiuvvLLQcu3z+XZr/UWGWyKR4Ec/+hGvv/76Tpfhs7opdRZR6iiixO5jUfs/6Yz3Djgmko4RScdo2748PmxOOeUUpk+fzrx581iwYAH5fH7Ir7Go/Z9DGvzrfaP42v6n0BbtZENkIxsinbRFO+mOB4lGo4Wx6tvrsMMO45ZbbtGXhSIiIrLbKWDvxVasWMExxxwzYN9JJ5004Pnvfvc70uk0Rx11lMK17JVWrFixw+HaZXGwX/FYDiip54DiBqrcpZg/XQIrn8+zKtCyWcDeU0yfPp3a2lqmT5/O/PnzR7o628VsNLF/8VgaS+oL+3L5HG2RTj7qXMGSrhV83NVEnu37smDx4sX84x//4Mtf/vJwVVlERERkUArYezGzedv/vBMmTODmm2/m8ssv549//CPnn3/+bqiZyO7T2NjIOeecw3PPPbfZWOl8Pj9oC280HWdxx1IWdywFwICBYruXUkcRpQ4/+xXVcXjlFyi2efB9unksLsymof2VujNdxOfNm1dowTYYDMPSgn1E5Rc26yK+s9LZNN2JIO+0/YMNkY19s5hHOumIdW/XuHOj8V9LlvXf7wknnMCkSZOGpH4iIiIiO0IBey/W0NDAkiVLBuz73e9+x/PPP8+TTz4JwJQpUzjyyCO5/PLLueeee/jyl79MVVXVSFRXZFhYLBauvPJKrrzyys1ey+fzxONxent76e7uHnQMdkdHB8lkku5EkO5EkOVbabh2mu14Ph177bG68Fvd+Oweiu0+Suw+ypzFlDqKMBu3b73obx18HkaDcYcmOVuwYAHz588flnC9pUnOtiWby9IVD7Ax1k1HrJv2aBdt0S7aIp10xQNbbJm2WCyF8ddVVVVUVFQUlv8qKSnB5/Nt1xeJIiIiIruL/jLZC7hcLlpbW2lvbx+w/+tf/zpf+cpXuO+++zjrrLNYu3YtDzzwAJdeeulmZVxzzTX8+c9/5o477uCRRx7ZXVUXGVEGgwGn04nT6aSmpmbQY/L5PL29vYPOIt7d3U1PTw+9vb1ks1limQSxTIKOWPegZQGYDEYqnCXUeiup8/bNIl7vHzVoYLWZrFxz6AU7tExXIBGmK95LqaMIv92zfW/EdvLZ3JutyZ3NZQmlogSTYXr7ZxFPBumOB+j6dOtJBMnltzzTusPhYMyYMYwdO7Ywg3htbS3l5eWbrXggIiIisidTwN4LfO1rX+Pmm2/mzDPPxOFwFPY3Njby85//nJ/97Gf86le/ory8nEsvvXTQljy73c5//ud/ctlll/Hkk09y3nlD0/1T5PPOYDBQXFxMcXExjY2Ngx7Tv5xXIBAgGAwW1sDedHby/oCeTCbZEO1kQ7SThW19PUxMBiNjfaP61sEuG884/+gBrdxWk4UyZ9F21bfMWcR4Ru/yfefyOXoSIbrjvXTHg/QmQwQ3WRM7mIwQSkWIpGLbNTbaarVSVVVFdXU1NTU1jBo1ilGjRlFaWsqGDRs44IADcDqdu1xvERERkZGkgL0XmDJlCgsXLhz0talTpzJ16tRBX3vllVcGPJ88eTLLly8f8vqJ7O0MBgNerxev17vV43K5HF1dXaxdu5ampiZWrlzJJ598QldXF6sCLawKtPBs099wmG0cWDKOg8v346CyCRTbh28Cwlw+R1u0i5ZQG+vC7bSGO2iLdrEx1kM2n92uMoxGI36/n5KSEkpLSwtbeXk5lZWVVFZWUlRUNGC8dL9YLEZbW9tQ35aIiIjIiFDAFhHZTYxGI+Xl5ZSXl3PEEUcAfa3f7e3tfPTRR3zwwQcsXryYYDDIex0f817HxwCMclcwsWw8B5Q0ML5oDC6LY2uX2aL+MN0cbGVNcD1rgq00hzaQ2sI63GazmbKyssKY55KSEoqLi/H7/YXHoqIivF6vunKLiIiIoIAtIjKiDAYDVVVVVFVVcfLJJ5PL5Vi5ciXvvvsu7777LitWrGB9pIP1kQ7mr3kTgGpXGWN81dS4Kyh3FuG3eXFaHFg/XUoslUsTScUJJvvGY7dHu2n9tIzBwrTdbqe+vp6xY8cyZswYRo8eTU1NDaWlpQrOIiIiIjtAAVtEZA9iNBrZb7/92G+//bjkkksIBoN88MEHfPDBB3z00Uds2LChMIZ7Z9hsNhoaGpgwYUJhq6mpUZAWERERGQIK2CIiezCfz8eUKVOYMmUKAL29vaxcuZKmpibWrVtHR0cHvb29RKNRUqkU0Bei3W43RUVFlJWVUV1dzejRoxk7dizV1dUK0yIiIiLDRAFbRORzpKioiCOPPJIjjzxypKsiIiIiIp+x+ZSuIiIiIiIiIrLDFLBFREREREREhoACtoiIiIiIiMgQUMAWERERERERGQIK2CIiIiIiIiJDQAFbREREREREZAgoYIuIiIiIiIgMAQVsERERERERkSGggC0iIiIiIiIyBMwjXQERkX1NNpslGo2SSCTI5XIYjUbsdjsulwuTyTTS1RMRERGRnaSALSIyDLLZLOvWrWPNmjU0NzfT2tpKW1sbGzduJBQKkc/nBz3P5/NRXl5OdXU1tbW11NXV0dDQQFVVFUajOh2JiIiI7MkUsEVEdlEul6O1tZXly5ezfPlyVqxYQVNTE6lUaqvnmQwmTAYjOXJkclkAgsEgwWCQlStXDjjW6XQybtw4xo8fz7hx4xg3bhyjRo1Si7eIiIjIHkQBe5hs2LCBDz74gNNOO23Q1y+55BJqamqYPXs2Tz31FLfeeivLly/frrK35/hp06ZxzjnncO2115LP53n66af58pe/TElJyU7dj4j0yefzdHd3F4J0/2MkEtnsWLvJyihPBaM8FVS7y6hwFVFi9+O3e3BZHJiN/wrHmVyWaDpOIBmmKxagI9ZDa3gj68IdrA93EIvF+Mc//sE//vGPwjkWi4VRo0YxatQoqqurKS8vp7S0FL/fj8fjweVyYbfbsVqtCuIiIiIiu4EC9jC5+eabqamp2WLAnjt37rD+wTtv3jxsNhsAixYt4pZbbuHll18etuuJ7I2y2SwbNmxgzZo1NDU1sWrVKlatWkVvb+9mx1qMZup81TT4RzHWV81YXw0VrmKMhu3r1m02mvDZ3PhsbsZ4qwbWI5dlQ6STNcENNAc30BxqY12onUQ6xZo1a1izZs02yzcajZjNZkwmE0ajEZPJNGCzWCxYrVYsFgt2ux273Y7D4cDpdOJ0OnG5XLjdbtxuNx6PB4/Hg9frxev14nK51H1dREREBAXsEeP3+4e1/OLi4sLPWxrrKSJ9otEora2ttLa2sn79etatW0dLSwvr1q0jnU5vdrzRYKTGXUa9fxT1vhrq/TWM8lQMaJHul8qmCSY3b93eUXazjcaSsTSWjAUgl8/RmwjREe1hY6yXnkSQ3mSIYDJKNBUjmkmSyv6ri3oul9tml/WdZTQa8fl8+P1+/H4/RUVFFBcXU1xcTElJCWVlZZSVlVFSUoLZrP/siIiIyN5Lf+kMg0suuYR3330XoPB40kkn8dprr9Hd3c3cuXOZO3duoYv4ZyUSCR566CGee+45Nm7cSH19PVdddRUnnXTSgOOeeOIJ5s6dSygUYvLkydx5553U1NQA/+oifuSRR3LppZcCcPzxxzNr1izOPfdcFi9ezJw5c1iyZAnFxcVMnTqVG2+8EbfbPZxvjchul06n6enpobu7m66uLrq6uujs7KSjo4OOjg7a29sJh8NbPN9qslDrqaDWU8kYbyV1vmpqvRXYTNatXjeZTfGrj/7E4o5lpHOZob6tIWE2mti/eCxnNnwZg8FAOpchnUuTzKZJZtIkskkSmSSxdJJYJkEsnSCajhe2SCpGIpsil8vR29s7aMv+pgwGAyUlJZSXl1NRUUF5eTlFRUUkEgncbjejR4/G4XDsprsXERERGXoK2MNg7ty5XHHFFVRWVvLd736X6dOn89hjj/GLX/wCj8fDfvvtt9Xzb7jhBpYuXcr3v/99xowZw/PPP8+3v/1t7r//fk444YTCcf/zP//Dfffdh9Vq5Qc/+AFXX301f/rTnzAYDIVjDj30UObOncu1117Lk08+yYQJE1i2bBmXX345V155JT/84Q/p6urinnvuYcaMGfzxj38ccL7ISOtveU0mkyQSCRKJBLFYjFgsRiQSIRgMEo1GiUQihEKhwhYMBgkEAoOOjR6Mx+KkwlVMhbOESncJVa4yqj1llNp9GD7TzTufh0Rm663Bv/zo/1jUvnSn73t3yOSy/LNrFQ6zlW8e/JWdKyObIZyJEUnGCKWihJJRQqkIwWSEQDJCIBkikAjTkwiRzecKX3IsXTrwvfntb38LgMfjKbR2l5SUUFxcTFFREX6/H6/Xi8fjwe1243K5cDgcahEXERGRPYr+MhkGfr+/MI6xv6v2cccdx9FHH73Nc5uamnj55Zd56KGHmDJlCgDXXnsty5Yt46GHHhoQsO+99172339/AO6++25OOukk/v73vw+4jtVqxefzAX3dxu12O4888gjHHHMMV1xxBQB1dXXMmTOHE044gXfffZcvfvGLQ/I+iPRra2vjv//7v7d7Ir+REE7HCAdirAqsH5Hrn3LKKUyfPp158+axYMGC3Tq0Y1H70hH9MsBqsmDEQCKbIhwOEw6HWb169S6VabFY+MEPfsBhhx02RLUUERER2TbNSrObjBkzZruO6w8gkyZNGrD/iCOOYMWKFYXnLperEK6hLyT7fL4Bx2zJ0qVLef311zn00EML25lnngn0BXyRofbhhx/u0eF6TzB9+nRqa2uZPn36PjdvQpWrlCsPOY+v7ncih5bvh9vi3OUy0+k0r7/++hDUTkRERGT7qQV7N7Hb7bt0fj6fH9AVcrAZyHO5HFbr1seF9h93xhlnFFqwN7Xp5GgiQ+X4448nlUrxzjvvkM/nyefzGAyGzYLkYPs23Z9OpwtdxKPRKNFolExmx8c3e60uih0+Suw+Sh1+ypxFlDmLqHCWUGz3bNYlfGfsaBfxefPmFVqwt/Q+DJcjKg/Y6S7iW5PNZQmmIoUu4r2JIF3xIN2JID3xAF2xIPFskrWhNn7y/u+3WpbJZBrQRdxmsw14n/qHtvTvq6ur4/zzzx/yexIRERHZGgXsPUz/+Oz333+fqVOnFva/9957jBs3rvA8FArR0tLC6NGjgb6W73A4zIQJEzYr87NjqsePH8+qVasGtKo3NTVx7733csMNN+DxeIb0nkSsVitnnXUWZ5111pCXnUqliEQihMPhzcZf9/b20tPTQ29vb2GSs3Q63TdWOBWlObhhs/IsRjOVrhKq3WXUeMoZ5S5ntLeSMmfRdi+5BfCtQ76C8SPjdk9ytmDBAubPn79bw7XFaOawiv35xsHnbHPSNoBMLkM0nSCSihH5dJKzSDpGOBUlnIoRTEYIJaMEPx2DHUpGybPte3E4HFRVVRUmPisrK6O0tJSSkpLCjOQul0vzQ4iIiMgeTwF7mLhcLlpbW2lvb9+h8xoaGpg6dSp33XUXBoOBMWPG8MILL/Dyyy/z05/+tHCc0Wjk+uuv57vf/S4A3/ve9zjyyCM5/PDDNyvT6ezrbrls2TKKioqYMWMGF110EXfddRcXX3wxoVCIu+66i0QiQV1d3U7fs8hIsFqthSWhtiWfzxMMBtm4cWNha2tro729nQ0bNtDW1kY6k2FduIN14Q5o+9e5NpOV0d5KxnirPl3nuppqdxmmQZbm6j/+msPO3+5lugKJMF3xAKUOP377zn3JlcymNlmmK0EikyKVS5PJZsjkcuTIks3nyOVyfb1ijGYMBvjjsr+SzWVJ5TKks2mS2dSns4iniGcSxDNJ4ukkqdzmS5Zti8lkorS0lNLSUsrKyqioqCg8lpeX4/V6aW5uprGxsfC7SkREROTzSgF7mHzta1/j5ptv5swzz9zhZWd+/OMf8+Mf/5jbb7+dUCjEhAkTmDt3LieeeGLhmOLiYs466yyuuuoq4vE4U6dO5Y477hi0vAkTJnDcccdx/fXXc8MNNzBjxgwefvhh7rvvPs455xycTieTJ0/m5ptv3q4u5iKfVwaDobBW82C9PbLZLB0dHYV1sNeuXcvq1atZu3YtyXSKlb0trOxtKRxvNVmo81bT4B9Fg7+GBn8tJQ7fgJZWq8lCmbNom3UrcxYxntHbPC6fz9MZD9ASamN9uIPWSCftkW42xnqIZRLb+U7sPIPBgNvtxuPx4PF48Hq9hTWw+x+LiooKM4D7fD6Mxi23/MdisWGvs4iIiMjuYsjva7PpyLBZsmQJABMnThzhmshnxWIxPvnkE7US7qRsNsv69etZtWoVq1atYuXKlaxatWrQcOixuqj31TDWV80YXxWjvVWUOnw71L28Xy6foyPaQ0uojTXBDTQHN9AcaiOajm/xHIfDgd/vx+Px4HK5sNvt2Gw2zGYzFosFo9GIyWTCZDJhNBoxm80YjUYsFgtWq7WwAoLD4cBut+N0OnG5XDidTjweD06nc6uBeUfpsyl7In0uZU+kz6XsifaVz+WO5By1YIuIbIPJZGLMmDGMGTOG448/HuibLHD9+vUsW7aMZcuWsWLFCpqamginonzUuYKPOv81o7/dZKXSVUqFq5gShw+fzYPb4sBmtmLEQJ48yWyaSCpOIBmmK95LR7SHtkjXoN2yzWYzY8aMYezYsdTV1TFq1CiqqqooLy/H5XLttvdFRERERAZSwBYR2QlGo5HRo0czevRo/u3f/g3om3CtqamJFStWFFq5161bRyKdojm0gebQ5pOqbYvNZqOuro7x48czbtw4xo8fT11dHRaLZahvSURERER2kQK2iMgQsVqtNDY20tjYWNiXyWTYsGEDra2ttLa20tnZSSAQIBwOk0wmyeVyGAwG7HY7breboqIiKioqqKqqYvTo0VRWVg66LJ+IiIiI7HkUsEVEhpHZbC60dIuIiIjI3m3oZqoRERERERER2YcpYIuIiIiIiIgMAQVsERERERERkSGggC0iIiIiIiIyBBSwRURERERERIaAAraIiIiIiIjIEFDAFhERERERERkCCtgiIiIiIiIiQ0ABW0RERERERGQIKGCLiIiIiIiIDAEFbBEREREREZEhoIAtIiIiIiIiMgTMI10BERHZe+TzeXK5HNlslnw+j8FgwGQyYTKZRrpqIiIiIsNOAXsPMW3aNM455xyuvfbaIS33kksuoaamhtmzZ7Nw4UIuvfRSXn75ZUaNGjWk1xGRHZfNZslkMmQyGbLZLLlcjnw+P+AYg8GA0WjEZDIVHocysGazWVKpFMlkkmQySSKRIJFIEIvFiMfjxGIxYrEY0Wi08Ni/9b/Wf2wymSSVSpHL5Ta7jtFoxGaz4XQ6cbvd+P1+iouL8fl8ZLNZ4vE49fX1VFRUKIyLiIjI55YCtojILojH4wQCAXp7ewkEAgSDQYLBIKFQiHA4TDgcLgTSeDxOPB4nkUiQTCbJZrM7fd1NW4b7w/emW/8x/YG9v2W5v3W5P9gPFoaHQy6XK9x/d3c3a9euHfD6c889B4DFYqG2tpaxY8dSX19PQ0MD48aNw+v17pZ6ioiIiOwKBWwRkUHE43F6enro7u6mq6uL7u7uwtbT00NPTw+9vb3EYrERqV8+ny+E5KFiNhixmixYjRZsZitWkwWH2YrdZMVutmI327CbbTjMtsJ+m9mKzfTp8UYLZqMJs9GEyWAEA/gsboxGI5lchmQ2TTyTJJyKEU7FCCTD9MRDdMYDdER72BjrIZ1Os3r1alavXs3LL79cqFtFRUUhbI8bN46GhgZKS0sxGAxDdv8iIiIiu0oBeyfst99+zJo1i3PPPXfQfXPnzuX999/n8MMP5/HHHycej3PGGWdw5ZVX8v3vf5933nmH8vJybr/9dqZMmVIoo7Ozk69//essXLiQsrIy/uM//oOLLroIgKeeeooHH3yQ4447jj/96U988Ytf5IEHHqCpqYnZs2fz3nvv4XK5+OIXv8gtt9xCWVnZNu8jGAxy77338tprr9HT04PX6+X444/n9ttvx+FwDPn7JjLScrkckUiE3t7ewtYflvuDc3+I3pHgbDGa8dlceG1uvFYnHqsLt8WB2+rAZXHgtNg/DaW2T0OpBfLwh2Uv8Y/OVaRzQxeSd0UmnyOTSRIjCamhKdNiNHNYxX584+Cz8Ns9Wz02l8/RGQuwPryRdeGNtIQ6WBtqY2Osl46ODjo6Onj77bcLx3s8Hurr6xkzZgyjR4+mtraWUaNGUVJSUmjFFxEREdmdFLCHyXvvvUdJSQm///3vWbx4Mbfddhsvv/wyM2fO5KabbuLee+/llltu4e9//3uhBeaJJ57g+uuv5/bbb+fNN9/khz/8IeXl5Zx44okAtLS0sHHjRp5++mkSiQQdHR1ceOGFnHHGGdxyyy3E43Hmzp3L+eefz/PPP4/T6dxqHW+55RY6Ojq4//77KSkpKdRz3LhxXHbZZcP9FsnnWH93Y2DAuOF8Pk8+nyeZTG52zmdbGvufb7q///z+cj/bpbn/MZVKFcYNp1IpEolEoftx/zjhSCRCNBolHA4XumsHg8Ed6hJtNZrx270U2d34rB78djd+mwufzYPP5sJv8+CzurCbrbCDLam//Ohp3u9YtkPnfB6lcxkWtn1MLp/jmwefPegxNpOlb6y5wUiFq5gKVzGTKvcvvB5LJ1gbamdtqJ3mYBvNwTbaol2Ew2E++ugjPvroowHlWSwWKioqKCsro7S0lOLiYvx+Pz6fj9LSUg466CAFcBERERkWCtjDJJfLcdddd+F2uxk7diz33nsvRx11FGeffTYAF1xwAX/729/o7OykvLwcgBNOOIErrrgCgLFjx/Lhhx/y61//uhCwAa666ipqa2sB+OlPf0plZSV33HFH4fWf/vSnHHXUUSxYsGBAC/tgjjnmGI444gj2228/AEaNGsVjjz3GihUrhux9kD3D//7v//LHP/5xpKvxuZPKZdgY6+u6vDc55ZRTmD59OvPmzWPBggWbTaw2HBa1f8Ki9k8GfW1CUS13TL58i929nRY7jSV1NJbUFfalsmk2RLpYF+6gNdxJa6SL9mg3nbFe0uk069evZ/369YOW961vfYuvfOUru3xPIiIiIp+lgD1MSkpKcLvdhedOp5PRo0cXntvtdgBSqX/1w5w0adKAMg4++GBee+21Afvq6uoKPy9dupSVK1dy6KGHDjgmmUzS1NS0zTpeeOGFvPLKK/zpT3+iubmZVatWsX79eurr67d9g/K5smjRopGuguxBpk+fTm1tLdOnT2f+/PkjXZ2dYjVZqPNVMdpbwcZYL63hTtqj3WyIdLG8p4WOrXwpEggEdl9FRUREZJ+igD0EBptkyGKxbLZvW10SP/t6LpfDarUO2NcfzPtfP+qoo/je9763WVkezzbGOuZyfOtb32LlypWcfvrpnHrqqRx44IHceeedWz1PPp9+8IMf8Ic//AGfzzfoZ3Nn9a9z/Nl9/f+fGOz1ndW/jFU6nSadThe6ifcvK5VMJgcsKRWNRnf4GmaDiSK7B5/N3df92+6iyObBb+vvHu7Bb3NjM1u3Xdg2/PKjp7fYojvc5s2bV2jB3nSm8eF0RGXjNruIb0s8nfy0q3gbzaF21oU62BDpJJ3b+mzsXq+XoqIivF4vpaWlnHLKKTtzCyIiIiLbpIC9EywWC5FIpPD8s8vN7KyPP/54wPP333+f8ePHb/H48ePH8+KLL1JVVVUI4oFAgJtvvpnLL7+co446aovnfvLJJ7z++us88cQTHHzwwQCk02laWloKXdBl7+FyuTj66KNpbGzc5tj8vUU2myUWixEKhQiFQoWls/qX0+rp6Sk89vT0EA6HyeSzdMYDdMYDWy3bZrIUQrfP5sZn/XSCM5sLr9WFx+r8dJIzJy6LHbNx83Wdv3XIORg/MrK4Y/lun+RswYIFzJ8/f7eE600nObOZtu/LnXw+TzAZpSXcztrgv8Zeb6lV2mazUVtbS21tLTU1NVRVVVFZWUlZWRklJSVD+qWSiIiIyNYoYO+EQw45hCeffJIjjjiCfD7PrFmzNmtp3hkvvPAC+++/P1OmTOGll17ir3/9K7/73e+2ePyFF17IH//4R/7f//t/XHXVVQDcfffdLF++nAkTJmz1WqWlpZjNZubPn09xcTGBQICHHnqIzs7OAd3WRT6vTCYTHo8Hj8dDTU3NNo9PpVIDZhHv6uqip6dnwBJdPT09xGIxktk0HbGerXZD3pTVZMFZWOLKitXUt7SVxWjmkPLxZHM5TEYjxkIrbv9j36RvOfpCZzaXJZfPkSVPLp/r23I5svk8+XyOXD5Pjjx58sDA4GzAgBEjRoOxr4x8trDkltlowmI0YTFZsBrN2MwWrMa+pblsJkvfEl0mGw5L36PdYsVmtG5Xq7PP5sZq2vw/Nfl8nngmSXciRFcswMZYD22Rvi7e6yMbCacGn8W9vLychoYGGhoaqK+vp76+nsrKSk1aJiIiInsEBeyd8P3vf5/vf//7fPWrX6W8vJxvf/vbtLe373K5//Ef/8Hf/vY3fvzjH1NTU8OcOXP44he/uMXja2treeyxx5gzZw4XXHABJpOJww47jEcffZTi4uKtXquiooLZs2czd+5cfv/731NWVsaUKVO47LLLeOWVV3b5XkQ+b6xWK5WVlVRWVm71uE3Xx+5f5qt/ya9gMEggECi0mvf3dEll06SyaUhGtlr254kBAw6ztW/pMbOtsB62xWjGYjRjMhoxYCBPnlw+TzqbIZlNEc8kiabjhJJRUltpuTcajVRXVxfWvB4/fjwNDQ34fL7deJciIiIiO8aQ3x2D72SfsGTJEgAmTpw4wjWRz4rFYnzyySf7VBfxPUE2my2MB49Go8RiMeLxOMlkkkQiURhLns1mC2PMN13yzGg09i1fZTRiNBoxmUyFzWw2F/Zt+rjpOf36lz/rX/asf8mzdDpNJpMpLHfWX694PE4ikSjUt7/u/feRzW59zPOO8Hg8uN1u6urqGD16NKNHj2bMmDGMGTMGm802ZNcR2RH6nSl7In0uZU+0r3wudyTnqAVbRGSYmEwmvF4vXq93pKsyZPL5fCF8R6PRwtrj/ZPN9X9p0L9+eX/ot1qtWK1WXC4XHo8Hv9+P3+8nn8/vE/9hFhERkX2DAraIiGw3g8GAw+HA4XBQUlKyy+XFYoOPtRYRERH5PNKsMCIiIiIiIiJDQAFbREREREREZAgoYIuIiIiIiIgMAQVsERERERERkSGggC0iIiIiIiIyBBSwRURERERERIaAAraIiIiIiIjIEFDAFhERERERERkCCtgiIiIiIiIiQ0ABW0RERERERGQIKGCLiIiIiIiIDAEFbBEREREREZEhoIAtIiIiIiIiMgQUsEVERERERESGgHmkKyAisrfK5/PEYjECgQCBQIBgMEgoFCIajRKLxUgmk6RSKXK5HPl8HrPZjMViwW6343K58Hg8+P1+ioqKKC0txev1YjAYRvq2RERERGQLFLD3Evl8nqeffpovf/nLlJSUbPP4Sy65hJqaGmbPnr0baiey58vn8+RyObLZLNlsllwuRyaTIZvNkslkSKfTpNNpUqkUyWSSeDxOPB4nEokQiUQIh8MEg8FCkO7t7aW3t5dUKjVkdbTZbJSVlVFZWVnYqqqqCpvL5Rqya4mIiIjIjlPA3kssWrSIW265hZdffnmkqyKy22Wz2QGhNhgMFlqLw+EwkUiEWCxGNBolHo+TSCQKrcepVIpMJkMmkxm2+tlNVrw2J26rE7fFgctix2G2YjNbsRhNGA19o3Wy+RzpbIZkNk0skySSihNKRgkkI4RTfS3e69evZ/369YNex+PxUFFRQXl5OeXl5ZSVlVFaWkpJSQnFxcUUFRXhdDrVCi4iIiIyTBSw9xL5fH6kqyAyLBKJBN3d3XR2dtLV1VV47Orqoru7m+7ubnp7e8nlcsNWB7PBiNFgwmIyYTKYsJrM2EwWbCYrDosVh9mO02zDZbXjtjhwWx14rE48Fgcemwuradd/1aazWYLJCD2JML2JEN3x/i1ITyJMJB0nHA4TDodZtWrVFsuxWCz4fD68Xi8ejwe3243b7cbpdOJyuXA4HDgcDux2O3a7HZvNhs1mw2q1YrVasVgsha7sJpMJo9GIyWTCYDBgNBo3e+z/WURERGRfoIA9gs4991wOO+ww7rjjDgBeeuklrr76au677z5OPvlkAGbPns2yZcu47bbbmDNnDosXLyYej1NRUcFFF13EjBkzWLhwIZdeeikAxx9/PLNmzeLcc8/lH//4Bz/+8Y/56KOPcDgcnHjiidxyyy04HA4AotEot956K3/961/J5/OceOKJfPe738XpdI7MGyL7lFQqVWhx7u3tpbu7m56eHrq7uwsBuquri3A4vF3lGQC31Ynf5h7QWuyxOnBa+gKww2zDbrZiM1mwmixYTWbMRjO5fI4/fPIKSzqbSOeym5WdyecgnyOVSw/xuzD0TAYTtd4y9i8eTTAZpScRJpiMEEhGSGRSpNPpwnu7u/SHcJPJhMViwWq1YrPZcDgc2Gw2stkslZWVFBUV4fV68Xq9+P3+AZvH41FQFxERkT2eAvYImjp1Ki+++GLh+dtvv43BYGDhwoWFgP3qq69ywQUXMGPGDI455hj+8Ic/YDKZePLJJ7n77ruZPHkyhx56KHPnzuXaa6/lySefZMKECaxbt45///d/58QTT+SPf/wj4XCYm2++mbvuuqsw7vovf/kLV1xxBU899RQrV67kO9/5DlVVVXz7298ekfdD9gz9Y5H7J97qH4+8tTHJ/eOSE4kEiUSCeDxOLBYrdMvuH58ciUQKXbcTicR218lqNFNk91LscFNk8+K3uylyuCmyevDb3fjsbrwWJ0bjzi2M8MsPn2Nxx4qdOndPk81naQ62U+bw881DzhjwWiqbJpyOE0nGiKQTRFNxYtkEsXSSeDpFIpMgkUmTyKZIZtOksmlS2QypbIZ0Lk0mlyWdzZDJZcnmc+TYvp4z/Z+fdDq9xX/35cuXb7UMk8lUCNs+n2+LrfB2u70Q3O12O9XV1Tv9uRARERHZUQrYI2jatGncf//9tLW1UVVVxVtvvcXxxx/PwoULAWhpaWHNmjWccMIJJJNJLrroosIkRtdddx0PP/wwy5cvp7GxEZ/PB0BxcTF2u50nnngCv9/Pf//3f2M29/0z/9d//RcffPBB4foHHXQQ3/nOdwAYPXo0xxxzDP/85z9351sge5BoNMoVV1xBR0fHSFdlM6lcho5YDx2xnpGuypA75ZRTmD59OvPmzWPBggVDNtxjUfsyFi1YNiRlDbcKZxFTRh9KNJ0gmo4TTsUIpWKEklFCySixTJJsNlsYErAjpk2bxi233DJMNRcREREZSAF7BB144IFUVFTw1ltvcfTRR7N+/XruvfdezjvvPDo7O3n11VdpbGykpqaGCy+8kOeff56lS5fS0tLCsmV9fzhvadzpihUrOPDAAwvhGuCoo47iqKOOKjyvq6sbcI7P56O1tXXob1Q+F1KpFMFgcKSrsc+ZPn06tbW1TJ8+nfnz5490dUaExWSmwuknmkkSSdk/7cpvw2G24jBb6YqHCKdiO1V2KBQa4tqKiIiIbJkC9gibOnUqb731FgATJ07koIMOoqKigoULF/Laa69x/PHH09nZyfnnn09xcTHTpk3j2GOPZeLEiRx33HFbLHfTYL0lJpNpyO5DPv+Kiop4/PHHaWlpGdCK2j/u1WAwDFjGqr97eDqdLszI3d89vH/rX+85FAoRCoUKS1rtCJfZjt/uodjhodjmxu/wUmRz9+2zu/HZPDjNVtiF8bm//PA5FrWPTGvvvHnzCi3YBoNhyFqwj6jcf7Mu4gDk88QyKSLpOLF0nGg6STydJJ7t6x4ezyRJZFKkMimS2WxfN/F8mkw2SzqXIZPLkMnlyeb7hg5k831DCXKbdBnP5fN9+/h0/6evZ/ODfyG4PtzJzxY/tV335XA48Pv9eL1efD4fbrcbj8czYJK2/snZ7HY7EydO3On3UERERGRHKWCPsGnTpnHzzTdjNBqZPHkyAJMnT+aVV15h4cKF3HjjjTz//PMEAgH+/Oc/Y7FYgH+NV+z/Y/yzk/+MGzeO5557jmw2WwjSf/3rX5k1a9Y+20om2+Z2uznggAOG9RrZbJZQKEQgEChsPT09ha1/dvDOzk6SySTRTIJoJEFrpHOLZVqNZnx2Nz6bC5/VhdfmwmN14rY6/rUsluXTSc5MVmzmTyc5M5oxG01869AzMX5kZHH7CtK54VuuazALFixg/vz5QxauzUYT4/w1NJaM4YWmv9OTCBNIhAkmowSTUcKp2BaD7u5kMBgKY6XNZjPFxcWFcdX9k5z5fD6Kiorw+/2FR5vNNtJVFxEREdkiBewRNnnyZJLJJH/5y1945JFHCvtuvfVWKisrOeCAA1i7di3xeJwFCxYwadIkVq9ezaxZs4C+br1AYebvZcuWUVRUxIUXXsijjz7K9773PS6//HJ6enq45557OOqoo/QHqowok8lEUVERRUVFWz0un88TjUbp7Oyks7Nzs6W6+sfjhsNhUrkMnbEAnbHATtXJbDRhMhgxG/uW4DIaDBgxYjQYMRkMmIymTY4x/2uZLrMVu8mK02LDabHjsthxfTpzed/s5Q6M22hZDyQidMWDlDp8+O3urR6bzeUIJaN0J0L0bLZUV4hwKk4ml2VZTwvLelq2WpbNZsPj8eD1enE6nYVJwpxO52bLdPXP+m2xWArLdPVv/TOEb7o0FzBg6a7+1/vP71/uy2AwEIvF+OSTT2hsbNQKBiIiIvK5p4A9wqxWK0cffTRvvvkmhxxyCNAXsHO5HNOmTQPg5JNP5uOPP2b27NlEIhFqamo477zzePnll1myZAkXXHABEyZM4LjjjuP666/nhhtuYMaMGfz617/m3nvv5eyzz8bn83Hqqadyww03jODdimw/g8FQmB167NixWzwumUwWWr/7l/wKBoOF2cpDoRDRaJRIJFLoup5IJAbMX5DJZcmw+fJcu8poMOD5dOkwj9VZaFV3WezYzTZsJjMWoxmjwUh7tIfWSBeZXObTrtoJIqk4oVSMQCJCTyJEIBkht41WbqfTSUVFBeXl5ZSVlVFcXExpaSnFxcWFVmCv16sv2kRERESGgSE/VAP+ZJ+3ZMkSAI153AOplXCgfD4/YAx5Op0uLD/WP8Z802XJ+sec9483TyaTA8aZh8PhwlJkwWCQQCAwbJNrmc1mysvLqaiooLKykurqaqqqqqisrKSqqgq32/25Wi9an03ZE+lzKXsifS5lT7SvfC53JOeoBVtE9jkGgwGr1YrVah22a2QyGQKBQKFVvT90h8NhotEo0WiUZDJZCPfQ163aYrHgcDhwOp14PJ7C+OPS0tJCi7TWdRYRERHZMylgi4gMA7PZTGlpKaWlpSNdFRERERHZTdQMIiIiIiIiIjIEFLBFREREREREhoACtoiIiIiIiMgQUMAWERERERERGQIK2CIiIiIiIiJDQAFbREREREREZAgoYIuIiIiIiIgMAQVsERERERERkSGggC0iIiIiIiIyBBSwRURERERERIaAAraIiIiIiIjIEFDAFhERERERERkC5pGugIjI3iYSibB+/Xo6OjrYuHEjvb29BINBotEoyWSSTCaDwWDAZDJhs9lwu934fD5KSkooLy+nurqa6upq7Hb7SN+KiIiIiOwABWwRkZ2UzWZZt24dK1euZNWqVaxZs4bm5mYCgcAul20wGKiqqqK+vp5x48YxYcIE9ttvPzwez65XXERERESGhQK2iMh26u3tZenSpSxbtoxPPvmEFStWkEgkBj3Wb3NT7vRR4vRSZHPjtjpxWWxYTRbMxr7ROdlcjkQ2TSydIJSM0ZMI0x0P0R7tJZpOsGHDBjZs2MCbb75ZKLe2tpYDDjiAAw88kAMPPJBRo0ZhMBh2y/2LiIiIyNYpYA+TfD7P008/zZe//GVKSkqG7ToLFy7k0ksv5eWXX2bUqFFccskl1NTUMHv2bJ566iluvfVWli9fDsC0adM455xzuPbaa4etPiJ7i1QqRVNTE8uWLWPZsmUsXbqUjo6OzY6zmSzU+Sqo81Uw2ltOrbeMKncxDrNtl64fTEZZF+qkJbSRNcF2Vgfa6Yj2sm7dOtatW8ef//xnAHw+H42NjYVtwoQJOJ3OXbq2iIiIiOwcBexhsmjRIm655RZefvnl3XrduXPnYjKZdus1RT7votEozc3NrF69mlWrVrFy5Uqam5vJZDIDjjMANZ5SxhfVMMZXTrnTT4WrCKNh4HyRkVSCSGrwlu0dUeEqosJVxBFV+/XVMxVnTbCDtkgPTYENrA60EwwGeeedd3jnnXf66mgwUFNTw/jx46mvr6euro7Ro0dTXl6u3w0iIiIiw0wBe5jk8/kRua7f7x+R64rsyXK5HMFgkM7OTjo7O2lvb6etrY3169ezbt06Ojs7Bz3PY3XQ4K+moaiK8UU11PurMBmM/OqjF/n9x38jncsMet5wsxjNTKocx/3/djVtkW5W9mxgZW8rTYE2uuMh1q9fz/r16/nb3/5WOMdsNlNRUUF5eTllZWUUFxfj9Xrxer04nU4cDgc2mw2TyYTJZCp0O8/n82SzWbLZLJlMhkwmQzqdLvzc/1oulytcy2g0YjKZsFgsWK1WbDYbDocDl8uFy+XC4/FgtVp3+/smIiIiMtwUsDdx7rnncthhh3HHHXcA8NJLL3H11Vdz3333cfLJJwMwe/Zsli1bxm233cacOXNYvHgx8XiciooKLrroImbMmFHotg1w/PHHM2vWLM4991wWL17MnDlzWLJkCcXFxUydOpUbb7wRt9sN9HXhPumkk3jttdfo7u5m7ty5HHnkkTt0D5t2Ed+SdDrNl7/8ZS666CKuueaawv4//OEP3H///bz66quYzfpoyMjLZrMkEgmCwSCpVIpEIkEikSCZTA74ORaLEY/HicfjRKNRotEo4XCYcDhMMBgkGAwOCICD8dtcjPKUUustZ4y3nDp/JSV2z2bjmx/68HkWta0YztvepnQuwzsblpHN5/jWIacxylPG1DEHAxBKxlgb7GBduJN1oU42RHpoj/aQyWRobW2ltbV1ROvez2634/P58Hq9GI1GRo0aRVlZGUVFRQM2v9+P2+3GaNSqkiIiIrLnU4raxNSpU3nxxRcLz99++20MBgMLFy4sBOxXX32VCy64gBkzZnDMMcfwhz/8AZPJxJNPPsndd9/N5MmTOfTQQ5k7dy7XXnstTz75JBMmTGDZsmVcfvnlXHnllfzwhz+kq6uLe+65hxkzZvDHP/6x8Ef8Y489xi9+8Qs8Hg/77bffsNynxWLhzDPP5Nlnnx0QsJ9++mnOPPNMhWvZplQqxdq1a8nn8+Tz+UJLZn+rZiqVIp1OF7ZUKkUqlSKZTBbC8aYhebAtHo+TTqd32z0FklECySj/7Fq7264JcMoppzB9+nTmzZvHggULdqj3y6K2FSMe9rfGYbZS5SomlcuQyKSIZ1LE0kny5Av/zv3j2vvnihiM0WgshHGPx4PH48HtduNyuXA6nTidTux2OzabrdBibrFYCltVVRXFxcW767ZFRERkH6YktYlp06Zx//3309bWRlVVFW+99RbHH388CxcuBKClpYU1a9ZwwgknkEwmueiii3C5XABcd911PPzwwyxfvpzGxkZ8Ph8AxcXF2O12HnnkEY455hiuuOIKAOrq6pgzZw4nnHAC7777Ll/84hcBOO644zj66KOH/V6/8pWv8Nvf/pYPPviAQw89lDVr1vDBBx/wX//1X8N+bfn8+/a3v01TU9NIV2OvMH36dGpra5k+fTrz588f6eoMqVpPGXcec9GAXgC5fJ54Okk4HSecjBFKxQglYwST0cIWSsYIJKNsjPWSy+fJ5XL09vbS29u7U/UwGo08/vjjCtkiIiIy7BSwN3HggQdSUVHBW2+9xdFHH8369eu59957Oe+88+js7OTVV1+lsbGRmpoaLrzwQp5//nmWLl1KS0sLy5YtA9hiN9SlS5eydu1aDj300M1ea2pqKgTsMWPGDN8NbmLChAlMnDiRp59+mkMPPZSnn36agw46iHHjxu2W68vnW/8XSCPBAFhNFmwmC3azFavJgt3c97PdZMVptuKw2HBZHLitNjwWJ16bC7/dhd/mwmTctYm+fvHhC0Paajxv3rxCC7bBYNihFuwjqibwrUNOG7K69Nu0DruyBJjNZBkwljuZTRNNJ4imE0RSccKp+IBw3ResI4V9uSGay8LpdKpnjoiIiOwW+ovjM6ZOncpbb70FwMSJEznooIOoqKhg4cKFvPbaaxx//PF0dnZy/vnnU1xczLRp0zj22GOZOHEixx133BbLzeVynHHGGYUW7E1t2qpit9uH/qa24Ctf+Qo/+clPuP3223nuuef4+te/vtuuLZ9vs2bNIhwOk8vlyOVym3UR31L38P7HRCIxYEz1Z7uGD7Y/m80CkAeS2TTJbJpQKrZD9TYAPpubMqeXMqefSlcRVe5iajylVLmKsZi2/SvxikNOx2R4kffbVw3JJGcLFixg/vz5OxSu+yc5+8bBp2IzW7Z6bD6fJ5SK0R7pZWMsQHc8RG8iTCAZJZyKE03FiWdSJLNpUtk0mVyOPAPrYTQYMBmMmIwmzAYTZqMJs7HvuclgxGgwYDQYMdD375PP58nms6RzWdLZLMlsikQmvVm528Nms+H3+7fYRbx/8jS73Y7dbt+si7jZbMbn82Gz7dqyaSIiIiLbQwH7M6ZNm8bNN9+M0Whk8uTJAEyePJlXXnmFhQsXcuONN/L8888TCAT485//jMXS98dt//jB/j+QP9vqM378eFatWjWghbqpqYl7772XG264AY/Hsztub4DTTz+d2bNn85vf/Iauri5OP/303V4H+XwyGAx4vd7des1MJjPo2O1NJziLxWJEo1EikQjhcJhQKEQwGKS3t5eenh7S6TSBZIRAMsLK3g0DyjcZjFS5ixnj7VvTeqy/kjpfBXbzwNmubWYL10w6i1Q2QzAZ3eX7CiQidMWDlDp8+O3u7TrHZ3NhHeTLgEwuy7pQJ2uC7awNbqQltJHWSBexdHKX6pjL58l9Gph3lclkwu12FwKz2+0mn89TV1dHRUUFfr+f4uJi/H4/RUVFOByOXb6miIiIyO6igP0ZkydPJplM8pe//IVHHnmksO/WW2+lsrKSAw44gLVr1xKPx1mwYAGTJk1i9erVzJo1C+ib/An6uiQCLFu2jKKiImbMmMFFF13EXXfdxcUXX0woFOKuu+4ikUhQV1c3Ivfq8Xg48cQTeeCBBzj++ON3e2AS2RFmsxm3212YdX9H5fN5gsEgGzdupL29nQ0bNtDa2sq6detoaWkhEomwPtzF+nAXb7V+DIABA7XeUhr81Ywr6tuq3CUYDQasJjNlzl3vKl/m9DGemp06tzcRZmVPKyt6W1nVu4G1wY5BQ7DBYKC8vJyqqioqKioKs3X7fD48Hk+hBdhms2E2mwcs07VpL4XPLtPV32vhs8t0mUwmjEYjVqsVi8WC3W7H4XAUJiPb9AvIWCzGJ598QmNjY+H3poiIiMjnlQL2Z1itVo4++mjefPNNDjnkEKAvYOdyOaZNmwbAySefzMcff8zs2bOJRCLU1NRw3nnn8fLLL7NkyRIuuOACJkyYwHHHHcf111/PDTfcwIwZM3j44Ye57777OOecc3A6nUyePJmbb755RNeDPffcc3nuuec499xzR6wOIruDwWDA7/fj9/uZMGHCgNfy+TxdXV2sXr2aVatWsWLFClauXElXVxctoU5aQp38reUjAJwWWyFwN/iraPBX4bENfzDM5nKsC3eysreVlT19W2c8uNlxHo+H8ePHM378eMaOHUtdXR2jRo3SutMiIiIiu4EhvyMz6she56mnnmLu3Lm8/PLLu7zO7JIlS4C+seuyZ1Er4c7p7u7mk08+YdmyZSxdupSVK1eSTG7e3brU4aXOV8lobxm13jKq3SWUO/3bNaZ7MIlMig2RbtaHu2gOdtAcaKc52EHqM2O+jUYjY8eO5YADDqCxsZHGxkaqq6t3aWKy3U2fTdkT6XMpeyJ9LmVPtK98Lnck56gFex/18ccfs3r1an72s59x8cUX73K4FtkblZSUcOyxx3LssccCfePAV69ezbJlywrb+vXr6YqH6IqHeK/9X7OLGzBQ7PBQ4vDit7nw2pw4zXZsJjNmk4l8HrL5HMlM38za4VSMnkSYrliIQDIyaH2cTmchSB944IHsv//+haUCRURERGTkKWDvwQ4//PDCzMmDKSkp4aWXXtqpsj/88EPuuecepkyZwr//+7/vbBVF9ilms5kJEyYwYcIEzjzzTACi0SirVq1i1apVrF69mubmZtavX088Hqc7HqI7Htqpa/l8Purq6qivr2fcuHHst99+jBo1Sl+GiYiIiOzBFLD3YE899dRWl+0xmXZ+Pd+LLrqIiy66aKfPF5E+LpeLgw8+mIMPPriwL5/P09PTQ0dHB52dnfT09BAMBolGoySTSTKZvq7eZrMZu92Oy+XC5/NRUlJCeXk51dXVI7KygIiIiIjsGgXsPdjo0aNHugoishMMBgMlJSWUlJSMdFVEREREZDdSX0MRERERERGRIaCALSIiIiIiIjIEFLBFREREREREhoACtoiIiIiIiMgQUMAWERERERERGQIK2CIiIiIiIiJDQAFbREREREREZAgoYIuIiIiIiIgMAQVsERERERERkSFgHukKiIjI50sikaCzs5Pu7m56e3sJh8PEYjHS6TQAFosFp9OJ3++nvLycUaNG4Xa7R7jWIiIiIsNPAVtERDaTzWZpa2tj7dq1rFu3jvXr19Pa2kpbWxs9PT07XF5FRQX7778/Bx98MJMmTaKqqmoYai0iIiIyshSwRUT2Yfl8ns7OTlavXs2aNWtobm4uhOr+FunB2E0Wih0evDYnHqsDu9mKxdj3n5RMLkssnSSYjNIZCxJIRuno6KCjo4PXXnsNgDFjxvClL32Jo446arfcp4iIiMjuoIAtIrKPiEajNDc309zczJo1awqhOhqNDnq81WSmyl1MjbuEKncxVe4iyl1+yp0+XBY7BoNh+66bStAc3MiKnlY+7lrLip5W1q5dy9q1a3nssceoqanhtNNO49/+7d/wer1DecsiIiIiu5UC9jbst99+zJo1i3PPPXfYrjF37lz+9Kc/8corr2zz2Keeeopbb72V5cuX7/T1hqIMEdkzpVIpOjs7aWtrY8OGDbS2ttLS0kJLSwudnZ2DnmMyGKlyF1PrLeX/t3ff4VFVif/H31OTTHojCSG0EAiEIghiUHclWMEu7tcVXHtlbeCKICKoCCuKsqIiLuqyrOuuiO5awMaighhFkCKhSEIP6X0yk8nM/f0RMz8iAYIMhPJ5Pc99ZubWc4cj8plz7jkpEfG0C4+jXXgscY5IzC0M0QcTag8mI749GfHtubJbJjV1LlYXbOWbPZtYV7iN3bt3M2fOHF5/7XUGnTWICy+8kL59+2KxWI742iIiIiLHkgL2KWjo0KGcc845rV0MkZOa2+2mpKSEkpISysvLqaiooLq6GqfTicvloq6uDq/Xi8/nA8BsNmM2m7FarU0Wi8WCxWLBZDJhGAY+n4/6+nrq6uqora2lpqaGyspKysrKKCkpoaqq6qDlirA7SAqLpm1YbMNreCwJoVFYzfuH2ZLayiP6DiKDQrFb9v/fTKg9mLNTMjg7JYMKdw0rdm/kyx3r2VFZxBdffMEXX3xBbGwsgwcPZvDgwXTp0qXFreUiIiIirUkB+xQUHBxMcHBwaxdD5ITm9XopLCz0txTv3buX/Px8/7PGFRUVrV3EZlXWOaksdbKpdPdRv5bNbOX0xFRuO+0igqy2ZveJDArlos6nc1Hn09lWUcAXO9azYlcOJSUlLFiwgAULFpCUlMSZZ57JwIED6dmzJ3a7/aiXXUREROTXOCUD9lVXXUW/fv2YMGECAJ999hmjRo1i5syZXHTRRQBMmzaNjRs3ApCXl8eNN97I999/T1RUFCNHjuSOO+7wn+9///sfL7zwAj/99BMJCQkMGzaMu+++2/+PwKqqKp5++mk+/fRTPB4PGRkZ/OlPf6JXr17Nlq+mpoYZM2bw8ccfU1NTQ0ZGBg8//DA9e/b077Nw4UJeeuklCgoKSEtL47HHHqNPnz4A7Nmzh+nTp/PNN99QWVlJbGwsl156KWPGjMFsNu/XRbxbt26MGjWKd999F4/Hw/z58+nYsWNgv3SRE4hhGDidTkpLSykuLqaoqIiioqImIbqoqMjf+nwgNrOFqKAwIoJCCLc7cNiCCLbaCbLasJstWMwWzJgwMDAAr8+Hz/BR7/NS7/PiNRo++wzwGQYmwGIyYTabsVusBFlsrC7IZUdl812/W5vHV883ezbhNXzc0ffiA+4XZLFhMpnoGJlAx14JXNfjt/xQmMeK3Tms3ptLfn4+7777Lu+++y42m4309HS6d+9Oly5d6NSpE23btsVmaz7Ai4iIiBxLp2TAHjx4MB999JH/89dff43JZCI7O9sfsJcuXcqIESNYsWIF8+fP57HHHuOJJ57g/fffZ8aMGfTu3ZvMzEy+/PJL7r//fsaNG8egQYPYsWMHTzzxBHl5ecycORPDMLjtttsIDg7mlVdeISwsjP/85z/8/ve/59///jc9evTYr3z3338/27ZtY+rUqbRv357Zs2dz88038+mnn/r3+fe//82MGTMIDg5m4sSJ3H///fzvf/8D4K677iI+Pp7XX3+d0NBQPv/8c6ZOnUrfvn0577zzmv1O3nzzTV599VW8Xq/CtZwUdu/ezYoVK5qsMwzD/+pyuaitrcXpdFJTU0N1dTVVVVVUVFRQXl5OXV3dEZfB4/NSVFtBUe3x2Zp9KBdffDHDhw9nwYIFLF682P/9Ha7v8rfwXf6WA27vGpPMo2dd6+8GbrNYGZCUxoCkNFz1dawt3Mbqgq2sL9pOmauadevWsW7dOv/xZrOZuLg44uPjiYmJITIyktjYWIYOHUp0dPSvKrOIiIjIr3FKBuysrCxmzZpFfn4+SUlJLF++nCFDhpCdnQ3Ajh07yMvLIysriyeffJLrrruOK664AoC7776b1157jfXr15OZmcns2bP53e9+x7XXXgtA+/btmTx5MjfccAO7du1i586d/PDDD3zzzTdERUUBMHr0aFatWsW8efOYNm1ak7Ll5uby5ZdfMnfuXM4++2wAJk2aREREBGVlZf79pkyZQmpqKgC33HILf/zjHykpKSE0NJTLL7+ciy++2D/P7I033sirr77Kpk2bDhiwL7/88gO2qIucaCorK7ntttuor68PyPnahcfRMbINOSU7Kak9+DPOJ5Phw4eTkpLC8OHDWbRoUauUIdhq54y2XTmjbVcMw2BvTRmbS3fzU1k+3+3ZTLXHhc/no7CwkMLCwibH1tbWcuutt7ZKuUVEROTUdEoG7IyMDBISEli+fDmDBg1i165dTJ8+nWuuuYaioiKWLl1K9+7dSU5OBtivRTciIgK32w3Ahg0bWLt2LQsWLPBvb2zl2bp1K1u2bMEwDAYPHtzkHHV1df5z7Gvz5s0AnHbaaf51QUFBjBs3DoBVq1btV6bGaW1cLhexsbGMHDmSxYsXs3btWrZv386mTZsoLi4+aHfWDh06HHCbyInG4XCQnp7O+vXrA3K+XVXF5FeXEhMcRnpsO+JCIol3RBDviCTeEUkbRyQOWzCtMQ7XK6sXHbR1+EgsWLDA34LdOMjarzEgKa1FXcQPps5bz+bS3eQU72RT6S62lRfg8h54nm6AxMTEX1VeERERkV/rlAzY0NBNfPny5QD06tWL3r17k5CQQHZ2Nl988QVDhgzx79vcVDGN/9D0+XzceuutXHnllfvtEx8fz6ZNmwgLC2PhwoX7bW9uoB6rtWV/JAcqk9PpZOTIkbhcLi666CKuvPJKevfuzYgRIw56Pg16JicTq9XKjBkzmqwzDMM/+rbL5fIvB+oiXlZW5n8Gu6ysDK/PR1FtJUW1lcCu/a7psAYRH9oQtmNDIogLiSAmJIyo4DAig0IJt4cQYrUHfDTsO/sOxWJazPd7t+LxBabFvtHixYtZtGjRrw7XLRnk7GBqPC6+z/+JlXu38GPRdtzepvcXFBRESkoKKSkpJCUl7ddFPCEh4bCvKSIiInIkTtmAnZWVxdixYzGbzWRmZgKQmZnJkiVLyM7OZsyYMS06T1paGnl5eU1agLOzs5k3bx6TJk2ia9euVFdX4/F46NKli3+fCRMmkJ6ezsiRI5ucr7Hb97p16/zlqq+v54ILLuChhx46ZHmWLVvGjz/+yPLly4mLiwOgvLyckpKSX936JHIyMJlM2Gw2bDYboaGhh3Ws1+ulpKSEgoIC9u7d618aRxAvLS3FWe9me0Uh2ysKD3ges8nUMMiZxYbNbMVqNvvnmfYZBj7DwGt4qff58Pp+fjV8+IzGYdAazmE1WbBZLARZ7ITaggi1B9MvsTNBFjtRwaHEBIcRExJObEgEDlvQr/7Oyl3VFDsriXNEEBUcdtjHH2iaroOp93lZXZDLsp0/sqYwj3qf178tJiaGfv360atXL7p3705KSormyhYREZHjyikbsDMzM3G73XzyySfMnTvXv27cuHEkJiY2O/hYc2677Tbuv/9+Zs2axbBhw9i7dy+PPPII7dq1Iz4+nnPOOYfu3bvzwAMP8Mgjj5CUlMSbb77JwoUL/dfdV6dOnbjggguYPHkykyZNIiEhgTlz5uB2uznjjDNYunTpQcvT2CXyv//9LxdeeCH5+fnMmDEDj8cTkEGbRE5FFouFNm3a0KZNm2bHKnC5XPtN09U4+nhpaSllZWW43W58hoHT48bp2f/xkMNRRz3UAzgPuW+EPYTEsBiSw2NpFx7XsETEEhl06B8Z4h2RpMUkH1FZW2pnZRFLd6xj+a4cqutq/es7dOjAOeecw1lnnUXnzp01H7aIiIgc107ZgG232xk0aBDLli3zP++cmZmJz+cjKyurxee56KKLeO6553jllVeYPXs2UVFRZGVl8eCDDwIN/zB/7bXXmD59Ovfffz+1tbWkpqYya9Ysfwv1Lz311FM8/fTT3HfffdTV1dGnTx/mzp1LTEzMIcvTu3dvxo0bxxtvvMHzzz9PQkICQ4cOJSkpqcmouyISOMHBwXTs2PGgI/C7XC5qamqoqanB5XLh8Xjwer14vQ0ttCaTCavVisViwWq1YrVasdlsWCwWzGazP1g2HuN2u3G5XP6u7eXl5ZSWllJUVERhYSF79+6lrKyMyrpaKkt3s/kX815HBjlICY8nJSKO9pFtSImIo21Y7GG3OB+JCncN3+zexFc7f2RbRYF/fUxMDEOGDGHIkCF07tz5mJVHRERE5EiZDPUblgBpDPAajfz443Q6ycnJoXv37jgcjtYujhwjTqfTP5vBjh072LZtG9u3byc/P7/ZR0bMJhOJodG0i2ho6U4OjyU5LJaE0ChsAQrexc4KfijIY2X+FjaU7MD3czmsVitnnnkmF154If3791fXb2lV+jtTjkeql3I8OlXq5eHknFO2BVtE5GTncDjo2rUrXbt2bbK+traWbdu2sW3bNnJzc8nLyyMvL4+qqir2VJeyp7qUb9ns399sMhHviCQxNJqE0GjahEYSFxJB9M8DuIXZg5uMBG4YBm6vhwq3kyJnBburSthWUcDm0t0U1JQ3KUtaWhrp6elcc801GvVbRERETngK2CIip5iQkBC6d+9O9+7d/esMw6C0tJS8vDx/S/e2bdvYuXMnTqeTgpryn8NxXrPnNJtM2MwNrc4en9ffMr3ffmYz3bt3JzMzk7PPPpuoqChycnL80w2KiIiInMgUsEVEBJPJRGxsLLGxsfTv39+/vjF479y5k927d5Ofn09+fj6FhYWUlJRQXl5OfX09PsPYbxotu91OmzZtaNeuHZ07d6ZHjx5kZGQ0GcXd6Tz0QG0iIiIiJwoFbBEROaB9g3fjgJD7MgzDP59440wFNpsNh8NBSEiIRv0WERGRU4oCtoiI/Gomk4mQkBBCQkJauygiIiIirc7c2gUQERERERERORkoYIuIiIiIiIgEgAK2iIiIiIiISAAoYIuIiIiIiIgEgAK2iIiIiIiISAAoYIuIiIiIiIgEgAK2iIiIiIiISAAoYIuIiIiIiIgEgAK2iIiIiIiISABYW7sAIiKnorq6OkpLSykvL6eyspKqqipqa2txu934fD4Mw8BisWC323E4HISHhxMVFUVcXBxRUVGYzfp9VEREROR4o4AtIhJgdXV1lJSUUFxcTFFREUVFRRQWFvrfFxcXU1FR8avPb7PZSEpKIjk5mfbt29OxY0dSU1NJSUnBYrEE8E5ERERE5HAoYIuIHITX66WmpsbfylxVVbXf+4qKCsrLyykvL6e0tJSqqqoWndtqthAZ5CDMHkyoLZgQqw27xYbF1NA67TN81Hnrqa2vo9rjotLtpNzlxOPxsGPHDnbs2MGKFSv85wsKCiI1NZW0tDS6detGeno6ycnJmEymo/LdiIiIiEhTCtjHSLdu3Zg6dSpXXXUVDz/8MLt37+bvf/97s/vu2rWLIUOGMG/ePAYOHHhMyrdnzx5Wr17NsGHDjsn1RFqb1+ulpKTE37pcXFxMSUkJpaWllJWVUV5eTllZGVVVVRiGcdjnt5ktRAeHERMSRmxIuH+JCQknNjiM6JAwwmzBhx1+631eSmurKagpJ7+6jN1VJeyoLGZHZTFut5sNGzawYcMG//7h4eH+sJ2enk7Xrl2Jioo67PsRERERkUNTwD5Gli1bRnh4eGsX44DGjh1LcnKyAracNOrq6iguLqagoIDCwkIKCgrYu3ev/31RURE+n6/F5wuy2Ai1BRFiC8JhtRNqC8JhCybUHkSoLZgwWxBh9hAi7CFEBjkIsQVxsOzsqq/DVV93WPcUGRSK3WKlTWgkbUIj6dWmg3+bzzDYW1NGXnkhueV7yS0rYFtFIVVVVaxcuZKVK1f6901ISCAtLc2/pKamEh0dfVhlEREREZH9KWAfI/Hx8a1dBJETntfrpbq6moqKCqqqqpq0NJeWllJaWkpxcTHFxcWUlZUd8nwWk9nfwhwdHEZ0cBhRwaFEBTkIsdr5NG8NOSW78Pi8uL0e3F4PuKqPwZ02z2a2cHpiKreddj5BVluTbWaTibZhMbQNi+GsdulAQ2v3jspitpbtZWvZXnLL97KnuoyCggIKCgpYtmyZ//ioqCg6depEhw4daN++PcnJySQnJxMXF6cB1URERERaSAH7CFx11VX069ePCRMmAPDZZ58xatQoZs6cyUUXXQTAtGnT2LhxIytWrPB3Ef+lzZs38+STT7J27Vri4+O5/fbbD7ssxcXFPP3003zxxRfU19fTv39/xo8fT4cOHfD5fLz66qssXLiQ3bt3Y7fb6devHxMnTqR9+/Zcf/31fPvttwB8++23LFmy5Ai+FZHmeb1eamtrcTqdTZaamhpqamqoqKigtrbW/9npdFJdXe1/bXx/OKwmM7GOCOJCwogNiSA2JJy4kHBiHQ3vo4IcmEzNh8dXVn/M2qLtgbj1gPH4vHyzZzNew8cdfS9s0TGNofuclB4A1HrcbKsoYntlIdvLi9hRVUxBTcPz46tXr2b16tVNjrfZbLRp04Y2bdoQFxfnH8U8KiqKiIgIwsPDCQ0NJSQkhODgYIKCgjTQmoiIiJyyFLCPwODBg/noo4/8n7/++mtMJhPZ2dn+gL106VJGjBjRZCCifVVVVXHjjTfSt29f3n77bQoLC3n00UcPqxz19fXcfPPNWK1WXnrpJaKiopg2bRq33norixcv5u9//ztz587lz3/+M127dmXHjh08+uijTJs2jZdeeokXXniBO++8k8TERCZOnPjrvxA56Xi9Xj7//HO+/PLL/Z4Vbnwued/1hmHg8Xhwu924XC5qa2v9i9vtPqZlB6g3fBTUlFNQU37Mr91SF198McOHD2fBggUsXry4Rc97f5f/E9/l/xSwMnSJTmJkxm/YXV3K7qoS9lSXkV9dRrGzEo/Hw+7du9m9e3eLz2exWLDZbNhsNsxmMxaLpcmryWTyv0JDd/6QkBCsVisWi6XJ/haLBavVislk2q/O7ftdNbf9ly655JJjNq6FiIiInJoUsI9AVlYWs2bNIj8/n6SkJJYvX86QIUPIzs4GYMeOHeTl5ZGVlcWTTz7Z7Dk+/PBDamtrmTZtGuHh4aSlpTF+/HhGjRrV4nKsWLGCTZs2sXjxYjp16gTAk08+yRtvvEFFRQXt27fnz3/+M4MHDwYgOTmZiy66iMWLFwMNXUNtNhvBwcHExMQcyVciJ5l169bxzDPPtHYxTmrDhw8nJSWF4cOHs2jRolYpg9lkIjU6kS4xSU3We30+SmqrKK6tpNhZyfbKInLLCthZWYzL6zng+bxeL16vF5fLdbSLfliys7OZO3cuKSkprV0UEREROUkpYB+BjIwMEhISWL58OYMGDWLXrl1Mnz6da665hqKiIpYuXUr37t1JTk4+4Dk2b95Mx44dmwyA1rdv38Mqx+bNm4mMjPSHa2gYxGjs2LFAww8Ba9asYebMmeTl5ZGXl8dPP/1EQkLCYd6xnGo6d+5Mr169WLduXatc32oy47AF4bAFNQwqZg8mzNowsFi4PeTnQcWCiQwKJSI4hCh7KFZLYP5ae2X1xwFtJT6QBQsW+Fuw922FPZgBSV1a3EW8JYIsDS3E9T4vBTXl7K4qZW9NGQU1FRTWVFBcW0lpbTVeo+WDwh2PzjrrLP29JyIiIkeVAvYRGjx4MMuXLwegV69e9O7dm4SEBLKzs/niiy8YMmTIQY83mUz7jWRstR7eH8uh9p8zZw4vvvgiV155JZmZmdx44418/vnnfPjhh4d1HTn1RERE8Oyzzx5yP5/PR11dHW6329893O12N+kivu/z143PWjc+g73vs9iN+0BDF+/Kuloq62pbXOZwewjRwaFNpsaKc0QQHxJBnCOCyCBHi6bGurPvhVhMZr7fuxWPz9vi6x+uxYsXs2jRohaF64MNcna4qty1bKsoZFtFIdsri9hVWUJ+ddlBQ7TZbCYqKoro6GgiIyOJiIggLCyM0NBQHA6H/xlsu92O3W73d+9u7PK9b/fwxsXtdrN9+3ZSU1MJCQlptnv4L1+tVqsGXhMREZHjkgL2EcrKymLs2LGYzWYyMzMByMzMZMmSJWRnZzNmzJiDHp+ens6CBQsoLS31d89ev379YZWhS5cuVFRUsH37djp0aJi2p7S0lIsvvphXXnmF2bNnM2rUqCaDp82dO/dXze0r0hyz2UxwcDDBwcEBOZ/P56O2tpaqqipqamqorq6mqqrKv1RWVlJRUUFFRYV/JPHS0lI8Hg9VdbVU1dWyo7K42XPbzBZiQyKIc4QT9/NrTHAYMf6RxEMJsdoJstr4Y/+h1HnrqXDXBOS+mlPuqqHYWUmcI4Ko4NCD7ts4TdfhctXXkVde2DCaePle8soLKK6tanZfh8NBSkoK7dq1Izk5maSkJBITE4mPjyc2NjbgA5g5nU68Xi+dO3fG4XAE9NwiIiIix5oC9hHKzMzE7XbzySefMHfuXP+6cePGkZiYSI8ePQ56/LBhw3j55ZcZM2YMY8eOpbKykilTphx2GXr27MnYsWMZP348ISEhPP3008TExJCRkeF/PjwrKwuz2cx//vMfPvnkE+Li4vznCA0NZffu3ezdu5fExMTD/yJEAshsNhMaGkpo6MED574Mw6CqqoqSkhKKioooKiqisLDQP+91QUEBJSUleHxe9taUsbfmwNN42cwWIoIcDYs9hDB7cMNiCyb0F6/hP28Psdpb1DL+S/GOSNJi2h72cQfi9fnYXVXC1vIC//Rcu6pKMNj/B7W2bduSlpZG586d6dy5M506dSI+Pv5X3YeIiIiIKGAfMbvdzqBBg1i2bBmnnXYa0BB4fT4fWVlZhzze4XDwt7/9jSeeeILf//73REZGcu+99zJu3LgWl8FsNvPSSy8xdepUbrrpJkwmE2eeeSZ//etfsdlsPP300zz++ONcffXVhIaG0qdPHyZPnsykSZPYs2cPbdu25dprr2Xs2LFcdtllrFixQtPsyAnHZDIRERFBREREk/EI9lVfX09RUZE/cDe+Ly4upqioiNLSUqqrq/H4vJTUVlFygFbe5jSG8sggB9HBoUQFhxHz89zacY6GruoxwWHYAvSMODS0TO+uKmVnZTHbK4vYVt7Q3bvOW7/fvnFxcaSnp5Oenk7Xrl1JS0s7rB8wREREROTQTIb6CUuANA6E1atXr1YuifyS0+kkJyeH7t27qxvuIbjdbkpLSykvb5gburE7emPX9OrqaiorK/2fKysrqaura/H5I+wOYkLC/N3RI4MchNtDcNiC/F3TzSYTJkx4DR8ebz3O+jpq6lxUuJ2Uuqoodlaxt6acMld1s9dwOBykpaWRnp5Ot27d6N69O7GxsYH6igJKdVOOR6qXcjxSvZTj0alSLw8n56gFW0RkH0FBQSQlJZGUlHTonX/mcrn8gby0tJTS0lKKi4v9LeONi9vtprLOSWWdk20VhQEpb3R0NB07diQ1NZXU1FTS0tJo166dBgETERERaQUK2Me5yy67jJ07dx50n+zsbOx2+zEqkYj8UnBwMImJiQcdv6DxGfHGZ8NLSkooLS2lrKzM3zJeW1uL2+3G6/Xi8/mw2WzYbDZCQ0MJCwsjKiqKuLg42rRpQ9u2bUlOTiYiIuIY3qmIiIiIHIwC9nFu9uzZeDyeg+5jsx3ZdD0icvTt+4x4ampqaxdHRERERI4CBezjXNu2gRtdWERERERERI4ePaQnIiIiIiIiEgAK2CIiIiIiIiIBoIAtIiIiIiIiEgAK2CIiIiIiIiIBoIAtIiIiIiIiEgAK2CIiIiIiIiIBoIAtIiIiIiIiEgAK2CIiIiIiIiIBoIAtIiIiIiIiEgDW1tGa60EAAD7XSURBVC6AiMjxwOl0UlZWRlVVFS6Xi/r6egCsVishISGEhYURFRWFw+HAZDK1cmlFRERE5HikgC0ip5TKyko2b97MTz/9RF5eHjt37mTPnj04nc4WHR8cHEybNm1ISkqibdu2tG/fng4dOtCxY0fCwsKOculFRERE5HimgC0iJ7WSkhJ++OEH1q5dy/r169m5c+cB9w222Ai1BxNstWE1mzEMqPd5cXs9VNe5cXs9uFwuduzYwY4dO/Y7Pj4+ns6dO9OpUyc6d+5M586dSU5OxmKxHM1bFBEREZHjhAK2iJxUnE4na9asYfXq1axevZrt27fvt09CaCSdotrQPiKW5PAYEkOjiHWEEWy1H/Tc7noPZa4aip1VFNRUkF9Txp6qMnZXlVJSW01RURFFRUVkZ2f7j7HZbP5W7vbt29OuXTvatWtHUlISISEhAb9/EREREWk9J1XA7tatG1OnTuWqq676Vcfv2rWLIUOGMG/ePAYOHBjg0gVGIMp4ItynSEt5PB42b97M6tWrWbVqFTk5OXi9Xv92E9AhMp4eccl0i02ma0wi4UG/LtgGWW0khkWRGBZFT1KabKvxuNlVWcKOimJ2VBazo7KEXZUluD0etm7dytatW/c7X2RkJAkJCcTHxxMXF0dMTAxRUVH+JSIigvDwcEJDQ9UKLiIiInICOKkC9rJlywgPD2/tYhz3kpKSWLZsGZGRka1dFJHD5nQ62bRpEz/++CPr1q1jw4YNuN3uJvu0cUTQs00KPeNT6BHXjjB78EHPWeetp8LdsmewDyYmJIyYkDBOS+wIgM8wKK2tJr+6jL3V5RTWVFJYU0lxbSXO+joqKiqoqKhg8+bNhzy3w+EgPDyc8PBwwsLCCA8PJyIiwr9ERkYSFRVFdHS0P6ArlIuIiIgcWydVwI6Pj2/tIpwQLBaLvis57hmGQWlpKdu2bSMvL4/c3Fy2bNnCjh07MAyjyb7h9mC6x7WjZ3w7MuJTSAht2Y9H7noPr/6whO/zc/H4vIc+4BizmMx4DR/Q8MOC0+mkoKCgRceaTCYiIyOJiYlpskRHR/uXqKgoIiMjCQ8PVxgXERERCYDjPmBfddVV9OvXjwkTJgDw2WefMWrUKGbOnMlFF10EwLRp09i4cSMrVqzwdxF/+OGHAYiOjua9997D6XRy5pln8vjjj5OQkADA5s2befLJJ1m7di3x8fHcfvvtTa5dUlLC5MmTyc7Opra2lh49ejB69GjOOOMMAFwuF7Nnz+b999+nsLCQzp07c/fdd3PhhRcCsHDhQl5++WV++9vf8u677zJw4EBeeumlQ96zYRjMmzePN998k/z8fFJSUrjrrru45JJL/PusWbOGZ555hpycHBISErj77ru5+uqrAairq+O5557j448/prCwEIfDQWZmJo899hgxMTH7dRG//vrr6dixIxs3biQvL4+JEydy2WWXHckfm8hB+Xw+ampqqKyspLy8nNLSUoqLiykqKqKgoID8/PyDjuwdExxGanQCabFJdItJpG1YTJOps1z1nhaV45VVn/Fd/v5dt48XXsNH/6TOXJdxFk5PHU6Pm2qPi5q6Opz1LqrrXNTUuamqc1FdV0tVnYtKdy2VdbUYhkF5eTnl5eXk5uYe8loOh4OwsDAcDgcOh4OgoCCCg4Ox2Wz+xWKxYDabAZp8340/ePh8Pv/nxvcWiwWTyYTZbPYvFosFq9WK1WrFZDJRWlrKjh07CA8PJygoyH/txiUkJISQkBCCg4OxWo/7/22JiIjIKey4/5fK4MGD+eijj/yfv/76a0wmE9nZ2f6AvXTpUkaMGMGKFSuaHPvBBx9w6aWXMn/+fEpKShg9ejTPP/88U6dOpaqqihtvvJG+ffvy9ttvU1hYyKOPPtrk+EmTJlFXV8f8+fOx2+3Mnj2bu+++my+//BKHw8Ho0aPZsGEDkyZNokOHDnzwwQfcd999zJo1i/POOw+AHTt2UFhYyHvvvYfL5WrRPf/1r3/lxRdf5JFHHmHgwIF88cUXPPTQQ8TFxdGuXTsA/va3v/HEE0/QpUsXXnvtNSZMmED//v3p0KEDTz/9NP/73/+YNm0aycnJbNq0iXHjxvHyyy/zyCOPNHvNt99+m+nTp9OtWze1bsthqaur46233mLBggUA+7UuN8fj8fgD2MGYMJEQGkG78BjyKoooqa0GoNRVTWl+dauF44svvpjhw4ezYMECFi9e3KJ7/rVW5ueyMv/QAflINbaQH++sVushW9ubm6f8rLPO4tZbbyU2NvZoFU1ERETk+A/YWVlZzJo1i/z8fJKSkli+fDlDhgzxj9K7Y8cO8vLyyMrK4sknn2xybHh4OI8//jg2m43U1FSGDh3KF198AcCHH35IbW0t06ZNIzw8nLS0NMaPH8+oUaP8x+/YsYOuXbuSkpJCcHAwjzzyCJdeeikWi4WtW7fy+eefM3v2bM4991wA7rnnHjZu3Mjs2bP9ARvg7rvvJiWl6YBIB2IYBn/729/4wx/+wDXXXAPA9ddfj8vlor6+3r/fqFGjyMrKAuCBBx7gn//8Jz/++CMdOnSgV69eXHTRRfTv3x+A5ORkBg0adNDnPLt3786ll17aojKK7Gvt2rXMnz8/IOeymMx0jU2iZ3wKveJTSImIw2axYBgGTyxb6A/YrW348OGkpKQwfPhwFi1a1NrFOa5ZzRYi7SH4MPAZBvU+L3Xe+l/dJb++vr7J34Ut9fnnn5OcnMzIkSN/1XVFREREWuK4D9gZGRkkJCSwfPlyBg0axK5du5g+fTrXXHMNRUVFLF26lO7du5OcnLzfse3bt8dms/k/h4eH4/E0dB3dvHkzHTt2bDIoWt++fZsc/8c//pE//elPfPzxx5x++umcffbZXHLJJQQFBbFp0yYATj/99CbHDBgwgBkzZjRZ17Fjxxbfb1lZGUVFRfTp06fJ+ttuuw1oGAEcoFOnTv5tjYOVNQ70dPnll/P111/zzDPPsG3bNnJzc8nLy/MH7uZ06NChxWUU2VePHj0477zz+Oyzz474XF7DR07xbnKKd/N2zjfEhoTRNjyGlPAYBnfowYieZ9M2LAqTyRyAkv/6LuILFizwt2CbTKaj2oI9ICmVO/qdd+gdf8EwDFz1dVS4ayl311DhclJZV9vw6q6lss5Jpbuhm3l1XS11R+kZ9HqflxJX6/8w0r17d/+PoSIiIiJHy3EfsKGhm/jy5csB6NWrF7179yYhIYHs7Gy++OILhgwZ0uxxdvuB57Q1mUz7dVH95bN9559/Pl999RVfffUVX3/9Na+//jqzZs3i3//+9wHPaxjGfucJDj74CMb72vcHgYNpfA7yl9cGmDhxIh9//DFXXHEFWVlZjBo1irlz5x50cKTDKaPIvhwOBw899BAPPfTQIff1+XzU1tZSXV1NVVUVFRUVzT6DvXfvXqqqqiipraaktpp1hTv85wiy2Ogc3YYu0Yl0i02ia0wSDlvQryr7nf3Ow/KD+bAHOVu8eDGLFi06quHaZrZwelJnbjstiyCrjXqfl5o6NzX+57BdPz973fBaVVdLpbuWCreTSreTCnctdd7Db+ltfAa78flnu92OzWbzPzNtNpsxmUz+btiGYez3DLbP52vyvTTu3/j8tdlsxmq1YrPZMJlMVFVVkZiYSFhYGHa7fb/nr5t7DQoK0vPYIiIictw5If51kpWVxdixYzGbzWRmZgKQmZnJkiVLyM7OZsyYMYd9zvT0dBYsWEBpaSkxMTEArF+/3r+9rq6OZ599lssvv5yhQ4cydOhQXC4XZ511FkuXLvV3z/7+++8ZPHiw/7iVK1fSpUuXX32v4eHhtGnThnXr1jX54eDee+8lKSmJ66+//qDHl5WV8a9//YvnnnuOoUOH+tfn5ubicDh+dblEAsFsNhMaGkpoaKh/sMEDqaysZOfOnWzfvp28vDz/XNK1tbX+Vu73tzQ8p90xMo4e8e3oGZ9C15gkgqwt+6EqyGrjj/0vPOxpuspdNRQ7q4hzhBMVHNri436p1lNHWW01ZT+H4kp37c8tyi5cXg97qkr50+f/oMbjwv0rwjI0BOZ9RxDfdyTxxlHEIyMj/QOcHevRxJ1OJzk5OXTv3l1/R4mIiMgJ74QI2JmZmbjdbj755BPmzp3rXzdu3DgSExPp0aPHYZ9z2LBhvPzyy4wZM4axY8dSWVnJlClT/Nvtdjvr1q1j5cqVPProo8TFxfHll1/idDrp27cvqampDB48mMmTJ2MymejQoQMffvghn3/+Oc8///wR3e/tt9/OjBkz6NSpE3379mXp0qV8/vnnvP7664c8tnF+3M8//5yMjAxcLhfz58/nxx9/3K/bucjxLCIigoyMDDIyMvzrvF4vO3bsYOPGjWzYsIF169axZ88e8iqKyKso4sOfVmMzW0iL+fk57jYpdIiMx9zMoFf7slusxDsiWly2eEcEaTFJLdrX4/WSX13GrqpS8qvLyK8up6C6nAJnJU6P+9An2IfJZCI0NNQ/H/a+c2E3zoPdOBd2Y5hW7xQRERGRY+eECNh2u51BgwaxbNkyTjvtNKAhYPt8Pn9L8uFyOBz+kbh///vfExkZyb333su4ceP8+zz33HNMnTqVu+66i6qqKjp37swzzzzjf5Z5xowZzJgxg0ceeYTKykq6du3KCy+8wPnnn39E9zty5EhcLhczZ86kqKiIjh078txzz3HGGWf4n8E+EJvNxsyZM5k2bRqXXnopkZGRDBw4kNGjR/PKK69QW1t7RGUTaU0Wi4VOnTrRqVMnLr74YgCKi4v54Ycf+OGHH1i1ahXFxcVsKN7FhuJd/DtnBWH2YLrHJtMjLpn0uLYkh8ceMnD/GoZhUOqqYUdFMTsri9lRWcKOimL21pTjO0g38oiICOLj44mLiyMmJsYfkqOiopqE6LCwMEJDQ5t9PEREREREjg8m42iOziOnlHXr1gENz8nL8eVU6YZrGAY7d+5k1apVrFq1irVr1+439ZTDaqdzdAKdouJpHxFHcngMCaGRLe5WXu/zUlJbTWFNBfnVZeyuKmN3VSm7KkuoPkCLdFhYGB06dCAlJYWUlBSSk5NJSkoiMTGRkJCQI77vE9mpUjflxKJ6Kccj1Us5Hp0q9fJwcs4J0YItItISJpOJ9u3b0759e6644grq6+vZtGkTa9asYc2aNeTk5OB0uVhftJP1RTubHBtuDyYqOJRQWxBBVhs2swXDAK/hxVXvobrOReXPA4kdiNlsJiUlhc6dO9O5c2c6depE586diY2NbXZuZhERERE5uShgH0OvvvoqL7300kH3GT9+vH/+axE5Mlar1f8c93XXXUd9fT15eXls2rSJrVu3kpeXx86dO6mqqvp5JG5Xi85rt9tJSkqibdu2tG/fng4dOtCxY0fat29/0NkLREREROTkpoB9DP3ud7/jggsuOOg+sbGxx6g0Iqceq9VKWloaaWlpTdZXVVVRXFxMSUkJVVVVuN1uPB4PJpMJq9VKSEgIYWFhREVFERsbS2RkpFqkRURERGQ/CtjHUON0OCJyfGkcTKxTp06tXRQREREROYFpOFoRERERERGRAFDAFhEREREREQkABWwRERERERGRAFDAFhEREREREQkABWwRERERERGRAFDAFhEREREREQkABWwRERERERGRAFDAFhEREREREQkABWwRERERERGRAFDAFhEREREREQkABWwRERERERGRAFDAFhEREREREQkABexTUHZ2Nt26dWPXrl2tXRQREREREZGThgK2iIiIiIiISABYW7sAInJy8fl8uN1uXC4XtbW11NbW4nK5mixut9u/j8vloq6uDrfbTV1dXZPF4/FQX19PfX09Ho8Hr9dLfX09Xq8Xr9eLz+ejvr4ewzAwDKNJOUwmEyaTCbPZjMViwWQyYbFYsFgsWK1WLBYLNpvNv9jtdv/rvktQUJB/CQ4O9r82vg8JCSE4OBizWb9XNoqOjsZqbf5/L2azGZPJdIxLJCIiInJsKGAfBVdddRX9+vVjwoQJAHz22WeMGjWKmTNnctFFFwEwbdo0Nm7cyIoVKxg1ahTvvvsuHo+H+fPn07ZtW2bOnMl///tfqqurSUtL49577+Xss88GYOHChbz88svcddddvPzyy+Tn59O1a1ceeeQRTj/9dAA8Hg8vvfQS7733HqWlpaSmpjJmzBjOOussfzm/+OIL/vnPf7Jt2zY6dOjAn/70J84999xj+2VJq/J6vf4g3Fwgbvz8y+3NLfue55dhV2Rf+/7YYbFYAAgKCtrvx419f+D45Q8aja8Oh4OQkBBCQkL87x0OBw6Hg+DgYIV5EREROaYUsI+CwYMH89FHH/k/f/3115hMJrKzs/0Be+nSpYwYMYIVK1bw5ptv8uqrr+L1eunYsSNjxoxh69atPPPMMyQkJPC///2PO++8k1mzZvkDcH5+Pm+99RbTp08nNDSUSZMm8fDDD/PJJ59gMpmYMmUKH3/8MY899hg9evTgnXfe4c477+Q///mPv1zz5s3j8ccfp02bNjzzzDPcf//9LF++nNDQ0GP6fQkYhoHX6/W32Ho8nmaXX7bwNi6Nrb+NLcP7Li6XC6fTSUVFBSaTqUnLcX19/VG9L7vZQrDVRpDFht1qJdhiI8hqwWa2EWSxYvcvFmwWC3aLFZvZgtVswWa2YDNbsZpNWM0WLGZzw2Iy89/Nq8kp2XNUyy5Hj2EY/p4JjZxOZ8CvYzKZ/OF73wC+77JvWN932bfnQmP4DwoKatLbwWazKcCLiIhIEwrYR0FWVhazZs0iPz+fpKQkli9fzpAhQ8jOzgZgx44d5OXlkZWVxZNPPsnll19Or169ANi+fTsffPAB7733Ht27dwfgpptuYuPGjcydO9cfsD0eD5MnT26yz6hRoygqKsLhcLBgwQIeffRRf6B/4IEHMAyD6upqfznHjx/PwIEDARg1ahSfffYZW7dupXfv3sfkezoRGIbB/Pnz+fvf/97aRTkh1fm81NV5AVdrF6VFLr74YoYPH86CBQtYvHixWuKPkY6RcdzS57d4DR8en7dh8dZT5/VS563H7a3H7fU0vK+vx+X14Kr34K73ULvPq6u+DtfP7w0aHhtwOp1HJbwfSlxcHI8//jhdunQ55tcWERGR1qOAfRRkZGSQkJDA8uXLGTRoELt27WL69Olcc801FBUVsXTpUrp3705ycjIAHTp08B+7YcMGAK677rom5/R4PERERDRZl5qa6n8fHh7u3y8vLw+Px0OfPn2a7D969GgAf9Dv1KmTf1vjuV2uEyMIHSsVFRUndLh2WO2EBwUTYQ8hPCiEcHsw4fZgsvdspchZ1drFO+4MHz6clJQUhg8fzqJFi1q7OKcMu8VKx6i4I24N9vp8uLweaj11VLhrKXc5KXfVUOZyUuaqocxVQ4XbSZnLSaW7NkClb15xcTFff/21AraIiMgpRgH7KBk8eDDLly8HoFevXvTu3ZuEhASys7P54osvGDJkiH/f4OBg//vGFrN//OMf+3XV/uUgSna7fb/rGoaBzWZrURmbG5RJLXZNRUVFMWbMGP76178G/McHwzAOGCh8Ph8ej+eIr+Gsr8NZX0dBTWWLj7GYTD935W5YGt5bCbLYCP75Ncja8L6h+7edYIuVYKsV+8/7B/98bJDFSpDFitVsCWhX2ldWLeG7/LyAna/RggUL/C3YJpNJ/z0coYy4ZK5OHwCAQcN36ft5QDqf4cNrGHh9Pkwm+H7vNjzehtbrel9Dy3Wd14vH19Bq7fZ6Glqyf27Bdtc3tGI3tma76htauI8mk8mE1Wpt0YB26enpTf6eFxERkVODAvZRkpWVxdixYzGbzWRmZgKQmZnJkiVLyM7OZsyYMc0el5aWBkBRURE9evTwr3/uuecwm83cd999h7x2hw4dsNlsrFu3jvT0dP/63/3udwwdOtTfrVxa5sILL+TCCy885tdtfE61Jc9g//L567q6uiYjdtfU1FBcXIzdbsfj8ew3qndtbS1erxcAr2FQU19HTX1dwO7FhIlgqw27xUrQz89iNz5/HbTPc9iNz2DbLFasZjM2sxWbxYzVZMH68zPYZpOZfokdKXc5yS0vwmv4AlbOxYsXs2jRIoXrAPmxeDc/Ltt9zK9rtVqbDHjW+PrLQdEO9Qx2cHCw/9nrxueu9cy1iIiIHIwC9lGSmZmJ2+3mk08+Ye7cuf5148aNIzExsUl43ldaWhqDBw/mscceY+LEiaSlpbF48WJeeeUVpk6d2qJrh4SEMHLkSGbOnElMTAxpaWksWLCAzZs3M23aNIqKigJ2n3L0mEwm/0BKR8rpdJKTk0P37t1xOBzN7rNvKG8M3U6n0/+58X1LRhJvfF9X1xDSDQxq6+uora8D9xHfzlHTGKpbGq5NJtN+U3eFhITsN7XXL6f72neUbKvV6n+1Wq3YbDb/VGKNU4w1Tm3V+NoY8hqnJ9t3aZy+rHFKs8beEPsOorfvDzf19fVNpkRrfP/LpfGYxmnS9p02rfF6Pp8Pn+///+DR3NRpv5wyzWQyUV9fT1hYGMHBwf463/hd2Wy2/cJv4/f8y6UxPDfXu0dERETkWFDAPkrsdjuDBg1i2bJlnHbaaUBDwPb5fGRlZR302Oeee47nnnuOiRMnUlFRQfv27ZkyZQpXXnlli68/evRoLBYLjz32GFVVVaSnpzNnzhw6d+6sgC3Nagx8v3zW/0g0TgPWGLz3nR+7MdD/suV93zmwG1vtfxnoGufBNgwDn8/XJGA2hs99A2ljSG0MrvuG2cYwd7B5r3/Zwtn4OSgoSC2aR6glP/6IiIiInChMhvpBSoCsW7cOwD8iuhw/FGLkeKW6Kccj1Us5HqleyvHoVKmXh5NzDj1Si4iIiIiIiIgckgK2iIiIiIiISAAoYIuIiIiIiIgEgAK2iIiIiIiISAAoYIuIiIiIiIgEgAK2iIiIiIiISAAoYIuIiIiIiIgEgAK2iIiIiIiISAAoYIuIiIiIiIgEgAK2iIiIiIiISAAoYIuIiIiIiIgEgLW1CyAiIicnn89HUVERe/fupbKyEq/XS0hICHFxcbRr146goKDWLqKIiIhIQClgi4hIQBiGwU8//cR3333HmjVr2LRpE06ns9l9LRYLaWlp9OvXj6SkpGNcUhEREZGjQwFbRER+NZ/PR05ODl9++SVfffUVxcXFTbZbTGbiQ8OJsAdjNpmorfdQ7KyixlPHxo0b2bhxIwCffvop//d//0f//v0xmUytcSsiIiIiR0wBW0REDsvBQnWQxUrP+Lb0bJNMt9hEksOjsJibDvdhGAYltdWsL9xD9p481hfuZu3ataxdu5auXbty44030r9//2N9WyIiIiJHTAFbREQOqaamhh9++IFvv/2W7OxsSktL/duCrTb6J3VgQNuO9GqTjN1y8P+1mEwm4hzhnNuxG+d27Eaxs4qPt25gybaNbN68mfHjx9OvXz9uv/12OnfufLRvTURERCRgFLBFRKQJwzAoKSlh48aN5OTksH79ejZt2oTP5/PvE2K10TexPQOTO7UoVB9MnCOcEb0GcknX3ry/eQ2f5uawatUq7r77bi688EJuvPFGoqOjA3FrIiIiIkeVAvYRWrhwIePGjWPTpk2tXRQRkcNWXV3Nzp072blzJ9u2bSMvL4/c3FzKysr22zcxNILeCe3om5hC97gkrGZLQMsSGRTCyF5nckHnHrz143d8u2cbixYtYunSpVxzzTVcffXVhISEBPSaIiIiIoGkgH2Ehg4dyjnnnNPaxRAROaCamhr27t3Lnj172L17t3/ZtWsX5eXlzR5jwkS7iCi6RLeha2wC3eMSiXOEH5PytgmN4N4zhrCpZC//WJdNbnkx8+bN47///S+/+93vGDZsmIK2iIiIHJcUsI9QcHAwwcHBrV0METmFGIaBx+OhtraWmpoaqqurqaiooKysjLKyMkpKSigqKqKwsJCCggIqKysPer4IezBtQsNJDI0kKTyStuFRtA2Lwm75/y3UhgFFNVUBKX9kcEiLupR3i01k0m8v49vdebyd8z0F5eXMmTOHN998k6FDhzJs2DBN8SUiIiLHFQXsFnjqqadYsmQJn332mX9dVVUVZ511FmPHjuXxxx/3dxHv1q0bU6ZM4YMPPmDVqlVERERw7bXX8sc//vGIr/WXv/yFc889l7fffpt58+axfft2zGYzPXr0YNy4cfTq1QuArKwsRowYwQ8//MCyZcuw2+1ceumlPPzww1itDX/ky5Yt49lnn+Wnn36iQ4cO3HTTTYwfP57PP/+cdu3aBeqrEznlGIaBy+WipqbGH34b39fU1OB0Ov2vLpcLl8uF2+2mrq4Oj8dDfX09Ho8Hr9dLfX09Xq/X/97j8eDxeHC73U2eh26JMHsQCaERxIeEsauqjPzqSrxGwzkq61xU1rn4qazoaHwl+7GZLZye1J7b+v6GIOvB/zdkNpk4s11n+rftyPKdP/HfzWsoqK7k3//+N//+97/JyMjg7LPPZsCAAaSkpGiKLxEREWlVCtgtcNVVV/G3v/2NlStX+qeO+eijj4iIiMBut++3/5///GcmTJjAE088wYcffshzzz3HwIEDGTBgwBFd65xzzuHTTz/l8ccf58knn6R///4UFRXxxBNPMGHCBP7zn//4zzNz5kwefPBBHnroIb799lseeeQRevbsyRVXXEFOTg533HEHN9xwA88++yw5OTlMnjw5QN+WyImhsRXY7Xb7g67L5aK2trbJ+8bP+67f93PjPk6n0//+cMPvkbCbLYTagwi1BRERFERkkIPIYAfRIQ7igsOIdYQSGxJKiK3h76pXVn3JrqryY1a+5nh8Xr7ZnYfXMLij328IslgPGYytZjO/7dCVc9p3YfXenXyWl8P6wt38+OOP/Pjjj7zyyitER0eTnp5Ot27duOKKK3A4HMfojkREREQaKGC3QHp6OhkZGfz3v//1h953332Xyy67DItl/0F+rrjiCi6//HIA7rzzTubOncuqVataFLAPda2oqCimTJnCZZddBkBycjLDhw/n8ccfb3Kes88+mz/84Q8ApKSk8Pe//51Vq1ZxxRVX8MYbb9CzZ08eeughADp37kxJSQlTpkz5ld+QyPHl22+/ZcKECa1aBrPJhMNqx2G3E2KxUeisorbeE/Dr1Pm81LmclLmcEJge3Efk4osvZvjw4SxYsIDFixdjGMYB9/1uzza+27ONrjEJPHrOsBa1PptNZk5P6sDpSR0ora3huz3bWLV3B5tLCigrK2PFihWsWLGCkJAQrrzyykDemoiIiMghKWC30NVXX83zzz/PhAkTyM/PZ/Xq1UyZMoU1a9bst29qamqTz+Hh4Xg8Lf+H9YGuBTBgwAC2bt3Kiy++SG5uLtu3b99v+pxDlWHDhg0MGjSoyfaWhH+RE8UXX3xxzK5lMZmICnYQFewgOthBTEgoMSGhRAWF4LAF4bDZCbHa+OsPy8grLz5m5Wotw4cPJyUlheHDh7No0aKjeq2YkFAuTM2gf1IHfijYyce5G9jzc+t8bW3tUb22iIiISHMUsFvo0ksv5c9//jP/+9//2Lx5M7179yY1NbXZgN1ct/GDteK09FoA77//Pg8//DCXXnop/fr149prr2Xz5s37tWAfrAwWi+WYdmEVOdZuvfVWIiMj2b59u3+dYRj7tZA2rquvr8ftdu/X7dvtdh/yWl7DoKS2hpLamhaXL8hiJdhqI8hiJchqxW6xYjObsVosWE0WLCYzVrMZi8mMxWzCYjJjNpuxmi3YzCbsFmvDsRZbQ4C32Qi3BzcsQcFYzOYDXvuVVV/y3Z5tLS7r4VqwYIG/BdtkMh30774BbTu2uIv4L5U4q1m+ayvZu3PZXlHaZJvJZKJz586/qvwiIiIiR0IBu4UiIiI4//zz+fTTT9m4cSMjRoxolWvNmTOH4cOHN3lm+vPPPweaDxDNSU9PZ+3atU3WrV69OkClF2l90dHR3H777Ud8Hp/Pd8Bns3/5nHbjc9iNg5g1DmS27yBnjb1I3N563N76Iy5fc0xARFAIMSENz17HOcJo4wgnPjSchNAIbulzNhaTie/zd+DxeQN+/cWLF7No0aKDhuvDGeRsX4ZhsKmkgEVb17MqfwcGDec3m81069aN3r17061bN7p27UqbNm0Ccj8iIiIih0MB+zBcffXV3HXXXRiGwbBhw1rlWklJSaxatYoff/yR8PBwlixZwvz58wGoq6sjKCjokOe++eabueKKK3jmmWe4+uqr+emnn/jLX/4CoBF4RfZhNptxOBwBGyyrrq6OmpqaJoOiNY4i7vF4/COJ7zuC+L6v+44i3hjua2pqqKqqorKykoqKCnw+HxXuWirctc12STcBsSFhpMW0ISbY4Q/ebUIjiAoOwcSR/R1Q7nJS7KwmzhFGVHDz31tLp+na14aifN7Z+D2bSgr863r16sV5553HoEGDiIyMPKJyi4iIiASCAvZhyMzMJDo6mn79+hEREdEq13r00UeZOHEiI0eOxG63k56eztNPP80DDzzAunXr/AOjHUzXrl2ZNWsWM2bM4I033qBTp06MHDmSF154AZvNdjRvS+SUZrfbsdvtREdHH5Xz+3w+Kioq9psHe+/eveTn57Nnzx5qa2sprq2muLZ6v+NDrDbaRUSTEhFDh8hYOkfHkRIRg/UgXc5/KT40nLTYhIDd046KUv7547esK9wNgM1q5fwLLuCqq66iffv2AbuOiIiISCAoYB8Gp9NJRUUFw4cP96+76qqruOqqq/yfG+fD3teSJUsCci1oGBH89ddf32//oUOHHvR6f//73/3v165dS2JiIh988IF/3fvvv4/dbicmJuawyyoixwez2Ux0dDTR0dF06dJlv+2GYVBeXs7u3bvZtWsXu3fvZufOnezcubMhfNd72FJayJbSQv8xdouF1Og2dI9LpGd8MqnR8Qd9xjtQyl1OFuR8zxfbN2MAVquVoUOHcu211xIXF3fUry8iIiLyayhgt0BFRQXffPMNixYtIjk5mczMzBP6Wjk5OUyfPp0///nPdO/ene3bt/PCCy8wbNgwrIfxPKSInFhMJpM/gPfs2bPJNo/Hw+7du8nLyyM3N5ctW7awefNmqqurySnOJ6c4n4UbV+Ow2endph39kzrQJ6Gdf37tQHHX17N463re37IW18/Tmv3mN7/h5ptvpm3btgG9loiIiEigKU21gNfr5ZFHHiEmJobnn3/+Vz+nfOedd5KdnX3Qfd54442AXOtgfve731FUVMRTTz1FQUEBsbGxDBs2jHvvvTfg1xKRE4PNZqNjx4507NiRwYMHAw1dznfu3Mm6dev44YcfWL16NVVVVXyzO5dvdudiM1vo3SaZge060zch5YjCtsfrZen2Tfx385qGOb2Bbt26ceedd5KRkRGQexQRERE52kzG4cwfJUekoKAAl8t10H3atm17wj4HvW7dOqBh4CE5vjidTnJycujevXvABuySU4/X62Xjxo2sWLGCZcuWsWfPHv82m9lC74R2DEjqQJ/EFMLtwS06Z2ltDV/u2MynuTlUuBvmrk5ISOCmm27i3HPPxXwMuqOL/JL+zpTjkeqlHI9OlXp5ODlHLdjHUEJC4Ab+ERE51iwWCxkZGWRkZHDLLbeQm5vLl19+yRdffMGePXv4Pn873+dvxwR0jIqjW2wCHSJjSQyLINwegsVkorbeQ5Gzim3lJfxYtIctpQU0/sobFxfHtddey0UXXYTdHtiu5yIiIiLHggK2iIgcNpPJRGpqKqmpqdx4443k5uby1Vdf8c0335Cbm0teeXGz04Q1p2PHjlxxxRWcf/75J2wPHhERERFQwBYRkSP0y7BdXFzMmjVr2LhxI9u2bWPv3r1UVlbi8/kIDg4mLi6Ojh07kpGRQa9evSguLqZ79+4K1yIiInLCU8AWEZGAiouLY8iQIQwZMuSQ+zqdToqLW9bSLSIiInK80yBnEjCrVq3CMAw9O3kcMgwDj8eDzWY7KiPTi/xaqptyPFK9lOOR6qUcj06VellXV4fJZKJfv36H3Fct2BIwJ/N/VCc6k8mkHz7kuKS6Kccj1Us5HqleyvHoVKmXJpOpxVlHLdgiIiIiIiIiAaAJRkVEREREREQCQAFbREREREREJAAUsEVEREREREQCQAFbREREREREJAAUsEVEREREREQCQAFbREREREREJAAUsEVEREREREQCQAFbREREREREJAAUsEVEREREREQCQAFbREREREREJAAUsEVEREREREQCQAFb5ARWXl7OxIkT+c1vfkO/fv34/e9/z8qVK/3bV6xYwVVXXUWfPn246KKL+PDDD5sc73a7mTx5MpmZmfTt25cxY8ZQWlp6rG9DTjIlJSX86U9/4swzz6Rv377cfvvtbN261b89JyeHkSNHctppp5GVlcW8efOaHO/z+fjLX/7COeecw2mnncZtt93Gzp07j/VtyEksLy+Pvn37snDhQv861UtpLQUFBXTr1m2/pbF+qm5Ka3nvvfcYOnQovXr1YtiwYSxatMi/bdeuXdxxxx3069ePs88+m+effx6v19vk+H/84x8MGTKE3r17c91117Fhw4ZjfQutQgFb5AQ2evRoVq9ezYwZM3jnnXfo3r07t9xyC7m5uWzdupU77riDc845h4ULF3LNNdfw0EMPsWLFCv/xkyZNYtmyZbzwwgv87W9/Izc3l3vvvbcV70hOBqNGjWL79u3MmTOHBQsWEBwczI033khtbS1lZWXcdNNNtG/fnnfeeYdRo0bxzDPP8M477/iPf+mll3jzzTd54okneOutt/D5fNx6663U1dW14l3JycLj8fDggw/idDr961QvpTVt3LiRoKAgvvrqK5YtW+Zfhg4dqropreY///kPjzzyCCNGjODDDz/kkksu8f+70+PxcMsttwDw1ltvMWnSJP75z3/y4osv+o9/9913efrpp7nvvvtYuHAh7dq146abbjo1GnIMETkhbdu2zejatauxcuVK/zqfz2ecd955xvPPP288+uijxvDhw5scM3r0aOPmm282DMMw9u7da6SnpxtLly71b8/NzTW6du1qrFq16tjchJx0ysvLjdGjRxubNm3yr8vJyTG6du1qrFmzxpg9e7Zx9tlnGx6Px7/92WefNS644ALDMAzD7XYbffv2Nf7xj3/4t1dUVBi9e/c23n///WN3I3LSevbZZ40//OEPRteuXY133nnHMAxD9VJa1Zw5c4xLL7202W2qm9IafD6fMXjwYGPatGlN1t98883G7Nmzjffff9/o2bOnUV5e7t/21ltvGf369TPcbrdhGIZxwQUXGE8//bR/u8fjMX77298as2fPPjY30YrUgi1ygoqOjmbOnDn06tXLv85kMmEymaisrGTlypVkZmY2OebMM8/k+++/xzAMvv/+e/+6Rp06dSIhIYHvvvvu2NyEnHQiIyN59tln6dq1KwClpaW88cYbJCYm0qVLF1auXMkZZ5yB1Wr1H3PmmWeybds2iouL2bhxIzU1NU3qbkREBD169FC9lCP23Xff8a9//Ytp06Y1Wa96Ka1p06ZNpKamNrtNdVNaQ15eHrt37+bSSy9tsn7u3LnccccdrFy5koyMDCIjI/3bzjzzTKqrq8nJyaGkpIRt27Y1qZdWq5X+/fufEvVSAVvkBBUREcFvf/tb7Ha7f93HH3/M9u3bOeecc9i7dy+JiYlNjmnTpo2/m25BQQHR0dEEBQXtt8/evXuPyT3Iye3RRx8lMzOTDz/8kClTpuBwOA5YLwHy8/P9dS8pKWm/fVQv5UhUVlby0EMPMWHChP3ql+qltKbNmzdTWlrKiBEjGDRoEL///e/58ssvAdVNaR15eXkAOJ1ObrnlFjIzM7nmmmtYsmQJoHp5KArYIieJVatWMW7cOC644ALOPfdcXC5Xk/AN+D/X1dVRW1u733aAoKAg3G73MSmznNxuuOEG3nnnHS655BJGjRrFjz/+2Gy9bPyRx+12U1tbC9DsPqqXciQmTZpE375992uRAVQvpdXU19eTm5tLRUUF99xzD3PmzOG0007j9ttvZ8WKFaqb0iqqq6sBGDt2LJdccgmvvfYaZ511FnfffbfqZQtYD72LiBzvPvvsMx588EH69evHM888AzT8JfbLAU4aP4eEhBAcHNzsAChut5uQkJCjX2g56XXp0gWAKVOmsGbNGubPn99svWv8n63D4SA4OBhoqKuN7xv3Ub2UX+u9995j5cqVvP/++81uV72U1mK1WsnOzsZisfjrVs+ePdmyZQtz585V3ZRWYbPZALjlllu48sorAejevTsbNmzg9ddfP6x6+ct9ToV6qRZskRPc/Pnzueeeexg8eDCzZ8/2/4KYlJREYWFhk30LCwtxOByEh4eTmJhIeXn5fn/5FRYWkpCQcMzKLyeX0tJSPvzwQ+rr6/3rzGYzXbp0obCwkMTExGbrJUBCQoK/O1lz+6heyq/1zjvvUFJSwrnnnkvfvn3p27cvAI899hi33nqr6qW0qtDQ0CbhGCAtLY2CggLVTWkVjXWncTyVRl26dGHXrl2ql4eggC1yAmuclmPEiBHMmDGjSVec/v378+233zbZ/5tvvqFfv36YzWZOP/10fD6ff7AzaHjmpqCggAEDBhyze5CTS3FxMaNHj24yHZzH42HDhg2kpqYyYMAAvv/++yZzZX7zzTd06tSJ2NhY0tPTCQsLIzs727+9srKSDRs2qF7Kr/bMM8/w0Ucf8d577/kXgHvvvZcpU6aoXkqr2bJlC/369WtStwDWr19Ply5dVDelVWRkZBAaGsqaNWuarN+8eTPt27dnwIABbNiwwd+VHBrqZWhoKOnp6cTGxtKpU6cm9bK+vp6VK1eeGvWytYcxF5FfJzc318jIyDBGjRplFBYWNlkqKyuNzZs3GxkZGcb06dONn376yZg7d67Ro0cP4+uvv/afY/To0UZWVpbxzTffGGvWrDGuuOIKY+TIka14V3IyuPXWW40LLrjA+Pbbb41NmzYZo0ePNgYMGGDs3r3bKC4uNgYMGGCMHTvW2LJli/HOO+8YvXr1MhYuXOg/fsaMGcYZZ5xhfPbZZ0ZOTo5x8803GxdccIFRV1fXinclJ5t9p+lSvZTW4vV6jauvvtoYOnSo8d133xk//fST8dRTTxk9e/Y0Nm3apLoprebFF180+vbta7z//vvG9u3bjZdeeslIT083vvnmG8PlchnnnXeeccsttxg5OTnGp59+apxxxhnGCy+84D/+X//6l9G7d29j4cKFxpYtW4w//elPxsCBA42SkpJWvKtjw2QYhtHaIV9EDt/s2bN57rnnmt125ZVXMm3aNL788kumT5/Otm3baNeuHffccw9Dhw717+d0Onnqqaf4+OOPAfjNb37DhAkTiI6OPib3ICenqqoqnn32WT777DOqqqro378/Dz/8MGlpaQCsXbuWKVOmsGHDBuLj47n55psZOXKk/3iv18uMGTNYuHAhLpeLAQMGMHHiRNq1a9datyQnoW7dujF16lSuuuoqQPVSWk9xcTHPPvssX331FZWVlfTo0YMHH3yQ/v37A6qb0npef/115s+fT0FBAampqdxzzz2cd955AGzfvp3JkyezcuVKIiMjGT58OPfccw9m8//vID137lzmzZtHeXk5PXv2ZMKECXTv3r21bueYUcAWERERERERCQA9gy0iIiIiIiISAArYIiIiIiIiIgGggC0iIiIiIiISAArYIiIiIiIiIgGggC0iIiIiIiISAArYIiIiIiIiIgGggC0iIiIiIiISAArYIiIiIiIiIgGggC0iInKSeuGFF+jWrVtrF+OYuP7667n++uuP2fU+/vhjrrvuuoCec+bMmUyaNCmg5xQRkWPL2toFEBERETlSjz322DG7VklJCZMnT+bVV18N6Hlvv/12LrzwQi688EIyMzMDem4RETk21IItIiIiJ7wuXbrQpUuXY3Ktl19+md69e5ORkRHQ84aEhHDDDTcwderUgJ5XRESOHQVsERGRU8TChQvp1asXK1eu5Oqrr6ZXr15ceOGFLFmyhNzcXG644Qb69OnD+eefz4cfftjk2O+++45bbrmFAQMG0LNnT7KysnjhhRfw+Xz+fQoLC3nggQc444wzGDBgABMnTuS5554jKyurybnefvtthg0bRs+ePTn33HN54YUX8Hq9By378uXL+d3vfkffvn0ZMGAAd911F1u3bvVv37eL+MKFC+nWrVuzy8MPP+w/ZuXKlYwcOZI+ffpwxhlnMHbsWEpLSw9ajtLSUhYsWMAll1ziX5ednU23bt1YtmwZI0aMoHfv3lxwwQW8+eab/n3mzZtHt27dWLhwoX/dN998Q3p6Oi+++KJ/3SWXXMKWLVtYunTpQcshIiLHJwVsERGRU0h9fT1jxozh2muv5eWXXyYkJIQHH3yQO++8k3PPPZfZs2fTpk0bxo4dy969ewHYuHEjN954I1FRUTz33HO8/PLL9O/fn1mzZrFo0SIA6urquOGGG1i1ahXjx49n6tSpbNy4kddee63J9V955RUeffRRMjMzmT17NiNGjODVV1/l0UcfPWCZd+7cyd13303Pnj15+eWXmTJlCnl5edx+++1NAn6jc889l3/9619Nlosuugir1cqVV14JNPxgcOONNxIcHMzzzz/P+PHj+fbbb/nDH/6Ay+U6YFk++eQT6uvrGTx48H7bHnjgAXr06MGLL77IoEGDmDx5sj9kX3/99QwYMIA///nPlJaWUl1dzfjx4znttNO48847/edISEjgtNNO4/333z9gGURE5PilZ7BFREROIT6fjzvvvJNrrrkGgMrKSh544AFuuOEGbrrpJgDCw8O5+uqrWb9+PYmJiWzcuJFBgwYxffp0zOaG3+bPOusslixZQnZ2NsOGDeO///0vubm5vPPOO/Ts2ROAM888k/POO89/7aqqKl566SX+7//+jwkTJgBw9tlnExUVxYQJE7jppptIS0vbr8xr167F5XJxxx13kJCQAEBiYiKff/45TqeTsLCwJvvHxMQQExPj//zpp5/y8ccfM378eAYOHAjAs88+S6dOnXjllVewWCwA9OnTh2HDhvHOO+8wYsSIZr+/b775htTUVEJDQ/fbdv755/PII48AcM4551BYWMhLL73E73//e0wmE1OnTuWyyy5j+vTpWCwWysvL+dvf/ua/fqNevXrxwQcfNHt9ERE5vqkFW0RE5BTTt29f//vY2FigIVw2ioqKAhrCN8AVV1zBq6++isfjYePGjXz88cf85S9/wev14vF4gIbgmZKS4g/XAGFhYU1aelevXo3L5SIrK4v6+nr/0tiFfPny5c2Wt0+fPgQFBTF8+HCmTJnCV199RXp6Og888MB+4fqXNm7cyEMPPcQVV1zBH/7wBwBqa2tZs2YNv/3tbzEMw1+OlJQUUlNTD1gOaGhNb9euXbPbGlvHG11wwQUUFRWRl5cHQEpKCg8++CDvvvsub7/9NhMmTCAlJWW/8yQnJ1NSUkJtbe1B701ERI4/asEWERE5xTQXSkNCQg64v8vl4oknnuA///kP9fX1tGvXjr59+2K1WjEMA4CysjJ/WN/XvuvKy8uBhtGym1NYWNjs+nbt2jF//nzmzJnDggULmDdvHhEREVx33XXcf//9mEymZo8rKSnhrrvuonPnzkyePNm/vrKyEp/Px6uvvtrsSOBBQUHNfxFAdXX1Ab+rxtb1Ro33XlFR4V83dOhQpk2bBjT0AmiOw+EAGlr8D/bnIiIixx8FbBERETmoKVOm8PHHH/P8888zaNAgfwDcdyqphIQEtm3btt+xJSUl/vcREREAPPPMM3Ts2HG/fePi4g5Yht69ezNr1izq6ur4/vvv+de//sXs2bNJT0/n4osv3m//uro6Ro0ahdvt5sUXX2wSmkNDQzGZTNx4440MGzZsv2MPFmqjo6OpqqpqdltZWRnt27f3f268931/ZHjyyScJDQ3FbrczceJEXnnllf3OU1FRgclk8vckEBGRE4e6iIuIiMhBff/99wwcOJDzzjvPH67Xr19PaWmpf5CxM844g127dpGTk+M/zuVy8dVXX/k/9+nTB5vNRkFBAb169fIvVquVGTNmsGvXrmav/8YbbzB48GDq6uqw2+1kZmbyxBNPALBnz55mj3nsscdYv349f/nLX0hMTGyyLSwsjB49epCbm9ukHGlpabzwwgtkZ2cf8Lto27Yt+fn5zW777LPPmnxevHgxycnJ/tD9ySef8MEHHzBu3DgmTpzI0qVLeeedd/Y7z969e4mLi8Nutx+wHCIicnxSC7aIiIgcVO/evVm0aBH//Oc/SU1NZePGjbz88suYTCb/c8KXXHIJc+bMYdSoUdx3331ERETw+uuvU1JSQtu2bYGG1t9bb72VmTNnUl1dzcCBAykoKGDmzJmYTCbS09Obvf6ZZ57JM888w6hRoxg5ciQWi4W33noLu93e7Gjeb7zxBgsXLuTmm28mJCSEH374wb/NbrfTo0cPRo8eze23386YMWO47LLL8Hq9vPbaa6xZs4a77777gN/FWWedxaJFi6iqqiI8PLzJttdff52goCBOO+00PvnkE/73v//x7LPPAg3Te02aNImzzz6byy+/HIDzzjuPqVOnctZZZzX5EWDVqlWcc845LfiTERGR440CtoiIiBzUww8/jMfj4fnnn6euro527dpx11138dNPP7FkyRK8Xi9Wq5W5c+cyZcoUJk2ahNVq5bLLLiMqKso/yBfA/fffT3x8PG+++SZ//etfiYyMJDMzk9GjR+8XWBulp6cze/ZsXnzxRUaPHo3X66Vnz5689tprdO7ceb/9P//8cwBee+21/aYJS05OZsmSJZx99tnMnTuXWbNmce+992Kz2cjIyOD111/ntNNOO+B3MXjwYKxWK1999RVDhw5tsm38+PG8++67vPLKK3Tu3Jm//OUvXHjhhQBMnjyZ2traJs+CT5w4kaFDh/LII48wd+5coOE59I0bN3Lfffcd5E9ERESOVyajcXQSERERkV9py5Yt5ObmcsEFFzQZdGz48OEkJiYya9asVixdYD3xxBNs2bKFefPmAZCdnc0f/vAH5s2b558G7Nd68cUX+fTTT3n33XcPOHibiIgcv9SCLSIiIkfM6XRy3333cd1113H++efj9Xr56KOPWL9+PQ8++GBrFy+g7rzzToYNG8batWvp3bt3wM5bU1PDP//5T5566imFaxGRE5QGORMREZEj1qdPH55//nnWrVvHqFGjuOeee9i+fTt//etfOfPMM1u7eAEVHx/PpEmTeOqppwJ63jlz5pCVlcVvfvObgJ5XRESOHXURFxEREREREQkAtWCLiIiIiIiIBIACtoiIiIiIiEgAKGCLiIiIiIiIBIACtoiIiIiIiEgAKGCLiIiIiIiIBIACtoiIiIiIiEgAKGCLiIiIiIiIBIACtoiIiIiIiEgAKGCLiIiIiIiIBMD/A7hj/GUo1WNOAAAAAElFTkSuQmCC\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "manager.run()\n" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-07-17T14:01:41.239133600Z", + "start_time": "2023-07-17T14:00:23.307134700Z" + } + } + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/examples/classification_torchvision_fashion_mnist.ipynb b/examples/classification_torchvision_fashion_mnist.ipynb new file mode 100644 index 00000000..8548bb42 --- /dev/null +++ b/examples/classification_torchvision_fashion_mnist.ipynb @@ -0,0 +1,232 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true, + "pycharm": { + "name": "#%%\n" + }, + "ExecuteTime": { + "end_time": "2023-07-17T14:00:21.562134200Z", + "start_time": "2023-07-17T14:00:20.002136500Z" + } + }, + "outputs": [], + "source": [ + "import data_gradients\n", + "import torchvision" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "outputs": [], + "source": [ + "from torchvision.datasets.mnist import FashionMNIST\n", + "from torchvision.transforms import Compose, ToTensor\n" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-07-17T14:00:21.573136400Z", + "start_time": "2023-07-17T14:00:21.558134100Z" + } + } + }, + { + "cell_type": "code", + "execution_count": 3, + "outputs": [ + { + "data": { + "text/plain": "(60000, 10000)" + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train = FashionMNIST(root='./data', train=True, download=True, transform=Compose([ToTensor()]))\n", + "valid = FashionMNIST(root='./data', train=False, download=True, transform=Compose([ToTensor()]))\n", + "\n", + "len(train), len(valid)\n" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-07-17T14:00:21.655132600Z", + "start_time": "2023-07-17T14:00:21.576135400Z" + } + } + }, + { + "cell_type": "code", + "execution_count": 4, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:data_gradients.utils.summary_writer:`log_dir` was not set, so the logs will be saved in D:\\Develop\\GitHub\\Deci\\data-gradients\\examples\\logs\\Fashion_MNIST\n", + "INFO:data_gradients.config.data.data_config:Cache deactivated for `ClassificationDataConfig`. Please set `load_cache=True` if you want to activate it.\n" + ] + } + ], + "source": [ + "from torch.utils.data import DataLoader\n", + "from data_gradients.managers.classification_manager import ClassificationAnalysisManager\n", + "\n", + "manager = ClassificationAnalysisManager(\n", + " train_data=DataLoader(train),\n", + " val_data=DataLoader(valid),\n", + " report_title='Fashion MNIST',\n", + " class_names=train.classes,\n", + " n_image_channels=1,\n", + ")\n" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-07-17T14:00:24.302134Z", + "start_time": "2023-07-17T14:00:21.656134300Z" + } + } + }, + { + "cell_type": "code", + "execution_count": 5, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " - Executing analysis with: \n", + " - batches_early_stop: None \n", + " - len(train_data): 60000 \n", + " - len(val_data): 10000 \n", + " - log directory: D:\\Develop\\GitHub\\Deci\\data-gradients\\examples\\logs\\Fashion_MNIST \n", + " - Archive directory: D:\\Develop\\GitHub\\Deci\\data-gradients\\examples\\logs\\Fashion_MNIST\\archive_20230717-170024 \n", + " - feature extractor list: {'Image Features': [ClassificationSummaryStats, ImagesResolution, ImageColorDistribution, ImagesAverageBrightness], 'Classification Features': [ClassificationClassFrequency, ClassificationClassDistributionVsArea]}\n", + "\u001B[34;1m╔\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m╗\u001B[0m\n", + "\u001B[34;1m║ \u001B[0mTo better understand how to tackle the data issues highlighted in this\u001B[34;1m ║\u001B[0m\n", + "\u001B[34;1m║ \u001B[0mreport, explore our comprehensive course on analyzing computer vision \u001B[34;1m ║\u001B[0m\n", + "\u001B[34;1m║ \u001B[0mdatasets. click here: https://hubs.ly/Q01XpHBT0 \u001B[34;1m ║\u001B[0m\n", + "\u001B[34;1m╚\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m═\u001B[0m\u001B[34;1m╝\u001B[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Analyzing... : 100%|██████████| 60000/60000 [00:43<00:00, 1378.96it/s]\n", + "Summarizing... : 100%|██████████| 2/2 [00:04<00:00, 2.44s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dataset successfully analyzed!\n", + "Starting to write the report, this may take around 10 seconds...\n", + "****************************************************************************************************\n", + "We have finished evaluating your dataset!\n", + "\n", + "The cache of your DataConfig object can be found in:\n", + " - C:\\Users\\blood\\AppData\\Local\\Deci\\DataGradients\\Cache\\Fashion_MNIST.json\n", + "\n", + "The results can be seen in:\n", + " - D:\\Develop\\GitHub\\Deci\\data-gradients\\examples\\logs\\Fashion_MNIST\n", + " - D:\\Develop\\GitHub\\Deci\\data-gradients\\examples\\logs\\Fashion_MNIST\\archive_20230717-170024\n" + ] + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAIdCAYAAAA+tOxwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCRElEQVR4nO3deXhU9fn+8XtCdiBAgCQoBqg2RDBkkUQiIBApRQUrUvvTAlIWv+BS3BCwUBZXLFTQiCAXKFpAUUGUuqAU90IggKgsYoAgW4jsRLLn/P6gGRkSIMknycyZvF/XxSVzzpmZ58kM5/HOOXPGYVmWJQAAAABAlfm4uwAAAAAAsDuCFQAAAAAYIlgBAAAAgCGCFQAAAAAYIlgBAAAAgCGCFQAAAAAYIlgBAAAAgCFfdxfgaTZt2iTLsuTn5+fuUgCgziksLJTD4VB8fLy7S/EozCYAcI/KzCWOWJ3DsiznH29jWZYKCgrozWbozb68ub+a6s1b97+mmE32RG/2RG/25AlziSNW5/Dz81NBQYGuuOIKBQcHu7ucanX69Glt27aN3myG3uzLm/urqd6+++67anssb8Jssid6syd6sydPmEscsQIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQ1wVEAAqoLi4WIWFhZW6T35+vvO/Pj7e9XusqvTm5+enevXq1WRZAIBylM4w5lJZ1TmbCFYAcAGWZSkrK0vHjx+v9H1LSkrk6+urAwcOeN0Aq2pvjRs3VkREhBwORw1WBwCQys4w5lL5qms2EawA4AJKB1JYWJiCg4MrtdMtLi5Wfn6+AgICvO5ITWV7syxLp0+fVnZ2tiSpRYsWNV0iANR5586wkpIS5tJZqns2EawA4DyKi4udA6lp06ZVur8kBQYGeuUAkyrXW1BQkCQpOztbYWFhXvczAQBPUt4MYy6VVZ2zybuOAQJANSr9TJW3fTu9O5X+LCv7eTUAQOUwwyquumYTwQoALoLPA1UffpYAULvY715cdf2MCFYAAAAAYIhgBQB1kGVZ7i4BAICLstO8IlgBgJdJTU1V27ZtnbcHDRqkQYMGOW+/9dZbeuaZZ9xRGgAATt42r7gqIAB4uUmTJrncnj17tpKSktxUDQAA5bP7vCJYAYCXu+KKK9xdAgAAF2X3ecWpgADgYb7//nsNHjxYV199teLj4/WXv/xF33zzjSRp3LhxGjRokN5++2316NFD8fHxGjx4sLZv337exzv71IqUlBTt379f77zzjtq2bat9+/bVRksAAC/EvHJFsAIAD5KTk6Phw4erSZMmSk1N1YwZM5Sbm6thw4bp1KlTkqRt27ZpxowZuu+++zRt2jQdO3ZMAwcOdH5z/IW88MILat68ubp166YlS5YoLCysplsCAHgh5lVZnAoIAB4kIyNDx44d05133qmEhARJ0m9+8xstWbJEv/zyiyTp1KlTmjNnjjp27ChJ6tChg3r27KnXXntNo0ePvuDjt2vXTv7+/goNDVVcXFyN9gIA8F7Mq7IIVgDgQX77298qNDRUI0eOVO/evdW1a1d17txZjzzyiHObli1bOoeUJIWFhSk+Pl7r1693R8kAgDqIeVUWpwICgAepX7++Fi1apG7duunDDz/Ufffdp+TkZE2cOFEFBQWSpPDw8DL3a9q0qY4fP17L1QIA6irmVVkcsQIAD/Ob3/xG06ZNU3Fxsb799lu9++67ev311xUZGSlJOnbsWJn7HD58WE2bNq3tUgEAdRjzyhVHrADAg3z00Ufq1KmTfv75Z9WrV0/x8fGaPHmyQkJCdODAAUlSZmamdu7c6bzPoUOHtGnTJiUnJ1foOXx82PUDAMwwr8ryqGpfeukll29blqTVq1erf//+io+PV0pKip555hnl5eU51+fn52vKlClKTk5WfHy8Hn74YR09erS2SweAapGQkKCSkhLde++9WrVqldasWaOJEyfq1KlT6tWrlyTJsiyNHDlSH3zwgVauXKnhw4erUaNGZfaf5xMSEqKtW7dq3bp1LvtTAAAqinlVlscEq0WLFmnmzJkuy9LT03Xffffpd7/7nd555x1NmjRJH3zwgaZMmeLcZvLkyfrqq6+UmpqqV199Vbt27dKoUaNquXoAqB5hYWGaN2+eGjZsqPHjx2vEiBHasmWLUlNT1alTJ0nSJZdcoqFDh+qpp57S3/72N7Vu3VpvvPGGGjduXKHnGDp0qA4fPqxhw4bp+++/r8FuAADeinlVlts/Y3Xo0CFNmjRJaWlpat26tcu6N954Q9dcc41GjhwpSWrdurUefPBBTZgwQVOmTNGxY8e0fPlyl8s4Pvvss+rdu7c2bdqk+Pj42m4HAIx16NBB8+fPv+A2d9xxh+64445y1/31r3/VX//6V+ftf/3rXy7r+/Tpoz59+pgXCgCo05hXrtx+xGrLli3y8/PTe++9p9jYWJd1Q4cO1dixY12W+fj4qLCwUDk5OdqwYYMkOVOxJLVp00bh4eFeexlHAAAAAJ7H7UesUlJSlJKSUu66du3audwuLCzUggULdNVVVyk0NFSHDh1SkyZNFBAQ4LJdWFiYsrKyjOrKzc01ur8nKu2J3uyF3twnPz9fJSUlKi4uVnFxcaXvb1mW879Vuf/5HrM6H8+kjtL/VqaW4uJilZSUKDc3VyUlJeU+rsPhqLY6vY2n/lsx4en7ARP0Zk/e0lt5M6wm5tL51Pa8MuntQrOpMnPJ7cGqooqKijRmzBj9+OOPWrRokaQzb3h/f/8y2wYEBCg/P9/o+TIzM43u78nozZ7ozT18fX2N9yem9z/bxIkTJcljPsRb2d7y8/NVVFSkXbt2nXeb8vbrOMOT/62Yojd7ojfPdr4ZVp1z6XzcNa+q0tvFZlNF55ItglVOTo4eeOABrVu3Ti+88II6dOggSQoMDHR+AdnZ8vPzFRQUZPScrVu3Nn4MT5Obm6vMzEx6sxl6c5/8/HwdOHBAAQEBCgwMrPT9LctSfn6+AgICvO4ojElvvr6+ioyMLHO2gSRlZGRUV4leyVP/rZjw9P2ACXqzJ2/prbwZxlw6v/PNpsrMJY8PVtnZ2brrrru0f/9+zZ8/X4mJic51EREROn78uAoKClySZHZ2drnf9FwZQUFBCg4ONnoMT0Vv9kRvtc/Hx0c+Pj6qV6+e6tWrV+n7l56K4HA4qnR/T1bV3urVqycfHx8FBQWVG1a9bdBXN0/9t1Id6M2e6M1zlTfDmEvlu9BsqsxccvvFKy7kxIkTGjx4sI4ePapFixa5hCpJuvrqq1VSUuK8iIUk7d69W4cOHSqzLQAAAADUFI8+YvX0009r7969mjdvnkJDQ/Xzzz8714WGhio8PFw33XSTJkyYoKeeekpBQUGaNGmSkpKSFBcX577CAQAAANQpHhusiouL9cEHH6iwsFCDBw8us/4///mPWrZsqccff1xPPfWU7rvvPknSddddpwkTJtR2uQAAAADqMI8KVlOnTnX+vV69evr2228vep/g4GA98cQTeuKJJ2qyNAAAAAA4L4/+jBUAoHocOHBA77//fpXvn5aWprZt22rfvn3VWBUAADUrJSVFqamptfJcBCsAqAPGjh2rL7/8ssr3j4+P11dffaUWLVpUY1UAAHgPjzoVEAC8XYllKftUiXILLQX5ORTW0Ec+NrjEuL+/v5o3b+7uMgAA7mKVSEd/kvJypMAGUmik5OAYzdkIVgBQS/YcLdL6nwp0usByLgv2dygx0l+tQmtudzxo0CCtW7dOkpz//f3vf6/PP/9cR44cUWpqqtq2batp06bp888/19GjRxUSEqLrr79e48ePV1BQkNLS0nTnnXc6LxzUs2dP/elPf9KWLVv09ddfy9/fX3379tW4cePk68toAQCvcnCbtHWllHfq12WBDaV2v5daXFmjTz1u3Djt3LlTb731lnPZ/v37df311+vll1/W/v379dprr2nPnj1yOBxq166d/va3vykmJqZG6yoPMRMAasGeo0X6PCPfJVRJ0ukCS59n5GvP0aIae+7U1FTFx8frhhtu0Ntvvy1JWrhwoSZMmKB58+YpLi5O48aN09atW/XCCy9o5cqVevTRR7V8+XItWbLkvI87e/ZsdezYUe+9957GjBmjhQsX6t///neN9QEAcIOD26SNb7uGKunM7Y1vn1lfg2699VZ9++23+umnn5zLVqxYoYiICJ06dUqPPfaYhg8frn//+9+aM2eOCgoK3HaFcIIVANSwEsvS+p8KLrjN+p8KVGJZF9ymqho3biw/Pz8FBgYqNDRUktStWzdde+21iomJkb+/vzp37qynn35asbGxatmypW6++Wa1a9dOO3bsOO/jJicna9CgQbrsssvUv39/RUdHa+PGjTXSAwDADaySM0eqLmTrx2e2qyGJiYm67LLL9N577zmXrVixQn/4wx8UGhqqJ598Un/4wx906aWXqkOHDrr11lsvOLtqEudrAEAN+zmnpMyRqnOdLjjz2auIkHq1UlOrVq1cbv/5z3/W6tWr9c477ygzM1MZGRnat2+ffvOb35z3Mdq0aeNyu2HDhiosLKyRegEAbnD0p7JHqs6Vd/LMdk1b10gJDodDt9xyi1asWKH77rtPW7duVUZGhl588UW1atVKO3fu1KxZs7Rz505lZmbqxx9/VElJzQW9C+GIFQDUsNwKZo3cwpo5YlWewMBA599LSko0YsQIPfHEE/L19dWNN96ol156SQkJCRd8DD8/vzLLrBo66gYAcIO8nOrdror69eunPXv26LvvvtOKFSuUkJCgVq1aacWKFbr55pu1d+9excfH64EHHtDYsWNrtJYL4YgVANSwoLL54zzbuefqgNu2bdMXX3yhN998U7GxsZKkwsJC/fTTT7rsssvcUhMAwAMENqje7aro0ksv1TXXXKOVK1fqww8/1L333itJmjt3rv74xz9qypQpKi4uVl5enr766itJZ37R56jlq+4SrACghjVv4KNgf8cFTwcM9j9z6fWaUr9+fe3fv19ZWVll1jVr1ky+vr768MMPFRoaquPHj2vOnDn6+eefVVBw4c+GAQC8WGjkmav/Xeh0wMCQM9vVsH79+umxxx5TSUmJbrjhBklSixYttHHjRm3ZskXBwcH6+OOPtXjxYklSQUGBAgICaryus3EqIADUMB/HmUuqX0hipH+Nfp/V7bffrh07dujmm29WcXGxy7rw8HBNnTpVq1ev1o033qj7779f4eHh+stf/qLvv/++xmoCAHg4h8+ZS6pfSLtetfJ9Vr///Zk6evbsqQYNzhwh+/vf/65mzZpp4MCBuv322/Xll19q6tSpkqTvvvuuxms6F0esAKAWtAr1Vbcr5JbvsZKk7t27Ky0t7bzr+/btq759+5ZZ/uijj0qSrrnmGv3www/O5atWrVJeXp7Ltv/617+qqVoAgMdocaWU8Mdyvscq5EyoquHvsSoVFBRU5sqzl112mV555RVJcp4KGBgYqD59+ji3Wb16da3UJxGsAKDWtAr11WVN6in7VIlyCy0F+Z05/a8mj1QBAGCsxZVSRNv/XSUw58xnqkIja+VIlZ0QrACgFvk4HLV2SXUAAKqNw6fGLqnuLYiZAAAAAGCIYAUAAAAAhghWAAAAAGCIYAUAF2FZ5//+KVQOP0sAqF3sdy+uun5GBCsAOA8/Pz9J0unTp91cifco/VmW/mwBADWDGVZx1TWbuCogAJxHvXr11LhxY2VnZ0uSgoOD5ajEpdGLi4uVn5/vfCxvUtneLMvS6dOnlZ2drcaNG3vdzwMAPE15M6ykpIS5dJbqnk0EKwC4gIiICElyDqbKKCkpUVFRkXx9feXj410nCFS1t8aNGzt/pgCAmnXuDGMula+6ZhPBCgAuwOFwqEWLFgoLC1NhYWGl7pubm6tdu3YpMjJSQUFBNVShe1SlNz8/P6/7DSkAeLJzZxhzqazqnE0EKwCogHr16lV6x1tSUiJJCggIUGBgYE2U5Tbe3BsAeJvSGebN+25P6M27jgECAAAAgBsQrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAx5VLB66aWXNGjQIJdl27Zt08CBAxUXF6eUlBS99tprLutLSkr0/PPPq2vXroqLi9Ndd92lvXv31mbZAAAAAOo4jwlWixYt0syZM12WHTt2TEOGDFFkZKSWLl2qe++9V9OnT9fSpUud27z44otavHixHn/8cb3xxhsqKSnR8OHDVVBQUMsdAAAAAKirfN1dwKFDhzRp0iSlpaWpdevWLuvefPNN+fn56bHHHpOvr68uv/xy7dmzR3PnzlX//v1VUFCgl19+WaNHj1b37t0lSTNmzFDXrl318ccfq0+fPrXfEAAAAIA6x+1HrLZs2SI/Pz+99957io2NdVmXnp6upKQk+fr+mv86deqkzMxMHT58WNu3b9cvv/yi5ORk5/qQkBC1a9dO69evr7UeAAAAANRtbj9ilZKSopSUlHLXZWVlKSoqymVZWFiYJOngwYPKysqSJLVo0aLMNqXrqio3N9fo/p6otCd6sxd6sy9v7q+merMsSw6Ho1of05vwXrIXerMnerMnT5hLbg9WF5KXlyd/f3+XZQEBAZKk/Px85w+uvG1OnDhh9NyZmZlG9/dk9GZP9GZf3txfTfR27j4dv+K9ZE/0Zk/0Zk/unEseHawCAwPLXIQiPz9fkhQcHKzAwEBJUkFBgfPvpdsEBQUZPXfr1q2NH8PT5ObmKjMzk95sht7sy5v7q6neMjIyqu2xvBHvJXuhN3uiN3vyhLnk0cEqIiJC2dnZLstKb4eHh6uoqMi5LDIy0mWbtm3bGj13UFCQgoODjR7DU9GbPdGbfXlzf9XdG6cBXhjvJXuiN3uiN3ty51xy+8UrLiQxMVEbNmxQcXGxc9natWvVpk0bNW3aVNHR0WrQoIHS0tKc60+ePKmtW7cqMTHRHSUDAAAAqIM8Olj1799fOTk5Gj9+vDIyMrRs2TItWLBAI0aMkHTmfMeBAwdq+vTp+s9//qPt27frwQcfVEREhHr16uXm6gEAAADUFR59KmDTpk01b948Pfnkk+rXr5+aN2+uMWPGqF+/fs5tRo0apaKiIk2YMEF5eXlKTEzU/Pnz5efn58bKAQAAANQlHhWspk6dWmZZhw4dtGTJkvPep169enrkkUf0yCOP1GRpAAAAAHBeHn0qIAAAAADYAcEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAwRrAAAAADAEMEKAAAAAAzZIlgVFRXpueeeU48ePRQfH68BAwbom2++ca7ftm2bBg4cqLi4OKWkpOi1115zX7EAAAAA6hxbBKvZs2frrbfe0uOPP67ly5erTZs2Gj58uLKzs3Xs2DENGTJEkZGRWrp0qe69915Nnz5dS5cudXfZAAAAAOoIX3cXUBGrVq1Snz591KVLF0nSuHHj9NZbb+mbb77R7t275efnp8cee0y+vr66/PLLtWfPHs2dO1f9+/d3c+UAAAAA6gJbHLFq2rSpPv30U+3bt0/FxcVasmSJ/P39FR0drfT0dCUlJcnX99eM2KlTJ2VmZurw4cNurBoAAABAXWGLI1bjx4/X/fffr+uvv1716tWTj4+PUlNTFRkZqaysLEVFRblsHxYWJkk6ePCgmjVrVqXnzM3NNa7b05T2RG/2Qm/25c391VRvlmXJ4XBU62N6E95L9kJv9kRv9uQJc8kWwSojI0MNGzbUrFmzFB4errfeekujR4/WwoULlZeXJ39/f5ftAwICJEn5+flVfs7MzEyTkj0avdkTvdmXN/dXE72du0/Hr3gv2RO92RO92ZM755LHB6uDBw/q4Ycf1oIFC9SxY0dJUkxMjDIyMpSamqrAwEAVFBS43Kc0UAUHB1f5eVu3bq2goKCqF+6BcnNzlZmZSW82Q2/25c391VRvGRkZ1fZY3oj3kr3Qmz3Rmz15wlzy+GC1efNmFRYWKiYmxmV5bGysvvjiC11yySXKzs52WVd6Ozw8vMrPGxQUZBTMPBm92RO92Zc391fdvXEa4IXxXrInerMnerMnd84lj794RUREhCTphx9+cFm+Y8cOtW7dWomJidqwYYOKi4ud69auXas2bdqoadOmtVorAAAAgLrJ44NVhw4ddPXVV2vs2LFau3atMjMzNXPmTK1Zs0b/93//p/79+ysnJ0fjx49XRkaGli1bpgULFmjEiBHuLh0AAABAHeHxpwL6+Pho9uzZmjlzph599FGdOHFCUVFRWrBggWJjYyVJ8+bN05NPPql+/fqpefPmGjNmjPr16+fmygEAAADUFR4frCSpUaNGmjRpkiZNmlTu+g4dOmjJkiW1XBUAAAAAnOHxpwICAAAAgKcjWAEAAACAIYIVAAAAABgiWAEAAACAIYIVAAAAABgiWAEAAACAIYIVAAAAABgiWAEAAACAIYIVAAAAABgiWAEAAACAIYIVAAAAABgiWAEAAACAIYIVAAAAABgiWAEAAACAIYIVAAAAABgiWAEAAACAIYIVAAAAABgiWAEAAACAIYIVAAAAABgiWAEAAACAIYIVAAAAABgiWAEAAACAIYIVAAAAABgiWAEAAACAIYIVAAAAABgiWAEAAACAIYIVAAAAABgiWAEAAACAIYIVAAAAABgiWAEAAACAIYIVAAAAABgiWAEAAACAoSoFqzvvvFM7d+4sd9327dvVt29fo6IAAAAAwE58K7phenq6LMuSJK1bt07r16/X0aNHy2z36aefau/evdVXIQAAAAB4uAoHq7feekvvvvuuHA6HHA6HpkyZUmab0uDVp0+f6qsQAAAAADxchYPVhAkT1L9/f1mWpcGDB2vixIm64oorXLbx8fFRSEiIfvvb31Z7oQAAAADgqSocrBo2bKikpCRJ0muvvaZ27dqpQYMGNVYYAAAAANhFhYPV2ZKSknT06FF9+umnOnnypPMUwLPdcsstprUBAAAAgC1UKVh98cUXuv/++5WXl1duqHI4HAQrAAAAAHVGlYLVP//5T7Vq1Upjx45Vy5Yt5ePD12EBAAAAqLuqFKx2796t1NRUJScnV3c9AAAAAGA7VTrU1KJFC+Xm5lZ3LQAAAABgS1UKViNHjtTzzz+vzMzMai4HAAAAAOynwqcCpqSkyOFwOG8fPHhQN9xwg5o0aaKgoCCXbR0Oh1atWlV9VQIAAACAB6twsEpKSnIJVgAAAACAMyocrKZOnVqTdQAAAACAbVXpqoAHDhw47zofHx8FBwcrJCSkykUBAAAAgJ1UKVid+3mr8jRq1Eh33nmn7rnnnioVBgAAAAB2UaVgNXXqVE2cOFFJSUnq06ePmjZtqiNHjujjjz/WZ599pnvuuUe//PKL5syZo8aNG+vPf/5zddcNAAAAAB6jSsHq/fff10033aSnn37aZfktt9yiSZMm6fvvv3eGqtdff51gBQAAAMCrVel7rNatW6c+ffqUu65Xr15au3atJCk+Pl579+6tenUAAAAAYANVClaNGzfW9u3by123fft2NWjQQJJ0+vTpMt9xBQAAAADepkqnAvbt21fPP/+8fH191bt3b4WGhurIkSP65JNP9MILL+j222/XiRMn9Oqrryo2Nra6awYAAAAAj1KlYPXAAw/oyJEjmjp1qsv3W/n4+Kh///568MEHtXLlSm3dulWvvvpqtRULAAAAAJ6oSsHK19dXTz/9tO6++26lpaXp2LFjCg8PV0JCgi677DJJ0nXXXacvv/xS/v7+1VowAAAAAHiaKgWrUpGRkYqMjCx3XaNGjUweGgAAAABso8LB6vrrr9esWbMUHR190S8IdjgcWrVqVbUUCAAAAACersLBKikpSfXr13f+/ULBCgAAAADqkgoHq7O/DPjsC1YAAAAAQF1n9BmrnTt36uuvv1Z2drYGDRqkvXv3Kjo62vk9VgAAAABQF1QpWJWUlGjixIlaunSpLMuSw+HQDTfcoBdffFE//fSTFi5cqIiIiOquFQAAAAA8kk9V7vTiiy9qxYoVeuKJJ/T111/LsixJ0iOPPKKSkhLNmDGjWosEAAAAAE9WpWC1dOlSjRo1Sv3791fjxo2dy6+88kqNGjVKX3/9dXXV57R8+XLdeOONiomJ0U033aQPP/zQuW7fvn0aMWKEEhIS1KVLF82cOVPFxcXVXgMAAAAAlKdKwerw4cO68sory10XHh6ukydPGhV1rnfffVfjx4/XgAED9P7776tPnz566KGHtGnTJhUWFmrYsGGSpDfeeEOTJ0/W66+/rlmzZlVrDQAAAABwPlX6jFWrVq30+eef69prry2zbt26dWrVqpVxYaUsy9Jzzz2nO++8UwMGDJAk3X333UpPT9e6deu0f/9+HThwQG+++aYaNWqkqKgoHTlyRP/4xz80cuRI+fv7V1stAAAAAFCeKgWrwYMHa+LEiSosLFSPHj3kcDi0Z88epaWl6eWXX9a4ceOqrcDdu3dr//796tu3r8vy+fPnS5ImT56s9u3bq1GjRs51nTp1Uk5OjrZt26bY2NhqqwUAAAAAylOlYHXbbbfp6NGjmj17thYvXixJeuihh+Tn56fhw4frjjvuqLYCd+/eLUk6ffq0hg0bpq1bt6ply5a6++67lZKSoqysrDJXIAwLC5MkHTx4sMrBKjc316xwD1TaE73ZC73Zlzf3V1O9lV5pFuXjvWQv9GZP9GZPnjCXqvw9ViNGjNCAAQO0adMmHT9+XCEhIYqNjXW5mEV1yMnJkSSNHTtW9913n0aPHq2VK1fqnnvu0SuvvKK8vDyFhIS43CcgIECSlJ+fX+XnzczMrPJ9PR292RO92Zc391cTvXEK9/nxXrInerMnerMnd86lCgerRx999KLbfPTRR5Ikh8Ohp556qqIPfUF+fn6SpGHDhqlfv36Szlx9cOvWrXrllVcUGBiogoICl/uUBqrg4OAqP2/r1q0VFBRU5ft7otzcXGVmZtKbzdCbfXlzfzXVW0ZGRrU9ljfivWQv9GZP9GZPnjCXKhys0tLSyiw7ePCgmjVr5gw/parzNI7w8HBJUlRUlMvyK664Qp999pmSkpK0Y8cOl3XZ2dku962KoKAgo2DmyejNnujNvry5v+rujdMAL4z3kj3Rmz3Rmz25cy5VOFitXr3a5XZRUZGuuuoqzZkzR+3bt694dZXUvn171a9fX5s3b1bHjh2dy3fs2KHIyEglJiZq+fLlysnJUYMGDSRJa9euVf369RUdHV1jdQEAAABAqSp9j5VUe79VDAwM1PDhwzVr1iz9+9//1k8//aTZs2fr66+/1pAhQ9SzZ081b95cDzzwgLZv365Vq1bp2Wef1dChQzlPHwAAAECtqPLFK2rTPffco6CgIM2YMUOHDh3S5ZdfrtTUVF1zzTWSpHnz5mnKlCn605/+pEaNGunPf/6z7rnnHjdXDQAAAKCusEWwkqQhQ4ZoyJAh5a5r1aqVXn755VquCAAAAADOqPKpgAAAAACAM4yDFVdwAgAAAFDXVfhUwJSUlHJD1MiRI8u93PqqVavMqwMAAAAAG6hwsEpKSuLoFAAAAACUo8LBaurUqTVZBwAAAADYFhevAAAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDBCsAAAAAMESwAgAAAABDtgpWu3fvVnx8vJYtW+Zctm3bNg0cOFBxcXFKSUnRa6+95sYKAQAAANRFtglWhYWFGj16tE6fPu1cduzYMQ0ZMkSRkZFaunSp7r33Xk2fPl1Lly51Y6UAAAAA6hpfdxdQUampqWrQoIHLsjfffFN+fn567LHH5Ovrq8svv1x79uzR3Llz1b9/fzdVCgAAAKCuscURq/Xr12vJkiWaOnWqy/L09HQlJSXJ1/fXfNipUydlZmbq8OHDtV0mAAAAgDrK449YnTx5UmPGjNGECRPUokULl3VZWVmKiopyWRYWFiZJOnjwoJo1a1bl583Nza3yfT1VaU/0Zi/0Zl/e3F9N9WZZlhwOR7U+pjfhvWQv9GZP9GZPnjCXPD5YTZ48WfHx8erbt2+ZdXl5efL393dZFhAQIEnKz883et7MzEyj+3syerMnerMvb+6vJno7d7+OX/Fesid6syd6syd3ziWPDlbLly9Xenq6VqxYUe76wMBAFRQUuCwrDVTBwcFGz926dWsFBQUZPYanyc3NVWZmJr3ZDL3Zlzf3V1O9ZWRkVNtjeSPeS/ZCb/ZEb/bkCXPJo4PV0qVLdeTIEXXv3t1l+aRJk/TBBx8oIiJC2dnZLutKb4eHhxs9d1BQkHE481T0Zk/0Zl/e3F9198ZpgBfGe8me6M2e6M2e3DmXPDpYTZ8+XXl5eS7LevXqpVGjRunmm2/Wu+++qzfeeEPFxcWqV6+eJGnt2rVq06aNmjZt6o6SAQAAANRBHn1VwPDwcLVq1crljyQ1bdpU4eHh6t+/v3JycjR+/HhlZGRo2bJlWrBggUaMGOHmygEAAADUJR4drC6madOmmjdvnnbv3q1+/frphRde0JgxY9SvXz93lwYAAACgDvHoUwHL88MPP7jc7tChg5YsWeKmagAAAADA5kesAAAAAMATEKwAAAAAwBDBCgAAAAAMEawAAAAAwBDBCgAAAAAMEawAAAAAwBDBCgAAAAAMEawAAAAAwBDBCgAAAAAMEawAAAAAwBDBCgAAAAAMEawAAAAAwBDBCgAAAAAMEawAAAAAwBDBCgAAAAAMEawAAAAAwBDBCgAAAAAMEawAAAAAwBDBCgAAAAAMEawAAAAAwBDBCgAAAAAMEawAAAAAwBDBCgAAAAAMEawAAAAAwBDBCgAAAAAMEawAAAAAwBDBCgAAAAAMEawAAAAAwBDBCgAAAAAMEawAAAAAwBDBCgAAAAAMEawAAAAAwBDBCgAAAAAM+bq7ANhbTn6xCoulomLJz9ehAF8pyI+8DgBwo1+OSoV5klUi+QVJgQ0k3wB3VwXAyxGsUGUn80qUllmggydLJEk+DumKZr5q38JPDQMJVwCAWpaXJ53+Wdr8nnT66JllfkFSu99Joa2k4MZuLQ+Ad+P/flElp/JK9EVGvjNUSVKJJe34uUjbDxUqr6DkAvcGAKAGFOVI6xb9GqokqTD3f0HrmPvqAlAnEKxQJXlFlo6eLj887cguUl5xLRcEAMCBLVJxYfnrfvxCOn28VssBULcQrFAlp/LOf0Sq2JKKiq1arAYAUOcV5EsnDp5//alsqYTf+gGoOQQrVEmw//nfOg6H5OvjqMVqAAB1nn+AVL/p+dcHNZZ8+N8eADWHPQyqJNjfoQYB5Yen1k3qyb9eLRcEAEDLWMlxnv+1uaKLFNykdusBUKcQrFAlIYE+6vHbQIUEuoarFiH1FNfSX8EBvLUAALXMP1hK+KPrpdUdPtJvu0qNWrivLgB1ApdbR5U1CfZRSlSA8oukvEJL9f0d8vd1qAGhCgDgDoENpCaXSZ2HSXmnpJKiM5dY9/GXgkPcXR0AL0ewgpGQQM75AwB4kIDgM38aXODzVgBQAzi0AAAAAACGCFYAAAAAYIhgBQAAAACGCFYAAAAAYIhgBQAAAACGCFYAAAAAYIhgBQAAAACGCFYAAAAAYIhgBQAAAACGCFYAAAAAYIhgBQAAAACGCFYAAAAAYIhgBQAAAACGCFYAAAAAYIhgBQAAAACGCFYAAAAAYIhgBQAAAACGCFYAAAAAYIhgBQAAAACGbBGsjh8/rokTJ+q6665TQkKC7rjjDqWnpzvXr1mzRrfeeqtiY2PVu3dvvf/++26sFgAAAEBdY4tg9dBDD2nTpk169tlntXTpUl155ZUaNmyYdu3apZ07d2rEiBHq2rWrli1bpttuu01jxozRmjVr3F02AAAAgDrC190FXMyePXv09ddfa/Hixbr66qslSX//+9/15ZdfasWKFTpy5Ijatm2rBx98UJJ0+eWXa+vWrZo3b56Sk5PdWToAAACAOsLjj1g1adJEc+fOVUxMjHOZw+GQw+HQyZMnlZ6eXiZAderUSRs2bJBlWbVdLgAAAIA6yOOPWIWEhKhbt24uy1auXKk9e/bob3/7m9555x1FRES4rA8LC1Nubq6OHTum0NDQKj1vbm5ulWv2VKU90Zu90Jt9eXN/NdWbZVlyOBzV+pjehPeSvdCbPdGbPXnCXPL4YHWujRs36tFHH1WvXr3UvXt35eXlyd/f32Wb0tsFBQVVfp7MzEyTMj0avdkTvdmXN/dXE72du0/Hr3gv2RO92RO92ZM755KtgtWqVas0evRoJSQkaPr06ZKkgICAMgGq9HZQUFCVn6t169ZG9/dEubm5yszMpDeboTf78ub+aqq3jIyManssb8R7yV7ozZ7ozZ48YS7ZJlgtXLhQTz75pHr37q1nnnnGmRxbtGih7Oxsl22zs7MVHByshg0bVvn5goKCFBwcbFSzp6I3e6I3+/Lm/qq7N04DvDDeS/ZEb/ZEb/bkzrnk8RevkKTFixfr8ccf14ABA/Tss8+6HI7r2LGj1q1b57L92rVrlZCQIB8fW7QHAAAAwOY8/ojV7t279dRTT+l3v/udRowYocOHDzvXBQYGatCgQerXr5+mT5+ufv366fPPP9dHH32kefPmubFqAAAAAHWJxwerlStXqrCwUJ988ok++eQTl3X9+vXT1KlT9eKLL2ratGl69dVX1bJlS02bNo3vsAIAAABQazw+WI0cOVIjR4684DbXXXedrrvuulqqCAAAAABc8SEkAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADBEsAIAAAAAQwQrAAAAADDkFcGqpKREzz//vLp27aq4uDjddddd2rt3r7vLAgAAAFBHeEWwevHFF7V48WI9/vjjeuONN1RSUqLhw4eroKDA3aUBAAAAqANsH6wKCgr08ssva9SoUerevbuio6M1Y8YMZWVl6eOPP3Z3eQAAAADqAIdlWZa7izDx7bff6rbbbtNHH32kNm3aOJffcccdioqK0pQpUyr1eBs3bpRlWfL19ZXD4ajuct3KsiwVFRXRm83Qm315c3811VthYaEcDocSEhKq7TG9AbPJnujNnujNnjxhLvlW27O6SVZWliSpRYsWLsvDwsKc6yqj9IXw8bH9wbwyHA6H/P393V1GjaA3e/Lm3iTv7q+menM4HF437KsDs8me6M2e6M2ePGEu2T5Y5ebmSlKZH2RAQIBOnDhR6ceLj4+vlroAAKguzCYA8Hy2/9VXYGCgJJW5UEV+fr6CgoLcURIAAACAOsb2war0FMDs7GyX5dnZ2QoPD3dHSQAAAADqGNsHq+joaDVo0EBpaWnOZSdPntTWrVuVmJjoxsoAAAAA1BW2/4yVv7+/Bg4cqOnTpys0NFSXXnqppk2bpoiICPXq1cvd5QEAAACoA2wfrCRp1KhRKioq0oQJE5SXl6fExETNnz9ffn5+7i4NAAAAQB1g+++xAgAAAAB3s/1nrAAAAADA3QhWAAAAAGCIYAUAAAAAhghWAAAAAGCIYAUAAAAAhghWAAAAAGCIYHWWkpISPf/88+ratavi4uJ01113ae/eve4uq9KOHz+uiRMn6rrrrlNCQoLuuOMOpaenO9evWbNGt956q2JjY9W7d2+9//77bqy26nbv3q34+HgtW7bMuWzbtm0aOHCg4uLilJKSotdee82NFVbN8uXLdeONNyomJkY33XSTPvzwQ+e6ffv2acSIEUpISFCXLl00c+ZMFRcXu7HaiisqKtJzzz2nHj16KD4+XgMGDNA333zjXG/H1+6ll17SoEGDXJZdrA877WfK62/16tXq37+/4uPjlZKSomeeeUZ5eXnO9fn5+ZoyZYqSk5MVHx+vhx9+WEePHq3t0r2Gnd4vF8Nsstf+7WzMJXu9bt48mzx+LllwSk1Nta655hrr008/tbZt22YNHTrU6tWrl5Wfn+/u0iplyJAhVp8+faz169dbu3btsqZMmWJ16NDB2rlzp5WRkWHFxMRYzz77rJWRkWHNmzfPateunfXf//7X3WVXSkFBgXXrrbdaUVFR1tKlSy3LsqyjR49a11xzjfXoo49aGRkZ1ttvv23FxMRYb7/9tpurrbjly5db7dq1sxYuXGjt2bPHevHFF63o6Ghr48aNVkFBgdWrVy/r//7v/6wffvjB+uSTT6ykpCTrueeec3fZFfL8889bnTt3tr788ksrMzPTGj9+vHX11Vdbhw4dsuVrt3DhQis6OtoaOHCgc1lF+rDLfqa8/tavX29deeWV1uzZs63du3dbn332mXXddddZ48aNc24zbtw4q2fPntb69eutzZs3W7fccos1YMAAd7TgFezyfqkIZpN99m9nYy7Z63Xz5tlkh7lEsPqf/Px8Kz4+3lq0aJFz2YkTJ6wOHTpYK1ascGNllZOZmWlFRUVZ6enpzmUlJSVWz549rZkzZ1p///vfrT/+8Y8u93nooYesoUOH1napRv75z39ad955p8vwmjNnjtWlSxersLDQZbtevXq5q8xKKSkpsXr06GFNnTrVZfnQoUOtOXPmWCtWrLCuuuoq6/jx4851b7zxhpWQkOBRO77zufnmm62nn37aefvUqVNWVFSUtXLlSlu9dllZWdaIESOsuLg4q3fv3i47+Iv1YYf9zIX6e/jhh62//OUvLtu/8847Vvv27a38/HwrKyvLio6Otj777DPn+l27dllRUVHWxo0ba60Hb2GH90tFMZvssX87F3PJPq+bN88mO80lTgX8n+3bt+uXX35RcnKyc1lISIjatWun9evXu7GyymnSpInmzp2rmJgY5zKHwyGHw6GTJ08qPT3dpUdJ6tSpkzZs2CDLsmq73CpZv369lixZoqlTp7osT09PV1JSknx9fZ3LOnXqpMzMTB0+fLi2y6y03bt3a//+/erbt6/L8vnz52vEiBFKT09X+/bt1ahRI+e6Tp06KScnR9u2bavtciutadOm+vTTT7Vv3z4VFxdryZIl8vf3V3R0tK1euy1btsjPz0/vvfeeYmNjXdZdrA877Gcu1N/QoUM1duxYl2U+Pj4qLCxUTk6ONmzYIOlMz6XatGmj8PBwj+nPTuzwfqkoZpM99m/nYi7Z53Xz5tlkp7lEsPqfrKwsSVKLFi1cloeFhTnX2UFISIi6desmf39/57KVK1dqz5496tq1q7KyshQREeFyn7CwMOXm5urYsWO1XW6lnTx5UmPGjNGECRPKvFbn602SDh48WGs1VtXu3bslSadPn9awYcOUnJys2267TatXr5Zk//7Gjx8vPz8/XX/99YqJidGMGTP0/PPPKzIy0la9paSkKDU1VZdddlmZdRfrww77mQv1165dO0VHRztvFxYWasGCBbrqqqsUGhqqQ4cOqUmTJgoICHC5nyf1Zyd2eL9UFLPJHvu3czGX7NObN88mO80lgtX/5ObmSpLLTl+SAgIClJ+f746SqsXGjRv16KOPqlevXurevbvy8vLK9Fh6u6CgwB0lVsrkyZMVHx9f5rdnksrtrfQfkh1ew5ycHEnS2LFj1adPH7388svq3Lmz7rnnHq1Zs8b2/WVkZKhhw4aaNWuWlixZoltvvVWjR4/Wtm3bbN9bqYv14U37maKiIo0ZM0Y//vijJk2aJOnMfvTc3iR79ucJvOn9ci5mkz32b8wl+/Z2troymzxhLvlefJO6ITAwUNKZHXjp36Uzb7igoCB3lWVk1apVGj16tBISEjR9+nRJZ95I5w6p0tue3ufy5cuVnp6uFStWlLs+MDCwTG+l/2iCg4NrvD5Tfn5+kqRhw4apX79+kqQrr7xSW7du1SuvvGLr/g4ePKiHH35YCxYsUMeOHSVJMTExysjIUGpqqq17O9vF+vCW/UxOTo4eeOABrVu3Ti+88II6dOggqfz+Jfv15ym85f1yLmaTffZvzCV79nauujCbPGUuccTqf0oPf2ZnZ7ssz87OVnh4uDtKMrJw4UL99a9/VY8ePTRnzhznbyZatGhRbo/BwcFq2LChO0qtsKVLl+rIkSPq3r274uPjFR8fL0maNGmShg8froiIiHJ7k2SL17C0xqioKJflV1xxhfbt22fr/jZv3qzCwkKXz1dIUmxsrPbs2WPr3s52sT68YT+TnZ3tvCTx/Pnz1a1bN+e6iIgIHT9+vMwQs1N/nsQb3i/nYjadYZf9G3PJnr2dy9tnkyfNJYLV/0RHR6tBgwZKS0tzLjt58qS2bt2qxMREN1ZWeYsXL9bjjz+uAQMG6Nlnn3U5BNqxY0etW7fOZfu1a9cqISFBPj6e/XaYPn26PvjgAy1fvtz5R5JGjRqlJ598UomJidqwYYPL92esXbtWbdq0UdOmTd1UdcW1b99e9evX1+bNm12W79ixQ5GRkUpMTNTWrVudp2ZIZ/qrX7++y/nFnqj03O4ffvjBZfmOHTvUunVr2792pS7Wh933MydOnNDgwYN19OhRLVq0qEzNV199tUpKSpwfFpbOfEbj0KFDtujP09j9/XIuZpP99m/MJXu+bufy5tnkcXOp2q8zaGPPPvuslZSUZK1atcrlGv4FBQXuLq3Cdu3aZbVv39669957rezsbJc/J0+etHbs2GG1b9/emjZtmpWRkWHNnz/flt8VUursS9oePnzYSkxMtMaOHWv9+OOP1tKlS62YmBhr2bJlbq6y4mbNmmXFx8dbK1ascPm+kLVr11p5eXlWz549rWHDhlnbtm1zfl9Iamqqu8u+qOLiYuuOO+6wevfuba1Zs8bavXu3NWPGDOvKK6+0vvnmG9u+dmPHjnW57GtF+rDTfubc/saOHWu1b9/eWrNmTZn9S1FRkWVZZy6RnZKSYq1du9b5fSFnPwYqx07vlwthNtlv/1aKuWS/182bZ5OnzyWC1VmKioqsf/zjH1anTp2suLg466677rL27t3r7rIqZfbs2VZUVFS5f8aOHWtZlmV9/vnnVp8+fayrrrrK6t27t/X++++7ueqqO3t4WZZlbd682frTn/5kXXXVVVaPHj2sf/3rX26srmpefvllKyUlxWrfvr118803W5988olzXWZmpjVkyBArJibG6tKlizVz5kyruLjYjdVW3PHjx63Jkydb3bt3t+Lj463/9//+n5WWluZcb8fX7twdvGVdvA877WfO7q+oqMiKiYk57/6ltIdffvnFGj9+vNWxY0erY8eO1kMPPWQdPXrUnW3Ymp3eLxfCbLLf/u1szCV7vW7ePJs8fS45LMsmXxABAAAAAB7Ks09cBgAAAAAbIFgBAAAAgCGCFQAAAAAYIlgBAAAAgCGCFQAAAAAYIlgBAAAAgCGCFQAAAAAYIlgBdRBfXwcA8DTMJtgdwQpwo/vvv1/XXHNNmeXfffed2rZtq4SEBBUWFrqs+/7779W2bVvNmjVLbdu21bJlyy74HCkpKRo3bpzz9ltvvaVnnnnGeXvZsmVq27at9u3bZ9gNAMAbMJuAqiFYAW6UnJys48ePa9euXS7Lv/zySzVu3Fi//PKLNm3a5LIuPT1dknTLLbdoyZIl6t69e6Wec/bs2Tp+/LhJ2QAAL8ZsAqqGYAW4UXJysiRp48aNLsu/+uor9e7dW5dccom+/PJLl3Xr169XVFSULr30UsXFxSk0NLTW6gUAeD9mE1A1BCvAjVq1aqVLL73UZXidOnVKmzdv1rXXXqvk5GR99dVXLvfZsGGDOnfurH379pU53WL79u0aMmSI4uPj1aNHD7333nsu901JSdH+/fv1zjvvlDnFYvPmzbr99tsVExOj7t27a968eTXUNQDAkzGbgKohWAFu1qlTJ5fhtWbNGlmWpeTkZHXp0kXbtm3T4cOHJUkZGRk6duyYOnfuXOZxDh06pIEDB+rUqVOaNm2a7r//fk2fPl2HDh1ybvPCCy+oefPm6tatm5YsWaKwsDDnusmTJ+umm27S3LlzFR8fr2nTpunTTz+twc4BAJ6K2QRUHsEKcLPk5GTt3r1bR48elXTmHPYOHTooJCRE1157rRwOh/M3g+vXr5e/v78SExPLPM6CBQtUXFysuXPnqmfPnrrllluUmpqqoqIi5zbt2rWTv7+/QkNDFRcXJ39/f+e6hx56SIMGDVJycrKeeuop+fn5ae3atTXcPQDAEzGbgMojWAFuVnoue+kHgb/66it16dJFktS4cWO1b99e//3vfyWd+XBwQkKCAgMDyzzOhg0bypzXHhsbq0suuaRCdXTs2NH596CgIDVr1kwnT56sWlMAAFtjNgGVR7AC3KxZs2aKiorSxo0btXPnTh04cEBdu3Z1ru/cubPS0tIk/XoOe3lOnDihJk2alFnevHnzCtURFBTkctvHx4fvFAGAOorZBFQewQrwAJ06ddLmzZu1Zs0aNW7cWDExMc51Xbp0UVZWltauXauDBw+ed3g1adLEeb772bh8LQCgKphNQOUQrAAPcO2112rLli1KS0tTcnKyfHx+/acZFxen+vXra/HixWrSpInatWtX7mN06tRJmzZtcvlAcEZGhvbu3euy3dmPDQDA+TCbgMrhXQx4gMTERBUUFOjTTz91nsNeys/PT0lJSVq9erXzA8PlGTx4sBo1aqRhw4Zp5cqV+uCDD3T33XfLz8/PZbuQkBBt3bpV69atU15eXo31BACwN2YTUDkEK8ADNGjQQDExMSosLCwzvCSpa9euKiws1LXXXnvex2jSpIlef/11tWzZUuPGjdNTTz2lAQMGKDo62mW7oUOH6vDhwxo2bJi+//77au8FAOAdmE1A5TgsPgEIAAAAAEY4YgUAAAAAhghWAAAAAGCIYAUAAAAAhghWAAAAAGCIYAUAAAAAhghWAAAAAGCIYAUAAAAAhghWAAAAAGCIYAUAAAAAhghWAAAAAGCIYAUAAAAAhv4/p5fUlPM18cgAAAAASUVORK5CYII=\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAIdCAYAAABIjl77AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACaqUlEQVR4nOzdd3xUZdo//s/JJJlkkpDeC4QAadRAAtGEDtLUoIjAIohCsOzyyLpRd9flZ9nVteyjIksRCYg+gBVQKSIIKJgQQg2QQBLSe++ZJDPz+yPfGQkTENLOmZnP+/XiJZ45OXOdi0nuXPe5i6DRaDQgIiIiIiIi0ZmJHQARERERERG1Y4FGREREREQkESzQiIiIiIiIJIIFGhERERERkUSwQCMiIiIiIpIIFmhEREREREQSwQKNiIiIiIhIIszFDsAYnDt3DhqNBhYWFmKHQkRkUlpbWyEIAkaNGiV2KJLDtomISBzdbZv4BK0HaDQa3R9qp9Fo0NLSwpzcgDnRx5zoY046d6u88GfvrbFt0sfvL33MiT7mRB9zou92Oenuz14+QesBFhYWaGlpwaBBg6BQKMQORxIaGxuRmprKnNyAOdHHnOhjTjp3q7ykpKSIGJW0sW3Sx+8vfcyJPuZEH3Oi73Y56W7bxCdoREREREREEsECjYiIiIiISCJYoBEREREREUkECzQiIiIiIiKJYIFGREREREQkEVzFkYgMmkqlQmtrq9hh9BilUqn7r5kZ+9AsLCwgk8nEDoOI6K6wbTJuvb2/JAs0IjJIGo0GxcXFqK6uFjuUHqVWq2Fubo7CwkI2gv+Pg4MD+vXrJ3YYRES/i22T6bCxsem1a7NAIyKDpG0A3dzcoFAoIAiC2CH1CJVKBaVSCblcbvJPjjQaDRobG1FaWmpUPdFEZLzYNhk/bdtUUlLSa+/BAo2IDI5KpdI1gM7OzmKH06NUKhUAwMrKyuQbQQCwtrYG0P5LDxGRlLFtMh3W1tZQq9XIz8/X5aYn8RklERkc7dMUhUIhciTUF/jvTESGgG2TabG2toYgCGhra+vxa7NAIyKDZSxDR+j2+O9MRIaEP7NMgyAIvfZvzQKNiIiIiIhIIligERERERERSQQXCSEi6kMpKSnYvn07Tp8+jcrKSri5uSEyMhKxsbHw9fW94+s89thjAIBPP/20t0IlIiITwbZJWvgEjYioj/zf//0fFixYgIqKCjz//PPYvHkzYmNjkZSUhHnz5iEtLU3sEImIyMSwbZIeFmhERH3gzJkz+Ne//oVFixYhPj4e999/P8aOHYv58+dj586dkMvl+Nvf/iZ2mEREZELYNkkThzgSEfWBLVu2wM7ODn/+85/1XnNycsJLL72ErKwsNDY2QqPRYOfOnfj888+Rk5MDJycnzJkzB3/6058gl8s7vb5SqcTHH3+M7777DgUFBfD09MS8efOwfPlymJm198U99thjcHd3R0tLC37++WeMGjUKW7du7dX7JiIi6WLbJE0s0IiIeplGo8GJEycwefJk3cbLN5s1axaA9s1A//a3v+H7779HbGwsxowZgytXruC///0vUlNT8fHHH+st66vRaPDUU0/h/Pnz+OMf/4igoCCcOnUK77//PvLy8vD666/rzj1w4AAeeOABbNiwAWq1uvdumoiIJI1tk3SxQOtBGo0GZWVlqK2thZubG+zs7MQOiYgkoKqqCkqlEj4+Pr97bkZGBvbs2YPVq1fjqaeeAgDce++9cHNzwwsvvICff/4ZEyZM6PA1P//8M3799Vf87//+L2bPnq37GisrK3zwwQdYsmQJBg8eDACwsLDAq6++CktLyx6+S5KylpYWAOC/OxHpsG2SLs5B6yEtLS3YtGkT1q9fj88++wz/+7//i/fffx/nzp2DRqMROzwiEpFMJgPQ3gP5e5KTkwH81mupNXv2bMhkMpw6dUrva5KSkmBubo4ZM2Z0OP7AAw/oXtcaOHAgG0AT0traih07duCtt97Cm2++ifXr1+PAgQNoamoSOzQiEhnbJuligdZDWltbUVdXB5lMBicnJwiCgJqaGnz77bfYsWMH6urqxA6RiERib28PGxsbFBYW3vKcxsZG1NTUoLq6GgDg6ura4XVzc3M4Ojp2+rOkpqYGjo6OusZWS3uNG7/Gxsamq7dBBqilpQUFBQW6IUNlZWVISkrC+vXrkZ6eLnJ0RCQmtk3SxQKthwiCgDlz5uDFF1/En/70J7z00kuYOnUqZDIZMjIysH37dvZYEpmwqKgonDp1CkqlstPXv/jiC4wbN073/2VlZR1eb21tRVVVFRwdHfW+1t7eHlVVVXq9oKWlpQDQ6deQaRAEAdOmTcP//M//4Pnnn8f8+fPh7OyM+vp67NixA2fOnBE7RCISEdsmaWKB1kOsrKwQHBwMCwsLAO3j/O+9916sXLkSdnZ2KC8vx+eff462tjaRIyUiMTzxxBOorq7G+++/r/daWVkZ4uPjMWjQIEydOhUAsH///g7n7Nu3DyqVCqNHj9b7+oiICLS1teHgwYMdjn/77bcA0OnXkGmwsrLCyJEj4eDgAFtbWwQHB2PlypW6z8S+ffv4JI3IhLFtkiYuEtJDtEuF3szV1RV/+MMfsHXrVuTk5OD7779HTExM3wZHRKIbOXIk/ud//gfvv/8+MjMzERMTA0dHR6Snp2PLli1QKpV4//33MWDAANx///348MMPoVQqER4ejtTUVKxbtw5jx45FdHS03rXHjx+PsWPH4uWXX0ZJSQmCgoKQlJSEzZs3Y+7cuRg0aJAId0xS0FnbZGFhgdmzZ6OtrQ0XLlzAV199hWXLlsHDw0OECIlITGybpEn0Ak2tVmPdunX48ssvUVdXh/DwcKxZswa+vr6dnl9VVYV//vOf+PnnnyEIAmbPno0XXnihw/KgBw4cwIcffoj8/HwMHDgQL774IiIjIwEAH374IdatW9fptR966CG8+eabPX6P7u7uePTRR/Hpp5/iwoULCA0N1a1aQ0Sm4+mnn0ZISAj+7//+D2+88QZqamrg6emJiRMn4qmnnoKnpydUKhXWrFkDf39/7N69G5s3b4abmxuWLFmCZ555ptNfuAVBwKZNm7B27Vps27YNlZWV8PHxwZ///GcsW7ZMhDslqRMEAffffz9qa2uRlZWFPXv2IDY29padjURkvNg2SY+gEXmJwXXr1uGzzz7Dv//9b3h4eOCdd95Bfn4+vvvuu05Xc3nsscfQ1NSEV199FbW1tfj73/+O8PBwvPXWWwCAxMRELF++HC+88ALuvfdefPXVV/jss8+wZ88eBAQEoKGhAY2NjR2uuXXrVuzcuRO7du1CYGDgXd9DSkoKWlpaEBwcDIVCccvzDh06hISEBNjb2+OZZ54x6tVqGhsbkZqa+rs5MSXMib6u5qS5uRlZWVnw9/eHlZVVL0bY91QqFZqbm2FlZaU3sdpUNTc3IzMzE83NzXqflZSUFADAsGHDxApPsu6kbWpoaMB///tfNDU1Ydq0abjnnnv6OMq+xZ/D+pgTfWyb9LFt0tfQ0ICMjAz4+fnpzafrbtskaldZS0sL4uPjsWrVKkycOBFBQUF47733UFxcjEOHDumdf+7cOSQlJeGtt95CaGgoIiMj8dprr2Hv3r0oKSkBAGzevBlTp07FkiVLEBAQgBdffBGhoaH45JNPALSvEuPq6qr7U1ZWhu3bt2PNmjVdKs7uxsSJE2Fvb4+amhr89NNPvfpeREREv8fGxgbTpk0DABw7dky3UhsREYlH1AItLS0NDQ0NuuGHANCvXz+EhITg9OnTeucnJyfD1dUVAQEBumMREREQBAFnzpyBWq3G2bNnO1wPAMaOHdvp9QDgtddew5gxYzB37tweuqtbs7S0xJw5cwC07/1QWVnZ6+9JRER0OyNHjkT//v3R2traaecoERH1LVHnoBUXFwMAPD09Oxx3c3PTvXajkpISvXMtLS3h4OCAoqIi1NbWorGxUW+i862ud/ToUZw7dw579uzp5p20u5Nl9L28vODv74+srCwcPXoUM2fO7JH3lhptLri1wG+YE31dzYlSqYRarYZKpbqjDTYNiXbUuUajMbp76yqVSqXLy82fFY1GA0EQxAjLYNzJ99ekSZOwbds2pKamIicnR2+vI2PBn8P6mBN9bJv0sW3Sp81Jc3Oz3vSp7rZNohZo2g/+zXOx5HI5ampqOj2/s3lbcrkcSqUSzc3Nt7xeZ/s7bN26FZMmTUJwcHCX7+FG2dnZd3Sel5cXsrKycPnyZbi6uhr15nx3mhNTwpzo60pOzM3Nb7lvizEw5nu7W0qlUvcLQWefFWOez9sT7vT7y9PTE0VFRfjhhx+Mfvlr/hzWx5zoY9ukz5jv7W61tLQAAAoLCzvd7Ls7bZOoBZp2AmVLS0uHyZRKpbLDqow3nq9Nxo2USiUUCgXkcrnueje/fvP1CgsLcerUKXz00Ufdvg+tAQMGdBp3ZwoKCpCdnY3y8nKMGTOmx2KQiqamJmRnZ99VTowdc6KvqzlRKpUoLCyEXC43uonYGo0GSqUScrmcT4ZuIJPJ0NbWpvdZycjIEDEqw3Cn318uLi7Ytm0bioqK4OrqChcXlz6Irm/x57A+5kQf2yZ9bJv0aZ+geXl5wd7evsNr3W2bRC3QtMMVS0tL4efnpzteWlra6YIdHh4eOHz4cIdjLS0tqK6uhpubGxwcHKBQKHQ7lN94PXd39w7HDh8+DCcnJ9x77709dTuwtra+49V+Jk+ejPj4eFy6dAmTJ0+Gg4NDj8UhJXeTE1PBnOi725yYmZnBzMwMMpnM6FaT0j4pEgTB6O6tq2Qyme4Xgps/K/xF4ffd6fdX//79ERwcjNTUVJw+fRoPP/xwH0QnDv4c1sec6GPb9Bu2Tfq07Y+VlZXe56S7bZOoi4QEBQXB1tYWp06d0h2rra3FlStXEB4ernd+eHg4iouLkZOTozuWlJQEoH03ckEQEBYWpjumderUKb2nVMnJyYiIiIC5uTg1qq+vLwYMGACNRoMzZ86IEgMREdGNtJvNXr58GXV1dSJHQ0RkmkQt0CwtLbF48WK8++67OHLkCNLS0rB69Wp4eHhg+vTpUKlUKCsr080tGzFiBMLCwrB69WpcvHgRiYmJWLNmDWJiYnRPyJYtW4Z9+/Zh69atyMzMxNtvv43U1FQsXbq0w3tfuXIFQUFBfX7PN9IWoefOneOESyIiEp2npyf8/Pyg0Whw9uxZscMhIjJJohZoALBq1SrMmzcPL7/8MhYuXAiZTIYtW7bAwsICRUVFiIqKwv79+wG0Py5ct24dfHx8sHTpUjz33HMYP348XnnlFd31oqKi8MYbb2Dnzp2YO3cuEhMTsXHjxg5L8wNAWVmZ6MMKAwMDYWtri4aGBqSmpooaCxEREQDdiJOzZ89CrVaLHA0RkekRdQ4a0D63IC4uDnFxcXqv+fj44OrVqx2OOTs7Y+3atbe9ZkxMDGJiYm57zoULF+461p4mk8kwevRoHD9+HMnJyRg6dKjYIRGRCDQaDXbv3o3du3cjPT0d9fX18PDwwKRJkxAbG2vQS54HBgbizTffxEMPPSR2KHSHgoODoVAoUFtbi/T09E7nhBOR8WPbJB7Rn6CZurCwMAiCgJycHL3FTYjI+KnVajz77LP497//rduLas+ePfj73/+OlJQUPPzww6ioqBA7TDIh5ubmGDlyJID2+dpEZHrYNomLBZrI+vXrp+udlMJTPSLqW9u2bcPx48exdetWPPHEExg8eDA8PT0xfvx4bNu2DRYWFtiyZYvYYZKJ0e6DlpGR0em+pERk3Ng2iYsFmgQMHz4cAHDp0iXdngpEdPc0Gg1aWlpE+3O3378ajQafffYZHnjgAYSGhuq9bmVlhe3bt+O5555Dfn4+AgMDsWnTJtx7772YMmUK6uvrce3aNaxcuRLh4eEYOnQopkyZgvj4eABAZWUlhg4dij179nS47n/+8x/dEuoXL17EokWLMGrUKISHh+NPf/pThw03y8vL8cILL2Ds2LEYPXo0Vq5cqVtJV61WY9OmTbjvvvswdOhQhIWFYfny5cjNzb3lPR89ehQPPfQQhg8fjmnTpuH999/vdH9LEpeTkxP69+8PoL1tIqKuE7Nt6srvlWybxG+bRJ+DRsDgwYMhl8tRW1uLnJwcDBgwQOyQiAyORqPB1q1bkZeXJ1oMvr6+WLZs2R3vf5Kfn4+CggLcc889tzzH29u7w//v3r0bn3zyCZqamiCTyfDEE0/g3nvvxa5duyCTyfDll1/irbfeQmRkJIKDgzFx4kTs2bNHNy9XrVbj22+/RWxsLFQqFVauXIn58+fjrbfeQm1tLdasWYO//e1v2LZtG9ra2vDEE0/A3Nwc69evh4ODA/79739j+fLlOHjwID799FNs2bIFb731FoYMGYLc3Fz84x//wL///W+sX79e715+/vlnPPfcc/jrX/+Ke+65B7m5uXj99deRlZWFDz744M4TTX1i2LBhyMnJwaVLl3p0z1AiUyJ223S37RLAtkkKbRMLNAkwNzdHSEgIzp07h4sXL7JAIzIR5eXlANqfVtzof/7nf5CcnKxrUL28vLBp0yYAwKJFizBo0CAA7b2QS5YswR/+8AfY2NgAaF8Z9+OPP8bVq1cRHByMhx9+GM888wxKSkrg7u6OhIQEVFZWYs6cOaivr0dVVRXc3Nzg7e0NX19fvP/++7p5BQkJCbh69SoOHjwIf39/AMA///lPbNu2DTU1NfDz88Nbb72FSZMmAWhvsGfMmIGDBw92er8bN27E/PnzsWDBAgCAn58fXn31VSxduhT5+fnw8fHpsdxS9wUHB2P//v0oLi5GWVmZQS8IQER3jm2T+G0TCzSJGDZsGM6dO4fU1FTMmjVLtA20iQyVIAhYtmwZWltbRYvBwsLirnopHR0dAUBvjs/LL78MtVoNmUyGTz/9FD/99JPuNe2wM6C98Vy0aBG+//57XLlyBbm5uUhLSwMA3fLo48ePh7OzM/bu3YvY2Fjs3r0bU6ZMgb29PQBg+fLleP3117F27VqMGzcOEyZMwMyZMwEA165dg729va4BBAB3d3e8+OKLAIDJkyfjwoUL+OCDD5CVlYWsrCxkZGTo9qW82ZUrV3Dx4kV89dVXumPa4TeZmZks0CRGoVBg0KBBuHbtGlJSUjB58mSxQyIyOGK3TXfbLgFsmwDx2yZWARIxYMAA2NnZoa6uDunp6QgODhY7JCKDIwgCLC0txQ7jjvn6+sLV1RWnTp3CrFmzdMddXV1hZWUFmUyma6y0rKysdH8vKyvDo48+CicnJ0yePBlRUVEYNmwYJkyYoDtHJpMhJiYG3333HRYvXozDhw93GLLxl7/8BYsWLcLx48eRkJCA119/HR9//DH27Nnzux1FH330Ef773/9i7ty5iIyMxOOPP44jR45g3759nZ6vVquxfPlyzJ07V+81Pp2RpmHDhuHatWu4dOkSJk2adNe/6BER2ya2TXePi4RIhCAIun3Qrly5InI0RNQXZDIZlixZgj179uh6F29WVFR0y6///vvvUV1djZ07d+KZZ57BtGnTdD2eN04Mf/jhh3Ht2jV8+umnsLOzQ1RUFADg+vXr+P/+v/8Pzs7OWLhwIdauXYuPP/4YmZmZSEtLw6BBg1BTU6ObeA20D10ZO3Yszp8/j40bN+LZZ5/FK6+8gkcffRQjR45Ednb2LSelDx48GFlZWejfv7/uT3FxMd5++200NDTcdf6o9w0ZMgQWFhaoqqrqMEGfiIwX2ybx2yY+QZOQ4OBgJCQkID09HSqVCjKZTOyQiKiXLV++HFeuXMGiRYsQGxuL6OhoWFpaIicnBzt27MDJkyd1q1rdzMPDA01NTTh48CBGjx6N69ev48033wSADqtP+fv7IywsDOvXr8djjz2m+9ni6OiIffv2obm5GbGxsTAzM8Pu3bthb2+PgQMHQqFQYOjQoXjxxRfxt7/9DdbW1nj77bfh5OSE0NBQeHp64uTJk5g8eTLMzMywd+9eHDp0CC4uLp3Gu2LFCjz33HNYt24dZs+ejeLiYvz973+Hj48Pn6BJlKWlJYYMGYLLly8jNTVVb2EAIjJObJvEbZv4BE1CfHx8YGNjA6VSiaysLLHDIaI+YGZmhvfffx//+te/kJycjBUrViAmJgavv/46nJyc8Nlnn+GNN97o9GtnzJiBJ598Ev/+978xc+ZMvPHGG5g3bx7Cw8ORkpLS4dyHHnoIzc3NHYZwODo6YvPmzSgoKMD8+fMxd+5c5OfnY+vWrbC1tYWZmRnWr18PDw8PLFu2DAsXLoRcLsfHH38MCwsLvP3222hubsbDDz+MxYsX49q1a3j11VdRUVHR6dOWGTNm4L333sPhw4dx//33Iy4uDlFRUVi3bl3PJpV6lHavzqtXr4ocCRH1FbZN4rZNgoYbb3VbSkoKWlpaEBwcDIVC0a1rfffddzh79ixGjx6NOXPm9FCEfa+xsRGpqak9khNjwZzo62pOmpubkZWVBX9//w7j3o2BSqVCc3Ozbpx/T/nwww/x66+/YufOnT12zb7S3NyMzMxMNDc3631WtI39sGHDxApPsnqqbWpubsY777wDtVqNP/7xj3B2du7BKPsWfw7rY070sW3Sx7ZJX0NDAzIyMuDn56dbWEWru20Tn6BJTFBQEID2nkrWzkTUXWfOnMFXX32F7du3Y8mSJWKHQwbIyspKt/3LreajEBHdDbZNt8cCTWL8/f1haWmJ+vp6FBQUiB0OERm4o0eP4p///CceeOAB3RLFRHfrxs5DIqLuYtt0eyzQJMbc3ByDBw8GAKSmpoocDREZur/85S84f/48/vGPf4gdChkw7Ty0vLw81NfXixwNERk6tk23xwJNgrQNYXp6usiREBERAf369YOnpyeA9k1iiYio97BAk6CAgAAIgoCysjK9XdyJiIjEMGTIEABARkaGyJEQERk3FmgSpFAodHvNsCEkujUupGMa+O8sDYMGDQLQvomsWq0WORoi6eLPLNOg0Wh67d+aBZpEaRvCzMxMkSMhkh4LCwsA7Ushk/Hjv7M0eHl5wdraGkqlEvn5+WKHQyQ5bJtMS1NTEzQaDczNzXv82j1/ReoRgwYNwrFjx3D9+nWoVKoe3XOCyNDJZDI4ODigtLQUQPtTZ0EQRI6qZ6hUKiiVSgAw+e97jUaDxsZGlJaWws7ODs3NzWKHZNLMzMwQEBCAS5cu6fb+IaLfsG0yDdq2qaysDGq1ulfywQJNory8vKBQKNDY2Ij8/Hz0799f7JCIJMXDwwMAdA2hsVCr1Whra4O5uTnMzDjIAQAcHBzQr18/lJWViR2KydMWaJmZmZg8ebLY4RBJDtsm02Fra4umpqZeuTYLNIkSBAEBAQFISUlBeno6CzSimwiCAE9PT7i5uaG1tVXscHpMU1MTrl+/Dj8/P1hbW4sdjugsLCwgk8k4ZEgiAgICAACFhYVoaGiAjY2NyBERSQvbJtNgYWEBpVLZax2HLNAkbNCgQUhJSUFmZiamTp0qdjhEkiSTyYxquIV28QW5XA4rKyuRoyHqyM7ODh4eHiguLkZmZiaGDx8udkhEksS2ibqDzyglbODAgQCA4uJi9h4TEZEkaJ+icRErIqLewQJNwmxtbeHm5gYAyMrKEjkaIiKi3zoPs7OzuZw4EVEvYIEmcf7+/gBYoBERkTT4+vpCJpOhtrYWlZWVYodDRGR0WKBJHAs0IiKSEgsLC/j4+ABg20RE1BtYoElc//79IQgCKisrUVNTI3Y4REREus7D7OxscQMhIjJCLNAkzsrKCl5eXgDYU0lERNJw4+gOzkMjIupZLNAMAHsqiYhISry9vWFhYYHGxkaj25CXiEhsLNAMAHsqiYhISmQyGfz8/ABwdAcRUU9jgWYAuGIWERFJDRexIiLqHSzQDICFhQW8vb0BALm5uSJHQ0REBAwYMABAe7vE0R1ERD2HBZqB0A4lYYFGRERS4OnpCQsLCzQ3N3MeGhFRD2KBZiD69+8PAMjJyRE5EiIiIsDMzAy+vr4A2DYREfUkFmgGwtfXF4IgoKqqCrW1tWKHQ0RExNEdRES9gAWagZDL5fDw8ADAnkoiIpKGG0d3cB4aEVHPYIFmQDjMkYiIpMTb2xtmZmaor69HVVWV2OEQERkFFmgGRFugcSgJERFJAVcZJiLqeSzQDIh2rH9ZWRkaGhpEjoaIiOi3tomjO4iIegYLNAOiUCjg6uoKAMjLyxM5GiIiIo7uICLqaSzQDIyPjw8AID8/X+RIiIiIoFtqv7KykqM7iIh6AAs0A8MCjYiIpMTKyko3uoNtExFR97FAMzDansqCggKoVCqRoyEiIoJuoRAWaERE3ccCzcC4uLjAysoKbW1tKC0tFTscIiIiXechCzQiou5jgWZgBEHQ9VRyoRAiIpIC7fD7goICqNVqkaMhIjJsLNAMEOehERGRlLi4uMDS0hKtra0c3UFE1E0s0AwQCzQiIpISMzMztk1ERD2EBZoB0jaCVVVVXNKYiIgkgQuFEBH1DBZoBohLGhMRkdRwoRAiop7BAs1AaZ+icaEQIiKSAu0TtIqKCjQ2NoocDRGR4WKBZqA41p+IiKREoVDA2dkZQPtqjkRE1DUs0AyUtkArLCzkksZERCQJ7DwkIuo+0Qs0tVqNtWvXIjo6GiNHjsSKFStuO2yvqqoKzz//PMLDwxEREYFXX30VTU1NHc45cOAAZs2aheHDhyMmJgYJCQkdXm9tbcV//vMf3XsuXrwYqampvXJ/vcXV1RVyuRytra0oKSkROxwiIiIuFEJE1ANEL9DWr1+PHTt24PXXX8euXbugVquxfPlytLS0dHr+qlWrkJOTg23btuGDDz7A8ePH8corr+heT0xMRFxcHBYsWIDdu3cjMjISsbGxyMzM1J3zyiuv4JtvvsEbb7yBr7/+Gk5OTlixYgXq6up6+3Z7jCAInIdGRESSol0opKCgABqNRuRoiIgMk6gFWktLC+Lj47Fq1SpMnDgRQUFBeO+991BcXIxDhw7pnX/u3DkkJSXhrbfeQmhoKCIjI/Haa69h7969uqdImzdvxtSpU7FkyRIEBATgxRdfRGhoKD755BMA7cXM119/jX/961+Ijo5GQEAA/vnPf8LS0hKXLl3q0/vvLm2BxrH+REQkBW5ubrCwsIBSqURZWZnY4RARGSRRC7S0tDQ0NDQgMjJSd6xfv34ICQnB6dOn9c5PTk6Gq6srAgICdMciIiIgCALOnDkDtVqNs2fPdrgeAIwdO1Z3vZMnT8LOzg7jx4/v8J4//fST3tdJHZ+gERGRlJiZmXGYIxFRN5mL+ebFxcUAAE9Pzw7H3dzcdK/dqKSkRO9cS0tLODg4oKioCLW1tWhsbISHh8ctr5eVlQVfX18cOnQIH330EUpKShASEoKXXnqpQ+HXFTfPhettTk5OANrn5ZWVlcHGxqZP3/92tLno65xIGXOijznRx5x07lZ50Wg0EARBjJAMRl9/ltzd3ZGdnY3s7GwEBQX16Xv/Hn5/6WNO9DEn+pgTfbfLSXfbJlELNO0NWVpadjgul8tRU1PT6fk3n6s9X6lUorm5+ZbXUyqVAID6+nrk5ORg/fr1eOGFF9CvXz9s2LABixYtwv79+3VLBHdFdnZ2l7+2q2xtbVFfX4+kpCS9wlQKxMiJ1DEn+pgTfcxJ5zrLS2ftAv2mrz9LKpVK975SXYCL31/6mBN9zIk+5kTfrXLSnbZJ1ALNysoKQPtcNO3fAUCpVMLa2rrT8ztbPESpVEKhUEAul+uud/Pr2uuZm5ujvr4e7733nu6J2XvvvYcJEyZg9+7dWL58eZfvZ8CAAZ3G3ZtycnKQkpICmUyG4ODgPn3v22lqakJ2drYoOZEq5kQfc6KPOencrfKSkZEhYlSGoa8/S35+fkhOTkZdXR0GDhyoa5ulgN9f+pgTfcyJPuZE3+1y0t22SdQCTTtcsbS0FH5+frrjpaWlCAwM1Dvfw8MDhw8f7nCspaUF1dXVcHNzg4ODAxQKBUpLSzucU1paCnd3d901zM3NOwxntLKygq+vb7fHy1tbW0OhUHTrGnerf//+SElJQWlpaZ+/950QIydSx5zoY070MSeduzkvHN74+/r6s6RQKODg4IDq6mpUVlZ2e/pAb+D3lz7mRB9zoo850ddZTrrbNom6SEhQUBBsbW1x6tQp3bHa2lpcuXIF4eHheueHh4ejuLgYOTk5umNJSUkAgNGjR0MQBISFhemOaZ06dQpjxozRXaOtrQ0pKSm615ubm5GXl4f+/fv36P31BS8vLwDtG1ZzSWMiIpIC7SJWhYWFIkdCRGR4RC3QLC0tsXjxYrz77rs4cuQI0tLSsHr1anh4eGD69OlQqVQoKyvTzS0bMWIEwsLCsHr1aly8eBGJiYlYs2YNYmJidE/Ili1bhn379mHr1q3IzMzE22+/jdTUVCxduhQAMGbMGNxzzz148cUXkZycjIyMDLzwwguQyWR48MEHRctFV7m5uUEmk0GpVKKqqkrscIiIiHQjZFigERHdPdE3ql61ahXmzZuHl19+GQsXLoRMJsOWLVtgYWGBoqIiREVFYf/+/QDaHxeuW7cOPj4+WLp0KZ577jmMHz++w0bVUVFReOONN7Bz507MnTsXiYmJ2LhxY4chFh9++CEiIiLwxz/+EfPmzUN9fT22b9+uWxXRkMhkMt3iINwPjYiIpODG0R1ERHR3RJ2DBrQXGHFxcYiLi9N7zcfHB1evXu1wzNnZGWvXrr3tNWNiYhATE3PL121tbfHKK690KOwMmZeXFwoKClBYWIhhw4aJHQ4REZk47RO02tpa1NfXw9bWVuSIiIgMh+hP0Kj7tD2VRUVFIkdCRETUvr2Ni4sLALZNRER3iwWaEbixQFOr1SJHQ0RExGGORERdxQLNCLi4uMDCwgItLS2oqKgQOxwiIiIuFEJE1EUs0IyAmZkZG0IiIpIUPkEjIuoaFmhGggUaERFJiYeHBwRBQH19Perq6sQOh4jIYLBAMxLe3t4AWKAREZE0WFpawtXVFQDbJiKiu8ECzUhoh5IUFxdDpVKJHA0RERGHORIRdQULNCPh5OQEuVyOtrY2lJWViR0OERERh98TEXUBCzQjIQgCeyqJiEhSbmyXNBqNyNEQERkGFmhGhD2VREQkJe7u7jAzM0NjYyNqa2vFDoeIyCCwQDMifIJGRERSYmFhATc3NwBsm4iI7hQLNCOiXcmxpKQEbW1tIkdDRETE0R1ERHeLBZoRsbe3h7W1NdRqNUpLS8UOh4iIiKM7iIjuEgs0I3LjQiEFBQUiR0NERPRbgVZUVMSFQoiI7gALNCPDnkoiIpISNzc3yGQyNDU1obq6WuxwiIgkjwWakbmxp5KIiEhs5ubmcHd3B8DOQyKiO8ECzchoC7TS0lK0traKHA0REREXCiEiuhss0IyMnZ0dFAoFNBoNFwohIiJJ4OgOIqI7xwLNyAiCoOupZENIRERScGO7xIVCiIhujwWaEfLw8AAAFBcXixwJERER4OrqCjMzMzQ3N6OmpkbscIiIJI0FmhHiEzQiIpISc3NzuLq6AmDnIRHR72GBZoS0T9BKS0uhVqtFjoaIiIidh0REd4oFmhFycnKCpaUl2traUF5eLnY4REREHH5PRHSHWKAZIUEQdA0heyqJiEgK+ASNiOjOsEAzUizQiIhISrSbVdfV1aGhoUHkaIiIpIsFmpHS9lRyKAkREUmBXC6Hk5MTALZNRES3wwLNSN1YoHHPGSIikgIOcyQi+n0s0IyUi4sLZDIZlEolqqqqxA6HiIiIC4UQEd0BFmhGSiaT6cb7syEkIiIpYIFGRPT7WKAZMS4UQkREUqId4lhRUYGWlhaRoyEikiYWaEaMPZVERCQlNjY2sLOzA8C2iYjoVligGTFOxiYiIqlh20REdHss0IyYu7s7BEFAQ0MD6urqxA6HiIiIozuIiH4HCzQjZmFhARcXFwDsqSQiImlggUZEdHss0IwcN6wmIiIp0bZLpaWlUKlUIkdDRCQ9LNCMHHsqiYhISuzt7WFlZQW1Wo3S0lKxwyEikhwWaEaOS+0TEZGUCILAzkMiottggWbktI1gdXU1mpqaRI6GiIiIKzkSEd0OCzQjZ21tDQcHBwDsqSQiImngEzQioltjgWYCuFAIERFJyY3tklqtFjkaIiJpYYFmAjgPjYiIpMTZ2Rnm5uZobW1FZWWl2OEQEUkKCzQTwCdoREQkJWZmZnB3dwfAtomI6GYs0EyA9glaeXk5WltbRY6GiIiIozuIiG6FBZoJsLOzg42NDTQaDUpKSsQOh4iIiKM7iIhugQWaieCSxkREJCU3ruSo0WhEjoaISDpYoJkILmlMRERS4u7uDkEQ0NjYiNraWrHDISKSDBZoJoJDSYiISErMzc3h6uoKgG0TEdGNWKCZCG2BVlJSApVKJXI0REREHH5PRNQZFmgmwsHBAXK5HCqVCuXl5WKHQ0RExOH3RESdYIFmIgRB4JLGREQkKSzQiIj0sUAzIWwIiYhISrTtUk1NDRobG0WOhohIGligmRAuFEJERFJiZWUFR0dHAGybiIi0RC/Q1Go11q5di+joaIwcORIrVqxAXl7eLc+vqqrC888/j/DwcERERODVV19FU1NTh3MOHDiAWbNmYfjw4YiJiUFCQkKH17/99lsEBgbq/cnPz++Ve5QK7jlDRERSw9EdREQdiV6grV+/Hjt27MDrr7+OXbt2Qa1WY/ny5Whpaen0/FWrViEnJwfbtm3DBx98gOPHj+OVV17RvZ6YmIi4uDgsWLAAu3fvRmRkJGJjY5GZmak75+rVq4iIiMCJEyc6/NE+YTJWLi4ukMlkUCqVqK6uFjscIiIiFmhERDcRtUBraWlBfHw8Vq1ahYkTJyIoKAjvvfceiouLcejQIb3zz507h6SkJLz11lsIDQ1FZGQkXnvtNezduxclJSUAgM2bN2Pq1KlYsmQJAgIC8OKLLyI0NBSffPKJ7jrXrl1DYGAgXF1dO/yRyWR9du9ikMlkcHNzA8CFQoiISBpYoBERdSRqgZaWloaGhgZERkbqjvXr1w8hISE4ffq03vnJyclwdXVFQECA7lhERAQEQcCZM2egVqtx9uzZDtcDgLFjx3a43tWrVztcw5SwISQiIinRjl4pLy9Ha2uryNEQEYnPXMw31xYJNw8tdHNz67SAKCkp0TvX0tISDg4OKCoqQm1tLRobG3VFSGfXq6mpQUlJCZKTk7Fjxw5UVVVh+PDhiIuLg7+/f7fu5+a5cFLk5OQEACgoKOjVFbO0uTCEnPQV5kQfc6KPOencrfKi0WggCIIYIRkMqX+WzMzMoFAo0NjYiNzc3F6dbsDvL33MiT7mRB9zou92Oelu2yRqgaa9IUtLyw7H5XI5ampqOj3/5nO15yuVSjQ3N9/yekqlEgCQnp4OoD1xb775Jpqbm7FhwwYsWrQI3333HVxcXLp8P9nZ2V3+2r6izXlBQQFSU1N7/f0MISd9jTnRx5zoY04611leOmsX6DeG8FmysbFBY2MjLly40CdzpA0hJ32NOdHHnOhjTvTdKifdaZtELdCsrKwAtM9F0/4dAJRKJaytrTs9v7PFQ5RKJRQKBeRyue56N7+uvd6YMWOQkJAAR0dHXWW7bt06TJw4Ed988w1iY2O7fD8DBgzoNG4paWlpwa+//gqlUgk/Pz/Y2Nj0yvs0NTUhOzvbIHLSV5gTfcyJPuakc7fKS0ZGhohRGQZD+CyVlpairKwMZmZmCA4O7rX34feXPuZEH3OijznRd7ucdLdtErVA0w5jKC0thZ+fn+54aWkpAgMD9c738PDA4cOHOxxraWlBdXU13Nzc4ODgAIVCgdLS0g7nlJaWwt3dXff/2mF+WtbW1vDx8dEtNNJV1tbWUCgU3bpGb1MoFHB2dkZFRQVqa2vh6uraq+9nCDnpa8yJPuZEH3PSuZvzwuGNv88QPku+vr5ISkpCeXl5n8RqCDnpa8yJPuZEH3Oir7OcdLdtEnWRkKCgINja2uLUqVO6Y7W1tbhy5QrCw8P1zg8PD0dxcTFycnJ0x5KSkgAAo0ePhiAICAsL0x3TOnXqFMaMGQMA+PzzzzF27NgO86/q6+uRnZ2NQYMG9ej9SZV2jh5XciQiIinQtkslJSVQq9UiR0NEJC5RCzRLS0ssXrwY7777Lo4cOYK0tDSsXr0aHh4emD59OlQqFcrKynRzy0aMGIGwsDCsXr0aFy9eRGJiItasWYOYmBjdE7Jly5Zh37592Lp1KzIzM/H2228jNTUVS5cuBQCMHz8earUaL7zwAtLT05GSkoI//elPcHJywkMPPSRaLvrSjQ0hERGR2JycnGBhYYG2tjZUVFSIHQ4RkahE36h61apVmDdvHl5++WUsXLgQMpkMW7ZsgYWFBYqKihAVFYX9+/cDaH9cuG7dOvj4+GDp0qV47rnnMH78+A4bVUdFReGNN97Azp07MXfuXCQmJmLjxo26ZfU9PT2xbds2NDY2YuHChXj88cdhZ2eH7du36+awGTs+QSMiIikxMzPTdbRyGxgiMnWizkED2jdPjouLQ1xcnN5rPj4+uHr1aodjzs7OWLt27W2vGRMTg5iYmFu+Hhoaivj4+C7Fawy0BVpFRQVaWlq4AhoREYnOw8MD+fn5KC4uxrBhw8QOh4hINKI/QaO+Z2trC1tbWwAc5khERNKg7TzkEzQiMnUs0EyUdgVNNoRERCQFN7ZLGo1G5GiIiMTDAs1EsaeSiIikxM3NDYIgoLGxEXV1dWKHQ0QkGhZoJooFGhERSYm5ublub062TURkyligmagbl9pXqVQiR0NERMRVhomIABZoJsvR0RFyuRwqlYp7zhARkSRwn04iIhZoJksQBN2eM+ypJCIiKeATNCIiFmgmjfPQiIhISrTtUnV1NZqbm0WOhohIHCzQTBgLNCIikhJra2vY29sDYNtERKaLBZoJ454zREQkNew8JCJTxwLNhLm6usLMzAzNzc2oqakROxwiIiIWaERk8ligmTCZTAY3NzcAbAiJiEgabhzdQURkiligmTiumEVERFKibZfKysrQ1tYmcjRERH2PBZqJ41ASIiKSkn79+sHa2hpqtRplZWVih0NE1OdYoJk4FmhERCQlgiBwdAcRmTQWaCZO2wjW1taisbFR5GiIiIjYeUhEpo0FmomTy+VwdHQEwIaQiIikgQUaEZkyFmjEFbOIiEhStAVaSUkJ9+kkIpPDAo3YU0lERJLi4uICc3NztLS0oLKyUuxwiIj6FAs0YoFGRESSYmZmxn06ichksUAjXYFWXl6O1tZWkaMhIiJi5yERmS4WaAQ7OzvY2NhAo9GgpKRE7HCIiIg4P5qITBYLNALAnkoiIpIWtktEZKpYoBEANoRERCQt7u7uEAQB9fX1qK+vFzscIqI+wwKNAHAoCRERSYuFhQWcnZ0BsG0iItPCAo0AdNxzRq1WixwNERHRb21TUVGRyJEQEfUdFmgEAHBycoKFhQXa2tpQUVEhdjhEREQcfk9EJokFGgEABEFgQ0hERJLCdomITBELNNLhUBIiIpISbbtUWVkJpVIpcjRERH2DBRrpsKeSiIikxMbGBnZ2dgDAfTqJyGSwQCOdGws0jUYjcjRERERcZZiITA8LNNJxc3ODmZkZmpqaUFtbK3Y4REREcHd3B8ACjYhMBws00jE3N4erqysANoRERCQNfIJGRKaGBRp1wHloREQkJdp2qbS0FCqVSuRoiIh6Hws06oAFGhERSYmDgwPkcjlUKhXKy8vFDoeIqNexQKMOuNQ+ERFJyY37dLJtIiJTwAKNOtA2gjU1NWhqahI5GiIiIo7uICLTwgKNOrCysoKDgwMANoRERCQNLNCIyJSwQCM9bAiJiEhKblzJkft0EpGxY4FGeligERGRlLi4uEAmk0GpVKK6ulrscIiIehULNNLDPWeIiEhKZDIZ3NzcALBtIiLjxwKN9GifoJWVlaGtrU3kaIiIiAB3d3cALNCIyPixQCM9dnZ2UCgU0Gg0KC0tFTscIiIiju4gIpPBAo30cM8ZIiKSGs6PJiJTwQKNOqXtqWSBRkREUqAd4lhbW4uGhgaRoyEi6j0s0KhTLNCIiEhK5HI5nJ2dAbBtIiLjxgKNOuXl5QUAKCkpgUqlEjkaIiIidh4SkWnoUoFWUlLS03GQxDg4OMDKygoqlYoLhRARkSSwQCMiU9ClAm3SpElYvnw59u/fj5aWlp6OiSRAEAQ2hEREJCna0R2FhYUiR0JE1Hu6VKC9+eabUKvV+Mtf/oKoqCi8+uqrSElJ6enYSGTaAo0NIRERSYF2Jceamho0NjaKHA0RUe/oUoH24IMPIj4+HkePHsUTTzyBxMREPPLII5gzZw7i4+NRXl7e03GSCLQ9lXyCRkREUmBlZQUnJycA7DwkIuPVrUVC3N3d8dRTT+HAgQP4+uuv4ejoiHfeeQcTJ07En/70J1y4cKGn4iQRaJ+gcaEQIiKSCnYeEpGx6/YqjsnJyfjHP/6BJ598EmfOnMG9996Ll156CU1NTVi4cCG2bdt2269Xq9VYu3YtoqOjMXLkSKxYsQJ5eXm3PL+qqgrPP/88wsPDERERgVdffRVNTU0dzjlw4ABmzZqF4cOHIyYmBgkJCbe83rfffovAwEDk5+ff1X2bAkdHR91CIWVlZWKHQ0RExPnRRGT0ulSg5eTkYO3atZg6dSoee+wxJCQk4LHHHsORI0fw8ccfY/Hixfj4448xa9YsbNiw4bbXWr9+PXbs2IHXX38du3btglqtxvLly2+5+MiqVauQk5ODbdu24YMPPsDx48fxyiuv6F5PTExEXFwcFixYgN27dyMyMhKxsbHIzMzUu1ZBQQFee+21rqTAJNy4UAiHkhARkRRwoRAiMnZdKtDuu+8+bNmyBSNGjEB8fDwOHz6MZ599VvfLvNbAgQPh6+t7y+u0tLQgPj4eq1atwsSJExEUFIT33nsPxcXFOHTokN75586dQ1JSEt566y2EhoYiMjISr732Gvbu3atb+n/z5s2YOnUqlixZgoCAALz44osIDQ3FJ5980uFaarUacXFxCA0N7UoKTAZ7KomISEq4UAgRGbsuFWj/+Mc/cOLECfznP/9BZGTkLc975pln8NVXX93y9bS0NDQ0NHS4Rr9+/RASEoLTp0/rnZ+cnAxXV1cEBATojkVEREAQBJw5cwZqtRpnz57Vi2ns2LF619u4cSNaW1uxcuXK371fU8YCjYiIpOTGhULYNhGRMTLvyhf98MMPGDduHOzs7PReS0tLQ1xcHL777rvfvU5xcTEA6D15c3Nz0712o5KSEr1zLS0t4eDggKKiItTW1qKxsVHXu3ar6128eBHx8fH46quvenTT7ZvnwhkDR0dHAO3/VnV1dZDJZHf0ddpcGGNOuoo50cec6GNOOnervGg0GgiCIEZIBsMYP0tubm6orKxETk6O3u8Ft8PvL33MiT7mRB9zou92Oelu23THBVpycjI0Gg0AICkpCadPn0ZlZaXeeUePHr3tIh830t6QpaVlh+NyuRw1NTWdnn/zudrzlUolmpubb3k9pVIJAGhsbMRf/vIX/OUvf8GAAQN6tEDLzs7usWtJhUajgbm5Odra2pCcnIx+/frd1dcbY066iznRx5zoY04611leOmsX6DfG+FnS/uKTnp4Oe3v7u/56Y8xJdzEn+pgTfcyJvlvlpDtt0x0XaF9++SX27t0LQRAgCAJeffVVvXO0BdycOXPu6JpWVlYA2ueiaf8OAEqlEtbW1p2e39niIUqlEgqFAnK5XHe9m1/XXu+f//wn/P39sWDBgjuK8W4MGDCg07gNXUpKCnJzc6FQKBAcHHxHX9PU1ITs7GyjzUlXMCf6mBN9zEnnbpWXjIwMEaMyDMb4WbKxsUFqaiqampruuF0C+P3VGeZEH3OijznRd7ucdLdtuuMC7eWXX8bDDz8MjUaDpUuXYs2aNRg0aFCHc8zMzNCvXz8MHjz4jq6pHZZQWloKPz8/3fHS0lIEBgbqne/h4YHDhw93ONbS0oLq6mq4ubnBwcEBCoUCpaWlHc4pLS2Fu7s7AODrr7+GpaUlRo0aBQC6/b3mzJmDp556Ck899dQdxd4Za2trKBSKLn+9VHl7eyM3Nxfl5eV3fX/GmpPuYE70MSf6mJPO3ZwXDm/8fcb4WRowYAAA6EbbsG3qPuZEH3OijznR11lOuts23XGBZmdnh4iICADA9u3bERoaChsbm269eVBQEGxtbXHq1CldgVZbW4srV65g8eLFeueHh4fj3XffRU5ODvr37w+gfbglAIwePRqCICAsLAxJSUl45JFHdF936tQpjBkzBgD0Voe8cOEC4uLi8NFHH2HIkCHduh9jxU1BiYhISrQLhVRWVqKoqKjD4mFERIbujgu0PXv2YMKECXB0dERhYeHv7j8SExPzu9e0tLTE4sWL8e6778LJyQne3t5455134OHhgenTp0OlUqGyshJ2dnawsrLCiBEjEBYWhtWrV+OVV15BY2Mj1qxZg5iYGN0TsmXLliE2NhYhISEYP348vv76a6SmpuJf//oXAOgKOy3t4iFeXl5wcHC403SYFO2TzpKSEqjVapiZdXt/cyIiom7x9PREZWUlCgsLWaARkVG54wLtpZdewhdffAFHR0e89NJLtz1XEIQ7KtCA9o2n29ra8PLLL6O5uRnh4eHYsmULLCwskJ+fjylTpuDNN9/EQw89BEEQsG7dOrz66qtYunQp5HI5ZsyYgb/+9a+660VFReGNN97A+vXr8d5772HQoEHYuHEjf3h3g5OTk26hlbKyMl0xTEREJBYvLy9cvnyZozuIyOjccYF25MgRuLq66v7eU2QyGeLi4hAXF6f3mo+PD65evdrhmLOzM9auXXvba8bExNxxgTh27Fi996COBEGAp6cnsrOzUVhYyAKNiIhEx306ichY3XGB5u3t3enftdra2lBfX89hgkZKW6AVFRXpFlghIiISi7ZAq66uRmNjIxcuICKj0aXJRG1tbVi3bp1uM+pTp07h3nvvRWRkJJYuXdrpHmZk2LQN4e/NPSQiIuoL2oVCAD5FIyLj0qUCbe3atdiwYQNqa2sBtO8t5uDggL/+9a/Izc3Ff/7znx4NksSnfWpaXFys25qAiIhITOw8JCJj1KUCbd++ffjzn/+MP/zhD8jMzER6ejqefvppLFmyBKtXr8ZPP/3U03GSyBwdHWFtbQ2VSoWSkhKxwyEiItJ1HrJAIyJj0qUCrbS0FCNGjAAAHDt2DGZmZhg/fjyA9s2k6+rqei5CkgRBEHT7oRUUFIgcDRER0W8FGtslIjImXSrQ3NzckJ+fDwD46aefEBwcrBsHfu7cOXh4ePRchCQZ7KkkIiIp8fDwgCAIqKur0027ICIydF0q0ObMmYM333wTTz75JM6cOYOHH34YAPCvf/0LH374Ie6///4eDZKkgT2VREQkJZaWlnBzcwPAzkMiMh5dKtCee+45PPHEExAEAc8//zwWLVoEAEhJScETTzyBp59+ukeDJGnQDnEsKyuDUqkUORoiIqLfOg+1I3uIiAzdHe+DdiNBELBy5UqsXLmyw/Fdu3b1SFAkTba2trC3t0dNTQ2KioowYMAAsUMiIiIT5+3tjbNnz/IJGhEZjS4VaABQV1eHxMRENDY2QqPR6L0eExPTnbhIory9vVFTU4OCggIWaEREJLobh99rNBoIgiByRERE3dOlAu2XX37BqlWr0NTU1OnrgiCwQDNSXl5euHLlCuehERGRJLi6usLCwgItLS0oLy+Hq6ur2CEREXVLlwq0//znPxg4cCD++te/wt3dHWZmXZrKRgaIC4UQEZGUmJmZwdPTE7m5uSgoKGCBRkQGr0sFWmZmJtavX48xY8b0dDwkcV5eXhAEAbW1taivr4etra3YIRERkYnz9vbWFWgjR44UOxwiom7p0qMvLy8v1NfX93QsZAAsLS3h4uICgE/RiIhIGrhPJxEZky4VaCtXrsR///tfLmlrojjMkYiIpETbLhUXF6OtrU3kaIiIuqdLQxy/++47lJSUYNq0aXBycoKVlVWH1wVBwOHDh3skQJIeb29vnD9/nj2VREQkCfb29lAoFGhsbERxcTF8fHzEDomIqMu6VKB5eHjAw8Ojp2MhA8EljYmISEoEQYC3tzfS09NRUFDAAo2IDFqXCrQ333yzp+MgA+Lm5gaZTIbm5mZUVlbC2dlZ7JCIiMjEaQs0ju4gIkPXrfXxMzMzsX37drz77rsoKSlBcnIyFw8xATKZDJ6engA4IZuIiKSB86OJyFh06QmaWq3GmjVr8PXXX+uGuM2cORPr169Hbm4uPvvsMw6BNHJeXl7Iz89HQUEBhg0bJnY4RERk4ry8vAAAFRUVaGpqgrW1tcgRERF1TZeeoK1fvx7fffcd/vnPf+LkyZPQaDQAgLi4OKjVarz33ns9GiRJD3sqiYhIShQKBRwdHQFwdAcRGbYuFWhff/01Vq1ahYcffhgODg6648HBwVi1ahVOnjzZU/GRRGkLtKKiIqhUKpGjISIiYuchERmHLhVo5eXlCA4O7vQ1d3d31NbWdisokj7t9goqlQolJSVih0NERMQCjYiMQpcKtP79++P48eOdvpaUlIT+/ft3KyiSPkEQ4OvrCwDIy8sTORoiIqLfCrT8/Hzd9AsiIkPTpQJt6dKl2L59O1577TX8+uuvEAQBOTk5iI+PR3x8PBYtWtTTcZIEafeZYYFGRERS4OnpCZlMhsbGRlRVVYkdDhFRl3RpFcdHHnkElZWV2LBhA3bs2AEA+POf/wwLCwssX74cCxcu7NEgSZr4BI2IiKTE3NwcXl5eyMvLQ15eHpycnMQOiYjornWpQAOAFStW4P7770dSUhLMzc1hZ2eHESNGdFg0hIybt7c3BEFAbW0tamtr0a9fP7FDIiIiE+fj46Mr0EaMGCF2OEREd+2uC7Tvv/8eu3btwoULF9DW1gYAsLKyQlhYGBYuXIipU6f2eJAkTZaWlnB3d0dxcTHy8vIQGhoqdkhERGTifH19kZCQwNEdRGSw7rhAU6lUeP7553Hw4EG4u7tj9uzZcHFxgUajQXFxMZKSkvCnP/0JDz74IP7973/3ZswkIb6+vizQiIhIMrTD70tLS9Hc3AwrKyuRIyIiujt3XKDt2LEDhw4dwt///ncsXrwYgiB0eF2lUmHXrl144403MGbMGMybN6/HgyXp8fX1xenTp5Gfny92KERERLC1tYWjoyOqqqpQUFCAgIAAsUMiIrord7yK4549e7BgwQI89thjesUZAMhkMvzhD3/A/PnzsXv37h4NkqRL21NZVFSE1tZWkaMhIiL6rW3Kzc0VORIiort3xwVaVlYWxo8f/7vnRUdH49q1a90KigyHvb09bG1toVarUVRUJHY4REREugKNozuIyBDdcYHW1NQEe3v73z3P0dERDQ0N3QqKDAc3rCYiIqm5sUBTq9UiR0NEdHfuuEDTaDSQyWS/f0EzM2g0mm4FRYaFG1YTEZGUuLq6wtLSEi0tLSgtLRU7HCKiu3LHBRrRrdz4BI3FORERic3MzIydh0RksO5qH7RXXnkFtra2tz2nvr6+WwGR4fH09IRMJkNjYyOqqqrg5OQkdkhERGTifH19cf36deTn5yM8PFzscIiI7tgdP0ELDw+HjY0NNBrNbf/Y2NhgzJgxvRkzSYy5uTk8PT0BsKeSiIikgfOjichQ3fETtE8//bQ34yAD5+vri/z8fOTl5WHEiBFih0NERCbO29sbAFBVVYX6+vrfHQFERCQVnINGPYJLGhMRkZRYWVnB3d0dAJ+iEZFhYYFGPUI7GbukpARKpVLkaIiIiLjKMBEZJhZo1CPs7Ozg4OAAACgoKBA3GCIiInAeGhEZJhZo1GO0DWFOTo7IkRAREf3WLhUVFaGtrU3kaIiI7gwLNOoxfn5+AFigERGRNDg6OsLGxgYqlYqjO4jIYLBAox4zYMAAAO0LhbCnkoiIxCYIAvr37w+AnYdEZDhYoFGPcXZ21vVUFhUViR0OERGRrvMwOztb1DiIiO4UCzTqMTf2VHJCNhERScGN7ZJKpRI5GiKi38cCjXoUCzQiIpISV1dXKBQKtLW1cXQHERkEFmjUo7RDSQoLC6FWq8UNhoiITN6Nozvy8/NFjoaI6PexQKMe5erqCmtra7S1taG6ulrscIiIiHSdh7m5ueIGQkR0B1igUY+6saeysrJS5GiIiIh+G37P0R1EZAhYoFGP0zaEFRUVIkdCREQEuLm5wdraGq2traipqRE7HCKi22KBRj1OO5SksrKSPZVERCS6G0d3sPOQiKRO9AJNrVZj7dq1iI6OxsiRI7FixYrbrgBYVVWF559/HuHh4YiIiMCrr76KpqamDuccOHAAs2bNwvDhwxETE4OEhIQOr1++fBlLly7FqFGjMG7cOKxZswZ1dXW9cn+myM3NDXK5HCqVCiUlJWKHQ0REpOs8ZIFGRFIneoG2fv167NixA6+//jp27doFtVqN5cuXo6WlpdPzV61ahZycHGzbtg0ffPABjh8/jldeeUX3emJiIuLi4rBgwQLs3r0bkZGRiI2NRWZmJgCgvLwcy5Ytg7e3N7755husX78eZ86cwUsvvdQXt2sSzMzM4OPjA4DL7RMRkTTcOD+a+6ERkZSJWqC1tLQgPj4eq1atwsSJExEUFIT33nsPxcXFOHTokN75586dQ1JSEt566y2EhoYiMjISr732Gvbu3at7UrN582ZMnToVS5YsQUBAAF588UWEhobik08+AQAUFBQgKioKr732Gvz9/REWFob58+fj5MmTfXrvxs7X1xcACzQiIpIGd3d3WFlZcXQHEUmeqAVaWloaGhoaEBkZqTvWr18/hISE4PTp03rnJycnw9XVFQEBAbpjEREREAQBZ86cgVqtxtmzZztcDwDGjh2ru96IESPwv//7vzA3NwcAZGZmYu/evbj33nt74xZNlrZAy8/P5zw0IiISnSAIHN1BRAbBXMw3Ly4uBgB4enp2OO7m5qZ77UYlJSV651paWsLBwQFFRUWora1FY2MjPDw87uh69913H7Kzs+Ht7Y1169Z193b05sKZMjs7O5ibm6OlpQU5OTlwd3cXOyTRaT8f/Jz8hjnRx5x07lZ50Wg0EARBjJAMBj9Lv/Hw8EBGRgays7PR2NgodjiSwJ85+pgTfcyJvtvlpLttk6gFmvaGLC0tOxyXy+WdLoPb1NSkd672fKVSiebm5lteT6lU6n3du+++i6amJrzzzjtYsmQJ9u7dCxsbmy7fT3Z2dpe/1hg5OjqirKwMycnJGDhwoNjhSAY/J/qYE33MSec6y0tn7QL9hp+l32h/YSooKMDly5dhZib6VHzJ4OdEH3OijznRd6ucdKdtErVAs7KyAtA+F037dwBQKpWwtrbu9PzOFg9RKpVQKBSQy+W66938emfXGzZsGABg3bp1mDBhAn788UfExMR0+X4GDBjQ6fuYoqamJmRkZKCsrAwtLS0IDg4WOyTRNTU1ITs7m5+TGzAn+piTzt0qLxkZGSJGZRj4WfpNQ0MDEhMT0draCicnJ71ROaaIP3P0MSf6mBN9t8tJd9smUQs07Q/G0tJS+Pn56Y6XlpYiMDBQ73wPDw8cPny4w7GWlhZUV1fDzc0NDg4OUCgUKC0t7XBOaWmpbojd9evXkZubi4kTJ+ped3d3h4ODQ7cnDVtbW0OhUHTrGsbE2dkZQPs8NCsrK/ZU/j/8nOhjTvQxJ527OS8c3vj7+FnqyMnJCSUlJSguLu4wp93U8XOijznRx5zo6ywn3W2bRP2NOSgoCLa2tjh16pTuWG1tLa5cuYLw8HC988PDw1FcXIycnBzdsaSkJADA6NGjIQgCwsLCdMe0Tp06hTFjxgAAfv31V6xatQq1tbW613Nzc1FVVcUf1D3M3t4ecrkczc3NKCoqEjscIiIiXedhVlaWyJEQEXVO1ALN0tISixcvxrvvvosjR44gLS0Nq1evhoeHB6ZPnw6VSoWysjLd3LIRI0YgLCwMq1evxsWLF5GYmIg1a9YgJiZG94Rs2bJl2LdvH7Zu3YrMzEy8/fbbSE1NxdKlSwEAc+bMgYODA+Li4pCeno7k5GSsWrUKw4cPx6RJk0TLhTEyMzPTreZ4/fp1kaMhIiICXF1dAQA5OTloa2sTORoiIn2ijzlbtWoV5s2bh5dffhkLFy6ETCbDli1bYGFhgaKiIkRFRWH//v0A2h8Xrlu3Dj4+Pli6dCmee+45jB8/vsNG1VFRUXjjjTewc+dOzJ07F4mJidi4caPu6ZiDg4NuT7SFCxfi2WefRUhICLZs2QKZTNbn92/stBuDsqeSiIikwNbWFjY2Nmhra0Nubq7Y4RAR6RF1DhoAyGQyxMXFIS4uTu81Hx8fXL16tcMxZ2dnrF279rbXjImJue1iH/7+/ti0aVOX4qW7M2DAAADtw0hbW1thYWEhbkBERGTSBEFA//79ceXKFVy/fp2rDBOR5Ij+BI2Mm6OjI/r16weVSsWeSiIikgRt5yGH3xORFLFAo14lCIKud5INIRERSYF2+H1RURE3rCYiyWGBRr3O398fAAs0IiKSBltbW91iIZwjTURSwwKNep22QCsuLkZDQ4PI0RAREYGjO4hIsligUa+zs7PrsFE4ERGR2LSrO2dmZkKj0YgcDRHRb1igUZ8YNGgQACAjI0PkSIiIiNoXCpHJZKipqUF5ebnY4RAR6bBAoz6hLdDYU0lERFJgYWGhW82RnYdEJCUs0KhP+Pr6wtLSEg0NDSguLhY7HCIiIo7uICJJYoFGfUImk+kWC2FDSEREUqAt0HJyctDS0iJyNERE7VigUZ+5cUI2ERGR2JydneHg4ACVSoXs7GyxwyEiAsACjfqQtqcyLy8Pzc3NIkdDRESmThAEXduUnp4ucjRERO1YoFGfcXR0hLOzM9RqNZfbJyIiSbhxHhoXsSIiKWCBRn1q8ODBANhTSURE0uDv7w+ZTIbq6mqUlZWJHQ4REQs06ltDhgwBAFy7dg1qtVrkaIiIyNRZWlrqFrG6du2ayNEQEbFAoz7m5+cHuVyOxsZGFBYWih0OERFRh85DIiKxsUCjPiWTyXTj/dkQEhGRFAQGBgJoX8SqoaFB5GiIyNSZix0AmZ7Bgwfj8uXLuHbtGiZPnix2OESiUKlUKC4uRnFxMcrKylBVVYW6ujrU19ejubkZP/zwA2QyGczNzaFQKGBnZwcHBwe4u7vDw8MDXl5ekMlkYt8GkVHo168fPDw8UFxcjPT0dIwcOVLskIhE0dTUhKKiIpSXl6OyshJ1dXVoaGhAU1MTmpqakJiYCLlcDrlcDjs7O9jb28PV1RUeHh5wdnaGIAhi34JRYIFGfU67UEhJSQlqampgb28vckREvU+j0aC4uBgZGRnIzMxEQUEB2trabvs1ra2tAID6+nqUlpZ2eM3c3Bx+fn4ICgpCUFAQ7Ozsei12IlMwZMgQFBcX49q1ayzQyGS0tLQgKysL6enpyMrKQmVl5W3Pr6uru+VrVlZW8Pf3R0BAAIKCgmBjY9PT4ZoMFmjU5xQKBXx9fZGXl4dr164hPDxc7JCIek1lZSVSUlJw8eJFvYbP2toaXl5ecHV1hbOzM/r16weZTIa8vDwMHjwYcrkcra2taGxsRG1tLSoqKlBaWoqCggI0Njbi+vXruH79Ovbv34+AgACMHj0agYGBMDPj6HWiuxUYGIiff/4ZmZmZaGtrg7k5f0Ui49Tc3IyUlBSkpqYiJydHb9E2R0dHuLm5wcnJCfb29rpCq6CgAH5+fjAzM0NzczNqa2tRXV2N0tJSlJSUoLm5GampqUhNTcW+ffswcOBAhIWFITAwkCM+7hJ/+pAoAgMDkZeXh7S0NBZoZHTa2tpw6dIlnDlzBvn5+brj5ubmCAgIwKBBgzBgwIBOh4M0Njaiuroajo6OUCgUnV5fo9GgrKwMGRkZSE1NRX5+PjIzM5GZmQkHBwfce++9GDlyJH/BJLoLnp6esLOzQ11dHa5fv65bOITIGGg0GmRlZeH8+fNITU3tMILD0dERgwYNwqBBg+Dr6wtra2u9r29sbIRSqUT//v07bZvUajUKCgpw/fp1XL16FUVFRbp2yc7ODuPGjcOYMWNgaWnZq/dpLNh6kyiCg4Nx+PBhZGdno6mpqdMfBkSGpqmpCcnJyUhKSkJ9fT0AQBAEDBw4EMOGDUNQUBDkcnm330cQBLi5ucHNzQ333HMPKisrcfbsWZw7dw7V1dXYt28fTpw4gcmTJ2PYsGGcE0B0BwRBQFBQEE6fPo3U1FQWaGQUWltbcf78eSQkJKCqqkp33M3NDSNGjEBgYCCcnJy63U6YmZnB19cXvr6+mDBhAiorK3Hu3DmcO3cOdXV1+PHHH3Hy5ElER0cjPDycT9R+Bws0EoWTkxPc3NxQWlqKa9euYcSIEWKHRNRlDQ0NOHHiBM6cOaObN2ZnZ4eIiAiMHDkStra2vfr+Tk5OmDp1KiZMmICzZ8/i5MmTqKmpwe7du3Hq1Cncf//98PDw6NUYiIxBSEgITp8+jatXr0KtVnO4MBms5uZmnD59GqdOndKtTCqXyzFs2DCMGjUKnp6evdp55+TkhClTpmDixIm4cOECTpw4gaqqKvzwww84ffo0ZsyYoVuTgPSxQCPRBAUFobS0FGlpaSzQyCAplUokJCQgISEBLS0tAAB3d3dERkZi6NChfd5DaGFhgbFjxyIsLAyJiYk4ceIECgsL8dFHHyEyMhKTJk3isEei2/Dz84NCoUBjYyNycnJ0G1gTGYrO2iV7e3vcc889GDVqFCwsLPo0HplMhrCwMIwcORLnzp3D0aNHUVlZiR07dmDo0KGYMWMGFxPpBFtqEk1QUBB+/vlnZGRkoLW1tc9/aBB1lUqlwunTp/HLL7+gsbERQPv8lcmTJyMgIED0IYUWFhaIjo7GyJEjcfDgQVy5cgW//vorMjMz8dBDD8HNzU3U+IikyszMDIGBgTh37hxSU1NZoJHBUKlUOHPmDH7++WfdEzNXV1dERUUhNDRU9CGFZmZmGD16NIYOHYpjx47h1KlTuHTpEq5fv46YmBg+TbsJCzQSjYeHB+zt7VFTU4OMjAwEBweLHRLR77p+/ToOHDiA8vJyAICzszMmT56M4OBg0Quzm9nZ2eGRRx5BWloavvvuO5SUlGDz5s2YNWsWRo0aJXZ4RJIUHBysK9Bmzpwpue9rohtpNBqkpqbi8OHDujlmTk5OmDx5MkJCQiT3+ZXL5bjvvvswbNgw7N27F6WlpdixYwciIiIwffp00QtJqWCBRqIRBAHBwcFITExEamoqCzSStNraWvzwww+4cuUKAMDGxgaTJk3CqFGjJD9PJSgoCD4+Pti7dy8yMjLw7bffoqCgADNmzOCQR6Kb+Pv7Qy6Xo76+Hnl5efDz8xM7JKJOlZeX48CBA7h+/TqA9nZpwoQJCAsLk3yh4+XlhRUrVuDw4cM4deoUkpKSUFRUhPnz5/f6vG1DwJaZRBUaGorExERcvXqVwxxJktRqNRITE3Hs2DG0trZCEASEh4dj0qRJsLKyEju8O2Zra4tFixbhl19+wdGjR3HmzBmUl5fj0Ucf5SqqRDcwNzdHYGAgLl68iMuXL7NAI8lpaWnBzz//jISEBKjVashkMtxzzz2IiooyqGXszc3NMWPGDAwcOBDffPMN8vLy8NFHH2HBggXw8vISOzxRSbvbl4yet7c37O3t0dLSgoyMDLHDIeqgtLQUW7ZswY8//ojW1lb4+voiNjYWM2fONKjiTEsQBIwfPx6LFi2CXC5HTk4OtmzZ0mHpZSIChg4dCgC4cuWK3ia+RGK6du0a/vvf/+LkyZNQq9UYPHgwnnnmGUyePNmgirMbDRkyBCtWrICrqyvq6uqwbds2pKenix2WqFigkagEQUBISAgA4PLlyyJHQ9ROpVLh+PHj2LRpEwoLCyGXy3H//fdj2bJlRrFc/eDBg/HEE0+gX79+qKioQHx8PEpLS8UOi0gyBg4cCGtra9TX1yMnJ0fscIjQ0NCAr7/+Gjt37kRtbS0cHBywYMECLFy4EE5OTmKH123Ozs548sknMXDgQLS2tmLnzp04d+6c2GGJhgUaiS40NBRAe6+QdklYIrFoF9I4duwY1Go1AgMD8eyzzyIsLExyk627w83NDcuXL4e7uzvq6+uxdetWFBQUiB0WkSTIZDLdvOhLly6JHA2ZMo1Gg4sXL+K///0vLl26BEEQEBkZiWeeeQaBgYFG1S7J5XIsWrQII0eOhEajwbfffotTp06JHZYoWKCR6Ly8vODg4IDW1laTf6RN4tFoNEhMTMTmzZtRUlIChUKBhx9+GI8++ijs7OzEDq9X2NnZYenSpfDx8UFzczM+/fRTFBYWih0WkSRohzmmpqZCpVKJHA2ZosbGRnzxxRfYvXs3mpqa4ObmhieffBLTp0832jn7MpkMDzzwACIjIwEABw8exMmTJ0WOqu+xQCPRCYKge4rGnkoSQ21tLT799FP88MMPUKlUGDJkCJ5++mkMHTrUqHonO2NtbY3HHnsMfn5+UCqV+OyzzzjckQhA//79YWNjg6amJt0qeUR9JTMzExs2bEBaWhrMzMwwceJExMbGwtvbW+zQep0gCJg2bRomTJgAADh8+DBOnz4tclR9iwUaScKwYcMAtA9zbGpqEjkaMiWXL1/Ghg0bkJWVBXNzc8yePRsLFiwwqWV+LS0tsWjRInh5eaGpqQmffvopKisrxQ6LSFRmZma6zsOLFy+KHA2Zira2Nvzwww/47LPPUF9fDxcXFyxfvhwTJkyQ/NL5PUkQBEycOBHR0dEAgP379+PChQsiR9V3WKCRJLi7u8Pd3R1qtZqLhVCfUCqV2LNnD7766is0NzfDy8sLK1euxJgxY4z+qVln5HI5Fi9eDDc3N9TX12P79u2oqakROywiUY0YMQIAkJaWhubmZpGjIWNXVlaGjz/+GImJiQCAMWPGIDY2Fp6eniJHJp5JkyYhIiICALB3716kpqaKHFHfYIFGkjF8+HAA7Kmk3ldYWIhNmzbhwoULEAQB0dHReOKJJ+Di4iJ2aKLSDnd0dnZGTU0Ntm/fjoaGBrHDIhKNp6cnXF1d0dbWptuknqinaTQaJCUl4aOPPtLNgV6wYAFmz55ttHPN7pQgCJgxY4Zu4ZCvvvrKJLZlYoFGkjFs2DAIgoC8vDzuy0S9QtsIxsfHo6qqCvb29nj88ccxefJkkxo6cju2trZ47LHHYG9vj8rKSnzxxRdoa2sTOywiUQiCoHuKZkrDq6jv1NfXY+fOnThw4ADa2toQEBCAp59+GoGBgWKHJhmCIOD+++9HSEgI1Go1vvjiCxQVFYkdVq9igUaSYWdnB39/fwB8ikY9r7m5GV9++SUOHDgAlUqFwMBArFy5En5+fmKHJjn29vb4wx/+ALlcjtzcXHz//ffQaDRih0UkiuHDh0MQBOTm5nJuJvWo9PR0bNy4Eenp6ZDJZJgxYwb+8Ic/mNQc6DtlZmaGhx56SLdP2q5du1BXVyd2WL2GBRpJinaY44ULF/gLIfWYgoICbNq0CampqTAzM8N9992HRx99FNbW1mKHJlmurq545JFHIAgCLly4YJLLHBMB7Z2HAwcOBMCnaNQzWltbsX//fuzYsQMNDQ1wc3PDihUrMHbsWJOcA32nZDIZHnnkETg7O6O2thaff/45WltbxQ6rV7BAI0kJDg6GpaUlqqqqkJOTI3Y4ZOC0e5vFx8ejuroaDg4OeOKJJzBu3Dg2gncgICAAM2bMAAAcOXIEaWlpIkdEJI6RI0cCAM6fPw+1Wi1uMGTQiouLsXnzZt2y8WPHjsWKFSvg7u4ucmSGwcrKCosWLYKVlRUKCgrw7bffGmWHPgs0khRLS0vdkvtnz54VORoyZE1NTfj888/xww8/QK1WIzg4GCtXrjSJPWR6UkREBMaMGQMA+Oabb1BcXCxyRER9LygoCNbW1qitrTWJBQqo52k0GiQkJODjjz9GWVkZbG1t8Yc//AEzZsyAubm52OEZFCcnJ8yfPx9mZma4dOkSfv75Z7FD6nEs0EhywsLCAABXrlzhnmjUJfn5+di0aROuXr0KmUyGmTNn4pFHHoGVlZXYoRmkmTNn6sb9f/7551xunEyOubm57inamTNnxA2GDE5dXR0+++wzHDp0SDcH+qmnnsKgQYPEDs1g+fv7Y9asWQCAY8eOGd0IDxZoJDmenp5wd3eHSqVCSkqK2OGQAdFoNPj111+xdetW1NTUwNHREU8++SQiIiI4pLEbzMzMMG/ePDg4OKC6uhp79+41yiElRLczevRoAO0LO9TW1oocDRmKtLQ0bNiwAdevX4e5uTlmz56NRx99FDY2NmKHZvBGjx6t2yNtz549RrUCOAs0khxBEHRP0c6ePctfBOmONDY2YteuXfjxxx+hVqsRGhqKlStXmvQGnz3J2toajzzyCGQyGdLS0nQbqRKZCmdnZwwYMAAajYZD8Ol3tbS04LvvvsPnn3+OpqYmeHh4YOXKlRgzZgw7DHvQ9OnT4ePjA6VSia+++spotoVhgUaSNGzYMJibm6OkpAT5+flih0MSl5eXh02bNuHatWuQyWSYPXs2Hn74YcjlcrFDMypeXl6YPn06AODw4cP83iSTc2PnoUqlEjkakqrCwkJ89NFHukL+nnvuwfLly+Hi4iJyZMZHJpNh3rx5sLa2RmFhIQ4dOiR2SD2CBRpJkrW1NYYOHQoASEpKEjkakiqNRoMTJ05g69atqK2thZOTE5YvX84eyl4UHh6O0NBQqNVqfPnll2hsbBQ7JKI+ExISAltbW9TV1SE1NVXscEhi1Go1Tpw4gS1btqCiogJ2dnZYsmQJpk2bBplMJnZ4Rsve3h5z584FAJw+fRqXL18WOaLuY4FGkqUdV3zlyhWj3oyQuqahoQE7duzAkSNHoNFoMGzYMMTGxsLDw0Ps0IyaIAi4//774eTkhNraWuzZs4fDkMlkyGQy3Vy0U6dOiRwNSUlNTQ22b9+OI0eOQK1WIyQkBE8//TT8/f3FDs0kDB48GPfeey8A4Ntvv0VFRYXIEXUPCzSSLE9PT/j6+kKtVnO8P3WQlZWFjRs3IiMjA+bm5rj//vsxd+5cDmnsI3K5HPPnz4e5uTnS09ORnJwsdkhEfWbMmDEwMzNDfn4+CgoKxA6HJODy5cvYuHEjcnJyYGFhgQcffFA37I76zuTJk+Hn54eWlhZ8/fXXBj0MmQUaSVp4eDgAIDk52aC/0ahnqNVqHD16FNu3b0d9fT1cXFywfPlyhIWFcUhjH3N3d8fUqVMBAIcOHUJ5ebnIERH1DVtbW90QfD5FM23Nzc3Ys2cPvvrqKzQ3N8Pb2xtPPfUURo4cyTZJBGZmZnj44YdhbW2NoqIiHD9+XOyQuowFGkmadrx/fX29UYwppq6rra3F9u3bdRtSjhw5EitWrIC7u7vIkZmuiIgIDBw4EG1tbdi9ezc7UchkjB07FkD7k5OamhqRoyExZGdnY+PGjbhw4QIEQUB0dDSWLVsGJycnsUMzaf369cPs2bMBACdOnEBeXp7IEXUNCzSSNJlMppuL9uuvv3Kui4m6du2abviIpaUlHnroITz44IOwtLQUOzSTJggCHnzwQVhZWaGwsFBXPBMZOy8vLwwYMABqtRoJCQlih0N9qK2tDT/++CM++eQT3X6by5Ytw+TJk7kQiESEhoZi+PDh0Gg02L17N1paWsQO6a6xQCPJGzNmDCwsLFBSUoLMzEyxw6E+pFKpcOjQIezcuVO3j0xsbCyGDRsmdmj0//Tr1w9z5swBAPzyyy9cep9MRlRUFID2Jfe5mqlpKCkpwccff4xff/0VADBq1CisXLkSvr6+IkdGN5s5cyb69euHqqoq/PDDD2KHc9dYoJHkWVtb6/ae0f5QJONXVVWF+Ph4Xe90REQEnnzySTg7O4scGd0sNDQUw4YNg0ajwTfffGOQvZVEd2vgwIHw9PREa2sr56IZOY1Gg4SEBGzevBklJSVQKBR49NFH8cADD3BxKomysrJCTEwMgPZOlGvXrokb0F1igUYGITIyEoIgICsrC4WFhWKHQ71Io9Hg/Pnz2LhxIwoLC2FlZYVHH30UM2fOhLm5udjh0S3MmjVL11t55MgRscMh6nWCIOiW9U5KSoJSqRQ5IuoN2uXzDx06BJVKhcGDB+Ppp59GUFCQ2KHR7/D398e4ceMAtC+9b0hPuiVRoKnVaqxduxbR0dG6if+3m9RXVVWF559/HuHh4YiIiMCrr76KpqamDuccOHAAs2bNwvDhwxETE6M3Rjw9PR2xsbEYO3YsIiMjsWrVKv7iL2H29va6YW2c52K8mpqa8NVXX2Hv3r1oaWmBn58fnnrqKTaEBsDKygoPPPAAgPZfVnNzc0WOiKj3BQcHw9nZGc3NzXyKZmQ0Gg1SUlKwYcMGZGdnw8LCAnPmzMHChQtha2srdnh0h6ZMmQJXV1c0NDQY1FBHSRRo69evx44dO/D6669j165dUKvVWL58+S2HyaxatQo5OTnYtm0bPvjgAxw/fhyvvPKK7vXExETExcVhwYIF2L17NyIjIxEbG6ubv1RVVYVly5bBysoKn376KTZv3ozKykosX76cPWASFh0dDUEQcPXqVRQVFYkdDvWwrKwsbNiwAVeuXIGZmRkmT56MpUuXwt7eXuzQ6A4FBARg5MiRANp7K9va2sQNiKiXmZmZYcKECQDah+Df3FlMhqm2thZJSUk4ePAglEolvL29sXLlSowePZrL5xsYc3NzXefhxYsXkZ6eLnJEd0b0Aq2lpQXx8fFYtWoVJk6ciKCgILz33nsoLi7GoUOH9M4/d+4ckpKS8NZbbyE0NBSRkZF47bXXsHfvXpSUlAAANm/ejKlTp2LJkiUICAjAiy++iNDQUHzyyScAgMOHD6OxsRFvv/02hgwZgqFDh+Kdd95BZmYmN0SWMBcXF93eM4a8twV1pFKpcOzYMWzfvh11dXVwcnLCk08+iejoaJiZif4jiu7SfffdB1tbW1RUVODYsWNih0PU64YOHQo3NzcolUqu6GjgNBoNzp49i61bt6KsrAwymQxTp07FE088wfnPBszHx0c31PH77783iIcxok/oSEtLQ0NDAyIjI3XH+vXrh5CQEJw+fVq3OphWcnIyXF1dERAQoDsWEREBQRBw5swZzJgxA2fPnsVLL73U4evGjh2rK/giIyOxfv16WFlZ6V7X/iJYW1vb5Xthz9lvtLno6ZxERETg0qVLuHr1KrKysgxqD6zeyokhy8vLw8mTJ3Xfd8OHD8ekSZNgaWlpUGPFe5IxfE6mTp2KPXv24Ndff0VAQECPfJ/eKi8ajYY92r/DkD9LPa23vr8iIyOxd+9eJCYmYvjw4VAoFD16/d5kDD9zekJtbS1++OEHZGdnAwAcHBwwe/ZseHl5obm5WdzgJMDQPyfjxo1DamoqampqcPDgQUybNq3b17xdTrrbNoleoBUXFwMAPD09Oxx3c3PTvXajkpISvXMtLS3h4OCAoqIi1NbWorGxER4eHre8no+PD3x8fDq8/tFHH8HKygrh4eFdvhftNzX9pjdy4uXlhYKCAhw4cEC3Wagh4eekfd5pZmYmrl27Bo1GAwsLC4wYMQIeHh7cSuH/MfTPiZeXFwoLC7Fnzx5ERUX12NPQzvLC/fBuz9A/S72hp3Oi0Whgb2+PmpoafP/99wa5FYipfk40Gg1yc3ORmpqKtrY2mJmZITAwEAMHDkRNTQ03Ir+JIX9OgoODkZiYiPPnz8Pa2rrHnoreKifdaZtEL9C0VefNNyGXyzv9pmhqaur0huVyOZRKpa6Xo7Pr3eqR5qefforPPvsML7/8crd2gB8wYACsra27/PXGpKmpCdnZ2b2SEw8PD8THx6OsrAzW1tYYMGBAj16/t/RmTgxJWVkZDhw4oBuS7O7ujlmzZsHFxUXkyKTBWD4n/fv3R3x8PGpra1FbW9thlERX3CovGRkZ3Q3V6Bn6Z6kn9eb3l62tLT7//HPk5uZi8uTJBvMzzVh+5nRFWVkZDh06pFskztvbGzNmzIC1tbXJ5uRWjOVz0tjYiIsXLyI1NRWPP/44LCwsunyt2+Wku22T6AWadphhS0tLhyGHSqWy0w+AlZVVp4uHKJVKKBQK3X4UN5/T2fU0Gg0++OADbNiwAU8//TQee+yxbt2LtbW1QQ1r6Au9kROFQoHw8HCcOnUKv/zyC4KDgw1qiJOpfk7UajVOnjyJ48ePQ6VSwcrKClOmTAHQPr/QFHNyO4b+OVEoFJg5cya++eYbJCQkYNSoUd3qANO6OS+G9L0vFkP/LPWG3shJUFAQAgMDcfXqVZw4cQKLFi3q0ev3NlP6nLS2tuL48eNISEiAWq2GpaUlJk+ejPDwcJiZmemG2JtSTu6Uoedk5syZyMrKQnV1NU6fPo2pU6d2+5qd5aS7bZPoM/C1wxVLS0s7HC8tLe103oKHh4feuS0tLaiuroabmxscHBygUCh+93qtra2Ii4vDxo0b8de//hXPPfdcD90R9YXx48dDLpejuLgYFy9eFDsc+h2lpaWIj4/HTz/9BJVKhSFDhuCZZ55BSEgIf8E2YkOHDsXAgQOhUqmwb98+aDQasUMi6lXTpk2DmZkZ0tPT+XRXojIyMrB+/XqcPHkSarUawcHBePbZZzF27FguTGUCrKysMGvWLABAQkKCXr0gFaJ/EoOCgmBra9th/5Da2lpcuXKl0/lg4eHhKC4uRk5Oju5YUlISAOiWPw0LC9Md0zp16hTGjBmj+/8XXngBBw8exH/+8x88/vjjPXxX1NsUCgWioqIAAEeOHDGIFXlMUVtbG3766Sds2rQJBQUFkMvliImJwYIFC2BnZyd2eNTLBEHA7NmzIZPJcP36dVy+fFnskIh6lbOzMyIiIgC078fa2toqckSkVVtbi6+++gr/93//h+rqavTr1w8LFizA/Pnz0a9fP7HDoz6kfdqtVqsl23koeoFmaWmJxYsX491338WRI0eQlpaG1atXw8PDA9OnT4dKpUJZWZlubtmIESMQFhaG1atX4+LFi0hMTMSaNWsQExOje0K2bNky7Nu3D1u3bkVmZibefvttpKamYunSpQCAb775Bvv378fq1asRERGBsrIy3R+u1GM4xo0bB0dHR9TV1XHZfQnS7mv2yy+/QK1W656ajRgxgk/NTIiTkxOio6MBAAcPHuTPWDJ6EydOhJ2dHSorK/HLL7+IHY7Ja2trwy+//IJ169bh8uXLEAQB48aNw7PPPovAwECxwyORzJw5ExYWFsjNzcX58+fFDkeP6AUa0L7x9Lx58/Dyyy9j4cKFkMlk2LJlCywsLFBUVISoqCjs378fQHuP7Lp16+Dj44OlS5fiueeew/jx4ztsVB0VFYU33ngDO3fuxNy5c5GYmIiNGzfqlub//vvvAQBvv/02oqKiOvzRvg9Jn7m5OWbOnAmgfXNyqT6mNjWNjY3Ys2cPtm/fjsrKStjZ2WH+/PlYsGABeylN1L333gtnZ2c0NDTgyJEjYodD1KvkcrmubTp58iTKyspEjsg0aTQapKWlYf369fjpp5/Q2toKX19frFixAvfddx9XfzVx9vb2mDhxIgDgxx9/lNzWPqIvEgIAMpkMcXFxiIuL03vNx8cHV69e7XDM2dkZa9euve01Y2JiEBMT0+lr8fHxXY6VpGXw4MEICgpCWloa9u3bh8cff5xPZ0Si0Whw4cIFHDp0SLc6a3h4OCZPntxhASAyPebm5pg9eza2b9+O5ORkjBw5Et7e3mKHRdRrgoKCMGTIEFy7dg3ffvstli1bxvlNfaisrAw//PCDbtsWOzs7TJ06FcOGDePvCKQzduxYXLx4ESUlJfjxxx/x4IMPih2SDn9akMG77777dI+pT58+LXY4JqmwsBDx8fHYu3cvmpqa4ObmhieffBKzZs1icUYAAH9/f4wYMQJA+ygGtVotckREvUcQBMyaNQtyuRz5+fk4ceKE2CGZhIaGBhw4cAAbN25EZmYmZDIZoqKi8Mc//hHDhw9ncUYdyGQyzJ49GwBw/vz5DutbiI0FGhk8BwcH3TKphw8fRmVlpcgRmY76+nrs3bsXmzdvRn5+PiwsLDBlyhTExsbqbQZPNG3aNFhZWaG4uBjJyclih0PUq+zt7XVDHY8fP46ioiKRIzJeLS0t+Pnnn7F27VokJSVBrVYjMDAQzzzzDKZMmcLhjHRLvr6+GD16NABg3759UKlUIkfUjgUaGYXw8HAMGDAAra2t+Pbbb9k738tUKhUSEhKwbt063eTa4cOH449//COioqIgk8nEDZAkycbGBpMnTwYAHD16FA0NDSJHRNS7hg8fjuDgYKjVanz99ddccbiHqdVqnDlzBh9++CGOHj2KlpYWeHh4YPHixViwYEGP7L1Ixm/KlClQKBQoKyuTzEgsFmhkFARBwAMPPAALCwvk5ORwOEkv0Wg0uHbtGjZs2IBDhw5BqVTC09MTTzzxBObOnctFQOh3jR49Gh4eHmhubsZPP/0kdjhEvUoQBMyZMwd2dnaoqKjAd999J8klvQ2NRqNBamoq1q9fj++//x719fVwcHDAQw89hNjYWN2icER3wtraGlOmTAEAHDt2DPX19SJHxAKNjIijo6Nu88Fjx45JaiyxMcjLy8O2bduwc+dOVFRUwMbGBg888ABWrFgBX19fscMjA2FmZqYb9nX27FkUFhaKHBFR71IoFHjkkUdgZmaGy5cv6+3TSndOuzLj5s2b8cUXX6CiogIKhQIzZszAs88+y0VAqMtGjRoFLy8vKJVKSaw2zAKNjMrIkSMxfPhwaDQafP311xxC1QNKS0uxa9cuxMfHIzc3F+bm5rjnnnvwxz/+EaNGjWJjSHfNz88Pw4cPBwDs37+fTxTI6Pn6+mLatGkAgEOHDuH69esiR2RYtE/MPvroI3z++ecoKiqChYUFoqOjsWrVKowdOxbm5pJYmJwMlCAIus7D8+fPIz8/X9R4+GkmozN79mwUFBSgoqICX3zxBR577DH+4O6CmpoaHDt2DBcuXIBGo4EgCBg5ciQmTpzIoYzUbVOnTkVaWhoKCgpw/vx5jBo1SuyQiHrV2LFjUVRUhIsXL+KLL77AE088ATc3N7HDkjRtYfbzzz+jpKQEAGBpaYmIiAhERkZCoVCIHCEZEx8fH4wcORLnz5/H/v37sXz5ctG2x+BvrWR0LC0t8eijj2LLli3Izc3Fvn378MADD/BJzx2qrq7GyZMnce7cOd1qRsHBwZg8eTJcXFxEjo6MhZ2dHSZMmIAff/wRR44cQXBwMLdkIKMmCALuv/9+1NTUICcnBzt27MCyZctgb28vdmiS09bWhpSUFCQkJOg2+ra0tMTYsWMxbtw4FmbUa6ZMmYLU1FQUFRXh3LlzuhUe+xoLNDJKrq6umDdvHnbs2IHz58/D0dER48ePFzssSausrMSJEydw4cIF3SqY/fv3x9SpU7lkPvWKsWPH4ty5cygvL8exY8cwY8YMsUMi6lXm5ua6DsSKigp88sknWLZsGezs7MQOTRKampqQnJyMpKQk3UINcrlc98TM2tpa5AjJ2Nna2mLixIn44YcfcOTIEYSEhIjyuWOBRkZr0KBBuO+++3Dw4EEcPXoU1tbWCA8PFzssySkvL8cvv/yClJQU3Vwgf39/jB8/HgMGDBA3ODJqMpkMM2bMwGeffYakpCSEhYVxyBcZPWtrazz22GPYtm0bqqqq8Mknn2Dp0qUmXaRVVVUhISEB58+fR2trK4D2p+zjxo1DWFgYn65TnwoPD8fZs2dRVlaGo0eP6hag60ss0MiojR07Fg0NDfjll1+wf/9+WFpaYsSIEWKHJTqNRoO8vDwkJiYiNTVVd3zQoEEYP348V2WkPhMQEIDg4GCkpqbiwIEDWLJkCYcjk9Gzt7fH0qVLsW3bNlRUVGDLli1YvHixSQ0jV6vVyMjIwJkzZ5Cenq7rIHR3d8c999yD0NBQ7qlJopDJZJg5cya2b9+O5ORkhIWFwcPDo09jYIFGRm/SpElobm7G6dOnsWfPHrS0tJjskzSVSoXLly8jMTERRUVFuuNBQUGIjo6Gl5eXiNGRqZo+fTrS09ORnZ2Ny5cvY+jQoWKHRNTrHBwc8Pjjj+Ozzz5DRUUF4uPjsWDBAvj5+YkdWq+qr6/H2bNncfbsWdTU1OiOBwQE4J577oG/vz87aUh0/v7+CA0NxeXLl3HgwAE8/vjjffq5ZIFGRk+7dKogCEhKSsL+/fvR1NSE6Ohok2kEGhsbkZycjNOnT+vG9Zubm2P48OEYO3Ysh5WRqBwcHBAVFYVjx47hxx9/RGBgICwsLMQOi6jXOTg4YNmyZdixYwcKCwvxySefYPr06YiIiDCq9kmtViMrKwtnz55FWlqabp6zlZUVRo4cidGjR5vU00MyDNOmTcO1a9eQm5uLS5cuYdiwYX323izQyCQIgoAZM2ZALpfjl19+wdGjR1FRUYH777/faJfg12g0yM7Oxrlz55Camoq2tjYA7RNgw8PDMXr0aNjY2IgcJVG7e+65B+fPn0d1dTVOnDiBSZMmiR0SUZ+wsbHB0qVL8d133+HSpUs4ePAgcnNzMXv2bINerVCj0ei2Fbh8+bKucxBo3xdu9OjRCAkJYWcMSZa9vT2ioqJw9OhRXeehpaVln7y3cf5mStQJQRAwefJk2NnZ4cCBA7h48SLKy8vx8MMPw8nJSezwekxdXR3Onz+Pc+fOoaqqSnfc09MT48aN47h+kiQLCwtMmzYNX375JX799VeMGjUKDg4OYodF1CcsLS3x0EMPwcvLCz/++COuXLmCnJwczJ49G0FBQQb1NK2qqgopKSm4ePEiKioqdMetra0xdOhQjB49Gu7u7iJGSHTn7rnnHpw7d07XeTh58uQ+eV8WaGRywsPD4ezsjC+//BKFhYXYtGkTZs2aheHDhxtUI3ij1tZWpKen48KFCx0mW1taWmLo0KEICwuDl5eXwd4fmYbg4GAMGDAA2dnZ+PHHH/HII4+IHRJRnxEEAZGRkejfvz/27NmDsrIyfPHFFxg4cCDuu+8+yQ5F12g0KC0tRVpaGq5evdphfrO5uTkCAwMxbNgwDBo0iJ2DZHDMzc0xffp0fPHFF7rOQ0dHx95/315/ByIJGjhwIJ566il88803yM3NxZ49e5CSkoJZs2YZzNM0lUqF69ev49KlS0hLS0NLS4vuNT8/P4waNQohISF99jieqLu0Q5E3bdqEK1euIDs7m1s9kMnx8vJCbGwsfv75Z/z666+4fv06NmzYgJCQEERHR/f5anKdaWlpQXZ2NjIzM5Gent5htIYgCPD398ewYcMQHBwMuVwuYqRE3RcUFAR/f39kZWXhxx9/xPz583v9PVmgkcnSLnN88uRJHD9+HJmZmVi/fj3Cw8MRHR0tybH/SqUSGRkZuHbtGq5du4bm5mbda/369cPQoUMxatQoTrYmg+Xu7o7Ro0cjOTkZBw8eRGxsLMzMzMQOi6hPmZubY/LkyRg1ahR+/PFHpKam4sqVK7hy5Qr8/PwwevRoBAUF9VkHXGtrKwoKCpCbm4usrCzk5ubqFvoA2pclDwgIQFBQEIYMGcL5zWRUtJ2HGzduRGpqKrKysuDv79+r78kCjUyamZkZoqOjERISgv379+P69etITEzE2bNnMXr0aERERIg6D0Y7dOT69evIzMxEdnY2VCqV7nUbGxuEhIRg2LBh8PHx4RBGMgqTJk3CpUuXUFJSgrNnz2LMmDFih0QkCkdHR8yfPx8lJSX45ZdfcOXKFeTm5iI3Nxfm5uYYNGgQAgIC4O/vDycnpx5pA1pbW1FaWorS0lIUFxcjPz8fxcXFHQoyoH0FyoCAAN0fjtYgY+bm5oYxY8bg9OnTOHjwIFauXNmr78cCjQiAs7MzFi9ejMzMTBw5cgTFxcVISEhAYmIiBg0ahGHDhvXJ6j1qtRqlpaXIz89Hbm4url+/joaGhg7nODk5ITAwEIGBgfD19eXTBTI6CoUCkyZNwoEDB/DTTz8hNDRU7JCIROXu7o558+ahtrYW586dw4ULF1BVVYW0tDSkpaUBaF+Ew8PDA66urnB0dISdnR3kcjnkcjksLS1hYWEBlUqF1tZW3Z/6+nqUl5cjLy8Ply9fRk1NDSorKzuNwc7ODn5+fvDz88OgQYPg6OjITkEyKdrOw9LSUiQnJ/fqnp0s0Ij+H0EQdL2R6enpOHXqFK5fv4709HSkp6dDJpOhf//+GDhwIHx8fODp6dmtgq25uRllZWUoLy9HWVkZCgsLUVhYiNbW1g7nWVhYoH///vD398eQIUPg7OzMRpGM3pgxY5CcnIyysjIcO3YMEyZMEDskItH169cPEyZMwPjx41FSUoKrV68iKysL+fn5aGpqQlZWFrKysrr9PjY2NnBzc4Obmxt8fHzg6+sLe3v7HrgDIsNlbW2NSZMmYf/+/Th69CgCAgJ67b1YoBHdRBAEDBkyBEOGDEF5eTlSUlKQkpKCqqoqXL9+HdevX9ed6+DgAGdnZ9jY2MDa2hoKhQIKhQKCIEClUkGtVkOtVkOpVKK6uholJSVITk5GfX19hz1hbiSXy+Ht7Q0fHx9dMciVr8jUmJmZYcaMGfj0009x+vRpPkUjuoEgCPDw8ICHhwcmTJiAtrY23ZDEyspKVFVVob6+Hi0tLVAqlVAqlWhtbYW5uTksLCxgYWEBc3Nz2NjYwMbGBs3NzRg4cCDc3d3h5ubGOWREt6CdI11aWoqTJ0/C29u7V96HBRrRbbi4uGDSpEmYOHEiKioqkJ6ejry8POTl5aG+vh7V1dWorq7u8vXt7Ozg6uoKFxcXeHh4wMfHBy4uLnxCRoT21VaDgoKQlpaGn376qVeHkxAZMnNzc3h5ecHLy+uuv7axsRGpqakIDg6W5OJYRFKi7Tzcvn07zp8/Dzs7u155HxZoRHdAEAS4uLjAxcUFkZGR0Gg0aGxsRHl5OSorK9HY2Iimpibdf4H2b2LtHwsLC1hZWaG2thaDBg2Cs7MznJ2dYWVlJfKdEUnb9OnTkZ6ejpycHLi6uiIkJETskIiIyIT5+/sjODgYqampuHz5MiIiInr8PVigEXWBIAi6oSH9+/e/o6/R9lIOGjSIvZREd8jR0RGRkZE4ceIErly5gujoaLFDIiIiE6ftPKyoqMC1a9cwatSoHr0+l38jIiJJi46Ohq2tLRobG5GcnCx2OEREZOIcHBwQHh4OADh+/LjeAm/dxQKNiIgkzdLSEuPHjwcAJCYmoq6uTuSIiIjI1EVERMDKygo1NTVISEjo0WuzQCMiIskLCQmBo6MjWltbcfjwYbHDISIiE2dpaYng4GAAwIkTJ1BbW9tj12aBRkREkicIgm6p/YsXLyI/P1/kiIiIyNR5eXnB29u7xzsPWaAREZFBcHBw0C21f+DAAWg0GpEjIiIiUyYIAqZMmQIASElJQW5ubo9clwUaEREZjOjoaFhaWqKwsBAXLlwQOxwiIjJx7u7uulUcDx48CLVa3e1rskAjIiKDYWtrq1sw5PDhw3yKRkREopsyZQrkcjmKiopw/vz5bl+PBRoRERmUcePGwcnJCQ0NDWhubhY7HCIiMnE2NjaYMGECAOCnn37qduchCzQiIjIoMpkM9913HwBAqVSKHA0REVH7svvOzs490nnIAo2IiAzO4MGDMWjQIA5xJCIiSZDJZJgxYwaA7nceskAjIiKDIwgC7rvvPgiCIHYoREREAIBBgwZhyJAhHOJIRESmycXFBXK5XOwwiIiIdKZPn97tzkMWaEREZLCsrKzEDoGIiEjH2dm5252HLNCIiMhgcYgjERFJTXc7D1mgERERERER9RAOcSQiIiIiIjISLNCIiIiIiIgkggUaERERERGRRLBAIyIiIiIikggWaERERERERBLBAo2IiIiIiEgiWKARERERERFJBAs0IiIiIiIiiWCBRkREREREJBEs0IiIiIiIiCSCBRoREREREZFEsEAjIiIiIiKSCNELNLVajbVr1yI6OhojR47EihUrkJeXd8vzq6qq8PzzzyM8PBwRERF49dVX0dTU1OGcAwcOYNasWRg+fDhiYmKQkJBwy/devnw5Pvzwwx69JyIiIiIioq4QvUBbv349duzYgddffx27du3SFU0tLS2dnr9q1Srk5ORg27Zt+OCDD3D8+HG88sorutcTExMRFxeHBQsWYPfu3YiMjERsbCwyMzM7XKelpQV/+9vf8Msvv/Tm7REREREREd0xUQu0lpYWxMfHY9WqVZg4cSKCgoLw3nvvobi4GIcOHdI7/9y5c0hKSsJbb72F0NBQREZG4rXXXsPevXtRUlICANi8eTOmTp2KJUuWICAgAC+++CJCQ0PxySef6K5z9uxZPPTQQ0hOTka/fv367H6JiIiIiIhux1zMN09LS0NDQwMiIyN1x/r164eQkBCcPn0ac+bM6XB+cnIyXF1dERAQoDsWEREBQRBw5swZzJgxA2fPnsVLL73U4evGjh3boeA7fvw4oqOj8eyzz+KBBx7osfu5eailKdPmgjn5DXOijznRx5x07lZ50Wg0EARBjJAMBj9Lv+H3lz7mRB9zoo850Xe7nHS3bRK1QCsuLgYAeHp6djju5uame+1GJSUleudaWlrCwcEBRUVFqK2tRWNjIzw8PG57vdWrV/fULXSQnZ3dK9c1ZMyJPuZEH3OijznpXGd5sbS07PtADAg/S/qYE33MiT7mRB9zou9WOelO2yRqgaatOG++Ablcjpqamk7P7+xm5XI5lEolmpubb3k9pVLZU2Hf0oABA2Btbd3r72MImpqakJ2dzZzcgDnRx5zoY046d6u8ZGRkiBiVYeBn6Tf8/tLHnOhjTvQxJ/pul5Putk2iFmhWVlYA2ueiaf8OAEqlstN/fCsrq04XD1EqlVAoFJDL5brr3fx6X3yYrK2toVAoev19DAlzoo850cec6GNOOndzXji88ffxs6SPOdHHnOhjTvQxJ/o6y0l32yZRFwnRDlcsLS3tcLy0tBTu7u5653t4eOid29LSgurqari5ucHBwQEKheKOr0dERERERCQlohZoQUFBsLW1xalTp3THamtrceXKFYSHh+udHx4ejuLiYuTk5OiOJSUlAQBGjx4NQRAQFhamO6Z16tQpjBkzppfugoiIiIiIqGeIOsTR0tISixcvxrvvvgsnJyd4e3vjnXfegYeHB6ZPnw6VSoXKykrY2dnBysoKI0aMQFhYGFavXo1XXnkFjY2NWLNmDWJiYnRPyJYtW4bY2FiEhIRg/Pjx+Prrr5Gamop//etfYt4qERERERHR7xJ9o+pVq1Zh3rx5ePnll7Fw4ULIZDJs2bIFFhYWKCoqQlRUFPbv3w+gfTznunXr4OPjg6VLl+K5557D+PHjO2xUHRUVhTfeeAM7d+7E3LlzkZiYiI0bN3ZYmp+IiIiIiEiKRH2CBgAymQxxcXGIi4vTe83HxwdXr17tcMzZ2Rlr16697TVjYmIQExNzR+//008/3XGsREREREREvUn0J2hERERERETUjgUaERERERGRRLBAIyIiIiIikggWaERERERERBLBAo2IiIiIiEgiWKARERERERFJBAs0IiIiIiIiiWCBRkREREREJBEs0IiIiIiIiCSCBRoREREREZFEsEAjIiIiIiKSCBZoREREREREEsECjYiIiIiISCJYoBEREREREUkECzQiIiIiIiKJYIFGREREREQkESzQiIiIiIiIJIIFGhERERERkUSwQCMiIiIiIpIIFmhEREREREQSwQKNiIiIiOj/b+/uo3O+7z+Ov66I+7vFTiNOS3/u4jYRQeKmJM0yzZSOsm6murFDK1o9jZIYeoaptbMgoQh2dtydY5Tqqm5qZ1iHILbSUklkSm0SkYiuiQvJ5/eHk29drouIkOvryvNxznVO873L5/v2+V6vvq/re+UCbIIGDQAAAABsggYNAAAAAGyCBg0AAAAAbIIGDQAAAABsggYNAAAAAGyCBg0AAAAAbIIGDQAAAABsggYNAAAAAGyCBg0AAAAAbIIGDQAAAABsggYNAAAAAGyCBg0AAAAAbIIGDQAAAABsggYNAAAAAGyCBg0AAAAAbIIGDQAAAABsggYNAAAAAGyCBg0AAAAAbIIGDQAAAABsggYNAAAAAGyCBg0AAAAAbIIGDQAAAABsggYNAAAAAGyCBg0AAAAAbIIGDQAAAABsggYNAAAAAGyCBg0AAAAAbIIGDQAAAABsggYNAAAAAGzCYYwx3h7Eo+7o0aMyxqh27dpyOBzeHo4tGGN0/fp1anILauKOmrijJp7dqS7Xrl2Tw+FQeHi4F0dnT2STO64vd9TEHTVxR03c3a0mVc0m/wcxwJqu/B+FCfsdh8OhOnXqeHsYtkJN3FETd9TEszvVxeFw8Nx7B2STO64vd9TEHTVxR03c3a0mVc0m3kEDAAAAAJvgM2gAAAAAYBM0aAAAAABgEzRoAAAAAGATNGgAAAAAYBM0aAAAAABgEzRoAAAAAGATNGgAAAAAYBM0aAAAAABgEzRoAAAAAGATNGgAAAAAYBM0aAAAAABgEzRoAAAAAGATNGhVVFZWppSUFPXv319hYWEaN26czp075+1hVZvc3Fx16NDB7bF582ZJ0smTJ/Xiiy8qLCxMMTExWr16tZdH/HAtX75co0ePdllWUQ18fQ55qsmMGTPc5kxMTIy13hdrcvnyZb311lsaMGCAwsPDNXLkSB05csRaf+DAAT3//PPq1q2b4uLitG3bNpf9nU6nZs2apT59+qh79+6aPHmyCgoKqvs0HqiKajJmzBi3eXLrXPLFmjwIvnj9VBbZ5Ipsckc23UQ2ubNFNhlUSWpqqomMjDR/+9vfzMmTJ83YsWPNwIEDjdPp9PbQqsWePXtMSEiIyc3NNXl5edajpKTEFBQUmMjISDNt2jSTnZ1tNm3aZEJCQsymTZu8PeyHYu3ataZjx47mxRdftJbdSw18eQ55qokxxowYMcIkJye7zJlLly5Z632xJmPGjDGDBw82hw8fNjk5OWbWrFkmNDTUnD592mRnZ5uQkBCTnJxssrOzzcqVK03nzp3N/v37rf2TkpJMbGysOXz4sPnss8/M0KFDzahRo7x4RlV3t5oYY0yfPn3M+vXrXeZJYWGhtb8v1uRB8MXrp7LIpu+QTe7Ipu+QTe7skE00aFXgdDpN9+7dzbp166xlRUVFJjQ01PzlL3/x4siqT1pamhkyZIjHdcuWLTNPPfWUuX79urXsD3/4gxk4cGB1Da9aXLhwwbz88ssmLCzMxMXFuTzhV1QDX51Dd6tJWVmZCQsLM7t27fK4ry/W5MyZMyY4ONgcOXLEWlZWVmZiY2PNwoULzcyZM82IESNc9klISDBjx441xtysZ8eOHc2ePXus9Tk5OSY4ONgcPXq0ek7iAauoJvn5+SY4ONh88cUXHvf3xZo8CL54/dwPsols8oRsckU2ubNLNnGLYxV8+eWX+vbbb9WnTx9rWZMmTdS5c2cdPnzYiyOrPqdOnVLbtm09rjty5IgiIiLk7+9vLevdu7fOnDmj/Pz86hriQ/fFF1+odu3a+vDDD9WtWzeXdRXVwFfn0N1qcvbsWRUXF6tNmzYe9/XFmgQEBCgtLU0hISHWMofDIYfDoStXrujIkSMu5yvdnCcZGRkyxigjI8NaVq5169Zq3ry5z9bk1KlTcjgcat26tcf9fbEmD4IvXj/3g2wimzwhm1yRTe7skk00aFVw4cIFSVKLFi1clgcGBlrrfF1mZqYKCgo0atQo9e3bVyNHjtS+ffsk3axPUFCQy/aBgYGSpP/+97/VPtaHJSYmRqmpqWrZsqXbuopq4Ktz6G41yczMlCStWbNGMTExio2N1ezZs/XNN99I8s3rqkmTJoqKilKdOnWsZTt37tRXX32l/v3733GelJSUqLCwULm5uQoICFDdunXdtvHVmmRmZqpx48aaPXu2BgwYoLi4OC1cuFDXrl2TJJ+syYPgi9fP/SCbyCZPyCZXZJM7u2QTDVoVlJSUSJLLP6Ik1a1bV06n0xtDqlY3btxQTk6OioqK9NprryktLU1hYWEaP368Dhw4oKtXr3qsjaQaUR9JFdagJs6hzMxM+fn5KTAwUMuWLVNSUpI+/fRTxcfHq6ysrEbU5OjRo5o2bZoGDhyo6Ohoj/Ok/Odr166ppKTEbb3k2zXJzMyU0+lUaGioVq5cqQkTJmjjxo2aMWOGJNWImtyPmnD9VIRsqhjZ5I5sIps88VY2+Ve8Ce6kXr16km5O0vL/lm4+udWvX99bw6o2/v7+Sk9PV61atazz79q1q7KysrRq1SrVq1fPekWhXPnkbNCgQbWP1xsqqkFNnEMTJkzQz3/+cwUEBEiSgoOD9dhjj+mFF17Q8ePHfb4mu3fv1ptvvqnw8HDNnz9f0s0n7tvnSfnP9evX9ziPJN+uyezZs5WYmKimTZtKujlPateurTfeeENTp071+ZrcL1+/fu4F2VQxsskd2UQ23c6b2cQ7aFVQ/jZ3Xl6ey/K8vDw1b97cG0Oqdg0bNnR5opKk9u3bKzc3V0FBQR5rI6nG1KeiGtTEOeTn52cFYLn27dtLunkLiS/XZO3atXrttdf09NNPa9myZdYr1i1atPB4vg0aNFDjxo0VFBSky5cvuz3p+3JN/P39rQAsd+s88eWaVIUvXz+VQTbdHdnkjmwim27l7WyiQauCjh07qlGjRkpPT7eWXblyRSdOnFCvXr28OLLqkZWVpfDwcJfzl6TPP/9c7dq1U69evZSRkaHS0lJr3cGDB9W6dWt9//vfr+7hekVFNaiJc2jq1Kn65S9/6bLs+PHjkqR27dr5bE3Wr1+vOXPmaNSoUUpOTna5BaJnz546dOiQy/YHDx5UeHi4/Pz81KNHD5WVlVkfPpakf//738rNzfXZmowePVrTpk1z2f748eOqXbu2/u///s9na1JVvnr9VAbZVDGyyR3ZRDaVs0U23e+focRNycnJJiIiwuzevdvlOzGuXbvm7aE9dKWlpWb48OFm0KBB5vDhwyY7O9u8/fbbpmvXrubUqVMmPz/f9OrVyyQmJpqsrCzz/vvvm5CQELN582ZvD/2hSUxMdPmzvfdSA1+fQ7fXZPfu3SY4ONikpqaar776yuzZs8fExMSYhIQEaxtfq0lOTo7p0qWLmThxosv3puTl5ZkrV66YzMxM06VLF/P73//eZGdnm1WrVrl910xCQoKJiYkxBw8etL5X5fbv8HmUVFSTNWvWmE6dOpn169ebs2fPmm3btpnIyEiTnJxsHcPXavKg+Nr1U1lkkzuyyR3ZRDZ5YpdsokGrohs3bph3333X9O7d24SFhZlx48aZc+fOeXtY1ebixYsmKSnJ9OvXz4SEhJif/vSn5vDhw9b6zz77zLzwwguma9eu5umnnzZr1qzx4mgfvtuf8I2puAa+Poc81eTjjz82Q4cONaGhoaZfv37md7/7nbl69aq13tdqsnTpUhMcHOzxkZiYaIwxZu/evWbw4MGma9euJi4uzmzbts3lGN9++62ZPn266dmzp+nZs6dJSEgwBQUF3jidB+JearJ27Vrzox/9yLp2li5dakpLS61j+FpNHhRfu37uB9nkimxyRzaRTZ7YJZscxhhT5fcCAQAAAABVxmfQAAAAAMAmaNAAAAAAwCZo0AAAAADAJmjQAAAAAMAmaNAAAAAAwCZo0AAAAADAJmjQAAAAAMAmaNAA3JWdvirRTmMBAHiPnfLATmOBb6BBA6rg+PHjmjJliqKjoxUaGqrY2FjNnDlT586dq/SxRo8erdGjRz+EUUpff/21OnTooM2bN1dqv4yMDI0fP/6hjKkimzdvVocOHfT1119LkrKysjRy5EivjAUAHiVk08NDNqE60KAB92ndunX62c9+pkuXLmny5MlasWKFxo8fr0OHDmnEiBH68ssvvT3EKtu4caNOnz7tld8dHR2tDRs2KDAwUJK0Y8cO/fOf//TKWADgUUE2PVxkE6qDv7cHADyKMjIyNHfuXI0aNUrTp0+3lkdGRio2NlZDhw7Vr3/960q/KojvNGvWTM2aNfP2MADgkUE2PXxkE6oD76AB92HVqlVq3LixEhIS3NY1a9ZMSUlJ+sEPfqDi4mJJUmlpqdatW6chQ4YoNDRU0dHRmj9/vpxO5x1/h9Pp1JIlSxQXF6eQkBANHDhQaWlpKisrs7YZPXq03nzzTU2aNElhYWEaM2bMPZ9Dhw4dtG7dOk2fPl0RERHq3r27Xn/9deXn50uSkpKStGXLFp0/f97lFhSn06l3331XUVFR6tq1q4YMGaKPP/7Y5dgxMTFKSUnRO++8o759+yo0NFS/+tWvdObMGWubgoICTZ48Wf369VNISIh+/OMf64MPPrDW33obSWpqqhYvXmyNOzU1VZMmTdKAAQNc6iFJ06dP1zPPPHPPdQAAX0E2kU3wDbyDBlSSMUaffvqpYmJiVL9+fY/bDBo0yOXnt956S1u3btW4cePUs2dPnThxQkuWLNHJkye1cuVKORwOt9/xyiuv6F//+pdeffVVdezYUenp6Vq4cKHOnTunOXPmWNtu375dzz33nJYuXeoWCBVZsGCBfvjDHyo5OVnnzp3TvHnzVKtWLSUnJys+Pl4FBQU6ceKEFi9erFatWskYo4kTJ+ro0aOaNGmS2rZtq08++URvvPGGrl27pqFDh1rHXr16tXr06KF58+apqKhIc+fOVWJiojZs2CBJmjJlii5duqRZs2apUaNG2rp1qxITExUUFKTevXu7jPMnP/mJLly4oE2bNmnDhg0KCgpSZmamdu7cqfT0dPXp00eSdPXqVe3YsUPjxo2rVB0A4FFHNpFN8B00aEAlFRYWyul06oknnrin7bOzs7Vp0yZNnjzZ+lBzv379FBgYqKlTp2rfvn2Kiopy2Wffvn3av3+/kpOT9eyzz1r71KtXT4sWLdJLL72k9u3bS5Jq166tWbNmqU6dOpU+l+DgYM2bN8/6+dixY9qxY4ckqVWrVmrWrJnq1KmjsLAwSdI//vEP/f3vf9eCBQusoO/fv79KSko0f/58DR48WP7+N59WmjRpovfee0+1atWSJJ09e1apqakqLCxUQECADh06pIkTJyo2NlaSFBERoe9973sezyMoKEhBQUGSZI0lMDBQQUFB+uCDD6wQ/OSTT1RcXOwSxgBQE5BNZBN8B7c4ApVU/qReWlp6T9sfOnRIkqwwK/fss8+qVq1aSk9P97iPv7+/4uLiXJY/99xzLseUpDZt2txXAErfBUq5oKAglZSU3HH7AwcOyOFwKCoqSjdu3LAeMTExunjxorKysqxtQ0JCrFqVH1uSdfzIyEjrdpCNGzcqPz9fiYmJCg8Pv6ex+/n5adiwYdq1a5d1zC1btqhv377W7wKAmoJsIpvgO3gHDaikpk2bqmHDhvrPf/5zx22Ki4t1/fp1NW3aVEVFRZKkxx57zGUbf39/BQQE6JtvvnHbv6ioSAEBAS4hcusxbt2nYcOG930ut98G4+fnd9fvc7l8+bKMMXcMqry8PHXq1OmOx5Zk3eqyYMECLVu2TNu3b9fOnTvl5+envn37avbs2Xr88cfvafzDhw/XsmXLtGvXLvXu3VsHDhzQ/Pnz72lfAPAlZBPZBN9Bgwbch6eeekrp6elyOp2qW7eu2/o///nPeuedd7Rp0yY1bdpUknTx4kWXJ/fr169bt1TcrmnTpiosLFRpaalLEObl5UmSx32qQ+PGjdWgQQOtXr3a4/onn3yyUseaMmWKpkyZopycHP31r3/Ve++9p1mzZiktLe2ejtGyZUtFRERo+/btunz5sho1amTdlgIANQ3ZRDbBN3CLI3Afxo4dq8uXL2vhwoVu6y5evKg//vGPateunbp06aKIiAhJ0rZt21y227Ztm0pLS9WjRw+3Y0REROjGjRvWPfflPvzwQ0nyuM/DUP7K4q3jKi4uljFGISEh1iMzM1NLlizRjRs37um458+fV1RUlHV+bdq00bhx49S3b987vvp7+1jKjRgxQvv379dHH32kQYMGefyfEgCoCcgmsgm+gXfQgPsQFham119/XQsXLtTp06c1dOhQBQQEKCsrS6tWrZLT6bQCsl27dho2bJhSUlJUUlKiXr166eTJk1q8eLEiIyPVv39/t+MPGDBAkZGRmjFjhnJzc9WxY0cdOnRIK1as0LBhw9SuXbtqOc8mTZooPz9fe/fuVadOnRQVFaVevXopPj5e8fHxatu2rY4dO6aUlBT179//nr8b5vHHH1dQUJB++9vf6n//+59atWqlzz//XHv37tXLL798x7FI0kcffaRu3bqpZcuWkqRnnnlGc+bM0bFjxzRz5swHc+IA8Agim8gm+AYaNOA+TZgwQZ07d9a6dev09ttvq6ioSC1atFB0dLReeeUVtWjRwtp27ty5evLJJ/X+++9rxYoVCgwM1EsvvaT4+HiPr745HA4tX75cKSkp+tOf/qSCggI98cQTSkhIqNT3yVTV888/r71792rixImaNGmSxo8fr7S0NC1atEjLly/XpUuX1Lx5c40ZM0YTJ06s1LEXL16s5ORkLVq0SIWFhWrRooVeffVV66+J3W7gwIHaunWrkpKSNGLECP3mN7+RJNWtW1e9e/dWTk6OQkNDq3rKAPBII5vIJjz6HOZun7oEAJu7evWqoqKiFB8fr1/84hfeHg4AAGQTqoR30AA8ks6fP68tW7Zo//79cjgcGj58uLeHBACo4cgmPAg0aAAeSX5+flqzZo0aNmyoBQsWqFGjRt4eEgCghiOb8CBwiyMAAAAA2AR/Zh8AAAAAbIIGDQAAAABsggYNAAAAAGyCBg0AAAAAbIIGDQAAAABsggYNAAAAAGyCBg0AAAAAbIIGDQAAAABs4v8BLRiYwrzZH+4AAAAASUVORK5CYII=\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2MAAAIdCAYAAACwbqUMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACeHUlEQVR4nOz9eXhdZb3//z/XnjPtzGOTdEjnlk40rZWWQTmgCFoQz08UQY8Fh6O9qFiBSw5fwAkBLy6GA3wcEIWDnqMIiIIiIDhA50JL56RNmmaep53saa3fH7uNhBZIM61k79fjunqVrr2y9nuH1e79yn3f79uwLMtCRERERERExpXD7gJEREREREQSkcKYiIiIiIiIDRTGREREREREbKAwJiIiIiIiYgOFMRERERERERsojImIiIiIiNhAYUxERERERMQGLrsLiAc7d+7EsizcbrfdpYiIiIiIiI3C4TCGYbB06dL3PVcjY6PAsqyBXyKjzbIsQqGQ7i8ZE7q/ZCzp/pKxpPtLxtJI7q/TyQUaGRsFbrebUCjEzJkzSU5OtrsciTOBQIB9+/bp/pIxoftLxpLuLxlLur9kLI3k/tq9e/eQz9XImIiIiIiIiA0UxkRERERERGygMCYiIiIiImIDhTEREREREREbTIgwZpom9913H2vWrGHJkiVcc8011NTUvOv57e3tXH/99ZSXl7NixQpuu+02+vr6Tnnu9u3bmTdv3knHDx06xLXXXsvKlStZtWoV69evp66ubtRek4iIiIiIyHuZEN0UH3zwQZ544gnuuOMOCgoKuOuuu1i3bh3PPvssHo/npPPXr19PX18fjz76KF1dXXz7298mEAjwwx/+cNB527dv56tf/SqmaQ463t7ezhe+8AWWLVvGY489RigU4o477mDdunU89dRTeL3eMX29IiIiIiJ2iEajhMNhu8uY8ILB4MDvDsfg8Su3243T6RyV57E9jIVCIR555BG++c1vcu655wJwzz33sGbNGl544QUuvvjiQefv3LmTLVu28Nxzz1FWVgbA7bffzrp16/jGN75Bfn4+kUiEu+66i//5n/9h9uzZdHR0DLrGiy++SCAQ4M4778Tn8wFw1113ce6557Jjxw5WrVo15q9bRERERGS8WJZFQ0PDSZ+L5dRM08TlclFXV3dSGAPIyMigoKAAwzBG9Dy2h7H9+/fT29s7KAD5/X7mz5/P1q1bTwpj27ZtIzc3dyCIAaxYsQLDMNi+fTsXXXQRgUCArVu38tOf/pS6ujpuuummQddYtWoVDz744EAQAwa+yV1dXcN+Le82VVJkJE7cV7q/ZCzo/pKxpPtLxpLur9PT0tJCT08Pubm5JCUljThExLsTmz57PJ5B3yvLsujr66O5uZlwOExOTs4pv3ao31/bw1hDQwMAhYWFg47n5eUNPPZ2jY2NJ53r8XjIyMigvr4eiIW53/3udwADv79dcXExxcXFg479+Mc/xufzUV5ePuzXUlVVNeyvFXk/ur9kLOn+krGk+0vGku6voXE4HOTn52uD7CEyDOOUS5cMwyA5OZmMjAwaGxtpbm4+5defaqnVqdgexk78NOOdBXu9Xjo7O095/qlenNfrHZjbeboee+wxHn/8cW6++WaysrKGdQ2AadOmkZSUNOyvFzmVvr4+qqqqdH/JmND9JWNJ95eMJd1fQxcMBqmrq8Pv9w+aGSbvzrIsgsEgXq/3lKNclmXR3t5OUVHRSaGtoqJiyM9jexg7cUOEQqFBN0cwGDzlXyyfz0coFDrpeDAYPO2kb1kW9957Lw899BBf+cpX+NznPnea1Q+WlJSknzbImNH9JWNJ95eMJd1fMpZ0f70/h8OBw+HA5XKNWuOJeBeNRoHYSNipvmculwuHw0FSUtJJAfd0poDa3tr+xJTDpqamQcebmprIz88/6fyCgoKTzg2FQnR0dJCXlzfk5w2Hw2zcuJGHH36Ym266ieuuu+70ixcRERERERkm28PY3LlzSU1NZfPmzQPHurq62Lt37ynXb5WXl9PQ0EB1dfXAsS1btgBw5plnDvl5v/Wtb/GnP/2JH/3oR3z+858f/gsQERERERFbWJZldwkjYnsY83g8XHnlldx999289NJL7N+/nw0bNlBQUMAFF1xANBqlubmZ/v5+ABYvXsyyZcvYsGEDu3btYtOmTdxyyy2sXbv2lCNpp/K73/2O5557jg0bNrBixQqam5sHfp14HhERERERsc/999/PnDlzBv78uc99btCyot/85jcn7TM82di+ZgximzhHIhFuvvlm+vv7KS8v52c/+xlut5tjx47x4Q9/mB/84AdcdtllGIbBAw88wG233cbVV1+N1+vlIx/5yEnt69/LH/7wBwDuvPNO7rzzzkGPnXgeERERERGZOP6//+//G/Tnhx56iBUrVthUzeiYEGHM6XSyceNGNm7ceNJjxcXFHDhwYNCx7Oxs7rvvviFd+7LLLjspXD3yyCPDL1ZERERERMbdzJkz7S5h1Nk+TVFEREREROLPW2+9xdVXX82ZZ57J0qVL+fznP88bb7wBwI033sjnPvc5fvvb33LeeeexdOlSrr76avbv3/+u13v7NMUPfehD1NbW8tRTTzFnzhyOHTs2Hi9p1CmMiYiIiIjIqOrp6WHdunVkZmZy//33c88999DX18cXv/hFuru7Adi3bx/33HMPX/va17jrrrtob2/nyiuvPKlz+qk88MAD5Obmcs455/C///u/p9VVfSKZENMURUREREQkflRUVNDe3s5VV13FsmXLAJgxYwb/+7//S29vLwDd3d08/PDDLF++HIBFixZx/vnn88tf/pJvfvOb73n9+fPn4/F4yMrKYsmSJWP6WsaSwpiIiIiIiIyqWbNmkZWVxZe//GU+8pGPsGbNGs4666xBPSKKi4sHghhAXl4eS5cuZevWrXaUbAtNUxSJF5YF/T3QVgPHdsGRLVC/N/bn/m67qxMREZEEkpKSwv/8z/9wzjnn8Pzzz/O1r32NVatWccsttxAKhQBOuS1VdnY2HR0d41ytfTQyJjLZ9XdD7S6oeQN62/513HCCFf3Xn9PyIH82FMwFfwEYxriXKiIiIoljxowZ3HXXXUSjUXbt2sUzzzzDr371K0pLSwFob28/6WtaWlrIzs4e71JtozAmMlkFe2Hfi1C3GwwH5M6EGasgORN8fnC6IRKMndfbCi1HoGor4YpN9GXOpG9KOVZGMak+B8keA4fCmYiIiIySP/3pT9x66608++yz5ObmsnTpUpYuXcof//hH6urqAKiqqqKyspKysjIAGhsb2blzJ9dee+2QnsPhmPyT/BTGRCYby4La3bD3BbBMmHU2FMwDt+/kc90+Qg4f9dFsatPnUGdAIHI8dDUCjUEADMDvM5iW7WJGjos07+T/x01ERETss2zZMkzT5D//8z+59tprSUlJ4fnnn6e7u5sLLriAp59+Gsuy+PKXv8yGDRtwOp088MADpKenD7Svfz9+v5+9e/eyZcsWFi1ahM93is9CE5zCmMhkEgnBG09B40HInwOzzwFP8ilPbeuD/S0GRzogahmkeSym+CHTZ+JzWvj6WzDq3qK3r59A+gxavXPYU2/xZm2Y/DQHZ5Z4yEl1ju/rExERkbiQl5fHT3/6U+69916+/e1v09fXx6xZs7j//vv5wAc+wNNPP01RURH/8R//wfe//336+vr44Ac/yEMPPURGRsaQnuPE137xi1/k5z//+aBmIJOFwpjIZBHqhe3PxKYcLroEcstOOsWyoL4HdjUZNPUaJLks5uZYlPotUjxvP9OA1FzIPpe05ko4spkZba+zdMZq6tIWcLA5wnN7+5mT52JpsQePS1MYRURE5PQsWrSIn/3sZ+95zhVXXMEVV1xxyse+/vWv8/Wvf33gz4899tigxy+++GIuvvjikRdqI4UxkUnAG+nBt/0JMKNw5uWxZhzv0NADbzQYNAUMsnwWH5hiUpQGjvfKUYYBeTMhqwSqt+Gq+CulWZUUz7uAym4fe+rDVLdHOLvMR4Ffo2QiIiIio0kLQ0QmOCPQzpzWTbHuiOX/v5OCWFsfvHjY4IXDDsImnFVict40i2L/+wSxt3N5oewsWPBR6GnBsfkxZllVXDjXh9/r4MUD/VQ2h0f/xYmIiIgkMI2MiUxk/T143/wtIYeLyMJLSPL5Bx7qDcEbjQaV7ZDqgVXHR8JG1BQxsxiWXg4Vf4fdfyCpeCmrZ65mZ22Ufx4J0R20WDzFjaHOiyIiIjICd9xxh90lTAgKYyITVTgIW2NTE4+kL2GaOyl22IQ9TQZ7msHlgKX5FtMzT2MU7P24vTD3w7ENo49swtFZx7KFHyPFm8SuujD9EYuVUz0KZCIiIiIjpDAmMhGZUdj+fxDoILTg44TrWrEsONwOO+oN+qMwKwvmZlu4x2Ipl2FA0QJIy4X9L2NsfYK5iy7GW1LA9powXqfB0hLP+19HRERERN6V1oyJTET7X4K2o7DoEqyULPrx8mqtj3/UOMhMggtnWJyRN0ZB7O3S8mDJWkjJgp1PMr33LRYVuthdH2ZPvdaQiYiIiIyERsZEJpr6vXBkM8w6h2h6MbtrI+xnLilhi9UlJgWp41yP2xdr7FG9BQ69wuzCJkJ557K9JoTXBTNz3eNckIiIiEh8UBgTmUh6WuHNZyFvFh25S/h7hUFHv5tcmlg+JY2UZJt2lnc4YPoHIDkbKv7Ogr5OgjkXs6kqhN/nIC9Nbe9FRERETpfCmMhEEQ3D9t9geVM4kP8Rtlc4SHbD6qJ+2uqacTrS7K4Q8meBLxVj319YGvoN3Vmf5JVD/Vy8MIlkj2Y9i4iITDY9QZNgxLLlub0ug1RvYn9+UBgTmSj2v4wZ6GTTtC9S0eCmLDO2LiwSsmizu7a3Sy+ExZ/AsffPfKDxN7yU+Sn+eijIR+b5cI5aS0cREREZaz1Bk2d29xE17Xl+pwM+cUbSaQWyuro6du7cycc+9rFhPefmzZu56qqreOmllyguLh7WNUaTwpjIRNByhFD1G7xacBUN3T6WF5pMy4g9FLG1sHeRlA6LPoFv759Z1f4sr/g/zuaqEB+c4bW7MhERERmiYMQiasKKUjdpvvEdoeruN9lyNEwwYpF6Gh8fbrjhBqZMmTLsMLZ06VL+8Y9/kJWVNayvH20KYyJ2C/fTt+sv/CX7SnrNNNaUWuSl2F3UELi9sPCjZB14mWU9r7KNcynwO5mRo39WREREJpM0n4PM5MSYLujxeMjNzbW7jAH61CRis+Cel/iL70L6XX7Om2rhn0yDS043zP03plX8nabAQTYdmUlOagr+cf7pmoiIiMS/z33uc2zZsgVg4PcLL7yQV199ldbWVu6//37mzJnDXXfdxauvvkpbWxt+v58Pf/jDfPvb3yYpKemkaYof+tCH+OxnP8sbb7zBP/7xDzweD5dccgkbN24cl9ekT0wiNgrXV/BS72wC7gzOnsrkCmInOBww62yWprbgi3Tzt73tRE17FgKLiIhI/Lr//vtZunQpH/3oR/ntb38LwOOPP87NN9/MT3/6U5YsWcKNN97I3r17eeCBB/jzn//MTTfdxNNPP83//u//vut17733XsrLy/n973/Pt771LR5//HH++Mc/jstr0siYiE2ioSCvHInS4Srg7FJjcgaxEwwDd9lKVlbu4q+hRezYU0P5GaV2VyUiIiJxJCMjA7fbjc/nG1jzdc455/DBD35w4JyzzjqL8vJy5syZA0BxcTGPP/44Bw8efNfrrl69mquuugqAkpISHnvsMXbs2MGFF144hq8mRmFMxCab3zpGo7OA1YX9ZCUn213OyBkGmWWLOKPiKG/2TWdKxUGKZs62uyoRERGJY1OnTh3058985jO8/PLLPPXUU1RVVVFRUcGxY8eYMWPGu16jrKxs0J/T0tIIh8NjUu87aZqiiA0OHW2hIlLAsqRa8jLjIIidYBjMLCslz2jntWY/wbp3/ymUiIiIyEj5fL6B/zZNky996Ut897vfxeVycdFFF/H//t//Y9myZe95DY/HM9ZlviuNjImMs9aeCFvq3UyPHmba1BK7yxl1hsNg+Yw0/lJpsaWyljXeasie+v5fKCIiIjIC+/bt429/+xv/93//x+LFiwEIh8McPXqUkpKJ+ZlLI2Mi4ygYsXh1fzdp0XaWlCaDw2l3SWMi2eNgaaHBEe9cqt7YCl2NdpckIiIicSAlJYXa2loaGhpOeiwnJweXy8Xzzz9PTU0Nu3fv5rrrrqO5uZlQKGRDte9PI2Mi48SyLF6vDBCKWKzxHcGZvtzuksZUSbqD2u4om6wPkb/9dySd9RnwxNGUTBERkTjR3W9Omuf89Kc/zQ033MDHP/5xkpKSBj2Wn5/PHXfcwf3338///M//kJuby7nnnsvnP/95Xn755dEoe9QpjImMk6q2KEc74QN9r5Eya6Xd5Yw5w4BlhQYvBNxscq/k3B2/xVjx2bgdDRQREZlsvC4DpwO2HB2fZhXv5HTEajgd5557Lps3b37Xxy+55BIuueSSk47fdNNNAKxcuZIDBw4MHD9VSHvssceIRqP09/efVm3DoTAmMg4CIZPNR/ooDh6muCgHPL73/6I44HXB0kLYVDuDqq79TN/7Aiz8qN1liYiICJDqdfCJM5IIRuzZH9TrMkj1JvaqKYUxkTFmWRavHwliREMsNfdAwcfsLmlcFfthSpfFFuMCCo/+BF96EZQstrssERERIRbIUifzXqeTXGJHUZFxUNkSobbT5MzuV/CWLQdH4v21W1pgYTmcbMldC3ueh54Wu0sSERERsV3ifSoUGUd9YYttR0OUhg9T5HdAeqHdJdnC54Il+RZVViFHk+fDzqcgGrG7LBERERFbKYyJjKFtR4NgRljc8w+YVm53ObYq8UNBqsWWlHMJ9XTCgYnZ1UhERERkvCiMiYyRus4oR1qjLOp5HW/+DEhKt7skWxlGbLpiyHSws/CTcGQzNFXYXZaIiIiIbRTGRMZAxLTYVBUk19HJ1HAFlCyzu6QJIcUNC/IsDoRyac5aArv/AOGg3WWJiIiI2EJhTGQM7K4LEwiaLG37M0bx4oRpZT8UMzMh0wevJ52DGQ7B/pfsLklERETEFgpjIqOss89kT32YOUY1fmcYihbaXdKEEtsM2qIz5GBP0Vo4uh1aq+0uS0RERGTcaZ8xkVFkWRZbqoMkOU3mNr4IMz8ITv01e6dMH8zMgl3tRUxLn0Xarmfh7C+B0213aSIiIomlrxNCAXue25Oc8Gvq9SlRZBQdbY9S32XyQXbh9KVA3iy7S5qwFuRaHOsy2JJxIR+qeQjj0N9g7oftLktERCRx9HXCqw9BNGzP8zvdcM5Xxi2QfehDH+LSSy/l61//+rg831AojImMkkg0tqdYQVKYwmObYda54HDaXdaE5XLE9h57vdZDzZQLKD38ApQsgZRsu0sTERFJDKFALIgt+AgkZ43vcwfaYM+fYjUk8OiYwpjIKNldH6YvbLEm+DpGcgbkldld0oRXlAYFKRZbgnMp9G7CvfcvUP5pu8sSERFJLMlZ4M+zu4qEpAYeIqOguz/WtGO2v4/Utn1QciYY+uv1fgwDlhRYBKOwK/8T0HQo9ktERETkHW688UY+9alPDTpWW1vL3Llzee211/jNb37DJZdcwqJFi1iyZAmf+cxn2L17t03VDo0+LYqMgm1HQ3hdBnPbX4XkbMiZbndJk0aqB+bmWOwNZNKROQ/2vABm1O6yREREZIK57LLL2LVrF0ePHh049uyzz1JQUEB3dze3334769at4/nnn+fRRx8lGAxy880321jx+1MYExmhus4oNR1RFmX04GqvhtIlsSEfGbLZWZDshi2pH8bqa4cjm+0uSURERCaY8vJySkpK+P3vfz9w7Nlnn+UTn/gEWVlZfO973+MTn/gEU6ZMYcmSJVx++eUcPHjQxorfn9aMiYyAaVlsPRokO8VBcfNrkJQB2RoVO13O4808/nnMw9GCDzO14u9QshQ8SXaXJiIiIhOEYRisXbuWZ599lq997Wvs3buXiooKHnzwQaZOnUplZSX//d//zeHDh6murubAgQOYpml32e9JI2MiI3CwKUJnn8WSzF6M1sMwZZFGxYapMA0KUy22spCw5YDKf9pdkoiIiEwwl156KdXV1ezevZtnn32WZcuWMXXqVJ599lk+/vGPU1NTw7Jly7jhhhu48cYb7S73fSmMiQxTMGLxxrEQ07OcZDZsAW8q5M20u6xJbXG+RX/U4K38i6FqK/R12V2SiIiITCBTpkxh5cqV/PnPf+b555/nsssuA+DHP/4xl19+OXfccQef/exnKS8vp6amBgDLsuws+T1pmqLIMO2qDWFasCCzDw4dgBmrtK/YCKV6YE427GktZqY7m7RDr8KiS+wuS0REJL4F2ibVc1566aXcfvvtmKbJRz/6UQAKCwvZsWMHe/bsIS0tjZdffpnHH38cgFAohNfrHZWyR5vCmMgwdPebHGiKMK/Aha/2NXD7IH+O3WXFhTnZFlUdBluzPsaHan4O0z8Aabl2lyUiIhJ/PMngdMc2X7aD0x2r4TRdeOGF3H777Zx//vmkpqYC8F//9V/ccsstXHnllXg8HubOncudd97Jhg0b2L17N8uXLx/t6keFwpjIMOw8FsLjMpiVEYE9+6BkCTj112k0uBywKN9ic20GdSlzKTrwV1j+73aXJSIiEn+S0uGcr0AoYM/ze5JjNZympKQkduzYMehYSUkJP//5z08696KLLhr475dffvn0axxj+vQocppaeqJUtUU5s8SNq/74PwSF8+wtKs4Up0FlssVW53lc0vAwjs4GSC+wuywREZH4k5Q+rEAko0MNPEROg2VZbK8J4fcZTMswoObNWNMOt8/u0uKKYcRa3XdFvRzwfwAO/c3ukkRERERGncKYyGmo7YjS2G1yRpEbo/kQhHqhaKHdZcWlDB9Mz4A3fOX0Nx2Frga7SxIREREZVQpjIkNkWRZv1IbISXFQkGrA0Z2QMQVSMu0uLW4tyLXAcPBG+rlw8O92lyMiIiIyqhTGRIboWEeUtoDF/AIXRncjdDdqVGyMeV0wL8fikHsu7S0tGh0TEREZgYm839ZkM1rfS4UxkSGwLIs3a8PkpDjITXXERsWS/JBZYndpcW9mFqR4YKv/w1gHNDomIiJyutxuNwCBgE1dE+PQie/lie/tcKmbosgQ1HZGaQuYrCnzYIT6oLkCpq+MdZqQMeUwYFGexWvHplDTsY3S7mbtOyYiInIanE4nGRkZNDU1AZCcnIyhzzDvKRqNEgwGgdj37wTLsggEAjQ1NZGRkTHoseFQGBN5HydGxbJTHOSlOqD6LcABubPsLi1hFKZCfrLJNvNcplS+jnPJx+0uSUREZFIpKIhtEXMikMl7M02TSCSCy+XC4Th5MmFGRsbA93QkFMZE3kddZ5TW3uOjYgB1b0HOdHB77S4tYRgGLCqAFw/72d/uZkFfp/ZEEREROQ2GYVBYWEheXh7hcNjucia8vr4+Dh8+TGlpKUlJSYMec7vdIx4RO0FhTOR97K4Pk5VsxEbF2mugrwtmnmN3WQkn3QvT06PsslZSVrkN38IP212SiIjIpON0OkctSMQz0zQB8Hq9+Hxjt5+sGniIvIe23ihN3Saz89yxudW1b0FyBvjz7S4tIS3Ic4Dh5M22JAj22l2OiIiIyIgojIm8h/2NEZLcBkXpDjjRuCN/rhp32MTrgrnZJge9Z9BRucvuckRERERGxPYwZpom9913H2vWrGHJkiVcc8011NTUvOv57e3tXH/99ZSXl7NixQpuu+02+vr6Tnnu9u3bmTdv3oiuIYmrP2xxpDVCWY4Th2FA/V7AgDw17rDTzBwXyUaQ7e3pEAnaXY6IiIjIsNkexh588EGeeOIJvvOd7/DrX/8a0zRZt24doVDolOevX7+e6upqHn30Ue69915effVVbr311pPO2759O1/96lcH5nsO5xqS2A41h7GA6dkusCyo2w3Z08A9dvOG5f05HXBGnkWteyp1lRV2lyMiIiIybLaGsVAoxCOPPML69es599xzmTt3Lvfccw8NDQ288MILJ52/c+dOtmzZwg9/+EMWLFjAqlWruP3223nmmWdobGwEIBKJ8IMf/ICrr76aKVOmDOsaIqZlcaAxQmmmE6/LgK4GCHRAwRy7SxNgSpaPHNrZ1ubHjEbtLkdERERkWGwNY/v376e3t5dVq1YNHPP7/cyfP5+tW7eedP62bdvIzc2lrKxs4NiKFSswDIPt27cDsd2wt27dyk9/+lOuvPLKYV1DpKY9SiBsMTPneMPR+v3gSYH0InsLE+B4q/s8iw5nFpWH331as4iIiMhEZmtr+4aGBgAKCwsHHc/Lyxt47O0aGxtPOtfj8ZCRkUF9fT0QC3O/+93vAAZ+P91rDJfWncWPPXUWWUngNYL09Zr4GvYTySkjGhz/NUr9wf5Bv0tMcoqP4mgNO9tyyO/qxeVSU5XhOPHvlv79krGg+0vGku4vGUsjub8sy4p14R4CW8PYiRfn8XgGHfd6vXR2dp7y/Heee+L84BA/JI/GNd5NVVXViL5eJoaQ5abFLKPAaODQoR78wWamRYPU9HsJHjlsW131dXW2PfdElRUNUOcoZOveGjLcanU/Evr3S8aS7i8ZS7q/ZCwN9/46Vd44FVvD2IkN1EKh0KDN1ILB4Ek7XZ84/1SNPYLBIMnJyUN+zpFe491MmzbtlHXL5LK3ycLZAkvKCnA6wH3gCGZSJkWzFtpST3+wn/q6OgqLivB51TxkEMui/9BBKl2zWTzTRbJbo2Onq6+vj6qqKv37JWNC95eMJd1fMpZGcn9VVAy9wZitYezEdMGmpiZKS0sHjjc1NTFnzsmNEgoKCnjxxRcHHQuFQnR0dJCXlzek5xyNa7ybpKSkEQc6sZdlWdR09lGc7iA1xRNrnd52FKYuG9Pd14fC5/XZXsNENC/PRXVrmAMNcNacdLvLmbT075eMJd1fMpZ0f8lYGs79NdQpimBzA4+5c+eSmprK5s2bB451dXWxd+9eysvLTzq/vLychoYGqqurB45t2bIFgDPPPHNIzzka15D41dJr0h20KM1yxg40VYAVgdyy9/5CsY07bzrzg7uo7HTS1qvOiiIiIjJ52BrGPB4PV155JXfffTcvvfQS+/fvZ8OGDRQUFHDBBRcQjUZpbm6mvz/WuGDx4sUsW7aMDRs2sGvXLjZt2sQtt9zC2rVryc/PH9JzjsY1JH4dbomQ5DbISz3+V6Nhf6yDojfV3sLk3TmcTM9xkRbtZFt1P5Zl2V2RiIiIyJDYvunz+vXrufzyy7n55pu54oorcDqd/OxnP8PtdlNfX8/q1at57rnngNiQ3wMPPEBxcTFXX3011113HWefffZpbdg8GteQ+BQ1LY60RijJdMaGl4M90F4DuTPtLk3eh6NwHmcEttLQA3WdGh0TERGRycHWNWMATqeTjRs3snHjxpMeKy4u5sCBA4OOZWdnc9999w3p2pdddhmXXXbZScdP5xqSOGo7o4SiMDXz+BTFxgowHJA9zda6ZAjcPgozveT0N7D9aCGF6U4cpzFfW0RERMQOto+MiUwUh1siZCQZpCcd/2vRfAgypoDba29hMiRG8UIW9bxGR79FZUvE7nJERERE3pfCmAgQiloc64hSemJULBSAjlrInm5vYTJ0SRlkpSdTEjnKzmMhwlGtHRMREZGJTWFMBKjtiGJaMCXjRBfFSjAMyJ5qb2FyeqYsZGH33wmFLfY1hO2uRkREROQ9KYyJADXtsSmKKZ7jfyWaDsW6KLq1r9ek4i8kJclHGVW8VR+mL6zRMREREZm4FMYk4ZmmRW1nlEL/8VGxcB901Khxx2RkGFC0kHltr2Jg8WZtyO6KRERERN6VwpgkvIZuk3AUitKPh7Hmw2BZCmOTVe4MPC4n84wqDjVF6Owz7a5IRERE5JQUxiTh1bRHSHYbZCQdb4XedAj8BeBJtrcwGR6HE4rmU9b8Cklu2F6j0TERERGZmBTGJKFZlkVNR5TCdEdso+dIENqOQs4Mu0uTkSiYjxOTha6jHOuI0titjaBFRERk4lEYk4TWFjAJhKx/TVFsOQKWqSmKk53bC/mzKGl8hYwkg+1HQ1iWmnmIiIjIxKIwJgmtpj2K2wm5qSc2ej4MKTngTbG3MBm5KQsxwn0s8hyjpdfkaLtGx0RERGRiURiThFbTEaHA78RhGGCa0FoFWaV2lyWjISkDsqaS1/AaBWkOdtSEiJoaHRMREZGJQ2FMElZP0KQ9YFHkP/7XoKMOoiGFsXgy5QwItHFGUiM9QYtDzRG7KxIREREZoDAmCauuM4oBFJzYX6zlcKyDYmqOrXXJKPIXQGo+6fWbmZrl5M3aEKGoRsdERERkYlAYk4RV3xklK9mB23m8pX3LYcgsjW0cLPHBMKB4IXTUsiC1g0gU9tSH7a5KREREBFAYkwRlWhb1XVHy0o7/Fehth74OTVGMR9nTwOcnqXYbM3Nd7G0IEwhpI2gRERGxn8KYJKS2XpNQFPJPhLGWw2C4IKPI3sJk9BkOmLIQmg4x1x/AacAbtRodExEREfspjElCqu+K4nJAVsqJMHYkFsScbnsLk7GRNxtcXtzHdjCvwE1lc4T2gEbHRERExF4KY5KQ6jqj5KY6Yi3tI/3QWQtZJXaXJWPF6YaiBVD3FmVpIZI9BjtqgnZXJSIiIglOYUwSTjhq0dxjkpd2vItiazVYltaLxbvCBWA4cdRsZ2Ghi9pOk4YubQQtIiIi9lEYk4TT1B3FtN62Xqy1CpKzwJtqa10yxtxeKJwHx3ZTnBImK9lg+9EQlqVW9yIiImIPhTFJOHWdUZLcBmleIzYi1noUMovtLkvGw5SFYJkYx97kjCI3rQGTqjaNjomIiIg9FMYk4ZxoaW8YBvS0QqhXYSxReJKhYA7U7CTXF6XQ72BHTYioqdExERERGX8KY5JQ+kImHX3Wv6YotlXFWtqn5dtal4yj4jMgGobaXZxR5CYQsjjQFLG7KhEREUlACmOSUOq7Yu3M81JPNO84ChmF4HTZWJWMK29arNV91Tb8rgjTs53sqg0RjGh0TERERMaXwpgklMbuKH6fgc9tQDQCHbWQoSmKCad0SWx0rGYn8wvcmBbsrtNG0CIiIjK+FMYkoTR2R8k5sdFz+zGwolovloi8aVAwF6q34yPI7DwX+xvDdAe1EbSIiIiMH4UxSRh9YYuufovc1BMt7avBkwpJ6fYWJvYoWQKmCdXbmJ3rwuMy2FkTsrsqERERSSAKY5IwmrpjLcxzUo6vF2urio2KGYZ9RYl9PMlQtBBq3sQV6WNhgYuqtijNPWp1LyIiIuNDYUwSRmN3lBSPQZLHgP5uCLRDxhS7yxI7FS+KhfEjW5ia5STdZ7BNG0GLiIjIOFEYk4TR2BUdPEURQ2Es0bm9ULwY6t7E6G1n0RQ3zT0mR9s1OiYiIiJjT2FMEkIoYtHeZ/2reUfbUUjNjX0Yl8Q2ZWGsocfBV8hPdVCQ5mC7NoIWERGRcaAwJgmh6fg6oJxUB1gWtNdARpHNVcmE4HDBjA9A+1FormTRFDe9QYu9DWp1LyIiImNLYUwSQmO3SZLbIMVjQE8rhPs0RVH+JbMUMkvg0N/wu03Kcp3srgsTCKnVvYiIiIwdhTFJCI1dsf3FDMOIjYoZTkjLs7ssmSgMA6Z/AII9cHQ78/PdOB2wo0ajYyIiIjJ2FMYk7oWjFq0BMzZFEWLrxfx54HTZW5hMLMkZUHQGHNmCp7+NBQVuDrdG1OpeRERExozCmMS9lh4TyyLWvMO0oKMW0rVeTE6hdBkkpcGePzM90yDdZ7ClOoSpVvciIiIyBhTGJO41dkfxOMHvM6CnEaIhNe+QU3O6YNZ50NuCUbWZpcVuWntNDjVF7K5MRERE4pDCmMS9pp4o2SfWi7UdBYc71tZe5FTScqBkKVRtJSfaxPQsJzuOhdTMQ0REREadwpjENdOyaOkxyR7YX+wYpBeAw2lvYTKxFS+JBfY9z3NGXhSHAVurQ3ZXJSIiInFGYUziWmefRcQkFsaiUeioU0t7eX8OB8w9D8IhPHv+wOJCF9XtUY51aLqiiIiIjB6FMYlrzT1RDCAzyQFd9WBFIL3Q7rJkMvD5Yd6/QWcDJfUvk5/qYHNViHBUzTxERERkdCiMSVxr7jFJTzJwOQ1oqwGXF1Ky7S5LJov0Aph1NkbjPpYZewlGLLZouqKIiIiMEoUxiWsnmncAsc2e0wtjG/yKDFXeTChZRkrVqyz11lDZEuFIq6YrioiIyMgpjEnc6g9bdPdbZCc7IBqBrkZNUZThKV0GpWdSeuw5ShwtbDoSpCeo7ooiIiIyMgpjErdaeqIAZKU4oLMBrCj4FcZkGAwDSpdhzFzDstZncZt9/L2iT5tBi4iIyIgojEncau4x8bogxWNAxzFweiEly+6yZDIrmIt77nms6HqZlh6TrfsasRTIREREZJgUxiRuDdrsuf34/mJaLyYjlVVKzpI1LGUvB3rS2Ltte2wKrIiIiMhpUhiTuGRaFq295vH1YtHYNEWtF5PR4k1lxrx5zE1qY7s1j6otr8Brj0LtbggH7a5OREREJgmX3QWIjIWOgEnEPL5erLshtr+Yv8DusiSeGAYLpmbQW2vyDy7CE/0bRW88DRjgz4esUkjNAV9a7JfbBw4nGM7Y11smmNG3/R4FywLDEfvldIEnBVweO1+liIiIjCGFMYlLzT0mBpCV7IDqWnB6IFX7i8noMgxYXgShYwYvB87hgwuXMyNyGDpqofEAVG0FRrimzOkBXyqk5UNGEaQXQVZJLNiJiIjIpKYwJnGpuSdKRpKB03F8vZg/PzbaIDLKnA44q8Rie73BPxpT6clfyBnzF8aWJ5omhAIQ7IFo6F8jYVixETLDAQ7Hv/7bMGKPWxaYkdjXhgLQ3wXdzXCoAqJhcPmgcC4ULYDsabq3RUREJimFMYlLzT0meWmO2IfhznooXWp3SRLHHAYsL7RIcVu80eigvd9iRZFFktsRG9XypY7OE1km9LRAU0Vs5K3mDUjNhdlnQ8E8NagRERGZZBTGJO4EIxbdQYu5+Q7obgQzrPViMuYMA+bnQprXZGeDwTMHDJYVWszKGsWMZDggLS/2a8aq2A8ajmyGHU/Gjs3/N8iZMUpPJiIiImNNc1sk7rT2Ht/sOdkRm6LocMcaKYiMgxI/XDjDojANNtU6eK7C4EgHmKO9HZlhxNaQLb0Uzvx3cLph8//AW89DJDTKTyYiIiJjQWFM4k5Lj4nbCaleI9ZIwZ+nZgcyrrwuKC+yOLvUxGHA3486+N1+g91N0D0Wne8zimDZ5TD73NjUxb//OHbvi4iIyISmaYoSd1p6TTKTHRgAHXUwZZHdJUmCykuBvBSLjn6LijaDXY0GOxsMMn0WJX6YkmaRnRxbczZihgElSyB7Kuz5M7z+C1j8iViTDxEREZmQFMYkrliWRUtPlGnZrlijg2gI0rVeTOyV4YPlRRZLCqChx6K222BfC+xqcuB2WBSmQmGaRVEqpHlH+GTJmXDm5bDvRdj5Owi0Q9lZau4hIiIyASmMSVzpDVn0R46vF+uoizU8SM21uywRAFwOKPZDsd/CtKC9z6KxFxp7DbbUGlgYpHositOgNN0iL2WYo2YOF8y/EJIy4MBfoa8TFl6kQCYiIjLBKIxJXGntNYHjYexobSyIOXWby8TjMCA7OfZrfq5FOArNAYuGHoPqTtjf6sDrtJiaDjOzLLKTTjNLGQbM+AAk+WHvC7FjCmQiIiITij6lSlxp6TFJdhv4XMQaGOSW2V2SyJC4nVCUBkVpFpYF7f2x6YxHO+Fgm4NMn8WsLIuZWbERtiErnB/7fe8LsZHiBR9RIBMREZkgFMYkrrT0RslMNqC/C0K92l9MJiXDgKwkyEqyWJgLDb0WRzoMttYZvNkYG0mbkw2eoTYJLZwf2wB9/4uxzqLz/k2BTEREZAJQGJO4YVoWrb0m8wpc/2rrrTAmk5xhEGvwkWrRE4KDrQZvNhq81QQL8yzm5QxxpGzKQrCisTVkPn9sCqOIiIjYSmFM4kZnn0XEPL5erKYu1lXOPdLWdCITR6oHlhXGAtiBVoM3GgwOtMLSAosZGUMY7CpeDP3dsO8vkJwBBXPHoWoRERF5N9r0WeJGS28UA8hMchzf7FmjYhKfktywpMDigjKLTB/8s8bB8xUGrX1D+OKysyBvFux8ShtDi4iI2ExhTOJGa49Jms/AFe2P7a2kMCZxLs0Dq4otzplqEjLhuUMGm2sNQtH3+CLDiLW9T8uFrf+L0d89bvWKiIjIYLaHMdM0ue+++1izZg1Llizhmmuuoaam5l3Pb29v5/rrr6e8vJwVK1Zw22230dc3+MfBzz//PBdddBGLFi1i7dq1vP7664Meb21t5frrr+cDH/gAK1euZMOGDTQ2No7J65Px09wbPb6/2PGf9qfn21uQyDjJTYbzp1uckWdR2Q7PHIh1YXxXThcsugQMB549z2JY75XeREREZKzYHsYefPBBnnjiCb7zne/w61//GtM0WbduHaFQ6JTnr1+/nurqah599FHuvfdeXn31VW699daBxzdt2sTGjRv59Kc/zVNPPcWqVau49tprqaysHDjnuuuuo66ujp///Of8/Oc/p66ujv/8z/8c65cqYyhiWnQELDJPbPbsTQVvmt1liYwbhwGzs+GCGRYZPnil2sErVQaB8Lt8gScZFn0MR3cjJV37xrVWERERibE1jIVCIR555BHWr1/Pueeey9y5c7nnnntoaGjghRdeOOn8nTt3smXLFn74wx+yYMECVq1axe23384zzzwzMLL1k5/8hPPPP5+rrrqKsrIybrjhBhYsWMAvfvELALq6utiyZQvXXHMN8+bNY/78+Vx77bXs3r2bjo6O8Xz5MoraAyYW/GtkLE2jYpKYkt3wwWKLlVNMGntjo2SH2sCyTnGyv4DwjNXk9h3FWb973GsVERFJdLaGsf3799Pb28uqVasGjvn9fubPn8/WrVtPOn/btm3k5uZSVvavjXxXrFiBYRhs374d0zTZsWPHoOsBrFy5cuB6Pp+PlJQUnn76aXp6eujp6eGZZ55h+vTp+P3+MXqlMtZae00cBvjdUehp1hRFSWiGASV+uLDMoigNXj/m4MUjBj2nmHAQzZ9Hq68Qz4GXoLNh/IsVERFJYLa2tm9oiL3xFxYWDjqel5c38NjbNTY2nnSux+MhIyOD+vp6urq6CAQCFBQMbtzw9ut5PB7uuOMObrnlFpYvX45hGOTl5fH444/jcIwsm75z7ZqMn8ZOizQvRFqP4rRMgt4srP5+u8saFf3B/kG/i5yOM7Ig3+dgV4uH3x8wWJwbYro/MtAGv6+/n7rU2aQbQRzbf0v/8ivB5bG3aIkbJ94X9f4oY0H3l4ylkdxflmVhvO9+MzG2hrETL87jGfzG7/V66ew8efV5X1/fSeeeOD8YDNJ//MP3qa4XDAaB2Ddn3759LF26lHXr1hGNRrnnnnv46le/yq9+9StSU1OH/XqqqqqG/bUyMg3R6fjop/3IHnINJ4cb2sBot7usUVVfV2d3CTKJTcNBAwVsb8riYFOQEmrwcHxBmeGkwjebWR1b6dv6JFXpi4ewaZnI0On9UcaS7i8ZS8O9v06VWU7F1jDm8/mA2NqxE/8NEAwGSUpKOuX5p2rsEQwGSU5Oxuv1DlzvnY+fuN7zzz/P448/zl//+teB4PXwww9z3nnn8dvf/pbPf/7zw34906ZNO2XdMrYiUYs9+2BOgZfc2gi48pg+o+z9v3CS6A/2U19XR2FRET6v7/2/QORdzAQaA/3saknlkDWf5XlBst29HKupIW/6HKLdSWQf+iup084gWrjQ7nIlDvT19VFVVaX3RxkTur9kLI3k/qqoqBjyubaGsRNTDpuamigtLR043tTUxJw5c046v6CggBdffHHQsVAoREdHB3l5eWRkZJCcnExTU9Ogc5qamsjPj60h2rZtG9OnTx80Apaens706dOprq4e0etJSkoiOTl5RNeQ09fYHQX6yfN7cB5ohMIFOH3xF1p8Xt+gH1qIDMdUHxSmw456eL3Bx3S/k1QcJPl8eDIXQ08j3kMvQ/4MSM2xu1yJE3p/lLGk+0vG0nDur6FOUQSbG3jMnTuX1NRUNm/ePHCsq6uLvXv3Ul5eftL55eXlNDQ0DApNW7ZsAeDMM8/EMAyWLVs2cOyEzZs3s3z5ciAW6KqrqwemLQIEAgGOHTvGtGnTRvPlyThp7TVxGuCPdkIkCOna7FnkvXicsHKKxZmFJke7XRxkNp3B428cc86LbQ2x8ykwtf+YiIjIWLI1jHk8Hq688kruvvtuXnrpJfbv38+GDRsoKCjgggsuIBqN0tzcPLAWbPHixSxbtowNGzawa9cuNm3axC233MLatWsHRr6+8IUv8Mc//pGf//znVFZWcuedd7Jv3z6uvvpqANauXQvE9hrbv38/+/fv5xvf+AZer5fLLrvMlu+DjExrb5SMJAeOrjrAgNRcu0sSmfAMA6ZnwJqi2L+vL9UkUdUBON2w4KPQ3QQHX7GxQhERkfhn+6bP69ev5/LLL+fmm2/miiuuwOl08rOf/Qy32019fT2rV6/mueeeA2JDfg888ADFxcVcffXVXHfddZx99tmDNn1evXo13//+9/nVr37FpZdeyqZNm3j44YcH2uHn5eXxxBNPYFkWV199NV/4whdwu9088cQTpKVpk+DJqKXXJDPZgM46SMlWJziR05DqsZhBJfnJUf521MG2OgMzLQ/KPgiVr0FLld0lioiIxC1b14wBOJ1ONm7cyMaNG096rLi4mAMHDgw6lp2dzX333fee11y7du3ACNiplJWV8fDDDw+rXplYQhGL7n6LuXkOOFoHGUV2lyQy6TiwWJobIifFwe4mg66gwZrSM3G3VsEbT8PZXwKPFseLiIiMNttHxkRGoi1gApDpDkNfB6Rps2eR4TAMmJ0NZ5VYNPTAC4cd9M3+CERD8NZzYFl2lygiIhJ3FMZkUmvpjeJyQFrg+B5c6QpjIiNRkArnTLXoCcHzx9LoKrsQ6vdC3Vt2lyYiIhJ3FMZkUmvtNclIcmB01YEnBTzD37RbRGIyk+BD0ywM4E9dZXTknQlvPQ99nXaXJiIiElcUxmRSa+01yUx2xJp3pOXF5lqJyIileGIjZB4n/NlxNu3uPHjzGU1XFBERGUUKYzJpBSMWPUGLTJ8FXU3g1/5iIqPJ54JzSi2SXPCC/zJaOwNwZPP7f6GIiIgMicKYTFqtvcebd1jtYEXBr/ViIqPN64Kzp1okexz8JfPTtFe8GduDTEREREZMYUwmrdbjzTtSe2rBcEFKlt0licQljxPWlFoke538Jf2TdL75EphRu8sSERGZ9BTGZNJqe3vzjrQccDjtLkkkbsUCGXjcbv7iPI/u/ZvsLklERGTSUxiTSas1YJKZbEBnvfYXExkHXhesmebA4XLzQud0Ak3H7C5JRERkUlMYk0lpoHmHKwihXvDn2V2SSEJIcsPZ012YDjd/OQz9/UG7SxIREZm0FMZkUhpo3hE53khAI2Mi4ybZ6+Ds4jD9+HhpdxuhqNrdi4iIDIfCmExKA807umvA5wdPkt0liSSUNH8aq9Pr6Ip6+etbbURMBTIREZHTpTAmk9K/mndovZiIXTKnTOMsYyct/S7+diCAqUAmIiJyWhTGZFJqDZixzZ57mrReTMQuhkHOzIWsCvyVum6Tfx4OYlkKZCIiIkOlMCaTzkDzDrrBsjQyJmInTzIF08so736JI20RtlSHFMhERESGSGFMJp0TzTsyQnXg8EBKps0ViSS47GmUZHo4s/efHGiK8MaxsN0ViYiITAoKYzLptB1v3pHWXQX+XDB0G4vYbsYHmG7UsCjyFrvrw7xVH7K7IhERkQlPn2Jl0mkNHG/e0VkPqZqiKDIhON0w+zxmd73OPHc9O2rCHGjSCJmIiMh7URiTSae11yTDHYJIf2xkTEQmhrQ8KFnG/IbfMzOtn81VIY60RuyuSkREZMJSGJNJZaB5h9kWO6DmHSITS8liDH8Bi+t/x9QM+MfhIMc6FMhERERORWFMJpW24807MvvrICkD3F57CxKRwQwHzDkXIxLkzM6/UpDm4NWKII3dUbsrExERmXAUxmRSaQ0cb97RVRmbEiUiE483DWauwdFykA94K8lMcvDywX7aAgpkIiIib6cwJpNKW69Jug+M3lbwa4qiyISVOwPy5uA8+FfOyu8lxWPw0oEgvUHT7spEREQmDIUxmVRae00ynX2ANnsWmfDKVoE3Gfe+P7F6qgvDgJcO9hOKalNoERERUBiTSSQUsegOWmRGWsDpgeQMu0sSkffidMOcD0FvK76jr3HWdA+9IYtXD/VjmgpkIiIiCmMyabQFYtObMvqqIS0XDMPmikTkfaXmwLRyqNlBem81q6Z5aOgy2VytTaFFREQUxmTSaO01cRrg7zysKYoik0nRQsgsgb0vkOfpZ1mJm0PNEQ5pU2gREUlwCmMyabT2RsnwmhiRPvCrk6LIpGEYMOscwIA9f2Z6lpMZ2U42V4do7VWHRRERSVwKYzJptAVMMozu2B9SFcZEJhVPEsw5F9qPQvU2Fk9xk55k8MqhIP1hrR8TEZHEpDAmk0I4atHVb5EZboo17tBmzyKTT8YUmLIYDr+Gs7uBVdM8hKMW/zjcj2UpkImISOJRGJNJoa33ePOO3iqtFxOZzKaeCSl58NbzJDvCrJjqoa7T5EBTxO7KRERExp3CmEwKrYHjzTt6qiBNUxRFJi2HE+aeC+F+2P8yBWkOynKcbK8J0dWvDaFFRCSxKIzJpNDWGyXdHcaBqZExkcnO54eys6DxADTs44xCNz6XwT8PBzE1XVFERBKIwphMCq29Jhl0abNnkXiRNxNyZ8H+V3AFOykvddPcY7K3Qe3uRUQkcSiMyYQXjlp09ltkhuq12bNIPCn7IHh88Nbz5CQbzM518caxMJ19mq4oIiKJQWFMJrz2QOyDWWa3NnsWiSsuD8w5D3qa4cgmFhS6SHIbbKkOqruiiIgkBIUxmfBae00choU/1KjNnkXiTVoelCyFqq04u+pZPMVNfZfJ0XZtBi0iIvFPYUwmvNZek3RnKNa8Q5s9i8Sf4iWxULb3TxSlRCnwO9h6NEQkqtExERGJbwpjMuG1BqJkWu3a7FkkXjkcMPscCPbBoVdZMsVNf9hid72aeYiISHxTGJMJLRy16OqzyOiv1XoxkXiWlA4zVkLdHlK7jjAnz8We+rD2HhMRkbimMCYTWnvAxAIye6u02bNIvMufC5klsP9l5mRH8LoMdh4L2V2ViIjImBlWGGtsbBztOkROqbXXxIFFerRNI2Mi8c4wYOZqiIZxVfyd+QUuqtuitPaqmYeIiMSnYYWx8847j3Xr1vHcc88RCumnljJ22gIm6c4+HE6XNnsWSQTeVJi+Eur3MtU8RprPYHuN3mdERCQ+DSuM/eAHP8A0Tb75zW+yevVqbrvtNnbv3j3atYnQ2hslI9qqzZ5FEkn+HMiYguPAiyzMM2joMqnr1OiYiIjEn2GFsU984hM88sgj/PWvf+U//uM/2LRpE5/61Ke4+OKLeeSRR2hpaRntOiUBRaIWnX0WmYEaTVEUSSSGATPXQDhIUeNrZCUb7KgJaSNoERGJOyNq4JGfn8+Xv/xlnn/+eZ588kkyMzO56667OPfcc/n617/Om2++OVp1SgIaaN4RqtdmzyKJxpcGU8/EqHuTM9J7aAuYVLdpdExEROLLiLspbtu2jf/6r//ii1/8Itu3b+ess87ixhtvpK+vjyuuuIJHH310FMqURNQaiDXv8EfbtNmzSCIqXADJWeRW/4X8NAdv1ml0TERE4otrOF9UXV3NM888w+9//3tqa2uZMmUKn/vc57jssssoLCwE4Morr+Sb3/wmDz30EJ///OdHs2ZJEK29JulGL85kvzZ7FklEDgeUnQW7n2VebjWv9JVwtD3K1KxhvXWJiIhMOMN6R7vwwgvxer2cf/75fOc732HVqlWnPG/GjBlUVVWNpD5JYK29UTLDTVovJpLI0gsgfy451S+SN+Xz7KoNUZrpxFBDHxERiQPDCmP/9V//xcc//nHS0tLe87yvfvWrfPWrXx1WYZLYTjTvmNF/DHI1RVEkoU0rh9YjzAvu4tXIYmo6opRmanRMREQmv2GtGfvzn/9MU1PTKR/bv38/l1xyyYiKEhlo3hFpBn+B3eWIiJ3cPph6JrmNm8jxRdhVG9baMRERiQtD/tHitm3bBt78tmzZwtatW2lrazvpvL/+9a/U1NSMXoWSkGLNO0z89EBSut3liIjd8udB3V7mB7bxN8cHqO2MUpyh0TEREZnchvxO9pvf/IZnnnkGwzAwDIPbbrvtpHNOhLWLL7549CqUhNTaa+KnG6c/R5s9i0ismcf0FeTufYHswmXsrnUwJV1rx0REZHIbchi7+eab+eQnP4llWVx99dXccsstzJw5c9A5DocDv9/PrFmzRr1QSSytvVEygw2QpeYdInJcZilGehFzujfzmncNTT0m+WlOu6sSEREZtiGHsbS0NFasWAHAL3/5SxYsWEBKSsqYFSaJKxy16OwzmRFuAP8Mu8sRkYnCMGD6SgrfeAp/8greqnOQPyfJ7qpERESGbchh7Omnn+acc84hMzOTuro66urq3vP8tWvXjrQ2SVBtARMLg6xIM6SusLscEZlIUnMw8mYxu2cb26Jn0R4wyUweVi8qERER2w05jN1444383//9H5mZmdx4443vea5hGApjMmytvSZOovi9gEubPYvIO5Quo3T7k+xJXsGeehery/TvhIiITE5DDmMvvfQSubm5A/8tMlZae6Okmx04/NpfTEROwefHkTeTWd1vsNsqZ2mxmxSvRsdERGTyGXIYmzJlyin/+4RIJEJPTw8ZGRmjUpgkrpaeKHnBeshRGBORd1G6hOnbnmJf8jL2NoQpn6rRMRERmXyG9aPESCTCAw88wLPPPgvA5s2bOeuss1i1ahVXX301nZ2do1qkJI5QxKI7CFmRJtDImIi8G28a7vwZlPXt4VBzhFBEm0CLiMjkM6wwdt999/HQQw/R1dUFwHe/+10yMjK46aabOHr0KD/60Y9GtUhJHK0BE4BMOsGnzZ5F5D2ULGFm325M0+RQc8TuakRERE7bsMLYH//4R77xjW/w2c9+lsrKSg4dOsRXvvIVrrrqKjZs2MDLL7882nVKgmjtjeKyIqSlJmmzZxF5b95UfPlTKQlVsq8hhGlqdExERCaXYYWxpqYmFi9eDMArr7yCw+Hg7LPPBqCgoIDu7u7Rq1ASSmtPlIxIM0aapiiKyBAUL2JW3y4CYahuj9pdjYiIyGkZVhjLy8vj2LFjALz88svMmzePrKwsAHbu3ElBQcHoVSgJpaUnQmakCfz5dpciIpOBN5WMzEzyIvXsrQ9hWRodExGRyWNYYeziiy/mBz/4AV/84hfZvn07n/zkJwH43ve+x/33388ll1wyqkVKYugPW/SGHWRFWyA1x+5yRGSyKF7MrMBOWgMWTT2m3dWIiIgM2ZBb27/dddddR3JyMlu3buX666/nM5/5DAC7d+/mP/7jP/jKV74yqkVKYmjtjU0xynRHwOm2uRoRmTRSMilIc5BmdrG33kF+WpLdFYmIiAzJsEbGDMPgS1/6Ej/96U+55pprBo7/+te/5hvf+AZOp3PI1zJNk/vuu481a9awZMkSrrnmGmpqat71/Pb2dq6//nrKy8tZsWIFt912G319fYPOef7557noootYtGgRa9eu5fXXXx/0eDgc5kc/+tHAc1555ZXs27dvyDXL2GjtNfFYQVLSUuwuRUQmGWPKImYF3qCmI0p3v0bHRERkchjWyBhAd3c3mzZtIhAInHKO/tq1a4d0nQcffJAnnniCO+64g4KCAu666y7WrVvHs88+i8fjOen89evX09fXx6OPPkpXVxff/va3CQQC/PCHPwRg06ZNbNy4kW9961ucddZZ/Pa3v+Xaa6/l6aefpqysDIBbb72VV155hTvuuIOioiLuvfderrnmGp5//nnS0tKG+y2REWrpDpERbsLI1ZpDETlN6QWUerbzlhXmQFOY5aXaBFpERCa+YYWxv//97wOh6FQMwxhSGAuFQjzyyCN885vf5NxzzwXgnnvuYc2aNbzwwgtcfPHFg87fuXMnW7Zs4bnnnhsIVrfffjvr1q3jG9/4Bvn5+fzkJz/h/PPP56qrrgLghhtuYOfOnfziF7/g9ttvp6amhieffJKHH36YNWvWALF90tauXctbb73FqlWrhvMtkRGyLIuWHpOpkRbwl9ldjohMQq7iBUyv3sOhpiUsnuLB7dT2GCIiMrENK4z96Ec/YsaMGdx0003k5+fjcAxrtiP79++nt7d3UADy+/3Mnz+frVu3nhTGtm3bRm5u7kAQA1ixYgWGYbB9+3Y+8pGPsGPHDm688cZBX7dy5UpeeOEFAP75z3+SlpY20Ir/xHOOxt5o7xZO5f0FQhb9ppNMOum3XNDfb3dJE0Z/sH/Q7yKjKa7ur+Q8ppu7OGguZn9dgLJshTG7nXhf1PujjAXdXzKWRnJ/WZaFMcT9cocVxiorK3nwwQdZvnz5cL58QENDAwCFhYWDjufl5Q089naNjY0nnevxeMjIyKC+vp6uri4CgcBJrfXffr0jR45QUlLCCy+8wI9//GMaGxuZP38+N95446CQNxxVVVUj+vpE1mmlAVPwmr0cOXLY7nImpPq6OrtLkDgWL/dXliOZomAVe+uLCDZWae/4CULvjzKWdH/JWBru/XWq5VanMqwwVlRURE9Pz3C+dJATSfOdxXq9Xjo7O095/qlemNfrJRgM0n98NOVU1wsGgwD09PRQXV3Ngw8+yLe+9S38fj8PPfQQn/nMZ3juuefIzs4e9uuZNm0aSUnq4jUcu+qjJDX1kJFbQFrBDLvLmVD6g/3U19VRWFSEz+uzuxyJM3F3f0WmMHPPa9R6Z5BVMpeCNKUxO/X19VFVVaX3RxkTur9kLI3k/qqoqBjyucMKY1/60pf47//+b8444wyKi4uHcwkAfL7YG38oFBr4b4BgMHjKF+3z+QiFQicdDwaDJCcn4/V6B673zsdPXM/lctHT08M999wzMBJ2zz33cM455/DUU0+xbt26Yb+epKQkkpOTh/31iayjt4OsSCPu7Cm4fXHwgXAM+Ly+QX9PREZT/NxfPrzZfjL6WzncnsOMfP2bPBHo/VHGku4vGUvDub+GOkURhhnGnn32WRobG/m3f/s3srKyTnoDNwyDF1988X2vc2LKYVNTE6WlpQPHm5qamDNnzknnFxQUnHTdUChER0cHeXl5ZGRkkJycTFNT06BzmpqayM/PH7iGy+UaNCXR5/NRUlLCsWPH3rdmGX2mZdHa72R+tAVSSt//C0RE3oNRtICZe95km/M8uvpM/EnDW9csIiIy1oYVxgoKCk5alzUcc+fOJTU1lc2bNw+Esa6uLvbu3cuVV1550vnl5eXcfffdVFdXM3XqVAC2bNkCwJlnnolhGCxbtowtW7bwqU99auDrNm/ePLC+rby8nEgkwu7duznjjDMA6O/vp6amho997GMjfk1y+jr6TKI4yPKEwDH0PepERE4pOYOS5CC7rX4ONLkon6o29yIiMjENK4z94Ac/GJUn93g8XHnlldx9991kZWUxZcoU7rrrLgoKCrjggguIRqO0tbWRlpaGz+dj8eLFLFu2jA0bNnDrrbcSCAS45ZZbWLt27cDI1xe+8AWuvfZa5s+fz9lnn82TTz7Jvn37+N73vgfA8uXL+eAHP8gNN9zA7bffTkZGBvfddx9Op5NPfOITo/K65PS0dJsYlklmSjxMkRKRicBZOJfpR/ZS0byUJcVqcy8iIhPTiOZuVFZW8stf/pK7776bxsZGtm3bdtqNPdavX8/ll1/OzTffzBVXXIHT6eRnP/sZbreb+vp6Vq9ezXPPPQfEpj8+8MADFBcXc/XVV3Pddddx9tlnc+uttw5cb/Xq1Xz/+9/nV7/6FZdeeimbNm3i4YcfHjQt8f7772fFihV87Wtf4/LLL6enp4df/vKXZGVljeTbIcPU0tmHP9qGKyPX7lJEJF5kljCDo0RMONwSsbsaERGRUzIsy7JO94tM0+SWW27hySefHOij/9vf/pYf/ehHHD16lMcff3xUpjFOFrt37yYUCjFv3jwtIB2GZ3a0kdVTyZkLp4Nb04neqb+/nyNHDjN9+ow4abAgE0lc3181b/B6WyY9adP5+KLk01pQLaMjEAiwb98+vT/KmND9JWNpJPfX7t27AQaWRL2XYY2MPfjggzz77LN897vf5Z///Ccn8tzGjRsxTZN77rlnOJeVBBSOWnRGPGQ5ehXERGR05c+hrH8PnUFo7DbtrkZEROQkwwpjTz75JOvXr+eTn/wkGRkZA8fnzZvH+vXr+ec//zla9Umca+01AYMsbQ8iIqPNk0Su34vf7GR/w8nbooiIiNhtWGGspaWFefPmnfKx/Px8urq6RlSUJI7mziAuM4Tfn2Z3KSISh4yi+ZQFdlHTEaUnqNExERGZWIYVxqZOncqrr756yse2bNky0HZe5P20dATIjDZjpOfbXYqIxCN/AVOdTbiIcqhJjTxERGRiGVZr+6uvvppbbrmFcDjMeeedh2EYVFdXs3nzZh555BFuvPHG0a5T4pBlWbT0Oyk128CXOA1fRGQcGQaugllMbdzPoeYFLJrixulQIw8REZkYhhXGPvWpT9HW1sZDDz3EE088AcA3vvEN3G4369at44orrhjVIiU+9YYs+iwPWd4IqMuZiIyV3FnMqP4jFb6FHG2PMj17WG99IiIio27Y70jXXHMNl1xyCVu2bMHlcpGWlsbixYsHNfQQeS/N3bEpQ9mpHpsrEZG45vbiz8okN9zI/sZChTEREZkwTvsd6Q9/+AO//vWvefPNN4lEYh+mfT4fy5Yt44orruD8888f9SIlPjW3dpMa7ceXnm13KSIS7wrmUnbgTTY582kLRMlKdtpdkYiIyNDDWDQa5frrr+dPf/oT+fn5fOxjHyMnJwfLsmhoaGDLli18/etf5xOf+AR33HHHWNYscaKpxyQ70gyp0+wuRUTinb+AIsff8RHkQKOLVdMVxkRExH5DDmNPPPEEL7zwAt/+9re58sorMd6xxicajfLrX/+a73//+yxfvpzLL7981IuV+BGOWrRHfUxz9YJDH4pEZIwZBo782cxoeosDrWdyZokHj0trVUVExF5Dbm3/9NNP8+lPf5rPfe5zJwUxAKfTyWc/+1n+/d//naeeempUi5T409oTxcJBtqYKich4yZ/N9OA+TNOiskVt7kVExH5DDmNHjhzh7LPPft/z1qxZw8GDB0dUlMS/5rYe3GYQf4bf7lJEJFF4kknKyGFKtJYDTWEsy7K7IhERSXBDDmN9fX2kp6e/73mZmZn09vaOqCiJf02dQbIiTRj+PLtLEZFEUjCHGT076eq3aOw27a5GREQS3JDDmGVZOJ3vP6XM4XDop43ynizLojnkJdvoApfX7nJEJJFklJDr6CDNCHCgKWx3NSIikuCGHMZERktnv0UIN9lJ+qm0iIwzhwMjdzYzendztC1KIKR/h0RExD6ntc/YrbfeSmpq6nue09PTM6KCJP41t/diWJDlT7a7FBFJRAWzmFr3DG+llFPRHGHRFG08LyIi9hjyyFh5eTkpKSlYlvWev1JSUli+fPlY1iyTXHN7AH+0DXem1ouJiA2SMvCkZVFq1nKwKYKpqfUiImKTIY+MPfbYY2NZhySQpoCDHKsdPGV2lyIiiSpvNjOObOFIRgnHOqKUZp7WRBEREZFRoTVjMq76wxZdVjLZnpDdpYhIIsuZTqbVSZajlwONauQhIiL2UBiTcdXc2Q9ATprWaIiIjVweyJ3BjL7d1HeZdPWrkYeIiIw/hTEZV40t3SRFu0nOyLa7FBFJdHmzKel5C4/D5GBTxO5qREQkASmMybhq7LHIjTZhJL//BuIiImPKn48zKZWpVi0VzWEiphp5iIjI+FIYk3ETjlq0RZPJ8fSDYdhdjogkOsOA/DnMaN9EKArVbRodExGR8aUwJuOmqTOMZTjITXHaXYqISEzeLNLMdvLcAQ40KoyJiMj4UhiTcdPU2oXXDJCakWl3KSIiMZ5kyCyhLLCbll6Ttt6o3RWJiEgCURiTcdPQFSUn0oiRquYdIjKB5M2msOtNklwmB9TIQ0RExpHCmIyLiGnRGk0m19ULDt12IjKBZJXicHmZbtRzpDVCKKJGHiIiMj70qVjGRUt3BBMHOSm65URkgnE4IW8m09teI2rC4VaNjomIyPjQJ2MZF40tXXjMftIz1NJeRCag/Dkkhdoo8vVxoDGMZWl0TERExp7CmIyLxq4I2ZEGDH+u3aWIiJwsJQtSc5nR/xad/RaN3abdFYmISAJQGJMxFzUtmsNJ5Dp7wOGyuxwRkVPLn01e607SPBYHm8J2VyMiIglAYUzGXGtPlChOcpJ1u4nIBJZbhmE4meGo52h7lL6QRsdERGRs6dOxjLnG1m5cZoiMjFS7SxEReXcuL+RMZ2rb6xjAoRY18hARkbGlMCZjrr4jTG6kHoc/z+5SRETeW8EcPH0tlCT3c7ApgqlGHiIiMoYUxmRMRU2LprCPXEcnuDx2lyMi8t78BeDzM6N/L4GQRW1H1O6KREQkjimMyZhq6o5i4iQvWWsvRGQSMAzIn01W804yk+CAGnmIiMgYUhiTMdXQ2ovX7CM9XfuLicgkkT8brChlzgbqOk26+/XDJBERGRsKYzKm6jvD5IbrMNIL7C5FRGRoPCmQVUpJ62Y8TjjYpEYeIiIyNhTGZMyEohatYS95jk5we+0uR0Rk6PJn4+xpYGpqiIqWMFFTjTxERGT0KYzJmGnsimLhIC9FH2JEZJLJLAVPMjP69hCMQFWbRsdERGT0KYzJmGloC5Ac7SYlPcPuUkRETo/DAXlzSGt8g7xUgwONCmMiIjL6FMZkzNR3RsgL12KkF9pdiojI6SuYDWaIMmc9Lb0mrb1qcy8iIqNLYUzGRF/YoiNyYr2Yz+5yREROn88PGVMobNlKkttQIw8RERl1CmMyJhq6Yj9Bzk2xuRARkZHIn4ujq47paUGOtEYIRbUGVkRERo/CmIyJhvY+0iJtJKVn212KiMjwZU8FdxLTA3uImnC4RaNjIiIyehTGZNRZlkVdZ5T8cC1ovZiITGYOJ+TNIqnhTYr8BgeawliWRsdERGR0KIzJqOvqt+iNusl3tIMnye5yRERGpmAuRIPMcNTR2WfR1G3aXZGIiMQJhTEZdXWdURxWlNwU3V4iEgeS0iFjCnnNW0j1xkbHRERERoM+Lcuoq2sPkh1pwJWRb3cpIiKjo2AeRlcDM1L7OdoepS+sqYoiIjJyCmMyqqKmRUOPRX6oRuvFRCR+ZJWCO5lpPbswgIpmjY6JiMjIKYzJqGruMYlaDvIdneBJtrscEZHR4XBC/lw8DW9RnG5wqDmiRh4iIjJiCmMyquo6o3itfjLS1LhDROJM4Wwww8yghp5grGusiIjISCiMyaiqaw+RH6rByNAURRGJM940yColq3Er6T6Dg03ac0xEREZGYUxGTX/Yoq3f0HoxEYlfBXMxepqYkRLgWEeUQEht7kVEZPgUxmTUnJiyk+fs1noxEYlPmSXgS6O0cwdOBxxq1uiYiIgMn8KYjJr6rijpZgdJ6Zl2lyIiMjYMAwrm4W7aR4kfDjVFMNXIQ0REhklhTEaFZVnUdoTJD1aDX1MURSSO5c0BYEa0kkDYorZDjTxERGR4FMZkVLT3mfRHDApCR0HNO0Qknnl8kDODzIYtZCYZHGzSnmMiIjI8CmMyKuo6oriIku3u03oxEYl/hfOgv4vp3g7qOk16g2rkISIip09hTEZFbWeU3EgDzvQCu0sRERl7aXmQkkNJx1acDqhoUSMPERE5fQpjMmLhqEVTd5SC/sPgVxgTkQRgGFA4D3drJSVpUTXyEBGRYVEYkxGr74piYZAfroGMIrvLEREZH7ll4PQwPXiAQNga2N5DRERkqBTGZMTqOqKkGn2keh1aLyYiicPphoK5ZDZuIcMHB5s0VVFERE6PwpiMiGVZ1HZGKQgfg3SNiolIgimchxEJMt3VTG1HlEBIjTxERGToFMZkRLr6LXpDFvmBQ5CulvYikmB8fsgspbT1dRwOqGjW6JiIiAyd7WHMNE3uu+8+1qxZw5IlS7jmmmuoqal51/Pb29u5/vrrKS8vZ8WKFdx222309fUNOuf555/noosuYtGiRaxdu5bXX3/9Xa/3+9//njlz5nDs2LFRe02JpLYzigOL3HC9wpiIJKai+bh76ilJDnKoOYKlRh4iIjJEtoexBx98kCeeeILvfOc7/PrXv8Y0TdatW0coFDrl+evXr6e6uppHH32Ue++9l1dffZVbb7114PFNmzaxceNGPv3pT/PUU0+xatUqrr32WiorK0+6Vm1tLbfffvtYvbSEUNcRIdfRgSs5VevFRCQxZRSDz8+0vj30hizquzRVUUREhsbWMBYKhXjkkUdYv3495557LnPnzuWee+6hoaGBF1544aTzd+7cyZYtW/jhD3/IggULWLVqFbfffjvPPPMMjY2NAPzkJz/h/PPP56qrrqKsrIwbbriBBQsW8Itf/GLQtUzTZOPGjSxYsGBcXms8ipgWjd0m+f1V4NeomIgkKMOAwvlkN28nzWNR0Ry2uyIREZkkbA1j+/fvp7e3l1WrVg0c8/v9zJ8/n61bt550/rZt28jNzaWsrGzg2IoVKzAMg+3bt2OaJjt27Bh0PYCVK1eedL2HH36YcDjMl770pVF+VYmjsStK1OL4ejE17xCRBJY3G8NwMt2o42h7lP6wpiqKiMj7c9n55A0NDQAUFg4eVcnLyxt47O0aGxtPOtfj8ZCRkUF9fT1dXV0EAgEKCgZvPPzO6+3atYtHHnmE3/72twMjaqPhnWvX4t3RVgufI4w/2k6/Nwv6++0uKS71B/sH/S4ymnR/jR5X1nRKW/7B7rR/50B9gFk5ht0l2e7E+2KivT/K+ND9JWNpJPeXZVkYxtDeA2wNYydenMfjGXTc6/XS2dl5yvPfee6J84PBIP3Hw8CprhcMBgEIBAJ885vf5Jvf/CbTpk0b1TBWVVU1ateaDI5Gp5MVbiDoSOZIbZ3d5cS9+jp9j2Xs6P4aOU8khbJQBxlmK/sbUgk3VTHE9+K4l2jvjzK+dH/JWBru/XWqzHIqtoYxn88HxNaOnfhvgGAwSFJS0inPP1Vjj2AwSHJyMl6vd+B673z8xPW++93vMn36dD796U+P2us4Ydq0aaesOx4FQhZ7DkJJpAZXdgnTp86wu6S41R/sp76ujsKiInxe3/t/gchp0P01uqL765gXOchrng9SMG0uWcmJncb6+vqoqqpKqPdHGT+6v2QsjeT+qqioGPK5toaxE1MOm5qaKC0tHTje1NTEnDlzTjq/oKCAF198cdCxUChER0cHeXl5ZGRkkJycTFNT06BzmpqayM/PB+DJJ5/E4/GwdOlSAKLRKAAXX3wxX/7yl/nyl7887NeTlJREcnJidBSs7QljEKSg7xCu0jW4fPoQN9Z8Xt+gH1qIjCbdX6Ok+AwK979EUv4HqOn2UJzjtbuiCSGR3h9l/On+krE0nPtrqFMUweYGHnPnziU1NZXNmzcPHOvq6mLv3r2Ul5efdH55eTkNDQ1UV1cPHNuyZQsAZ555JoZhsGzZsoFjJ2zevJnly5cD8MILL/CHP/yBp59+mqeffprvfve7APz4xz8ek9GyeFXXGSXTHcRjhdRJUUTkhKypGJ4UppnHONIaIRxVIw8REXl3to6MeTwerrzySu6++26ysrKYMmUKd911FwUFBVxwwQVEo1Ha2tpIS0vD5/OxePFili1bxoYNG7j11lsJBALccsstrF27dmDk6wtf+ALXXnst8+fP5+yzz+bJJ59k3759fO973wNg6tSpg2o40dijqKiIjIyMcX39k5VpWdR3RZlJIyRngkdTA0REAHA4oHAu0469zr6MUo62RyjLcdtdlYiITFC2b/q8fv16Lr/8cm6++WauuOIKnE4nP/vZz3C73dTX17N69Wqee+45IDbk98ADD1BcXMzVV1/Nddddx9lnnz1o0+fVq1fz/e9/n1/96ldceumlbNq0iYcffnhQO3wZmdYek1AU8nsOqKW9iMg75c8jxewmz9VDRXPE7mpERGQCs3VkDMDpdLJx40Y2btx40mPFxcUcOHBg0LHs7Gzuu+++97zm2rVrWbt27ZCef+XKlSc9h7y32s4oHodFVqAKSj9sdzkiIhOLxwe5M5jWs4stkQ/S1W/i99n+s08REZmA9O4gp62uM0qeuxcDC9K1XkxE5CSFC5jSuxe3YVLZotExERE5NYUxOS3BiEVrr0l+pA6Ss8Ct7msiIidJy8WZlkOJWUNlcwTTUiMPERE5mcKYnJaGrigWkN+9T6NiIiLvpXA+0zq3Ewhb1HdG7a5GREQmIIUxOS31XVFSPRbJfQ2QoTAmIvKucqaT6ejFbwSo0FRFERE5BYUxOS31nVHynd2xP/jVSVFE5F05nBgFc5nWu5ua9ij9YU1VFBGRwRTGZMh6gibdQYu88DFIzga31+6SREQmtsJ5TA0exLIsjrRqdExERAZTGJMhq++KYgC5nXs1RVFEZCg8yXizCiiM1FLZEra7GhERmWAUxmTI6jujZPpMPP2tat4hIjJUhQuYFniLtoBFe8C0uxoREZlAFMZkSCzLor4rSp6jK3bArzAmIjIk/nwK3L14CVLRrNExERH5F4UxGZL2PpNgBPJC1ZCSo/ViIiJDZRg4iuZR2refwy1hoqYaeYiISIzCmAxJfaeJ04Dszv2QXmB3OSIik0tuGdPChwlGDWq155iIiBynMCZDUt8VISfJxNnfofViIiKny+kmPa+AzEgzFU0hu6sREZEJQmFM3lfUtGjsNslztMcOaL2YiMjpK5zH1P4D1Haa9GnPMRERQWFMhqC5xyRqQl5/ldaLiYgMl89PaUoQwzI5rDb3IiKCwpgMQUNXFI8TMjoOaL2YiMgIeApnURSqorKxD8vS6JiISKJTGJP31dgdJSfJxAh2a72YiMhIZExhmlVDR8hFa6/2HBMRSXQKY/KeoqZFc49JLm2xA1ovJiIyfIZBfl4WPrOXysY+u6sRERGbKYzJe2ruMTEtyO3X/mIiIqPByJ/F1GAFR9qi2nNMRCTBKYzJe2rsjq0XS+84ABkaFRMRGTGXl2lpIUKWi5o2NfIQEUlkCmPynhq6omSfWC+mKYoiIqMirWgG2eEGKmo77S5FRERspDAm7ypqWrT0mORyYn8xdVIUERkVKZlMdTRQ359EIKRGHiIiiUphTN5VS69JVOvFRETGREleOg4iVB5rt7sUERGxicKYvKvGrihuh/YXExEZC+6cEqZEjlHRYmrPMRGRBKUwJu+qYWB/sS7tLyYiMtocDqalhekmmeb2gN3ViIiIDRTG5JQG9hczTqwXUxgTERltuUXFJEe7qTjaancpIiJiA4UxOaWWXpOoqfViIiJjyfD6mOZqoSroJxyO2l2OiIiMM4UxOaWm7uPrxToPar2YiMgYmpqfRgQX1dW1dpciIiLjTGFMTqmxO0qWz8To79R6MRGRMZSSmUWe1UxFq1rci4gkGoUxOYllxdaL5RjHNyPVejERkTE1LT1Kk5FLV0uT3aWIiMg4UhiTk3T0WYSjkB2sgeRsrRcTERljUwpycFshKqub7S5FRETGkcKYnKSpJ4oBZHXuhwytFxMRGWtOl5MSdwcV4RzMYK/d5YiIyDhRGJOTNHdHyfCZuPrbtV5MRGScTC9Io8+RSl1lpd2liIjIOFEYk5M0dptkO7pjf/AX2VuMiEiCyEzzkkE3B9udYKrNvYhIIlAYk0ECIZPekEVOqA6Ss7ReTERkHE3PgFpXKYHaQ3aXIiIi40BhTAZp6om1Vs7u2q8piiIi46wkLwUHFpXH2u0uRURExoHCmAzS3B0lxW2R1NekMCYiMs48TpjiC1BhlWC1aRNoEZF4pzAmgzR2m2Q7j3fyUhgTERl30/OT6HZl0njkgN2liIjIGFMYkwHhqEV7wCQn3HB8vZjP7pJERBJOTrKDVEeQil4/BDrsLkdERMaQwpgMaOk1sYDs7gMaFRMRsYlhwLQsJ1XeWQSP7LS7HBERGUMKYzKgqTuK22Hh7zumMCYiYqNpmQ4wHFQ2ByEctLscEREZIwpjMqC5J0q2qw8DwK8wJiJiF58LilKiHPQswKp5w+5yRERkjCiMCQCWZdHSY5IVbY6tF/NovZiIiJ1mZDvpcmXReLQaTNPuckREZAwojAkAXf0WoShk9x7WFEURkQkgNxlSXREOOsqgfo/d5YiIyBhQGBMAWnqigEVWoArSC+wuR0Qk4RkGzMhycNQ7i/7KHWBZdpckIiKjTGFMAGjuNfE7w7itkNaLiYhMEFPTAcNBRSQPWg7bXY6IiIwyhTEBYs07sqw2SM4ET5Ld5YiICOB1QbHf4lDyUqzKf9pdjoiIjDKFMSEctegIWGT3HdV6MRGRCWZGJnQ70qjvAjrq7C5HRERGkcKY0Hp8s+esviqFMRGRCSY7CdK9FvtTy0GjYyIicUVhTGjpieIyTPzRDvAX2V2OiIi8jWFAWabFMVcJ3U110NNid0kiIjJKFMaE5l6TLLowkjO1v5iIyARUmg5uBxxMLYeKf9hdjoiIjBKFsQRnWVaseUfwmKYoiohMUC4HTMuAQ74FROr2Q2+b3SWJiMgoUBhLcL0hi/4wZPXXKIyJiExgZZkWIcvJkeQztHZMRCROKIwluOYeE4DsSJPCmIjIBJbqgcJU2J9ajnVsFwQ67C5JRERGSGEswbX0REmhD29SMri1XkxEZCIry7RoN1No8k6FytfsLkdEREZIYSzBNfeYZEUaNSomIjIJ5KdAmsdib+Y5UPMG9HfZXZKIiIyAwlgCi5oWbYEo2cFjkKEwJiIy0RkGzMqyqIlk0u3JhkPqrCgiMpkpjCWw9oCJaRlkRZq0v5iIyCQxNR28TtiXcz7U7IRAu90liYjIMCmMJbCWXhMHJukewO21uxwRERkCpwNmZEJFOJ+g2w+H/m53SSIiMkwKYwmspSdKRrQNZ0ae3aWIiMhpKMu0MIFDBRfCsV3Q02J3SSIiMgwKYwmsuTtCVqge0qfYXYqIiJwGnwtK/bAvXETU64dDf7O7JBERGQaFsQQVjFh0hwwyI82QXmB3OSIicppmZVv0RQyqiv4N6vZAV4PdJYmIyGlSGEtQLT1RALK8YXBpvZiIyGST7oWCFIu3wiVYyRmw/2W7SxIRkdOkMJagWntNPFaQ1LR0u0sREZFhmptj0Rk0qJlyITRXQssRu0sSEZHToDCWoJo7+skMN2FkqqW9iMhklZMMOckWu4NFWP5C2PciWJbdZYmIyBApjCUgy7JoCVhkRZvAn293OSIiMgJzsy1a+wwaSj4cWzdW95bdJYmIyBBNiDBmmib33Xcfa9asYcmSJVxzzTXU1NS86/nt7e1cf/31lJeXs2LFCm677Tb6+voGnfP8889z0UUXsWjRItauXcvrr78+6PFDhw5x7bXXsnLlSlatWsX69eupq6sbk9c30fSELIKWiyx3GJxuu8sREZERyE+BTJ/F7t5cyJkBB/4K0YjdZYmIyBBMiDD24IMP8sQTT/Cd73yHX//615imybp16wiFQqc8f/369VRXV/Poo49y77338uqrr3LrrbcOPL5p0yY2btzIpz/9aZ566ilWrVrFtddeS2VlJRALc1/4whfw+Xw89thj/OQnP6GtrY1169YRDAbH4yXbqqX7ePOONDXuEBGZ7AwjNjrW0GvQXHwu9HdB1Va7yxIRkSGwPYyFQiEeeeQR1q9fz7nnnsvcuXO55557aGho4IUXXjjp/J07d7JlyxZ++MMfsmDBAlatWsXtt9/OM888Q2NjIwA/+clPOP/887nqqqsoKyvjhhtuYMGCBfziF78A4MUXXyQQCHDnnXcye/ZsFi5cyF133UVlZSU7duwY19dvh5b2blKinXgztdmziEg8KEqDNI/Frq50KDoDKv4OwV67yxIRkfdhexjbv38/vb29rFq1auCY3+9n/vz5bN168k/2tm3bRm5uLmVlZQPHVqxYgWEYbN++HdM02bFjx6DrAaxcuXLgeqtWreLBBx/E5/MNPO5wxL4VXV1do/r6JqKW7ghZkRZIy7W7FBERGQWGAfNyLGq7DVoKz4odPPiKrTWJiMj7c9ldQENDbJPKwsLCQcfz8vIGHnu7xsbGk871eDxkZGRQX19PV1cXgUCAgoLBGxm//XrFxcUUFxcPevzHP/4xPp+P8vLyYb+Wd65bm4hMy6It7GO+s4/+UATQuoKJrj/YP+h3kdGk+yt+5Hog1e1je7Ob84qX4a7aRH/+QqxU+37wduJ9cTK8P8rko/tLxtJI7i/LsjAMY0jn2h7GTrxAj8cz6LjX66Wzs/OU57/z3BPnB4NB+vv73/V677Ye7LHHHuPxxx/n5ptvJisra1ivA6CqqmrYXzte+kwPUWMGjmgPR44ctrscOQ31CdJgRuyh+ys+ZODnWLiUbVYWy5xJhN/4A4eyVsaGzmw0Gd4fZfLS/SVjabj316nyyqnYHsZOTBUMhUKDpg0Gg0GSkpJOef6pGnsEg0GSk5Pxer0D13vn4++8nmVZ3HvvvTz00EN85Stf4XOf+9yIXsu0adNOWfNEUnmsHUd7lCnFU3CkZttdjgxBf7Cf+ro6CouK8Hl97/8FIqdB91d8sSzoqjPpdM7EyIni3/8nFua6iebOsqWevr4+qqqqJsX7o0w+ur9kLI3k/qqoqBjyubaHsRNTDpuamigtLR043tTUxJw5c046v6CggBdffHHQsVAoREdHB3l5eWRkZJCcnExTU9Ogc5qamsjP/9eeWuFwmJtuuok//OEP3HTTTXz+858f8WtJSkoiOTl5xNcZS529zWRE20jOLgTD9iWDchp8Xt+gH1iIjCbdX/FjQR68fsxJe8EcCrL34618FYrn27qVyWR4f5TJS/eXjKXh3F9DnaIIE6CBx9y5c0lNTWXz5s0Dx7q6uti7d+8p12+Vl5fT0NBAdXX1wLEtW7YAcOaZZ2IYBsuWLRs4dsLmzZtZvnz5wJ+/9a1v8ac//Ykf/ehHoxLEJovmkJcsV0BBTEQkThWlQobP4o1GB9asc6C/Bypfs7ssERE5Bds/kXs8Hq688kruvvtuXnrpJfbv38+GDRsoKCjgggsuIBqN0tzcPLAWbPHixSxbtowNGzawa9cuNm3axC233MLatWsHRr6+8IUv8Mc//pGf//znVFZWcuedd7Jv3z6uvvpqAH73u9/x3HPPsWHDBlasWEFzc/PArxPPE4/6+/roNtLISnHaXYqIiIwRw4CFuRZNAYNj0UwoXQaV/4RAu92liYjIO9gexiC2ifPll1/OzTffzBVXXIHT6eRnP/sZbreb+vp6Vq9ezXPPPQfEhv0eeOABiouLufrqq7nuuus4++yzB236vHr1ar7//e/zq1/9iksvvZRNmzbx8MMPD7TD/8Mf/gDAnXfeyerVqwf9OvE88ai1ITZ1MyvTb3MlIiIylvJTIC/ZYke9gTltBbiTYM/Je3eKiIi9bF8zBuB0Otm4cSMbN2486bHi4mIOHDgw6Fh2djb33Xffe15z7dq1rF279pSPPfLII8OudTJrbu/Fa6WSkppqdykiIjKGDAPOyLN4qcpBZaebWbPOhreeg6ZDkGdPMw8RETnZhBgZk/HREnSR6ei1u8OxiIiMg8wkKPFbvNFoEM6ZBZklsOdPEA3bXZqIiBynMJYgrEAnLUY22er8KiKSMBbmWgSjsK/FgDnnQV83VPzT7rJEROQ4hbEE0dV4jJDDR1aGpiiKiCSKFA/MyIS3mg36PFkw9cxYZ8WeVrtLExERFMYSRktbN1gWWan27TMjIiLjb36OhcOAHQ0GTFsBvtTY+jHLsrs0EZGEpzCWCCyL5oADv6MPt7rai4gkFI8TFuRYVLYbtARdMPtcaK2Cuj12lyYikvAUxhJBVwPNjhyyfPopqIhIIpqeCelei611Blb2dMidCXtfgHCf3aWJiCQ0hbEEEG48TIcrlyy/1+5SRETEBg4DFudbNAcMjnQQGx2LhmH/yzZXJiKS2BTGEkBrSzuW4SArWf+7RUQSVV4KTEmz2F5vEHanQtkH4egOaKuxuzQRkYSlT+fxLtRHc9CNmyjpGhgTEUloi/ItQlF4s9GA4kXgz4fdfwQzandpIiIJSWEs3rUcptE1hawkS5s9i4gkuBQ3zMux2NcC7f0OmPth6G2Bw6/bXZqISEJSGItzVlMFLZ4islP0v1pERGB2NqR5YFOtgZWaByVL4dDfobfN7tJERBKOPqHHM8uio7WNkOElJ9nuYkREZCJwGLC0MNbM41AbMGMVeJJj0xW195iIyLhSGItnXQ00kYWBRVaS3cWIiMhEkZsMU9MtdjQY9FlumPuh2N5jtbvsLk1EJKEojMWzpgqaPcVk+Cxc+j8tIiJvsygvNgq2tc6A7GmQPwf2/gWCvfYWJiKSQPQRPZ41V9DoLSE7WZ07RERkMK8rtvdYVYdBTRcw+xzAgn1/sbs0EZGEoTAWr8J9BDo76CWFnCStARARkZOV+qEgxWLTMYOQMxlmnQ21u6Gpwu7SREQSgsJYvGqqoMlVCEC21ouJiMgpGAYsK7QIm7Ct3oCCeZBVGmvmEQnaXZ6ISNxTGItXjQdoSplFitsiyW13MSIiMlElu+GMPIuKNoP6HiO291goAAf+andpIiJxT2EsHkUj0FRJk6eYbLW0FxGR9zEjA3KTLV47ZhDypEPZB6FqK7TV2F2aiEhcUxiLR61HCEct2k2tFxMRkfdnGLC80CIYPd5dsWQJ+Atg9x9iP+ATEZExoTAWjxoP0pI6EwtD68VERGRIUjyx7oqV7QZHuxww73zobYNDf7O7NBGRuKUwFm8sCxoO0JA2H4/Twu+1uyAREZkspqVDYarF68cM+nw5MH0lHH4NOuvtLk1EJC4pjMWbjloI9dLgKCA3OTb1REREZCgMA84sjE1vf/2YgVW6HFJy4M3fgxm1uToRkfijMBZvGg8QdvtpCXnIS9F6MREROT0+VyyQHesyONDuhPn/Bj0tUPEPu0sTEYk7CmPxpuEAjVlLsTDIUydFEREZhqI0KMu02FZv0ObKg6nlsTDW2WB3aSIicUVhLJ70tEBvK/VJZSS5LFI9dhckIiKT1aI8izQP/O2oQXjqCkjJhjeeVndFEZFRpDAWT+r3gtNNQ8RPXorWi4mIyPA5HbByikVvCLbWu2D+BdDbCodetbs0EZG4oTAWLywLat+iP2c+7UEHeclaLyYiIiPj98KSAouKdoOKcC7MWAWVr2kzaBGRUaIwFi+6GqG3lYb0BQDkpdhcj4iIxIXpGTA9w2JTrUFr3pmQXghvPgORkN2liYhMegpj8aLuLXD7aCCXNI9FktvugkREJF4sybdI98Ir1U7651wI/d2w9wW7yxIRmfQUxuKBZUHdHsibRX2vQ6NiIiIyqpwOWFVsETHh782ZmLPPhZqdsbXKIiIybApj8aD9GPR30ZM9n+6QQa7Wi4mIyChLdsOKKRYNPbCNhZA3C3b9Efo67S5NRGTSUhiLB3VvgTeVBmchYGlkTERExkR+CiwtsNjf6mBf3oXgdMfa3Vum3aWJiExKCmOTnWnGponkz6a22yDTBx6n3UWJiEi8mpEJs7Mstja6qZmxNtZZ8dDf7S5LRGRSUhib7FqPQChANG8Otd1QmKopiiIiMrbOyLOYkgZ/a82hZer5cOhv0FRhd1kiIpOOwthkV/MGpGTRYOQRMQ2K0uwuSERE4p1hQHmRRYYPXgwupC17cWy6YqDD7tJERCYVhbHJLNgLDfuhaCE13Q6S3bHWwyIiImPN5YDVJRYpbviL+0N0uHNhx28hGrG7NBGRSUNhbDI79iYYBlbBfI51QlFq7KeVIiIi48HtjAUyrwv+4r+Urt4gvPVcbMsVERF5Xwpjk5VlwdEdkDeL1oiPQMSgKE1vfiIiMr68Lji71MLldPCnrM/SXl8Lh1+3uywRkUlBYWyyaq2CQDsUnUFNl4HHYZGTbHdRIiKSiHwuOGeqhc/j4s9Zn6GpYi/U77O7LBGRCU9hbLI6ugNSsiCjiJpOKEgDh6YoioiITU4EMn+Sk79k/jvH9uzE0dVgd1kiIhOawthk9LbGHd0hg46gQZFa2ouIiM3cTlhTapGXYvDXtEuoOHAYb6TH7rJERCYshbHJ6NgbsU4dhfOo6QKHYVGQandRIiIi4HTAB0tgTlaUHUmraAn5ifZ22F2WiMiEpDA22UQjcGQzFMwFdxLVnQZ5KbEWwyIiIhOBYcDCAifLMrup9UznlYoIHe1ddpclIjLh6CP8ZFO7KzZNcepyOvqhOWAwNV1TFEVEZOIpynBSZh4igpM/HrTYX9OJpbb3IiIDFMYmE9OEytcgbxYkZ1LRZuBxWhRpiqKIiExQbqfJ6ilBpkUOs6Xexct7u+gJmnaXJSIyISiMTSYNe2Pt7KeWY1pwuANK/bH5+SIiIhOVMymNpXOLOCv4D1q7g/x+V4A99WFMjZKJSILTx/jJwrKg4jXIKgV/Hse6oD9iMD1Db2QiIjIJeJIpXHgmF0ZfYVrfHnbUBPnjW33Ud0XtrkxExDYKY5NFcyV0N8K0cgAOtRlk+izSfTbXJSIiMlQuL+6F/8aS1FbO6/gdRn8Xf9nfz0sH+ugIaOqiiCQehbHJwLLg4CuQXggZxQTCUNeNRsVERGTycbhg1hqyps/nvNb/ZWV4Cx2BCM++1cc/Kvvp7FMoE5HE4bK7ABmCY7ugsx7O/HcwDCrbwWFAid/uwkRERIapYA5GShYlB//KlMa3ODzlI+zvLOJwax/TspycUeQhM1k/MxaR+KYwNtFFgnDgJcifDRlFmBYcajUo9oPbaXdxIiIiI5CWC0suw3F0OzOP/YHpqQVUFX6Y/d2pVL3VR1G6g/kFHgr9DgzDsLtaEZFRpx85TXQV/4RwEGauBuBwO/SEDWZmaYqiiIjEAacLpq+ERZfgNEOUHXqcj0ZeprwgTG/Q4sUD/fzhrT4ONoUJR/XeJyLxRSNjE1mgHY5sgtLl4PNjWvBmo8GUNItMNe4QEZF44s+HpZdC0yEc1duY2voopflzaSpaQUVPEpuqQuyoCTEz18WsXDfpSfp5sohMfgpjE5Vlwd4XwO2DacsBqGiD3jB8sFg/GRQRkThk/P/bu/P4mq61geO/czKczBEyqeEajxgSkUiIW1Tq4mqqburtRYJyXV5xUTNFvLRaaqoK8hpSbVGu4VUtrbZuiyohxrS4xNSkZE4kyHzW+8e5OXWakKhyon2+n88hZ+2111l778d2nqy199YYp+W7N4EbZ9Fc/w6v1LN41WnC7acCuFTiSVJGKWdTS/Fy1qL3tKGhmxVWWpnCKIR4MkkyVlMln4K0C+AbBlY2lBngTLqGBi7I7eyFEEL8tllZQ30/eKo1pCfB9TM4Jm7Dz86F1nV9+dGxJZfztBy8VITOGprUMY6W1ZIbfgghnjCSjNVEtzLh7F54qg14NgPgYjYUlEDLBjIqJoQQ4ndCawXeLYyjZXlpkHYeq6vxNFSHaOhal7w6vlyxasTlrFLOpZVSx1FLM3drGtexxtZaRsuEEDWfJGM1TVkpnPw/0DmBvisAJWWQmK6hgSu46CzcPyGEEOJx02jA1dv4ahICWT9A5mVcrnxJW2XA19mb67XaclXV5+g1A8d+KKahmxVN3K15ysUKrUxjFELUUJKM1TT//hfkp0P7/mBlA8Cx6xpKyqCVu4yKCSGE+J2z1oFXc+OrpAhyktFmXaP+9a+oX1ZMgW1tfnAN5NrN+lzNtsXOGhrVMY6WuTvKLfKFEDWLJGM1yZWjcCUemncBF08Art2EpBwNgXUNONlauH9CCCFETWKjM07n92wGhjLIT8c+O4UWuSfR3/6CXKs6/ODYhqtpjTmfpsPJxkAjd1v+UNua2g6SmAkhLE+SsZrix0TjdWINA6BBOwDulMDhFA1POSsauVq4f0IIIURNprUC17rGF0FoSgpxu3kDt5s38LuZSEaxHcm6ZlwobsJ3N3Q4awtp6FRKQ09H3N0cJTETQliEJGM1QdpFOP0R1G0FzTqDRoNS8E2yBq0GAr0V8n+EEEII8QBs7MC9Mbg3RgN4lhbhmZ9Ou9xE0m+XkVLkxsXSBnyfp8HekEEDbTr17QvxdrXF2qUOONYxtiGEEI+QJGOWlnwaEncbn6ni092UiMVf15B6S8PTDQzo5CgJIYQQD8daB24N0Lo1wBvwVgpDQR5ZuVlcv2XNj6WeXChwxOpOKV7XkqlXcpK6Kh1Xew0aBzewrwUOtcDe1fiyczHegl8IIR6CnEUsxWCAc1/A1aPG56i06AZaLUoZpyYm5UBgXQPeTpbuqBBCCPEbpNGgdXDFw8EVD8BPwa1iAzfyITXvKY4X/QEDWhwoxLvgBt43r+F95zROhryf2rB1MCZl9i7Gv+/+2d4V7JyN0yeFEOIeJBmzhDs5cOYTyL4G+m7GB1tqNBgUfJui4UoOBNVV/KGWpTsqhBBC/D5oNOCsA2edFr27llIDZN4xkHZbR8btRly2agT2z+BoXYanbQFempt4qAxqFaejKb4FWVehMB9Ki+5u1ZiQOdT6z6haLXCsDQ61wdENbOyR6xCE+H2TZOxxKiuBS98aXzZ24B8OtRsAcLPQOCKWcQeCn1I0kBt2CCGEEBZjrQVvJ/B2Mj5WprgMMu4oMu9oybzjyNVCRxT1sNEq3F3A3QHc7RV1bItxMNyCwjxjclaQZ/w5Lx3Sk6D4zk8fYmNnTMyc6hiTNMc6//m5junxNkKI3zaLJ2MGg4GYmBi2bt1Kfn4+QUFBREdH06BBg0rr5+Tk8Prrr3PgwAE0Gg3PPfccU6ZMwd7e3lTn008/Zfny5aSkpNCkSROmTp1KSEjIA7XxqyophJQzcOWI8cTcMBAaBYG1LWUG+D4DzqRrcLCBLg0VHo6PphtCCCGE+GVsraCeM9RzNiZnpQbILlBkFUB2gYYLWZBYpgXssLfWUdu+Dm524OaucLMDZ1uw0gKlxVCQC3dyf/r7ViakXzR+Xyhn5/JTguZY+6eXfS25Vk2I3xCL/2teuXIlmzZtYv78+Xh7e7Nw4UKGDx/Oxx9/jK1txQdrjR07loKCAtavX09eXh4zZszgzp07LFiwAIAjR44wefJkpkyZwh//+Ee2bdvGiBEj2LlzJ02bNq1WG78KQxlkJ8ONs/DjGeN7j2bg3xcc3LhTAhfT4GKWhoJS0NcxPtTZSvvrdUEIIYQQj4a1FjwdjS9QKAUFpYqcAsgu1HCzEC7lQEGG8T92DQonW3DV6XCy9cJZ54mjGzh6goMN2FmDprQAbucYk7TbOcbLGrKvQcppMJT+9OF2zmC6qYir8W87F2O5vStYy4NJhXhSWDQZKy4uJi4ujkmTJvHMM88AsHTpUjp37sznn39OWFiYWf2TJ09y9OhR9uzZY0qs5s6dy/Dhw5kwYQJeXl6sWbOG7t27M3jwYACmTp3KyZMnee+995g7d2612vhFlEKbfQ1u5EJOMmRegbJi0DlCwwAMT/mSVeZE6i1ITdWQegusNNDAFZq5KVzl7rlCCCHEE0ujMSZVDjZQz0WZyotKFXnFkF8EeUUabpXAj/lwO1uDQf10vZgGhc7aATsrB3TW9dBZg40b2LqDjVZhYyjCpuwO1iV3sC7Jx7o4D+vb+VhlX8O6+DusVQlWqhRrVYqVlRaNnTPonIzfQ8r/tnU03nTE1gFs7Y3XrNnYg1Z+EyyEpVg0GTt//jy3b982m0Lo4uJCq1atOHbsWIVkLCEhAQ8PD1MSBRAcHIxGo+H48eP06tWLEydOMG3aNLP1OnTowOeff16tNnr37v3A21FSUmLcnuu5KDQoTWOUR1MMWKHQYCjQoJIygAzjNmoUta3BSqvQ3IH0O5D+wJ8qfi+UUiitFT+kpMhDScWvTuJLPEoSX+Yc//MCUP+5JEwpMKABBQpQZaBKjT8DlKGhTEGBWUs60HiAzgN09/tEhcYAFCg0Bcb3qNtouA0YE8C7aUx/3PUeKtxkRPPziqbySo6x5u6a94gBTaWtVVrvbspgHJG8cOEiGm3lbUvUiV9KKeO/j4sXLz7w+aukpKTa61g0GUtNTQWgbt26ZuWenp6mZXdLS0urUNfW1pZatWpx48YN8vLyuHPnDt7e3vdsr6o2fgmNRkMZWoq1d13spe5d36A0FCvAIKcIUV1WlJRZug/it0viSzxKEl+WU55u3ZV2/ZKvHj//TnOf7ziPlwawoaT03jWstGBvI9+3xIPTaDSVXjJV3XWfiGSsoMD4e56fb6hOp+PmzZuV1q9sp+h0OoqKiigsLLxne0VFRdVq45do167dL1pPCCGEEEII8ftl0UnCdnbGC6WKi4vNyouKiiq9s6GdnV2FuuX1HRwc0Ol0VbZXVRtCCCGEEEII8ThYNBkrny6Ynm5+xVR6enqlN9Lw9vauULe4uJjc3Fw8PT2pVasWDg4O922vqjaEEEIIIYQQ4nGwaDLm4+ODk5MT8fHxprK8vDzOnj1LUFBQhfpBQUGkpqZy7do1U9nRo0cBCAwMRKPREBAQYCorFx8fT/v27avVhhBCCCGEEEI8DhZNxmxtbYmMjGTRokXs27eP8+fPM378eLy9venRowdlZWVkZGSYrgVr27YtAQEBjB8/njNnznDkyBGio6Pp27evaeRr6NCh7N69m3fffZdLly7x1ltvce7cOYYMGVLtNoQQQgghhBDiUdOo8vs2WkhZWRlLlixhx44dFBYWEhQURHR0NPXr1yclJYVnn32WN998k/DwcACysrKYM2cOBw8eRKfT0atXL6ZPn266Xgxg586drFy5ktTUVJo1a8bkyZPNbp9fnTaEEEIIIYQQ4lGyeDImhBBCCCGEEL9H8sh1IYQQQgghhLAAScaEEEIIIYQQwgIkGRNCCCGEEEIIC5BkTAghhBBCCCEsQJIxIYQQQgghhLAAScaEEEIIIYQQwgIkGXtIBoOBd955h86dO+Pv78/f//53kpOTLd0t8QRKS0ujRYsWFV47duwA4Ny5c0RGRuLv709oaCjvv/++hXssnhT/+7//y6BBg8zKqoonObeJ6qosvmbOnFnhXBYaGmpaLvEl7ic3N5fo6Gi6dOlCQEAAAwYMICEhwbT88OHDhIeH07ZtW3r16sXu3bvN1i8qKmLOnDmEhITQrl07Jk6cSHZ29uPeDFFDVRVfQ4cOrXD+uvsc96vHlxIPZfny5apDhw7qq6++UufOnVPDhg1TPXr0UEVFRZbumnjCfP3118rX11elpaWp9PR006ugoEBlZ2erDh06qOnTp6ukpCS1bds25evrq7Zt22bpbosabsOGDcrHx0dFRkaayqoTT3JuE9VRWXwppVS/fv3UkiVLzM5lWVlZpuUSX+J+hg4dqsLCwtSxY8fU5cuX1Zw5c5Sfn5+6dOmSSkpKUr6+vmrJkiUqKSlJrV27VrVq1Up9++23pvWnTZumunfvro4dO6ZOnz6t+vbtqyIiIiy4RaImuV98KaVUSEiI2rRpk9n5Kycnx7T+rx1fkow9hKKiItWuXTu1ceNGU9nNmzeVn5+f+vjjjy3YM/EkWr16tXr++ecrXRYbG6uefvppVVJSYipbvHix6tGjx+PqnnjCpKamqpEjRyp/f3/Vq1cvsy/LVcWTnNtEVe4XXwaDQfn7+6vPP/+80nUlvsT9XL16Ven1epWQkGAqMxgMqnv37urtt99Ws2bNUv369TNbZ8KECWrYsGFKKWNs+vj4qK+//tq0/PLly0qv16sTJ048no0QNVZV8ZWZman0er36/vvvK13/UcSXTFN8COfPn+f27duEhISYylxcXGjVqhXHjh2zYM/Ek+jf//43TZs2rXRZQkICwcHBWFtbm8o6duzI1atXyczMfFxdFE+Q77//HhsbG3bt2kXbtm3NllUVT3JuE1W5X3z98MMP3LlzhyZNmlS6rsSXuB83NzdWr16Nr6+vqUyj0aDRaMjLyyMhIcEsdsB4/jp+/DhKKY4fP24qK9e4cWO8vLwkvkSV8fXvf/8bjUZD48aNK13/UcSXJGMPITU1FYC6deualXt6epqWCVFdFy5cIDs7m4iICDp16sSAAQM4cOAAYIw1b29vs/qenp4A3Lhx47H3VdR8oaGhLF++nAYNGlRYVlU8yblNVOV+8XXhwgUAPvjgA0JDQ+nevTtz584lPz8fkP87xf25uLjQtWtXbG1tTWV79+7l2rVrdO7c+Z7nr4KCAnJyckhLS8PNzQ2dTlehjsSXqCq+Lly4gLOzM3PnzqVLly706tWLt99+m+LiYoBHEl+SjD2EgoICALMDCqDT6SgqKrJEl8QTqrS0lMuXL3Pz5k3GjBnD6tWr8ff3Z8SIERw+fJjCwsJK4wyQWBMPrKp4knObeBgXLlxAq9Xi6elJbGws06ZN45tvviEqKgqDwSDxJR7IiRMnmD59Oj169OCZZ56p9PxV/r64uJiCgoIKy0HiS1Tu5/F14cIFioqK8PPzY+3atYwaNYqtW7cyc+ZMgEcSX9ZVVxH3YmdnBxj/8Zf/DMYvM/b29pbqlngCWVtbEx8fj5WVlSmW2rRpw8WLF1m3bh12dnam38qUK/9H7+Dg8Nj7K55sVcWTnNvEwxg1ahQDBw7Ezc0NAL1ej4eHBy+99BKJiYkSX6LavvzySyZNmkRAQACLFi0CjF96f37+Kn9vb29f6fkNJL5ERZXF19y5c5k6dSqurq6A8fxlY2PD+PHjmTJlyiOJLxkZewjlUyzS09PNytPT0/Hy8rJEl8QTzNHR0eyLCUDz5s1JS0vD29u70jgDJNbEA6sqnuTcJh6GVqs1JWLlmjdvDhinKEp8ierYsGEDY8aMoVu3bsTGxppG7+vWrVtp7Dg4OODs7Iy3tze5ubkVvjBLfIm73Su+rK2tTYlYubvPX48iviQZewg+Pj44OTkRHx9vKsvLy+Ps2bMEBQVZsGfiSXPx4kUCAgLMYgngu+++o1mzZgQFBXH8+HHKyspMy44cOULjxo2pU6fO4+6ueMJVFU9ybhMPY8qUKbz88stmZYmJiQA0a9ZM4ktUadOmTbz22mtERESwZMkSs2lh7du35+jRo2b1jxw5QkBAAFqtlsDAQAwGg+lGCwBXrlwhLS1N4ksA94+vQYMGMX36dLP6iYmJ2NjY0KhRo0cSX5KMPQRbW1siIyNZtGgR+/bt4/z584wfPx5vb2969Ohh6e6JJ0jTpk1p0qQJc+fOJSEhgUuXLvHmm29y6tQpRo0axYsvvsitW7eYMWMGSUlJ7Nixg/Xr1zNy5EhLd108gaqKJzm3iYfRs2dPDh8+TExMDD/88AP79+/n1VdfJSwsjKZNm0p8ifu6cuUKb7zxBn/6058YOXIkmZmZZGRkkJGRQX5+PoMGDeLMmTMsWrSIS5cuERcXx2effcbw4cMB4+j+c889x8yZM4mPj+fMmTNMmDCB4OBg/P39LbtxwuKqiq+ePXvy0Ucf8eGHH5KcnMyePXt46623+Nvf/oaTk9MjiS+NUkr9upv5+1JWVsaSJUvYsWMHhYWFBAUFER0dTf369S3dNfGEyczMZPHixRw8eJC8vDxatWrFpEmTaN++PQBnzpxh3rx5nD17Fg8PD4YNG0ZkZKSFey2eBNOmTePHH3/kgw8+MJVVFU9ybhPVVVl8ffrpp6xevZrLly/j7OzM888/zyuvvGKaCiTxJe4lNjaWpUuXVrrsL3/5C/Pnz+fAgQMsXLiQq1evUr9+fcaMGUPv3r1N9e7cucMbb7zB3r17AejSpQszZ86sMH1W/P5UJ742btzIxo0bSU5ONl3vOmLECLRa4xjWrx1fkowJIYQQQgghhAXINEUhhBBCCCGEsABJxoQQQgghhBDCAiQZE0IIIYQQQggLkGRMCCGEEEIIISxAkjEhhBBCCCGEsABJxoQQQgghhBDCAiQZE0IIIYQQQggLkGRMCCGEeAjyuE4hhBC/lCRjQgjxBJg4cSItWrQgLi7O0l15rOLj42nRooXZq02bNjz77LO89dZbFBQUVNnGtGnTCA0NfaDPrc46eXl5TJkyhYSEhAdqu6ZLTU0lIiICX19fQkJCKt3H5cclPj7eAj0UQojfDmtLd0AIIcT95efn8+WXX6LX69myZQtDhw5Fo9FYuluPVXR0NK1btwagoKCA8+fP884775CRkcHChQvvu25UVBSDBw/+1ft07tw5PvroI1588cVfvW1Leu+99zh16hQLFy7Ey8sLe3t7S3dJCCF+syQZE0KIGu6TTz4BYMaMGQwZMoQjR44QEhJi4V49Xs2aNcPf39/0PiQkhPz8fFatWsXs2bNxcnK657oNGzZ8DD387cjNzcXT05PevXtbuitCCPGbJ9MUhRCihtu+fTshISF07NiRP/zhD2zevNm0bNiwYYSHh1dYJyoqij59+pjeJyQkEBkZSdu2bQkODmbq1KlkZ2eblu/YsYNWrVqxdetW/vjHPxIcHExSUhJlZWWsXr2asLAw/Pz88Pf3p3///hw5csTs877++mvCw8Px8/OjZ8+efPLJJ/zpT39i+fLlpjq5ublER0fTqVMnfH19eemllzh8+PAv3i8uLi5m78unzm3evJlu3boREBDAoUOHKkw5LCkpYdGiRXTp0gU/Pz/+9re/sXPnTlq0aEFKSopZmzt27KBnz574+vrSp08f9u/fb/qs8tG2wYMHM2jQIAAGDRrEjBkzWL16Nc888wy+vr7079+fM2fOmLV74cIFRo4cSUBAAAEBAYwePZrk5GSzOu+99x69evXC19eXzp078z//8z/cunXLtPzQoUO89NJLtGvXjqCgIEaNGsWlS5fuu8/y8/N588036d69O76+voSFhbFt2zbT8tDQUHbs2MH169dp0aKF2fG7n5SUFFq0aMFnn31GVFQU/v7+dOrUiZUrV3Lr1i1effVVAgMD6dSpEwsXLjS7zi4lJYUpU6bw9NNP07p1a0JCQpgyZQo5OTmmOtU9ZlXFucFgYOnSpYSGhtKmTRtCQ0NZvHgxJSUl1dpOIYT4tUkyJoQQNdjFixdJTEykb9++APTt25d9+/aRmZkJQJ8+ffj++++5du2aaZ28vDwOHDjACy+8AMCxY8d4+eWXsbOz4+233+bVV1/l6NGjDB48mMLCQtN6ZWVlxMXFMW/ePKZPn07Tpk1ZtGgRK1eu5K9//Str167ltddeIzc3l3HjxpmuJTpy5AhRUVHUrVuX5cuXExERwezZs7lx44ap7aKiIoYMGcK+ffsYP348MTExeHt7M3z48GolZAaDgdLSUkpLSykoKODEiRO8//779O3bt8KoWExMDFOnTiU6Opp27dpVaCs6Opr33nuPyMhIVqxYgbu7O7NmzapQ78aNG6xevZpx48axfPlyNBoNY8eOJSsri9atWxMdHW1qb/bs2ab19u7dy759+5g5cyZLliwhMzOTMWPGUFZWBsCVK1fo378/WVlZLFiwgHnz5pGcnMyAAQPIysoCjKOhCxcuJCIignXr1jF69Gg++ugjXnvtNQCSk5OJioqiTZs2rFq1innz5nHlyhVGjBiBwWCodB8WFhYycOBAPv74Y4YPH87KlSsJDAxkxowZxMbGmvZd165d8fDwYMuWLfzXf/1XlcfmbjNnzkSv17Nq1SpCQkJYtmwZ/fr1w87OjpiYGHr06MHatWv57LPPAOOU08GDB3Pp0iVmz57NunXrGDx4MLt372bp0qUPdMyqE+dr1qzhww8/ZPTo0cTFxTFgwADWrVvHqlWrHmg7hRDiV6OEEELUWG+++aYKDg5WRUVFSimlrl+/rnx8fNSqVauUUkrdvn1b+fv7q5iYGNM6W7duVT4+Pio1NVUppdRf//pXFRYWpkpLS011Ll++rFq2bKk2bNiglFJq+/btSq/Xq507d5p9/oQJE9T69evNyvbu3av0er06efKkUkqpgQMHqj59+iiDwWCq88knnyi9Xq/eeecdpZRSW7ZsUXq9Xp06dcpUx2AwqIiICBUeHn7P7T9y5IjS6/WVvkJDQ03beHfdFStWmLUxdepU1a1bN6WUUteuXVMtWrRQcXFxZnWGDRum9Hq9Sk5ONq2j1+tVUlKSqc63336r9Hq9+vLLL80+78iRI6Y6kZGRqm3btio/P99U9n//939Kr9erxMRE0z7t1KmTWZ2cnBwVGBio5s+fr5RSatasWapnz56qrKzMVOejjz5S77//vtn+vXv7T58+rZYsWWLW7t02btyo9Hq9OnHihFn5q6++qnx9fVVOTk6F/XUvP9/25ORkpdfr1SuvvGKqk5GRofR6vRo4cKCpzGAwqICAAPX6668rpZQ6e/asGjBggPrhhx/M2h85cqTq2bOnUqr6x6w6cT5s2DA1dOhQs3Y++OCDCnEvhBCPi4yMCSFEDVVSUsKuXbvo3r07hYWF5OXl4ejoSGBgIP/85z8xGAw4ODjQvXt39uzZY1pv9+7dhISE4OXlRUFBAadPn6Zr164opUyjSw0aNKBp06YcOnTI7DNbtmxp9n7x4sUMGTKE7OxsEhIS2L59O7t27QKguLiY4uJiTp48SY8ePcxuKtKrVy+srX+6LPnw4cN4eHjQunVrUx/Kysro1q0b3333HTdv3rzvvpgzZw7btm1j27ZtbNq0iQULFqDT6ejXrx/Xr1+/7zbcLT4+HqUUvXr1MisPCwurUNfNzY2mTZua3tevXx8wTvW7n2bNmpmN1nl5eQGYjSQGBwdjZ2dn2hdOTk60b9+eb7/9FoCOHTty5coVwsPDiYmJITExkeeff940HbJt27am7Z83bx4HDx7Ex8eH8ePH3/P6uaNHj1KvXr0Ko4V9+vShqKiI06dP33e7quPutt3d3QHw8/MzlWk0GlxdXU37sGXLlmzatIl69epx9epV9u/fz7p167h8+TLFxcVA9Y5ZdeO8Q4cOHDp0iIEDB7J27VqSkpKIjIw0jSILIcTjJjfwEEKIGurrr78mKyvLlIT83MGDB+natSsvvPACu3bt4vz587i7uxMfH88bb7wBGKcsGgwG1qxZw5o1ayq0odPpzN47ODiYvU9MTGTOnDkkJiZib29Ps2bNeOqppwDj87Vyc3MpKyujTp06ZutZWVlRq1Yt0/vc3FwyMjJMd0T8uYyMDFxdXe+5Lxo3boyvr6/pfWBgIMHBwXTv3p24uDhmzpx5z224W/n1Qz/v78/fV9ZOebJ5r2mA5X5+90GtVmu2Xm5uLnv27DFLoMvVrl0bgN69e2MwGNi0aRMrV65k+fLl1KtXj0mTJtG7d2/q16/Phg0bWL16Ndu2beP999/HxcWFgQMH8sorr1R6t82bN2/i4eFRobw8acrLy7vvdlVHZYng/Y4HwLvvvktsbCy5ubm4u7vTpk0b7O3tTQlbdY5ZdeN8+PDhODo6sn37dhYtWsTChQtp3rw5M2fOpGPHjg+2sUII8SuQZEwIIWqo7du306BBA+bNm2dWrpTiH//4B5s3b6Zr166EhITg4eHBp59+ioeHBzqdjh49egDg6OiIRqPh5Zdf5rnnnqvwGfe7bfmtW7cYPnw4LVq0YPfu3TRp0gStVsv+/fvZu3cvYPxCbGNjY7qGrZzBYCA3N9f03tnZmUaNGrFo0aJKP6t81OlBPPXUU9SuXZurV69We53yUarMzExTUgmY3eThUXN2dqZTp04MHTq0wrK7RxPDwsIICwsjPz+fb775hjVr1jB58mQCAwPx8vLCz8+PmJgYiouLOX78OFu2bCE2NhYfHx/+/Oc/V2jb1dXV7NrCchkZGYBxJPBx+/jjj5k/fz6TJ08mPDzclIyOGzeOxMREoHrHrLpxrtVqiYiIICIigqysLPbv309sbCxjxozh0KFD2NraPrJtFUKIysg0RSGEqIEyMjI4ePAgzz33HB06dDB7dezYkV69erF//37S0tKwsrLi+eef56uvvuKzzz6je/fuptEIJycnWrVqxeXLl/H19TW9mjdvzvLly+/70N7Lly+Tm5vL4MGDadasmWmE58CBA4Ax4bKysiIgIIB9+/aZrfuvf/2L0tJS0/vg4GBu3LhBnTp1zPpx6NAh1q5di5WV1QPvo5SUFLKzs2nUqFG11wkMDMTKyoovvvjCrPzzzz9/4M//JX0GTHeqbNmypWk/tGnThvXr15v69corrzB69GjAmLz9+c9/JioqitLSUtLT01m/fj3dunWjuLgYW1tbQkJCTDf3+Pm0zXJBQUH8+OOPnDx50qx8165d2NjYmE0nfFyOHz+Oi4sLw4cPNyVit2/f5vjx46aRxOocs+rGef/+/Xn99dcB4y8SwsPDiYiIIC8vz+xOlUII8bjIyJgQQtRAO3fupLS0tNLf8oPxropbt27ln//8J2PGjOGFF14gLi4OrVZbYZrWhAkTGDFiBBMnTqRPnz6muyaePn2aqKioe/ahcePGODk5ERsbi7W1NdbW1uzdu9c0ZbL8GqixY8cyaNAgxo4da7qGa9myZcBPU/vCw8PZsGEDQ4cO5b//+7+pW7cu3377LWvWrCEyMhIbG5v77o+kpCTTVDOlFNevX2fFihXodDoiIyOrsUeNGjRowIsvvsiSJUsoKSnBx8eHL774gq+++gr4aUphdTg7OwPG6aSurq74+PhUa72oqCj69+/PyJEjGTBgADqdji1btvDll1/yzjvvAMZrxmbPns2CBQvo0qULeXl5xMTE0KhRI3x8fLCxsWHRokWMHj2ayMhIrKys2Lx5M7a2tnTr1q3Szw0PD2fTpk2MHj2asWPHUr9+ff71r3+xfft2/vGPf1R4VMDj4Ofnx4cffsj8+fPp1q0b6enprFu3jszMTNO01eoes+rEeVBQEHFxcbi7u9OuXTvS0tJ49913CQ4ONiWDQgjxOEkyJoQQNdCOHTto3rw5er2+0uWBgYHUr1+frVu3EhUVhY+PD3q9npycnAoPhH766adZt24dMTExjB07FhsbG1q3bs27775r9iDln3N2dmblypW89dZbjBs3DkdHR1q2bMmGDRv4+9//TkJCAqGhobRv357ly5ezbNkyoqKiqFevHrNmzWL8+PE4OjoCxuuGNm7cyOLFi1m4cCH5+fnUq1ePiRMnMmzYsCr3x9y5c00/a7VaatWqhb+/PwsXLnygkTGAWbNm4eDgQFxcHLdu3SIkJIRRo0axYsWKKq9vulvz5s0JCwtj48aNHDx40PRw7qr4+PiwceNGli5dypQpU1BKodfrWbFiBc8++yxgHMEpKSlh8+bNbNq0CTs7O0JCQpg8eTI2Njb4+PgQGxvLihUrmDBhAmVlZbRp04a4uDiaNGlS6efa29vzwQcfsHjxYpYtW8atW7do0qQJ8+bNo1+/ftXe7l/TX/7yF1JSUti+fTubNm3Cy8uLrl27MnDgQGbNmsWlS5do2rRptY5ZdeJ83Lhx2Nrasn37dlasWIGzszOhoaFMnDjRItsvhBAape568qIQQgjxgPbt24e3t7fZzTkuXrxIWFgYK1euNCUYNUFubi4HDhygc+fOZtdILViwgB07dtx32qawDDlmQojfMhkZE0II8VC++eYb9uzZw6RJk2jcuDFpaWmsWrWKJk2a8PTTT1u6e2bs7e2ZN28eLVu2ZMiQITg4OHDq1Ck2bNjAyJEjLd09UQk5ZkKI3zIZGRNCCPFQCgsLWbZsGXv37iU9PZ1atWrRuXNnJk6caLptek1y7tw53n77bU6dOkVBQQENGzakf//+REREVHpLeGF5csyEEL9VkowJIYQQQgghhAXIre2FEEIIIYQQwgIkGRNCCCGEEEIIC5BkTAghhBBCCCEsQJIxIYQQQgghhLAAScaEEEIIIYQQwgIkGRNCCCGEEEIIC5BkTAghhBBCCCEsQJIxIYQQQgghhLCA/wc3ARpf+qk+xQAAAABJRU5ErkJggg==\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAJICAYAAACaO0yGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlmUlEQVR4nO3de3zO9eP/8ee1k12bERoTyylWMtscQs6jnBNSciqaQ1IShZwiOiDHKMcklMhhKkkRUR8qPhmLZclhOecwds1m1/v3Rz/Xt32cZt72vnbtcb/ddvu63ofX9bzW6/b53p57v97vy2YYhiEAAAAAAHBLvKwOAAAAAACAJ6BgAwAAAABgAgo2AAAAAAAmoGADAAAAAGACCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJqBgAwAAAABgAh+rA8A8O3bskGEY8vX1tToKAAAAAHiE9PR02Ww2RUVF3fBYrmB7EMMwXD+AlQzDUFpaGnMRboH5CHfBXIQ7YT7CXeSGuXgzHYsr2B7E19dXaWlpuueeexQQEGB1HORhKSkp+u2335iLcAvMR7gL5iLcCfMR7iI3zMW4uLgsH8sVbAAAAAAATEDBBgAAAADABBRsD2Sz2ayOgDzOZrPJbrczF+EWmI9wF8xFuBPmI9yFzWbzqIc02wx3vpscN+XyvQHh4eEWJwEAAACArMnIcCot7aLsdrvVUa7qZnoWDznzQFsTzynZkWF1DAAAAAC4riC7t2qUK2B1DNNQsD1QsiNDZ1IuWR0DAAAAwG1mk1PeylBuXezv5fRWaqqfLl68aMktC76+vvL29jZtPAo2AAAAAOQ6hgrazqmgT6q8bMq9Bduwaf/+v2UYhmXPBLjjjjsUEhJiyvtTsAEAAAAglyloO6cifhdVJLio8uXzl3LpA+t8vGzK7+8jp9MpL6+cfQa3YRhKSUnR8ePHJUnFixe/5TEp2AAAAACQi9jkVEGfVBUJLqqggoWsjnNLfLxs8reoYEtyPVjt+PHjKlq06C0vF+drugAAAAAgF/FWhrxs+ufKNW5ZQECAJCk9Pf2Wx6JgAwAAAEAuYvv/P7l1Wbi7MfPebwo2AAAAAMAtGIZhdYRbQsEGAAAAANx2c96frlpVKrle9+nxtHo987Tr9dKlS/X2229bkMw8POQMAAAAAJDjXh4yXN7/Wp393nvv6YEHHrAukAko2AAAAACAHFembDn5eHnWfeQsEQcAAAAA3NCe+N3q2+sZNa5XU43qPKDne8do185fJUmvjxyqPj2e1uqVy9Wm+UOKrl1dfXs9o98T9lxzvH8vEW/UqJGSkpK0YsUKhYWF6fDhwznxkUxHwQYAAAAAXNeF8+fVv29v3XHHHXpj/CSNfnO8Uh0Ovdi3l84nJ0uSft+7V+9Pn6JnevXRyDFv6eyZ0+oT000nT5y44fjTpk1TcHCw6tevryVLlqho0aK3+yPdFiwRBwAAAABc1/4/EnXmzGk93rGzKkdESZJKlS6jVcuXKSXlgiTp/PlkvTf5Q0VWqSpJur9SZbV7pKk+/Xih+rzQ/7rjV6xYUX5+fipcuLAiIyNv62e5ndzqCvbgwYMVFhZ23Z+b1aVLFw0ePPia+7du3XrDJQgpKSlatGjRFdtHjBihWbNmSZI2bNigffv23XQ+AAAAAHB3Ze8pr0KFCmtgv+f09thR+m79Nypy5516rt9LKlosRJJ0V4mSrnItSXcGByu8cqR2/PKzVbFznFsV7KFDh2rz5s2uH0l69dVXr9hmpqioKG3evFnFixe/5jHz5s3T3Llzr9i+adMm1a9fX0lJSerdu7dOnTplej4AAAAAsFpAQIDem/uhatepp2+/XqshA19Us0b19PbYUUpLS5MkBQdfuay7cOHCOnfubE7HtYxbLREPCgpSUFDQFduCg4Nv23v6+fndcPyrfdn53r17ZRhGrr4BHwAAAACyqlTpMho55i1lZGQoflecvvpytZYvXaISJUMlSWfOnL7inL9PnVKhQoVzOqpl3OoKdnY4HA4NHTpUtWvXVnh4uB599FF9/fXXmY65cOGChgwZomrVqqlq1aoaPHiwUlJSJF25RDw6Olpvv/22mjdvrho1aqhLly569913lZSUlOm4jRs3ql69ejp8+LAaNWokSerataumTZsmSUpMTFTv3r1Vo0YNVa1aVS+88IKSkpJcmbp06aKxY8fqpZdeUkREhOrVq6dZs2ZdtcwDAAAAgJXWf/O1mkXX1amTJ+Xt7a3wiEi9PGS4goIK6OiRI5KkQwcP6M8/El3nnDhxXHE7/6tqD9TI0nt4eeX6epr7C/aUKVO0d+9ezZo1S19++aXq1aun/v37Z7qq/PXXX6to0aJavny5xo0bpy+//FKzZ8++5pgLFy7UsGHDNGfOHM2YMUPdu3dXSEhIpqXkmzZtUr169VS8eHEtXbpU0j9PvuvevbuSkpL0xBNPyM/PTx9++KHmzZunEydOqHPnzjp//rzrfT7++GMFBQVp+fLl6t+/v6ZPn37dXAAAAABghcoRUcpwZmjQSy9o44Zv9fO2rXprzCidP5+sho0ekvTPyt+BL/bVN2vXaMO36/Tic71UoEBBtX+yc5beo0CBAoqPj9e2bduUmpp6Oz/ObeNWS8Sz4+DBgwoMDFRoaKgKFCigfv36qXr16ipYsKDrmMqVK6t//3+eWnf33Xerdu3a2rVr1zXHrF+/vh588EHX64CAAHl7e7uWkicnJ2vXrl2qVauWvL29VbjwP0seChYsqMDAQM2YMUMBAQGaMGGC/Pz8JElTp05Vo0aNtGrVKnXq1EmSVKZMGb322muy2WwqV66cEhMTtWDBAvXo0UM2W/a/cL1YQV8F+Xtn+3wAAAAAbizDJu+LNvl6e8nPO2eumd4VUkzT35utGe9O1ZujRyg1NVXl7imvce9MUa2aNfXVF7EKKV5cXZ/qpikTx8nhcKhGjVrqP/UVBRcuJEny9vqn41zO7PU/nad79+5644039Mwzz+iDDz5QtWrVcuSzmSnXFOy//vpLLVq0yLRtx44d6tGjh3r37q1atWqpcuXKql27tlq1apXpXu7SpUtnOq9gwYKZlmv/r1KlSl03y5YtW1S5cmXlz5//qvsTEhJUqVIlV7mWpODgYJUpU0YJCQmubTVq1MhUpKOiojR79mydPn3aVdqzIzz06rkAAAAA5H6pqanav/+EAvN5yz8HL6zVqBapGvPnXXWfr7dNXjabnu7aSU937XTVYwb076cB/fu5Xi9etFDS/z3zqmXLlmrZsqXJqXNWrinYRYsW1cqVK6/YHhUVpY0bN2rLli368ccftXLlSr333nuaM2eOatWqJUny9r65Sefv73/d/Rs3blT9+vWvuf9a91E7nU75+vq6Xvv4+FyxX7r5vP/rwq9r5bxw5QMGAAAAAOR+aTZfOe2llHHhjDIu+d34hBxgpF+U4cxQxvm/b+5EL295BxT0mGdR5ZqC7ePjc9Ury1OnTlXVqlXVqFEjNWrUSEOGDFGLFi20du1aV8G+Vf++ymwYhr7//nt17979qvslKSwsTLGxsUpLS3NdxT558qQOHDigjh07uo6Li4vLdN727dtVsmTJTMvbs8N54bQyzp24pTEAAAAAuKcMb7uUr6QM5yUZGdm/tdRMhvHPxUIjI/2mznOP9ObJ9Q85O3TokEaOHKkff/xRSUlJWrt2rf766y9FRUWZ9h4BAQE6e/as9u/fr507d8rX11fly5fPtF/6Z2l4cnKynnzySV24cEEvv/yy9uzZo507d6pfv34qVKhQpmXuP//8s6ZOnao///xTy5Yt06JFixQTE2NabgAAAADICW+MfFXrVn1qdQzL5fqCPXLkSNWqVUsvv/yymjRpoilTpmjgwIFq3bq1ae/x8MMPKzg4WI888oi+//571a1bN9P+QoUKqV27dho3bpymTJmikiVLauHChTp37pyeeOIJPfPMMwoODtbHH3+sAgUKuM5r1KiREhMT9cgjj+j999/XkCFD9OSTT5qWGwAAAACQc2yGpyx2z2W6dOmiEiVK6K233jJtzMtLzksn72aJOAAAAOCh0rztOlEkXKVCS8jfz/fGJ7gxm7evvPMXltPptOx7sP95aNx+lSlT5qrP47rcs8LDw284Vq6/gg0AAAAAgDugYAMAAAAAYIJc8xRxT/PRRx9ZHQEAAAAAYCKuYAMAAAAAYAIKNgAAAAB4CpuX5OWT8z+27FXLv44c1RdffJHtj7t161aFhYXp8OHD2R7DTCwRBwAAAABPYPOSV/475eVly/G3djoNOc+flAznTZ336sjXVeLuUmrWrFm23jcqKkqbN29W4cKFs3W+2SjYAAAAAOAJbF7y8rJpa+I5JTsycuxtg+zeqlGugJw2r5su2IZu7Vuj/fz8FBwcfEtjmImCDQAAAAAeJNmRoTMpl6yOcUNP935BP23/r376ZYe2bt0qm82mJk2aaOPGjTp16pSmTZumsLAwjR8/Xhs3btTff/+tAgUKqFGjRho6dKjsdru2bt2qrl276ttvv1XJkiUVHR2tTp066b///a82b94sPz8/tWrVSoMHD5aPz+2vv9yDDQAAAADIcZPfHqPIypXUrFkzLV26VJK0cOFCDRs2THPmzFFkZKQGDx6s+Ph4vfvuu1q7dq2GDBmilStXasmSJdccd8qUKapevbpiY2P1yiuvaOHChfr8889z5DNxBRsAAAAAkOPuKFhAvr6+8vf3d91DXb9+fT344IOuY2rXrq3q1asrLCxMklSyZEktXLhQCQkJ1xy3Tp066tq1qyQpNDRUH330kbZv365HH3309n2Y/4+CDQAAAABwC6VKlcr0umPHjlq/fr1WrFihP//8U/v27dPhw4dVtmzZa45Rrly5TK+DgoKUnp5+W/L+L5aIAwAAAADcgr+/v+vfTqdTvXr10pgxY+Tj46PmzZtr5syZqlKlynXH8PPzu2KbYdzaw9SyiivYAAAAAABL2HTtrxT77bfftGnTJn366aeKiIiQJKWnp+vgwYMKDQ3NqYg3hYLtgbwCC1kdAQAAAMBt4m3zlby8ZfPykc3b9/92eHlbF0qSzdtHst3cd3AHBAYoKSlJR48evWLfnXfeKR8fH61Zs0aFCxfWmTNn9P777+vEiRNKS0szK7apKNgeKDCiidURAAAAANwmqamp8tq/X96Bd8j7X0uqLwuy52zRvvx+3gEFb/rcJzt10aBBg/Too4/Kbrdn2lesWDG99dZbmjZtmhYtWqTg4GA1aNBATz/9tNavX29KdrPZjJxajI7bLi4uTmlpaapYseIVkxPISQ6HQ/v371eZMmWYi7Ac8xHugrkId8J8zN1SU1Nd//38/6dgG4Yh201eRTZDdt/X6XQqNTVV+fLlk7e3NVfgr/f7lP7pWZIUHh5+w7F4yJkH4m8msJphGHI4HMxFuAXmI9wFcxHuhPnouawo17fyvoZheNQ8pGADAAAAAGACCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJqBgAwAAAABgAgo2AAAAAAAmoGADAAAAAGACCrYHsuq774DLbDab7HY7cxFugfkId8FchDthPsJd2Gw2j5qHPlYHgLn8/Pxkt9utjoE8zm63q2LFilbHACQxH+E+mItwJ8xHuAsvLy/Z7XYZhmF1FFNQsD3Q1sRzSnZkWB0DAAAAwG3g5UxTIcOp86mXlGZccm232aT8fl6yeeX8QmXD6dT5NKdutid72WzK7++drYIdHR2tNm3a6Pnnn7/pc28XCrYHSnZk6EzKpRsfCAAAACDX8VWGCvoZuuQ05OX8v2Lq7SXZvLx04de1cl44nWN5vAILKTCiiZxGhjKcN3euj4fdtEzBBgAAAAAP4rxwWhnnTlgdI0/ysL8XAAAAAAByg9dHDtXTnTtk2paUlKR7771XP/zwg5YuXapWrVqpcuXKioyMVMeOHRUXF2dR2qyhYAMAAAAAclyLRx7V7l1xOnjwoGvb6tWrFRISouTkZI0ePVoxMTFas2aN5s+fr4sXL2rYsGEWJr4xCjYAAAAAIMdFVammEiVDFRsb69q2evVqtW7dWoULF9bYsWPVunVrlShRQpGRkXrssceUkJBgYeIb4x5sAAAAAECOs9lsatHqEa1evVp9+vRRfHy89u3bpxkzZqhUqVJKTEzU9OnT9ccff+jAgQPau3evnM6bfIpaDuMKNgAAAADAEi1bPaoDBw5o165dWr16tapUqaJSpUpp9erVeuSRR3To0CFVqVJFgwYN0uDBg62Oe0NcwQYAAAAAWKL4XXepRo0aWrt2rdasWaPnnntOkjRr1iw99thjGjVqlOvYb7/9VpJkGIZsNpsleW+Egg0AAAAAsEybNm00evRoOZ1ONWvWTJJUvHhxbd++Xbt371ZQUJDWr1+vhQsXSpLS0tKUL18+KyNfEwUbAAAAADyIV2ChXPV+TZo00ejRo9W4cWPlz59fkjR8+HCNGDFCnTt3lp+fn+69916NGzdO/fv3V1xcnKpVq2ZGdNPZDMMwrA4Bc1z+TrhjtpI6k3LJ4jQAAAAAbgdfpauk398qcXcp+eXzd233skkF/b1l88r5R20ZTqfOpmbIeZPt0sfLpgJ2HzmdTnlZkFuSUlNTtX//fpUpU0b+/v5X7L/cs8LDw284FlewAQAAAMADOA3pbGqGbLaMHH9vw9BNl2tPRMEGAAAAAA/hNCRRdC3jUQV78ODBWrFixXWP2bt3bw6lAQAAAADkJR5VsIcOHaoBAwa4XtepU0evvvqqmjdvbmEqAAAAAEBe4FEFOygoSEFBQVdsCw4OtigRAAAAACCvsOYxbRZZvny5HnroIY0ZM0ZVq1ZVnz59JEmJiYnq3bu3atSooapVq+qFF15QUlKS67wuXbpo8ODBmcb6321z585V48aNValSJUVHR2v69On69wPaN2zYoLZt26py5cp66KGHNHnyZKWlpbn2h4WFaerUqWrYsKHq1KmjP//88zb9FgAAAADkZq7brPlCKFOY+cVaHnUFOysOHjyo48ePa+XKlUpNTVVSUpKeeOIJPfjgg/rwww918eJFvfXWW+rcubNWr17t+h6261m/fr1mzpypSZMmqUyZMvrvf/+rV155RSVLllTr1q21adMmvfjiixoyZIgefPBBHTx4UK+//rr279+vKVOmuMZZvHixZs+erYyMDJUuXTrbn7FYQV8F+Xtn+3wAAAAAbszwkXeKTRnpF+UXGGh1mlti0TdzZZKSkiJJ8vX1veWx8lzBlqQ+ffooNDRUkjR+/HgFBARowoQJ8vPzkyRNnTpVjRo10qpVq9SpU6cbjnfw4EH5+fmpRIkSuuuuu3TXXXepaNGiuuuuuyRJ77//vh5//HF16NBBknT33Xdr1KhReuqpp3T48GGVLFlSktS6dessfbfajYSH3viPAgAAAAByryNHUnXm9En5+3opICBANpvN6kjZ45QcjjQZhpHj34NtGIZSUlJ0/Phx3XHHHfL2vvWLlHmyYP/76nBCQoIqVarkKteSFBwcrDJlyighISFL4z3yyCP67LPP1KRJE91zzz168MEH1aRJE1fBjo+P186dO7Vs2TLXOZeXISQmJroKdqlSpW71o0mSLvy6Vs4Lp00ZCwAAAID7CZR00buQjjqS3eMycHbZvOTlZ5dhGJb9keCOO+5QSEiIKWPlyYLt7+/v+ve11ts7nc7rLhG4dOmS69+FCxfWqlWrtGPHDm3ZskWbN2/WggUL9Pzzz6tv375yOp2KiYlRmzZtrhjn3w9g+3euW+G8cFoZ506YMhYAAAAA93SHTqiAzUuXvPwk5c4r2N75CykwrIVSU1NN60M3w9fX15Qr15flyYL9b2FhYYqNjVVaWprrKvbJkyd14MABdezYUdI/v/Tz58+7znE6nTp06JDrinNsbKySk5PVqVMn10PShg0bpi+//FJ9+/ZV+fLltX///kxXqLdu3aoFCxbotddeU0BAQA5+YgAAAACewstwyi8j1eoY2eZt5Je/v78Mw7CkYJstF68lMMeTTz6pCxcu6OWXX9aePXu0c+dO9evXT4UKFVKLFi0kSZGRkdqyZYs2bdqkAwcO6PXXX9e5c+dcY1y8eFFvv/22Vq5cqcOHD+vnn3/WTz/9pKioKElSjx49tHbtWr377rvav3+/fvzxRw0ZMkTJycl8hRgAAAAAeIg8fwW7ZMmSWrhwocaPH68nnnhCfn5+ql27tsaPH68CBQpIkrp3766DBw+qX79+8vPz02OPPaYWLVq4lpe3b99eZ86c0YwZM3TkyBEVLFhQTZo00cCBAyVJTZs21aRJkzRz5ky9//77uuOOOxQdHe3aDwAAAADI/WyGmV/6BUvFxcVJkkon7+YebAAAAABuz7tAsIIe7CCHwyG73W51nKu63LOy8o1PeX6JOAAAAAAAZqBgAwAAAABgAgo2AAAAAAAmoGADAAAAAGACCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJqBgAwAAAABgAgo2AAAAAAAmoGADAAAAAGACCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJvCxOgDM5xVYyOoIAAAAAHBDntZdKNgeKDCiidURAAAAACBLnBkZVkcwDUvEPUxaWpocDofVMZDHORwOxcfHMxfhFpiPcBfMRbgT5iPchcPh0K7du2UYhtVRTEHB9kCeMjmRexmGIYfDwVyEW2A+wl0wF+FOmI9wF4ZhKD093eoYpqFgAwAAAABgAgo2AAAAAAAmoGADAAAAAGACCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJqBgeyCbzWZ1BORxNptNdruduQi3wHyEu2Auwp0wH+EubDabfH19rY5hGpvBl995jLi4OElSeHi4xUkAAAAAIGsyMpxKS7sou91udZSrupme5XO7wyDnbU08p2RHhtUxAAAAAOC6guzeqlGugNUxTEPB9kDJjgydSblkdQwAAAAAyFO4BxsAAAAAABNQsAEAAAAAMAEFGwAAAAAAE1CwAQAAAAAwAQUbAAAAAAATULABAAAAADABBRsAAAAAABNQsAEAAAAAMAEFGwAAAAAAE1CwAQAAAAAwAQUbAAAAAAATULABAAAAADABBRsAAAAAABPk+oIdHR2tsLAw18+9996rKlWqqHPnzvrpp5+yNMby5csVFhaWacxp06bdrsgAAAAAAA+U6wu2JHXv3l2bN2/W5s2btWnTJn3yySfKnz+/YmJi9Ndff1kdDwAAAACQB3hEwQ4ICFBwcLCCg4NVtGhRVahQQaNGjVJqaqrWrVtndTwAAAAAQB7gEQX7anx8fCRJfn5+V13yfTPLwHfs2KGuXbuqatWqqlGjhoYMGaLTp09LkqZNm6Y6derI6XS6jnc4HIqKitLSpUslSYmJierRo4eioqJUp04dDRgwQCdOnHAd36VLFw0fPlzt27dXtWrVFBsbe0ufHQAAAACQ83ysDnA7HDt2TG+88YYCAgJUv359zZ49O9tj7dy5U126dNETTzyhkSNH6sSJExo9erSeeeYZLV26VI8++qimT5+urVu3qlatWpKkb775RoZhqFmzZjp27Jg6duyoVq1aafDgwXI4HJo2bZqeeOIJff755woICJAkLV26VOPHj1dYWJiCg4Nv6fMXK+irIH/vWxoDAAAAAG63gHyedc3XIwr2zJkzNW/ePEnSpUuXlJaWpnLlymny5Mm66667bmnsefPmKSwsTMOHD5cklStXThMnTlTr1q21efNm1a9fX9WrV1dsbKyrYK9evVqNGzdW/vz5NWfOHIWEhGjYsGGuMSdPnqyaNWvqq6++Utu2bSVJ9913n1q1anVLWS8LD81vyjgAAAAAcLsZhlM2m83qGKbwiILdoUMHdenSRZLk5eWlO+64Q0FBQaaMnZCQoNq1a2fadu+99yooKEh79+5V/fr11a5dO73++ut67bXXdOHCBW3ZssV11Tw+Pl6///67oqKiMo1x8eJFJSYmul6XKlXKlLySdOHXtXJeOG3aeAAAAABwO3gFFlJgRBMZhmF1FFN4RMEuWLDgTRfUS5cuZem4a/2HNgxDvr6+kqSHH35Yo0aN0oYNG3Ty5EkFBwerZs2akiSn06maNWtq5MiRV4zx7z8C+Pv731T+63FeOK2McydufCAAAAAAwDSeteD9Gnx9fXX+/HnX6/Pnz+vUqVNZOjcsLEy//PJLpm179uzR+fPnVa5cOUn/PMW8WbNm+vrrr/XFF1+odevW8vL651dbvnx5JSYmqnjx4ipVqpRKlSqlggUL6o033lBCQoJJnxAAAAAAYLU8UbAjIyP15Zdfavv27dq3b59effVVeXtn7SFg3bp10969e/X6668rMTFRW7du1cCBA1WxYkXXPdeS1LZtW23YsEH//e9/XfdVS1LHjh2VnJysgQMHas+ePdqzZ4/69++vuLg4VahQwfTPCgAAAACwhkcsEb+Rl156SWfOnFG3bt0UFBSk7t2769y5c1k6NyIiQnPmzNHkyZP16KOPKn/+/GrcuLEGDBjgWiIuSdWqVVNwcLCKFCmSabl6aGioFi5cqHfeeUdPPvmkvL29VaVKFS1YsECFCxc2/bMCAAAAAKxhMzzlbnIoLi5OklQ6eTf3YAMAAABwe94FghX0YAc5HA7Z7Xar41zV5Z4VHh5+w2PzxBJxAAAAAABuNwo2AAAAAAAmoGADAAAAAGACCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJqBgAwAAAABgAgo2AAAAAAAmoGADAAAAAGACCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJqBgAwAAAABgAh+rA8B8XoGFrI4AAAAAADfkad2Fgu2BAiOaWB0BAAAAALLEmZFhdQTTsETcw6SlpcnhcFgdA3mcw+FQfHw8cxFugfkId8FchDthPsJdOBwO7dq9W4ZhWB3FFBRsD+QpkxO5l2EYcjgczEW4BeYj3AVzEe6E+Qh3YRiG0tPTrY5hGgo2AAAAAAAmoGADAAAAAGACCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJqBgAwAAAABgAgq2B7LZbFZHQB5ns9lkt9uZi3ALzEe4C+Yi3AnzEe7CZrPJ19fX6himsRl8+Z3HiIuLkySFh4dbnAQAAAAAsiYjw6m0tIuy2+1WR7mqm+lZPrc7DHLe1sRzSnZkWB0DAAAAAK4ryO6tGuUKWB3DNBRsD5TsyNCZlEtWxwAAAACAPIV7sAEAAAAAMAEFGwAAAAAAE1CwAQAAAAAwAQUbAAAAAAATULABAAAAADABBRsAAAAAABNQsAEAAAAAMAEFGwAAAAAAE1CwAQAAAAAwAQUbAAAAAAATULABAAAAADABBRsAAAAAABP4WB3AatHR0UpKSnK99vX11Z133qn69eurX79+Kly4sIXpAAAAAAC5RZ4v2JLUvXt3de/eXZKUmpqqhIQEjR8/Xp07d9aSJUsUFBRkcUIAAAAAgLtjibikgIAABQcHKzg4WKGhoWrUqJHmzZunI0eOaM6cOVbHAwAAAADkAhTsa7jrrrv00EMP6YsvvpAkhYWFaerUqWrYsKHq1KmjP//8U2lpaRo/frzq1q2rqKgoPf7449q8ebNrjIyMDI0fP17169dXpUqV1LRpU3388ceu/adOndILL7ygGjVqqHLlyurQoYO2bduW458VAAAAAHDrWCJ+HRUqVNCqVat04cIFSdLixYs1e/ZsZWRkqHTp0howYIASExM1YcIEFStWTBs2bFDv3r317rvvqkGDBlq8eLG++uorTZo0ybX/tddeU/ny5VWtWjW99tprSktL08KFC+Xn56f3339fffr00aZNmxQQEGDxpwcAAAAA3AwK9nUUKFBAknT+/HlJUuvWrRUeHi5JOnDggD7//HOtXLlS9913nySpW7du2rNnj+bOnasGDRro4MGDCggIUMmSJVW0aFF17txZZcuWVZkyZSRJBw8eVIUKFRQaGip/f38NHTpUrVq1kre39y3lLlbQV0H+tzYGAAAAANxuAfk8a1E1Bfs6kpOTJUn58+eXJJUqVcq1Lz4+XpLUsWPHTOekp6e7inmnTp30zTffqH79+rrvvvtUu3ZttWjRQkWKFJEk9e3bVy+//LLWrl2rqlWrqk6dOmrZsqXy5ct3S7nDQ/Pf0vkAAAAAkFMMwymbzWZ1DFNQsK9j9+7dKl26tAIDAyVJ/v7+rn2GYUiSFi1a5Np/mZfXP3+FKV26tL7++mtt27ZNW7Zs0XfffafZs2frzTffVJs2bfTQQw/p+++/1/fff68ffvhBH3zwgd599119+umnKl++fLZzX/h1rZwXTmf7fAAAAADICV6BhRQY0cTVr3I7CvY1HD16VN9++6169Ohx1f2XC/CJEydUsWJF1/ZJkybJy8tL/fr104IFC1SkSBG1aNFCtWvX1iuvvKJu3brpyy+/VIsWLfTOO++odevWat68uZo3b67U1FTVrl1b33333S0VbOeF08o4dyLb5wMAAAAAbp5nLXjPppSUFJ04cUInTpzQoUOH9M033ygmJkYlS5ZUt27drnpO+fLl1bBhQ40cOVLr16/XoUOHNHv2bM2cOVN33323JOnvv//W6NGj9e233yopKUnff/+9fvvtN0VFRcnPz09xcXEaPny4/vvf/+rw4cNavny5UlJSFBUVlZMfHwAAAABgAq5gS5o3b57mzZsnSfL19VXx4sXVvHlzde/e/Yrl3/82adIkTZo0SSNGjNDZs2d19913a+zYsWrTpo2kf+6xTk9P15gxY3TixAkFBwfrySefVK9evVznv/nmm3r22WeVnJyssmXLasKECapWrdrt/9AAAAAAAFPZDE9Z7A7FxcVJkkon72aJOAAAAAC3510gWEEPdpDD4ZDdbrc6zlVd7lmXv1HqelgiDgAAAACACSjYAAAAAACYgIINAAAAAIAJKNgAAAAAAJiAgg0AAAAAgAko2AAAAAAAmICCDQAAAACACSjYAAAAAACYgIINAAAAAIAJKNgAAAAAAJiAgg0AAAAAgAko2AAAAAAAmICCDQAAAACACXysDgDzeQUWsjoCAAAAANyQp3UXCrYHCoxoYnUEAAAAAMgSZ0aG1RFMwxJxD5OWliaHw2F1DORxDodD8fHxzEW4BeYj3AVzEe6E+Qh34XA4tGv3bhmGYXUUU1CwPZCnTE7kXoZhyOFwMBfhFpiPcBfMRbgT5iPchWEYSk9PtzqGaSjYAAAAAACYgIINAAAAAIAJKNgAAAAAAJiAgg0AAAAAgAko2AAAAAAAmICCDQAAAACACSjYAAAAAACYgILtgWw2m9URkMfZbDbZ7XbmItwC8xHugrkId8J8hLuw2Wzy9fW1OoZpbAbfLu8x4uLiJEnh4eEWJwEAAACArMnIcCot7aLsdrvVUa7qZnqWz+0Og5y3NfGckh0ZVscAAAAAgOsKsnurRrkCVscwDQXbAyU7MnQm5ZLVMQAAAAAgT+EebAAAAAAATEDBBgAAAADABBRsAAAAAABMQMEGAAAAAMAEFGwAAAAAAExAwQYAAAAAwAQUbAAAAAAATEDBBgAAAADABBRsAAAAAABMQMEGAAAAAMAEFGwAAAAAAExAwQYAAAAAwAQU7Cy4dOmSPvzwQ7Vt21ZRUVGqWbOmunfvrv/85z+mvs9ff/2lL774wtQxAQAAAAA5g4J9AxcvXlTXrl01f/58denSRStWrND8+fNVrlw5devWTatXrzbtvQYNGqTvv//etPEAAAAAADnHx+oA7m7KlCnau3evPv/8cxUvXty1fejQoTp//rzGjBmj6OhoBQYGWpgSAAAAAGA1rmBfR3p6uj777DO1bds2U7m+7MUXX9Ts2bPl7++vM2fOaNSoUapfv74qV66sDh06aOvWra5jnU6nZs6cqSZNmqhSpUqqUqWKYmJidPDgQUlSly5dtG3bNq1YsULR0dE59hkBAAAAAObgCvZ1HDp0SGfOnFGVKlWuur9YsWIqVqyYMjIy1L17d6Wnp2v8+PEqXLiwFixYoGeeeUaLFy9W5cqVtWDBAs2dO1dvv/22KlSooIMHD2r48OF66623NGPGDE2bNk29e/dWSEiIRowYcUu5ixX0VZC/9y2NAQAAAAC3W0A+z7rmS8G+jrNnz0qSChYseN3jNm/erN27d2v16tWqUKGCJGnUqFGKi4vT3LlzNWXKFN199916++231bBhQ0lSiRIl1LRpU3311VeSpDvuuEO+vr7y9/dX4cKFbyl3eGj+WzofAAAAAHKKYThls9msjmEKCvZ1XC66Z86cue5xCQkJCgoKcpVrSbLZbKpWrZo2b94sSYqOjtavv/6qKVOmaP/+/dq/f7/27dunYsWKmZ77wq9r5bxw2vRxAQAAAMBMXoGFFBjRRIZhWB3FFBTs6wgNDdWdd96p7du3q3nz5lfsT0xM1NixY6+5hNwwDPn4/PMrnjVrlqZPn642bdqoVq1aevrpp/Xtt9/elq/lcl44rYxzJ0wfFwAAAABwbZ614N1kXl5eeuyxx7R8+XIdOXLkiv1z5sxRXFycKlWqpOTkZCUkJLj2GYahX375Rffcc48k6f3339dzzz2n1157TU888YQiIyP1559/esxfagAAAAAgr6Ng30Dv3r1VunRpdezYUStXrtTBgwe1c+dODRkyRCtXrtTrr7+uunXr6r777tOAAQO0bds2JSYmavTo0UpISNBTTz0lSSpevLi2bNmiffv26Y8//tCkSZP09ddfKy0tzfVegYGBSkpK0tGjR636uAAAAACAbLIZXEK9oZSUFM2bN09r1qzRX3/9JX9/f1WsWFHPPvusqlWrJkn6+++/9fbbb2vDhg1KS0tTpUqV1K9fP1WvXl2StHv3bo0ePVp79uxRYGCgIiIiVL9+fb322mtav3697rrrLn333XcaNGiQDMPQjz/+KG/vm3sSeFxcnCSpdPJulogDAAAAcHveBYIV9GAHORwO2e12q+Nc1eWeFR4efsNjKdgehIINAAAAIDfxtILNEnEAAAAAAEyQ7aeIHzp0SGlpaSpXrpySk5M1efJkJSUlqWnTpnr00UdNjAgAAAAAgPvL1hXsjRs3qlmzZlq2bJkkacSIEfrkk0907NgxDRkyREuXLjU1JAAAAAAA7i5bBfu9995TnTp19Nxzz+ncuXNat26devbsqRUrVqhnz55asGCB2TkBAAAAAHBr2SrYe/bs0VNPPaX8+fNr06ZNysjIUJMmTSRJtWvX1oEDB0wNCQAAAACAu8tWwc6XL58uXbokSdq8ebOKFCmie++9V5J08uRJFShQwLyEAAAAAADkAtl6yFmVKlU0b948nTt3TmvXrlWbNm0kSbt27dK7776rKlWqmBoSAAAAAAB3l60r2K+++qqOHj2qAQMGqESJEnr22WclSb169dLFixc1cOBAU0MCAAAAAODusnUFOzQ0VF9++aVOnTqlO++807V9+vTpqlixovz8/EwLCAAAAABAbpCtK9iSZLPZFBAQ4Hq9du1a7dixQ0eOHDElGAAAAAAAuUm2CvYff/yhhx56SLNmzZIkTZ48WS+++KLefvttPfLII/rll19MDQkAAAAAgLvLVsGeMGGCfHx81KhRI6WlpWnx4sVq1qyZfv75Z9WtW1eTJ082OSYAAAAAAO4tWwX7559/1oABAxQeHq5t27YpOTlZTzzxhPLnz68OHTpo165dZucEAAAAAMCtZeshZ+np6a7vut60aZPsdruqVq0qScrIyJCPT7aGhUm8AgtZHQEAAAAAbsjTuku2mnCFChX09ddfq0yZMvrqq69Up04d+fj4KD09XYsWLVKFChXMzombEBjRxOoIAAAAAJAlzowMqyOYJltLxF944QUtW7ZM9erV09mzZ9WjRw9JUpMmTfSf//xHzz33nKkhkXVpaWlyOBxWx0Ae53A4FB8fz1yEW2A+wl0wF+FOmI9wFw6HQ7t275ZhGFZHMUW2rmDXrl1bq1evVlxcnCIiIlSiRAlJ0lNPPaWaNWsqLCzM1JC4OZ4yOZF7GYYhh8PBXIRbYD7CXTAX4U6Yj3AXhmEoPT3d6himyfbN0qGhoQoNDc207amnnpIknT9/Xvnz57+1ZAAAAAAA5CLZKthpaWn68MMPtW3bNqWlpbn+8mUYhlJSUrRv3z79+uuvpgYFAAAAAMCdZatgjxs3TgsXLlSFChX0999/K1++fCpcuLASEhKUnp6uvn37mp0TAAAAAAC3lq2HnH399dfq1q2bYmNj1blzZ1WqVElLly7V119/rRIlSsjpdJqdEwAAAAAAt5atgv3333+rXr16kv75yq64uDhJUrFixdSzZ099+eWX5iUEAAAAACAXyFbBDgoKUlpamiSpVKlSOnLkiM6fPy9JKl26tI4cOWJeQgAAAAAAcoFsFexq1arpo48+ksPhUKlSpWS32/XNN99Iknbs2METxC1ms9msjoA8zmazyW63MxfhFpiPcBfMRbgT5iPchc1mk6+vr9UxTGMzsvHld3v37lWnTp1033336aOPPtKECRP04Ycfqnz58tq7d6+efPJJDRs27HbkxXVcXqofHh5ucRIAAAAAyJqMDKfS0i7KbrdbHeWqbqZnZesp4mFhYVqzZo0SEhIkSQMGDFD+/Pm1fft2RUdHq2fPntkZFibZmnhOyY4Mq2MAAAAAwHUF2b1Vo1wBq2OYJlsFW5KCg4MVHBws6Z/L+r179zYtFG5NsiNDZ1IuWR0DAAAAAPKULBfsd999N8uD2mw2Pffcc9kKBAAAAABAbkTBBgAAAADABFku2Hv27HH92+FwXHEDenx8vCpWrGheMgAAAAAAcpGb+pquvXv3ql27dpo/f36m7efOndNjjz2m1q1ba//+/WbmAwAAAAAgV8hywT58+LC6du2qkydPqkyZMpn2+fr66pVXXtGZM2fUsWNHHTt2zPSgAAAAAAC4sywX7FmzZumOO+7QihUr1LRp00z77Ha7nn76aS1btkz58uXTzJkzTQ8KAAAAAIA7y3LB/vHHHxUTE6PChQtf85jg4GB1795dW7ZsMSUcAAAAAAC5RZYL9vHjx1W6dOkbHlehQgUdPXr0VjIBAAAAAJDrZLlgFy5cWMePH7/hcadPn1bBggVvKRQAAAAAALlNlgt29erVtXz58hset3LlSr6uCwAAAACQ52S5YHfp0kVbt27VW2+9pYsXL16xPy0tTePGjdOmTZvUqVMnU0MCAAAAAODufLJ6YHh4uIYMGaI33nhDq1atUq1atVSyZEllZGTor7/+0tatW3X69Gn169dPdevWvZ2ZAQAAAABwO1ku2JLUqVMn3XvvvZo7d66+/fZb15XswMBA1alTR927d1dERMRtCXqrYmNjtXDhQiUkJMhms6ls2bJq3769OnTocFvfNzo6Wm3atNHzzz9/W44HAAAAALiHmyrYklS1alVVrVpVkvT333/Lx8dHBQoUMD2YmZYtW6axY8dq6NChqlq1qgzD0JYtWzRmzBidPHlSffv2tToiAAAAACCXu+mC/W/X+05sd7J48WK1a9dOjz32mGtb2bJldezYMS1YsICCDQAAAAC4ZVl+yFlu5uXlpR07dujs2bOZtvfs2VNLliyRJP3111/q37+/atWqpfvvv1/16tXT+PHj5XQ6JUnLly/XQw895Pq/lSpVUtu2bfXLL7+4xktOTtagQYNUrVo11axZUx988MEVWZYuXapWrVqpcuXKioyMVMeOHRUXF3cbPz0AAAAAICfkiYIdExOj+Ph41atXTz179tSsWbO0c+dOBQUFqUyZMpKkZ599VsnJyfrggw/01VdfqXv37pozZ47Wr1/vGufIkSP65JNPNH78eK1YsUJ2u12DBw+WYRiSpBdffFE7d+7U+++/rw8++EDfffedkpKSXOevW7dOo0ePVkxMjNasWaP58+fr4sWLGjZsWM7+QgAAAAAAprulJeK5RdOmTRUSEqIFCxZoy5Yt2rhxoySpdOnSeuONN3T//ferdevWatasmYoXLy5JevrppzV79mzt3btXjRs3liSlp6dr1KhRuu+++yRJ3bp103PPPacTJ07o/Pnz2rx5s+bPn69q1apJkt555x01bNjQleOOO+7Q2LFj9cgjj0iSSpQooccee0yjR4829fMWK+irIH9vU8cEAAAAALMF5POsa755omBLUmRkpCIjI+V0OrVnzx5t3LhRCxcuVI8ePbRu3Tp17txZX331lXbu3KkDBw5o7969OnnypGuJ+GXlypVz/TsoKEjSP8U7ISFB0j9fZ3bZnXfeqdDQUNfr6tWrKzExUdOnT9cff/zhep//fY9bFR6a39TxAAAAAOB2MQynbDab1TFM4fEF++jRo5o5c6Z69eqlkJAQeXl5qWLFiqpYsaIaN26sli1batOmTfroo4+Umpqqpk2bqk2bNqpcubI6dep0xXh+fn5XbDMMwzUh/rcs+/j836949erVGjx4sFq1aqUqVaqoQ4cOSkhIMP0K9oVf18p54bSpYwIAAACA2bwCCykwoonrttvczuMLtp+fn5YuXarixYurZ8+emfZd/nqxpKQk7d69W1u2bNGdd94pSTpz5oxOnTqV5f/Ql5eNb9++XQ0aNJAknTt3TgcPHnQdM2vWLD322GMaNWqUa9u3334rKXNJv1XOC6eVce6EKWMBAAAAALLG4wt24cKFFRMToylTpujChQtq2rSp8ufPr3379mnGjBmqUaOG6tWrp2nTpik2NlZNmjTRkSNHNHHiRKWnpystLS1L73P33XeradOmGj16tPz8/HTnnXdq4sSJmc4vXry4tm/frt27dysoKEjr16/XwoULJUlpaWnKly/fbfkdAAAAAABuP48v2NI/T/cuXbq0Pv30Uy1atEipqam666671KxZM/Xq1UsBAQEaMmSI5s+fr8mTJ6tYsWJq3ry5ihcvflNfofX222/r7bffVv/+/eV0OvXEE0/o77//du0fPny4RowYoc6dO8vPz0/33nuvxo0bp/79+ysuLs71cDQAAAAAQO5jMzxlsTtcfwwonbybJeIAAAAA3J53gWAFPdhBDodDdrvd6jhXdbln/fuB1tfiWc9EBwAAAADAIhRsAAAAAABMQMEGAAAAAMAEFGwAAAAAAExAwQYAAAAAwAQUbAAAAAAATEDBBgAAAADABBRsAAAAAABMQMEGAAAAAMAEFGwAAAAAAExAwQYAAAAAwAQUbAAAAAAATEDBBgAAAADABBRsAAAAAABM4GN1AJjPK7CQ1REAAAAA4IY8rbtQsD1QYEQTqyMAAAAAQJY4MzKsjmAaloh7mLS0NDkcDqtjII9zOByKj49nLsItMB/hLpiLcCfMR7gLh8OhXbt3yzAMq6OYgoLtgTxlciL3MgxDDoeDuQi3wHyEu2Auwp0wH+EuDMNQenq61TFMQ8EGAAAAAMAEFGwAAAAAAExAwQYAAAAAwAQUbAAAAAAATEDBBgAAAADABBRsAAAAAABMQMH2QDabzeoIyONsNpvsdjtzEW6B+Qh3wVyEO2E+wl3YbDb5+vpaHcM0NoMvv/MYcXFxkqTw8HCLkwAAAABA1mRkOJWWdlF2u93qKFd1Mz3L53aHQc7bmnhOyY4Mq2MAAAAAwHUF2b1Vo1wBq2OYhoLtgZIdGTqTcsnqGAAAAACQp3APNgAAAAAAJqBgAwAAAABgAgo2AAAAAAAmoGADAAAAAGACCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJqBgAwAAAABgAgo2AAAAAAAmoGADAAAAAGACCjYAAAAAACagYAMAAAAAYAIKdhbFxsbq8ccfV2RkpKKiotSuXTt98sknrv3R0dGaNm3aNc9fvny5wsLCrvsep0+f1tKlS03LDAAAAADIOT5WB8gNli1bprFjx2ro0KGqWrWqDMPQli1bNGbMGJ08eVJ9+/a94RjNmzdX3bp1r3vMuHHjdPjwYbVv396s6AAAAACAHELBzoLFixerXbt2euyxx1zbypYtq2PHjmnBggVZKtj+/v7y9/e/7jGGYdxyVgAAAACANVgingVeXl7asWOHzp49m2l7z549tWTJEtfrEydOqG/fvoqMjFSNGjX05ptvKiMjQ9KVS8TDwsI0depUNWzYUHXq1NGAAQO0YsUKbdu27YZLyQEAAAAA7ocr2FkQExOj/v37q169eqpRo4aqVaummjVrKjw8XAUKFHAdt2zZMg0aNEiDBg3S1q1bNXToUJUvXz7Tle9/W7x4sWbPnq2MjAyVK1dOGRkZOnr06HXv5QYAAAAAuCcKdhY0bdpUISEhWrBggbZs2aKNGzdKkkqXLq033nhDVatWlSQ9/PDDeuqppyRJoaGhWrBggXbt2nXNgt26dWuFh4e7Xvv7+8vX11fBwcG3lLdYQV8F+Xvf0hgAAAAAcLsF5POsRdUU7CyKjIxUZGSknE6n9uzZo40bN2rhwoXq0aOH1q1bJ+mfwv1vBQsW1MWLF685ZqlSpW5L1vDQ/LdlXAAAAAAwm2E4ZbPZrI5hCgr2DRw9elQzZ85Ur169FBISIi8vL1WsWFEVK1ZU48aN1bJlS/3000+SJG/vK68aX+/BZTd66Fl2Xfh1rZwXTt+WsQEAAADALF6BhRQY0cRjHvhMwb4BPz8/LV26VMWLF1fPnj0z7bt8//Wdd95pynuZ9Vcb54XTyjh3wpSxAAAAAABZQ8G+gcKFCysmJkZTpkzRhQsX1LRpU+XPn1/79u3TjBkzXA89M0NAQICOHz+uQ4cOKTQ01JQxAQAAAAA5g4KdBS+++KJKly6tTz/9VIsWLVJqaqruuusuNWvWTL169TLtfR599FGtW7dOLVu21Ndff61ixYqZNjYAAAAA4PayGZ6y2B2Ki4uTJJVO3s0ScQAAAABuz7tAsIIe7CCHwyG73W51nKu63LP+/Q1Q1+JZz0QHAAAAAMAiFGwAAAAAAExAwQYAAAAAwAQUbAAAAAAATEDBBgAAAADABBRsAAAAAABMQMEGAAAAAMAEFGwAAAAAAExAwQYAAAAAwAQUbAAAAAAATEDBBgAAAADABBRsAAAAAABMQMEGAAAAAMAEPlYHgPm8AgtZHQEAAAAAbsjTugsF2wMFRjSxOgIAAAAAZIkzI8PqCKZhibiHSUtLk8PhsDoG8jiHw6H4+HjmItwC8xHugrkId8J8hLtwOBzatXu3DMOwOoopKNgeyFMmJ3IvwzDkcDiYi3ALzEe4C+Yi3AnzEe7CMAylp6dbHcM0FGwAAAAAAExAwQYAAAAAwAQUbAAAAAAATEDBBgAAAADABBRsAAAAAABMQMEGAAAAAMAEFGwAAAAAAExAwfZANpvN6gjI42w2m+x2O3MRboH5CHfBXIQ7YT7CXdhsNvn6+lodwzQ2g2+X9xhxcXGSpPDwcIuTAAAAAEDWZGQ4lZZ2UXa73eooV3UzPcvndodBztuaeE7JjgyrYwAAAADAdQXZvVWjXAGrY5iGgu2Bkh0ZOpNyyeoYAAAAAJCncA82AAAAAAAmoGADAAAAAGACCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJqBgAwAAAABgAgo2AAAAAAAmoGADAAAAAGACCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJqBgAwAAAABgAo8o2LGxsXr88ccVGRmpqKgotWvXTp988kmOZli+fLnCwsJy9D0BAAAAAO7Dx+oAt2rZsmUaO3ashg4dqqpVq8owDG3ZskVjxozRyZMn1bdvX6sjAgAAAADygFxfsBcvXqx27drpsccec20rW7asjh07pgULFlCwAQAAAAA5ItcvEffy8tKOHTt09uzZTNt79uypJUuWSJKio6M1d+5cPf/884qKilKNGjU0ZswYXbp0yXX89u3b1alTJ1WuXFkNGjTQqFGjdP78edf+v/76S/3791etWrV0//33q169eho/frycTudVc3311VeqVKmSa6m6YRiaPXu2GjVqpIiICLVu3VqxsbGu47du3aqKFStq1qxZqlGjhtq2bXvNsQEAAAAA7ifXX8GOiYlR//79Va9ePdWoUUPVqlVTzZo1FR4ergIFCriOmzJligYOHKhXXnlF27Zt09ChQ1WpUiU9+uij2rNnj7p166Znn31WY8eO1cmTJzVu3Dh1795dS5Yskc1m07PPPqvg4GB98MEHCgwM1Lfffqs333xTUVFRaty4caZM33zzjV5++WWNHDlS7du3lyRNmjRJn3/+uUaMGKGyZcvqp59+0muvvabk5GR16tRJkpSRkaGNGzdqyZIlcjgc8vLK3t8/ihX0VZC/dzZ/owAAAACQMwLy5fprvpnk+oLdtGlThYSEaMGCBdqyZYs2btwoSSpdurTeeOMNVa1aVZJUp04dde3aVZIUGhqqjz76SNu3b9ejjz6quXPnqnbt2urdu7fr3HfeeUeNGzfWtm3bXFecmzVrpuLFi0uSnn76ac2ePVt79+7NVLC/++47vfTSSxo1apTatm0rSUpJSdH8+fM1ceJENWjQQJJ09913KykpSXPnznUVbEnq3r27SpcufUu/k/DQ/Ld0PgAAAADkFMNwymazWR3DFLm+YEtSZGSkIiMj5XQ6tWfPHm3cuFELFy5Ujx49tG7dOklSuXLlMp0TFBSk9PR0SVJ8fLwOHDigqKioK8ZOTExUjRo11LlzZ3311VfauXOnDhw4oL179+rkyZNXLOPu16+f0tLSVLJkSde2ffv26eLFixowYECmq9KXLl1SWlqaUlNTXdtutVxL0oVf18p54fQtjwMAAAAAt5NXYCEFRjSRYRhWRzFFri7YR48e1cyZM9WrVy+FhITIy8tLFStWVMWKFdW4cWO1bNlSP/30kyTJz8/vivMv/0d0Op1q1aqV6wr2vxUuXFgpKSnq3LmzUlNT1bRpU7Vp00aVK1fOdOX5sjFjxmjdunUaOnSoYmNjZbfbXe8zefJklS1b9opz/p0tX7582ftl/IvzwmllnDtxy+MAAAAAALIuVy949/Pz09KlSzM9LOyyy/df33nnnTccp3z58tq3b59KlSrl+rl06ZLefPNNHTlyRJs3b9bu3bu1YMECvfDCC2revLny58+vU6dOXfGXllatWmn48OE6c+aMJk6cKOmfp5r7+Pjor7/+yvQeGzdu1Ny5c7N9rzUAAAAAwH3k6mZXuHBhxcTEaMqUKZo0aZJ+++03HTp0SBs2bFDfvn1dDz27ke7duys+Pl6jRo1SYmKiduzYoQEDBujPP/9U6dKlFRISIkmKjY1VUlKSfv75Z/Xp00fp6elKS0u7Yrzg4GC9/PLLWrhwoX755RcFBQWpQ4cOmjJlilatWqVDhw5p2bJlGj9+vIoWLWr67wUAAAAAkPNy9RJxSXrxxRdVunRpffrpp1q0aJFSU1N11113qVmzZurVq1eWxoiMjNScOXM0ZcoUtWnTRgEBAapVq5YGDRokPz8/Va5cWUOGDNH8+fM1efJkFStWTM2bN1fx4sUVFxd31THbt2+v2NhYvfrqq1q1apWGDBmiQoUKacqUKTp+/LiKFy+uF154QTExMWb+OgAAAAAAFrEZnnI3OVxlv3Tybu7BBgAAAOD2vAsEK+jBDnI4HLLb7VbHuarLPSs8PPyGx+bqJeIAAAAAALgLCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJqBgAwAAAABgAgo2AAAAAAAmoGADAAAAAGACCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJqBgAwAAAABgAgo2AAAAAAAmoGADAAAAAGACH6sDwHxegYWsjgAAAAAAN+Rp3YWC7YECI5pYHQEAAAAAssSZkWF1BNOwRNzDpKWlyeFwWB0DeZzD4VB8fDxzEW6B+Qh3wVyEO2E+wl04HA7t2r1bhmFYHcUUFGwP5CmTE7mXYRhyOBzMRbgF5iPcBXMR7oT5CHdhGIbS09OtjmEaCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJqBgAwAAAABgAgo2AAAAAAAmoGADAAAAAGACCrYHstlsVkdAHmez2WS325mLcAvMR7gL5iLcCfMR7sJms8nX19fqGKaxGXz5nceIi4uTJIWHh1ucBAAAAACyJiPDqbS0i7Lb7VZHuaqb6Vk+tzsMct7WxHNKdmRYHQMAAAAArivI7q0a5QpYHcM0FGwPlOzI0JmUS1bHAAAAAIA8hXuwAQAAAAAwAQUbAAAAAAATULABAAAAADABBRsAAAAAABNQsAEAAAAAMAEFGwAAAAAAE1CwAQAAAAAwAQUbAAAAAAATULABAAAAADABBRsAAAAAABNQsAEAAAAAMAEFGwAAAAAAE/hYHSA3io6OVlJSkuu1r6+vSpQoofbt2ysmJsbCZAAAAAAAq1Cws6l79+7q3r27JCk1NVU7d+7UsGHDZLfb1alTJ4vTAQAAAAByGgU7mwICAhQcHOx6HRoaqq1bt+qzzz6jYAMAAABAHsQ92Cby9/d3/fvs2bMaNmyY6tatq/vvv1+1atXSsGHD5HA4XMfs2rVLnTp1UkREhBo1aqTY2FhVrFhRW7dutSI+AAAAAOAWcAXbJDt37tTnn3+u559/XpI0ePBgHTt2TO+++66KFCmi7du369VXX9U999yjp59+WseOHdNTTz2lRo0aadSoUUpKStJrr72mjIwMiz8JAAAAACA7KNjZNHPmTM2bN0+SlJ6ervT0dEVERKhVq1aSpNq1a6t69eoKCwuTJJUsWVILFy5UQkKCJGnJkiUKCgrS2LFj5evrq3vuuUfDhg1Tnz59bjlbsYK+CvL3vuVxAAAAAOB2CsjnWYuqKdjZ1KFDB3Xp0kWSdOnSJR04cECTJk1Sp06dtHTpUnXs2FHr16/XihUr9Oeff2rfvn06fPiwypYtK0mKj49XpUqV5Ovr6xqzevXqpmQLD81vyjgAAAAAcLsZhlM2m83qGKagYGdTwYIFVapUKdfrcuXKqWDBgurYsaN++OEHLVq0SL///rtatmyp5s2b6/7779fw4cNdx3t7e8vpdN6WbBd+XSvnhdO3ZWwAAAAAMItXYCEFRjSRYRhWRzEFBdtElyfFrl27tGnTJn366aeKiIiQ9M8y8oMHDyo0NFSSdO+99+qzzz5Tenq66yr2jh07TMnhvHBaGedOmDIWAAAAACBrPGvBew5KSUnRiRMndOLECR0/flw///yz3njjDRUtWlTt27eXj4+P1qxZo0OHDikuLk4vvviiTpw4obS0NElSx44dde7cOQ0fPlyJiYn64Ycf9Prrr0uSxyyPAAAAAIC8hIKdTfPmzVOdOnVUp04d1a9fX88//7xKlCihDz/8UMWKFdNbb72l9evXq3nz5urXr5+KFSump59+Wrt27ZIkFSlSRHPmzNG+ffvUunVrjRgxQk8++aQkZbovGwAAAACQO7BEPBvWr19/w2NatWrleqL4vw0ZMkSStG/fPhmGoWXLlrn2bd++XZIUEhJiUlIAAAAAQE7hCrZFjh49qq5du2rlypVKSkrSjh079Oabb+qBBx5Q8eLFrY4HAAAAALhJXMG2SJ06dTR06FDNnDlTw4cPV1BQkKKjozVw4ECrowEAAAAAsoGCbaGOHTuqY8eOVscAAAAAAJiAJeIAAAAAAJiAgg0AAAAAgAko2AAAAAAAmICCDQAAAACACSjYAAAAAACYgIINAAAAAIAJKNgAAAAAAJiAgg0AAAAAgAko2AAAAAAAmICCDQAAAACACXysDgDzeQUWsjoCAAAAANyQp3UXCrYHCoxoYnUEAAAAAMgSZ0aG1RFMwxJxD5OWliaHw2F1DORxDodD8fHxzEW4BeYj3AVzEe6E+Qh34XA4tGv3bhmGYXUUU1CwPZCnTE7kXoZhyOFwMBfhFpiPcBfMRbgT5iPchWEYSk9PtzqGaSjYAAAAAACYgIINAAAAAIAJKNgAAAAAAJiAgg0AAAAAgAko2AAAAAAAmICCDQAAAACACSjYAAAAAACYgILtgWw2m9URkMfZbDbZ7XbmItwC8xHugrkId8J8hLuw2Wzy9fW1OoZpbAbfLu8x4uLiJEnh4eEWJwEAAACArMnIcCot7aLsdrvVUa7qZnqWz+0Og5y3NfGckh0ZVscAAAAAgOsKsnurRrkCVscwDQXbAyU7MnQm5ZLVMQAAAAAgT+EebAAAAAAATEDBBgAAAADABBRsAAAAAABMQMEGAAAAAMAEFGwAAAAAAExAwQYAAAAAwAQUbAAAAAAATEDBBgAAAADABBRsAAAAAABMQMEGAAAAAMAEFGwAAAAAAExAwQYAAAAAwARuVbDPnz+viIgIPfjgg0pPT7+pc5cvX66wsLBr7u/SpYsGDx6c7WzTpk1TdHR0ts/Pqr/++ktffPHFbX8fAAAAAIC53Kpgf/HFFypSpIiSk5O1bt06q+NYYtCgQfr++++tjgEAAAAAuEluVbA/++wz1a1bVzVr1tQnn3xidRwAAAAAALLMbQp2YmKifv31V9WuXVsPP/ywtm7dqv3797v2R0dHa+7cuXr++ecVFRWlGjVqaMyYMbp06dJVx/vqq69UqVKlaxb1xMRE9ejRQ1FRUapTp44GDBigEydO3DDn9OnTVaNGDVWpUkUDBw7UmTNnXPvOnDmjUaNGqX79+qpcubI6dOigrVu3Zjr/u+++0+OPP+563zfffFOpqamS/lnGvm3bNq1YsSJHlqMDAAAAAMzjY3WAy5YtW6aAgADVq1dPqampGjVqlD755BMNGTLEdcyUKVM0cOBAvfLKK9q2bZuGDh2qSpUq6dFHH8001jfffKOXX35ZI0eOVPv27a94r2PHjqljx45q1aqVBg8eLIfDoWnTpumJJ57Q559/roCAgKtmTEpK0n/+8x998MEHOn/+vIYPH64hQ4bovffeU0ZGhrp376709HSNHz9ehQsX1oIFC/TMM89o8eLFqly5statW6cXXnhBzz//vN5++2398ccfeu2113To0CHNmDFD06ZNU+/evRUSEqIRI0Zk+3dZrKCvgvy9s30+AAAAAOSEgHxuc83XFG5RsC9duqTY2FhFR0fL399f/v7+qlOnjlauXKmXXnpJ+fLlkyTVqVNHXbt2lSSFhobqo48+0vbt2zMV7O+++04vvfSSRo0apbZt2171/T7++GOFhIRo2LBhrm2TJ09WzZo19dVXX13zvHz58mnSpEm68847JUkjRoxQ9+7ddeDAAf3555/avXu3Vq9erQoVKkiSRo0apbi4OM2dO1dTpkzRrFmz9NBDD6lPnz6SpDJlysgwDD333HPat2+f7rnnHvn6+srf31+FCxfO9u8zPDR/ts8FAAAAgJxkGE7ZbDarY5jCLQr2xo0bdfLkSbVo0cK1rUWLFtqwYYPWrFnjKtDlypXLdF5QUNAVTxvv16+f0tLSVLJkyWu+X3x8vH7//XdFRUVl2n7x4kUlJiZe87xSpUq5yrUkRURESJJ+//137d+/X0FBQa5yLUk2m03VqlXT5s2bJUkJCQmZPqMkPfDAA65999xzzzXf+2Zc+HWtnBdOmzIWAAAAANwuXoGFFBjRRIZhWB3FFG5RsJcvXy5J6tu37xX7PvnkE1fB9vPzu2L///6HGDNmjNatW6ehQ4cqNjZWdrv9inOcTqdq1qypkSNHXrEvKCjomjm9vTMvu87IyJAk+fr6XnNCGIYhHx+fq2a9nEWS6xgzOC+cVsa5G99PDgAAAAAwj+UL3k+dOqWNGzeqbdu2WrlyZaafdu3aaceOHUpISMjyeK1atdLw4cN15swZTZw48arHlC9fXomJiSpevLhKlSqlUqVKqWDBgnrjjTeu+15//vmnzp8/73r9yy+/yGaz6Z577lFYWJiSk5MznW8Yhn755RfXlemwsDBt374905g///yzpCuvzgMAAAAAchfLC3ZsbKwuXbqkHj16qEKFCpl+evfuLS8vr5v+yq7g4GC9/PLLWrhwoX755Zcr9nfs2FHJyckaOHCg9uzZoz179qh///6Ki4vLtMT7f128eFEvvvii4uPjtWXLFr3++ut69NFHVaJECdWpU0f33XefBgwYoG3btikxMVGjR49WQkKCnnrqKUlSTEyMvv76a82YMUP79+/Xhg0b9Prrr6thw4augh0YGKikpCQdPXr0pj4zAAAAAMBalhfs5cuX68EHH1TZsmWv2Hf33XercePGio2NVUpKyk2N2759e1WtWlWvvvqq62uwLgsNDdXChQt14cIFPfnkk+rcubN8fX21YMGC6z5crFKlSrrvvvvUtWtXvfjii6pXr55rmbm3t7fmzZunihUrqm/fvmrXrp1+//13zZ8/X5GRkZKkJk2aaOLEiVqzZo1atWqlkSNHqkWLFpo8ebLrPTp06KCEhAQ98sgjriXoAAAAAAD3ZzM85W5yKC4uTpJUOnk392ADAAAAcHveBYIV9GAHORyOqz4/yx1c7lnh4eE3PNbyK9gAAAAAAHgCCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJqBgAwAAAABgAgo2AAAAAAAmoGADAAAAAGACCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJqBgAwAAAABgAgo2AAAAAAAmoGADAAAAAGACH6sDwHxegYWsjgAAAAAAN+Rp3YWC7YECI5pYHQEAAAAAssSZkWF1BNOwRNzDpKWlyeFwWB0DeZzD4VB8fDxzEW6B+Qh3wVyEO2E+wl04HA7t2r1bhmFYHcUUFGwP5CmTE7mXYRhyOBzMRbgF5iPcBXMR7oT5CHdhGIbS09OtjmEaCjYAAAAAACawGfzZymNs375dhmHI19dXNpvN6jjIwy7/JZK5CHfAfIS7YC7CnTAf4S5yw1xMS0uTzWZTlSpVbngsDznzIJcnpLtOTOQdNptNfn5+VscAJDEf4T6Yi3AnzEe4i9wwF202W5Y7FlewAQAAAAAwAfdgAwAAAABgAgo2AAAAAAAmoGADAAAAAGACCjYAAAAAACagYAMAAAAAYAIKNgAAAAAAJqBgAwAAAABgAgo2AAAAAAAmoGADAAAAAGACCjYAAAAAACagYAMAAAAAYAIKtgdwOp2aOnWq6tatq8jISPXo0UOHDh2yOhbyqDNnzmjEiBGqV6+eqlSpoieffFI///yz1bGQx+3fv19RUVFavny51VGQh61cuVLNmzdXeHi4WrRooTVr1lgdCXnQpUuXNGXKFDVs2FBRUVHq1KmT/vvf/1odC3nMzJkz1aVLl0zbfvvtN3Xu3FmRkZGKjo7WggULLEp3ayjYHmDGjBlavHixXn/9dX3yySdyOp2KiYlRWlqa1dGQB7300kvasWOHJk6cqM8++0z33XefnnnmGf3xxx9WR0MelZ6eroEDByolJcXqKMjDVq1apaFDh6pTp0764osv1LJlS9f/XgI56b333tPSpUv1+uuva+XKlSpTpoxiYmJ0/Phxq6Mhj1i0aJEmT56cadvp06fVrVs33X333frss8/03HPPacKECfrss8+sCXkLKNi5XFpamubNm6cXXnhBDRo00L333qtJkybp6NGj+vrrr62OhzzmwIED2rJli1577TVVq1ZNZcqU0fDhw1W0aFGtXr3a6njIo6ZNm6b8+fNbHQN5mGEYmjJlirp27apOnTrp7rvv1rPPPqsHH3xQ27Ztszoe8phvvvlGLVu2VJ06dVSqVCkNHjxYycnJXMXGbXfs2DH17t1bEyZMUOnSpTPt+/TTT+Xr66vRo0erXLlyateunZ5++mnNmjXLmrC3gIKdy+3Zs0cXLlxQrVq1XNsKFCigihUr6qeffrIwGfKiQoUKadasWQoPD3dts9lsstlsOnfunIXJkFf99NNPWrJkid566y2royAP279/v5KSktSqVatM2+fOnatevXpZlAp5VZEiRbRhwwYdPnxYGRkZWrJkifz8/HTvvfdaHQ0ebvfu3fL19VVsbKwiIiIy7fv555/1wAMPyMfHx7WtZs2a+vPPP3Xy5MmcjnpLKNi53NGjRyVJxYsXz7S9aNGirn1ATilQoIDq168vPz8/17a1a9fqwIEDqlu3roXJkBedO3dOr7zyioYNG3bF/0YCOWn//v2SpJSUFD3zzDOqVauW2rdvr/Xr11ucDHnR0KFD5evrq0aNGik8PFyTJk3S1KlTdffdd1sdDR4uOjpa06ZNU2ho6BX7jh49qpCQkEzbihYtKkk6cuRIjuQzCwU7l3M4HJKUqdBIUr58+XTx4kUrIgEu27dv15AhQ/Twww+rQYMGVsdBHvPaa68pKirqiquGQE47f/68JGnQoEFq2bKl5s2bp9q1a6tPnz768ccfLU6HvGbfvn0KCgrS9OnTtWTJErVt21YDBw7Ub7/9ZnU05GGpqalX7TOScl2n8bnxIXBn/v7+kv65F/vyv6V/JqLdbrcqFqBvvvlGAwcOVJUqVTRhwgSr4yCPWblypX7++Wfu/Ydb8PX1lSQ988wzatOmjSTpvvvuU3x8vD744INMt3kBt9ORI0c0YMAAzZ8/X9WqVZMkhYeHa9++fZo2bZpmzJhhcULkVf7+/lc8oPlysQ4ICLAiUrZxBTuXu7zs8X+f/Hj8+HEVK1bMikiAFi5cqOeff14NGzbU+++/7/oLJJBTPvvsM506dUoNGjRQVFSUoqKiJEkjR45UTEyMxemQ11z+/8cVKlTItP2ee+7R4cOHrYiEPOrXX39Venp6pmelSFJERIQOHDhgUSpACgkJuWqfkZTrOg1XsHO5e++9V/nz59fWrVtd986cO3dO8fHx6ty5s8XpkBdd/sq4Ll26aOjQobLZbFZHQh40YcIEpaamZtr28MMP64UXXtAjjzxiUSrkVffff78CAwP166+/uq4aSlJCQgL3vSJHXb7Hde/evapcubJre0JCwhVPdQZyUvXq1fXJJ58oIyND3t7ekqT//Oc/KlOmjIoUKWJxuptDwc7l/Pz81LlzZ02YMEGFCxdWiRIlNH78eIWEhOjhhx+2Oh7ymP379+uNN97QQw89pF69emV66qO/v7+CgoIsTIe85Fp/7S5SpEiu+0s4cj9/f3/FxMRo+vTpKlasmCpXrqwvvvhCW7Zs0fz5862OhzykcuXKqlq1qgYNGqSRI0cqJCREK1eu1I8//qiPP/7Y6njIw9q1a6c5c+Zo6NChiomJ0c6dOzV//nyNGjXK6mg3jYLtAV544QVdunRJw4YNU2pqqqpXr665c+e67vkCcsratWuVnp6udevWad26dZn2tWnThq9KApBn9enTR3a7XZMmTdKxY8dUrlw5TZs2TTVq1LA6GvIQLy8vvffee5o8ebKGDBmis2fPqkKFCpo/f/4VX5sE5KQiRYpozpw5Gjt2rNq0aaPg4GC98sorrudW5CY2wzAMq0MAAAAAAJDb8ZAzAAAAAABMQMEGAAAAAMAEFGwAAAAAAExAwQYAAAAAwAQUbAAAAAAATEDBBgAAAADABBRsAAAAAABMQMEGAAAAAMAEFGwAANzc4MGDFRYWds2fr776yuqIuc7hw4fVsGFD/f3335KkxMREtW/fXlWqVFHv3r118uTJTMd/++23atasmTIyMjJt/+OPPxQdHa1z587lWHYAgPuyGYZhWB0CAABc2+DBg7V582a9++67V91funRp3XHHHTkbKhczDENdu3ZVo0aN9PTTT0uS2rVrp+DgYHXp0kVTp05ViRIlNHHiRElSRkaGWrVqpf79++uhhx66YryxY8fq7NmzGjduXE5+DACAG/KxOgAAALgxPz8/RUZGWh3DI6xbt04JCQmaO3euJCk5OVm7du3SZ599pkqVKiklJUXDhw93Hb98+XLlz5//quVaknr27KkGDRroqaee0v33358jnwEA4J5YIg4AgIfo0qWLBg4cqBdeeEGRkZHq1q2bJOnixYsaN26c6tevr0qVKqlVq1b68ssvM53rdDo1ffp0NWjQQBEREerdu7fWrFmjsLAwHT58WNI/V9Kjo6MznXf48GGFhYVp+fLlrm1nzpzRiBEj9OCDDyo8PFyPP/64fvzxx0znhYWFadGiRRo6dKgeeOABRUVFqV+/flcszV65cqXatGmjiIgINWjQQO+8847S0tL0+++/KywsTEuWLMl0/JEjR3TfffcpNjb2mr+nmTNnqkmTJvLz85Mk2Ww2SZK/v78kydfXV06nU5LkcDg0depUDRw48JrjBQcHq2bNmpo5c+Y1jwEA5A0UbAAAcolLly5d8fO/d3qtWbNGgYGBeu+99xQTEyPDMPTcc8/pk08+Ubdu3fTee+8pKipK/fv318qVK13njRs3TjNmzFC7du00bdo0FShQQCNHjrzpjBcvXtRTTz2lb7/9Vv3799e7776rkJAQxcTEXFGyJ02aJKfTqYkTJ+qVV17Rhg0b9MYbb7j2L1q0SIMGDdL999+vd999Vz179tRHH32kMWPGqHz58oqIiNCqVasyjbly5UoFBATo4Ycfvmq+P/74Q7t27cq0P3/+/Lrnnnu0fPlynTt3TrGxsapSpYokaf78+brvvvv0wAMPXPdzN23aVOvXr9eFCxdu6vcFAPAsLBEHACAXSEpKuury4wEDBqhnz56u176+vho1apTr6uyWLVv0/fffa9KkSWrevLkkqW7dunI4HJowYYJatmypCxcuaOHCheratauef/55SVK9evXUrVs3/fDDDzeVc9WqVdqzZ48+/fRTRUREuMbq0qWLJkyYoM8++8x1bIUKFfTmm2+6Xu/cudP1wLbLV9QbN26sMWPGuI5xOBz64osvlJ6ernbt2mnkyJE6dOiQQkNDJf1TsFu0aOG6Gv2//vOf/0iSKleunGn7m2++qRdffFFz585VpUqVNGXKFP3999+aN2+ePvroI/3666968803lZqaqu7du+uRRx7JdH54eLjS09P1888/q379+jf1OwMAeA4KNgAAuUBwcLDee++9K7aHhIRkel22bFlXuZakH3/8UTabTfXr19elS5dc26OjoxUbG6vff/9dx48fV3p6uho1apRprEceeeSmC/aPP/6o4OBg3X///Zner2HDhho3bpzOnj2rggULStIV95SHhITI4XBIkvbv369Tp05dcd/zM888o2eeeUaS1KJFC7355ptatWqV+vbtq+3bt+vPP//UW2+9dc18hw4dUoECBVSgQIFM2ytXrqz169crJSVFAQEBkqQxY8aoQYMGKlu2rKKjo9WrVy+FhYWpZ8+erie4X1aiRAlJci2nBwDkTRRsAAByAT8/P4WHh9/wuMDAwEyvz5w5I8MwXEue/9fx48d19uxZSVLhwoUz7StWrNhN5zxz5oxOnDhxzYd9nThxwlWw7XZ7pn1eXl6uJe9nzpyRJBUpUuSa75U/f341bdpUsbGx6tu3r1auXKkyZcooKirqmuecP3/+ivf9t8vl+uDBg/rss8+0evVq/fLLL7pw4YI6deokLy8vVa9eXevWrctUsC+Pef78+WuODQDwfBRsAAA8WFBQkAICArRgwYKr7i9VqpR+/fVXSdKpU6dUtmxZ177LJfcym812xfdAp6SkXPF+pUuX1oQJE676fiVLlsxS7stXmC9/T/Vlp0+fVnx8vKKiohQQEKB27dppxYoV2rlzp9auXeu6un0thQoVUnJy8g3ff9KkSXrsscdUsmRJ/frrrwoKCpKXl5cr24kTJzIdf/l7sAsVKpSlzwcA8Ew85AwAAA/2wAMPKCUlRYZhKDw83PWTkJCg6dOn69KlS4qKipLdbnfd/3zZ+vXrM70ODAzU6dOndfHiRde2X3755Yr3O3LkiIoUKZLp/bZs2aI5c+bI29s7S7nLli2rQoUKacOGDZm2r1q1Sj179lR6erokqXr16ipdurTGjx+v5ORktW7d+rrj3nXXXUpJSXFdtb+anTt36vvvv9ezzz4r6Z8r+2fPnnW954kTJ664sn706FHX+ACAvIsr2AAAeLD69eurevXq6tOnj/r06aNy5cpp586dmjp1qurWretaFv7cc89p4sSJ8vf3V61atfT9999f8VVeDRs21EcffaShQ4fqscceU0JCgj744INMpblt27ZauHChunXrpt69e6t48eL64YcfNHv2bHXu3Fm+vr5Zyu3t7a3nn39eo0ePVpEiRRQdHa39+/dr6tSp6tSpk2uZuSS1a9dO77zzjurVq3fDZe21a9eW9M8fBv73K8cuGz9+vLp16+b63URGRsput2vixImqUKGCtm/frldeeSXTOb/88ovsdruqVauWpc8HAPBMFGwAADyYl5eXZs2apSlTpmjmzJk6deqUihUrpm7duum5555zHdejRw8FBgZq3rx5WrBggapWrarevXtr+vTprmNq166tQYMG6aOPPtLatWtdX5/VoUMH1zEBAQFatGiR3nnnHddV5RIlSmjAgAHq3r37TWXv1KmTAgICNHfuXC1ZskQhISHq0aOHevTokem4+vXr65133lHbtm1vOGZoaKjuv/9+bdy48aoFe+PGjfrjjz8yfaf15XI9cuRIxcbGatCgQapUqVKm8zZt2qQGDRpc8+nlAIC8wWb87xdoAgAASFq+fLmGDBmib7/9Nsv3Tlth1qxZmj9/vr777rtMT1C/lrVr1+rVV1/Vpk2brngoXHYkJSXpoYce0rJly1SxYsVbHg8AkHtxDzYAAMiVVqxYobffflvTp0/XU089laVyLUkPP/ywypcvr48//tiUHPPmzVPTpk0p1wAACjYAAMid9uzZo8WLF+uhhx66qeXnNptN48aN04IFC654SvnNSkxM1Pr16zVixIhbGgcA4BlYIg4AAAAAgAm4gg0AAAAAgAko2AAAAAAAmICCDQAAAACACSjYAAAAAACYgIINAAAAAIAJKNgAAAAAAJiAgg0AAAAAgAko2AAAAAAAmICCDQAAAACACf4f9JSE7QUIxT8AAAAASUVORK5CYII=\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9YAAAJICAYAAACE8nw1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABk8ElEQVR4nO3dd3hO9//H8ddNEoSgiFGCGokZiRUjVmxq09raGNWiqmhtUqNDW7u1qYZWaRBtrTat9e2XGi1qhFgRtVciJJGc3x8u96/5xgjnTu4kno/rui/3fcbnvM/tcx1e9/mccyyGYRgCAAAAAADPJJO9CwAAAAAAID0jWAMAAAAAYALBGgAAAAAAEwjWAAAAAACYQLAGAAAAAMAEgjUAAAAAACYQrAEAAAAAMIFgDQAAAACACQ72LgC2s3//fhmGIUdHR3uXAgAAAADpTlxcnCwWi7y9vZ9qPc5YZyCGYcgwjGQvGxsbm+zl8fyiryA56CdILvoKkoN+guSiryA5nqafPE2m+jfOWGcgD85UV6xY8YnLRkdH68iRIypVqpScnZ1TujSkY/QVJAf9BMlFX0Fy0E+QXPQVJMfT9JODBw8+0zY4Yw0AAAAAgAkEawAAkGqedYgdAABpGUPBAQBAqjAMQwsXLtSdO3dUtmxZe5cDAIDNEKwBAECqiI2NVXh4uKT7d10FACCjYCg4AAAAAAAmcMYaAAAAANKB+Ph4Rvw8g5iYGOufWbJkUebMmW2+DYI1AAAAAKRhhmHowoULunHjhr1LSZcSEhLk4OCg8+fP68KFC8qdO7cKFiwoi8Vis20QrAEAAAAgDXsQqvPnzy9nZ2ebBsLnQXx8vGJiYuTk5KSYmBhdunRJklSoUCGbbYNgDQAAAABpVHx8vDVU582b197lpEvx8fGSpKxZsypHjhySpEuXLil//vw2GxbOzcsAAAAAII16cE21s7OznSvJOB58l7a8Xp1gDQAAAABpHMO/bSclvkuCNQAAAAAg1RmGYe8SbIZgDQAAAACwqVmzZsnDw8P6uUePHurRo4f186pVq/Txxx/bo7QUwc3LAAAAAAApavz48Yk+f/nll6pevbqdqrE9gjUAAAAAIEWVKlXK3iWkKIaCAwAAAAASOXTokHr16qUqVarI29tbr732mv78809J0ogRI9SjRw+tXr1aDRo0kLe3t3r16qWjR48+sr1/DwX38/NTRESE1qxZIw8PD507dy41dilFEawBAAAAAFZRUVHq06ePXnjhBc2aNUvTpk3TnTt31Lt3b0VGRkqSjhw5omnTpmngwIGaOnWqrl+/ru7du+vSpUtPbH/27NlydXVVvXr1tHLlSuXPnz+ldynFMRQcAAAAAGB14sQJXb9+XT179lTlypUlSSVKlNDKlSt1+/ZtSVJkZKTmzp2rqlWrSpI8PT3VqFEjLVu2TMOGDXts++XKlZOTk5Py5MkjLy+vFN2X1JKmzliPGDFCHh4ej309rR49emjEiBGPnL9r164nDj+Ijo7W8uXLk0wfN26c5s+fL0n69ddfdeLEiaeuDwAAAADSktKlSytPnjzq37+/xo0bpy1btihfvnwaPny4ChYsKEkqUqSINVRLUv78+eXt7a0//vjDXmXbVZoK1qNHj9aOHTusL0kaNWpUkmm25O3trR07dqhQoUKPXGbx4sVatGhRkunbtm1TvXr1FBERof79++vq1as2rw8AAAAAUlP27Nm1fPly1atXTxs2bNDAgQNVs2ZNjRs3TrGxsZKkAgUKJFkvb968unHjRipXmzakqaHgLi4ucnFxSTLN1dU1xbbp5OT0xPYf9uDyY8eOyTCMDHOxPQAAAAA8UKJECU2dOlXx8fE6cOCA1q1bp2+++UZFixaVJF2/fj3JOleuXFHevHlTu9Q0IU2dsX4Wd+7c0ejRo1W7dm1VrFhRbdu21ebNmxMtc/v2bY0cOVJVq1ZVlSpVNGLECEVHR0tKOhTcz89PH3/8sVq0aCEfHx/16NFDs2fPVkRERKLltm7dqrp16+rcuXNq2LChJKlnz56aNWuWJCksLEz9+/eXj4+PqlSporffflsRERHWmnr06KHJkyfr3XffVaVKlVS3bl3Nnz//oSEeAAAAAFLLxo0bVaNGDV2+fFmZM2eWt7e3JkyYoJw5c+r8+fOSpNOnTyssLMy6zsWLF7V//37VrFkzWdvIlCndR9FE0v3ezJgxQ8eOHdP8+fP1008/qW7duhoyZEiis8ibN29W/vz5FRQUpE8++UQ//fSTFixY8Mg2AwMDNWbMGC1cuFBffPGF/P39VbBgwURDxrdt26a6deuqUKFCWrVqlSRp1qxZ8vf3V0REhF599VU5OTnpq6++0uLFi3X58mV1795dUVFR1u188803cnFxUVBQkIYMGaI5c+Y8ti4AAAAASGmVK1dWQkKCBgwYoJ9//lm///67xo0bp8jISDVp0kTS/VG9/fv3108//aRNmzapT58+ypUrl/WRWk+SM2dOHT58WLt379bdu3dTcndSRboP1mfPnlX27Nnl5uYmNzc3DR48WHPnzlWuXLmsy3h6emrIkCEqWrSoGjZsqNq1a+vQoUOPbLNevXqqVauWKlasKBcXFzk7Oytz5sxydXVV5syZFRkZqUOHDqlmzZrKnDmz8uTJI0nKlSuXsmfPrhUrVsjZ2VmffvqpypQpo0qVKmnmzJm6evWq1q1bZ93OSy+9pAkTJqhkyZJq166devTooWXLlnHWGgCQIf373zf+rQOAtCt//vxauHChXFxcNHr0aL3xxhv6+++/NWvWLNWoUUOS9OKLL8rf319TpkzRqFGjVLx4cX377bfKnTt3srbh7++vK1euqHfv3o/NZulFmrrG+nHOnz+vli1bJpq2f/9+9e3bV/3791fNmjXl6emp2rVrq1WrVomu1S5evHii9XLlypVoWPb/Klas2GNr2blzpzw9PZUjR46Hzg8NDVWFChXk5ORknebq6qqXXnpJoaGh1mk+Pj6yWCzWz97e3lqwYIGuX79uDesAAGQU//43DwCQtnl6ej70Bs7/1qVLF3Xp0uWh8wYNGqRBgwZZP3/99deJ5r/88st6+eWXzReaRqSbYJ0/f36tXbs2yXRvb29t3bpVO3fu1O+//661a9fqyy+/1MKFC63j+zNnzvxU28qaNetj52/dulX16tV75PxH/QqfkJAgR0dH62cHB4ck86WnrxcAgPSGkA0AyEjSzVBwBwcHFStWLNFLkmbOnKm9e/eqYcOGGjNmjDZt2iQ3Nzdt2rTJZtv+9z/+hmFo+/btqlu37kPnS5KHh4cOHjxovRW9dP8OeWfOnFHJkiWt0w4ePJhovX379qlIkSKJhrEDAAAAANK2dBOsHyU8PFzjx4/X77//roiICG3atEnnz5+Xt7e3zbbh7Oysmzdv6tSpUzpw4IAcHR1VunTpRPOl+0PAIyMj1aVLF92+fVvDhw/X0aNHdeDAAQ0ePFgvvPBCouHse/bs0cyZM3X69GmtXr1ay5cvV58+fWxWNwAAAADY2kcffaSQkBB7l5GmpPtgPX78eNWsWVPDhw9X06ZNNWPGDA0bNkxt2rSx2TaaNGkiV1dXtW7dWtu3b1edOnUSzX/hhRfUoUMHffLJJ5oxY4aKFCmiwMBA3bp1S6+++qp69+4tV1dXffPNN8qZM6d1vYYNGyosLEytW7fW3LlzNXLkyEdeowAAAAAASJvS9DXWx44de+IyOXLk0MSJEx85/38vkpfu/8LygI+PT6LtPOyXlyJFimjjxo2PrWPKlCmaMmWK9XO5cuW0ZMmSx66TM2fORLUAAAAAANKfdH/GGgAAAAAAeyJYAwAAAABgQpoeCp6RPWyIOgAAAAAg/eGMNQAAAAAAJhCsAQAAACAdSkhIUHx8vF1eCQkJT13v+fPn9eOPPz7z/u7atUseHh46d+7cM7eRUhgKDgAAAADpTEJCgiZOmqzIWzftsn2XnLk0dsxoZcqU/HO177//vgoXLqyWLVs+0za9vb21Y8cO5cmT55nWT0kEawAAAABIZwzDUOStm6rW/l1ZniLc2mTbCQn6I+hzGYaRqtt1cnKSq6trqm4zuQjWAAAAAJBOWTJlUqZMmVN1m08/CFzq0aOHdu/eLUnWP5s2baqtW7fq6tWrmjVrljw8PDR16lRt3bpV165dU86cOdWwYUONHj1a2bJl065du9SzZ0/98ssvKlKkiPz8/NStWzf9+eef2rFjh5ycnNSqVSuNGDFCDg6pG3W5xhoAAAAAkKJmzZolb29vNW/eXKtXr5YkBQYGasyYMVq4cKG8vLw0YsQIHT58WLNnz9amTZs0cuRIrV27VitXrnxkuzNmzFC1atUUHBys9957T4GBgfrhhx9Sa7esOGMNAAAAAEhRuXPnlqOjo7JmzWq9RrpevXqqVauWdZnatWurWrVq8vDwkCQVKVJEgYGBCg0NfWS7vr6+6tmzpyTJzc1NX3/9tfbt26e2bdum3M48BMEaAAAAAJDqihUrluhz165dFRISojVr1uj06dM6ceKEzp07pxIlSjyyjZIlSyb67OLiori4uBSp93EYCg4AAAAASHVZs2a1vk9ISNAbb7yhSZMmycHBQS1atNC8efNUuXLlx7bh5OSUZFpq31RN4ow1AAAAAMDOjhw5om3btum7775TpUqVJElxcXE6e/as3Nzc7FzdkxGsAQAAAAApLnv27IqIiNCFCxeSzMuXL58cHBy0YcMG5cmTRzdu3NDcuXN1+fJlxcbG2qHap8NQcAAAkCqcnJxUtGhR5cuXT46OjvYuBwAyBCMhQQkJ8an6MhKe5YFbUufOnRUaGqrWrVsrPj4+0bwCBQroo48+UkhIiFq0aKHBgwerQIECeu2113To0CFbfFUpijPWAAAgVVgsFvXu3VtHjhyRxWKxdzkAkK5ZLBa55MylP4I+t8v2XXLmeupjef369bVr165Hzm/VqpVatWqVZPrIkSMlST4+Pjp27Jh1ekhISJJlv/7666eqyVYI1gAAINVYLBZCNQDYQKZMmTR2zGi73KhLun88z5SJAdAPEKwBAAAAIB0i2KYd/E0AAAAAAGACwRoAAAAAABMI1gAAAAAAmECwBgAAAADABII1AAAAAAAmEKwBAECqMQzDbo+GAQAgpfC4LQAAkCoMw9DChQt1584dlS1b1t7lAABgMwRrAACQKmJjYxUeHi5JiouLs3M1AJD+JSQk2G0UkMVi4Tna/0KwBgAAAIB0JiEhQZMnfqCbkVF22X4ulxwaPXZcqoVrPz8/tWvXToMGDUqV7T0tgjUAAAAApDOGYehmZJTeb+CmTBZLqm47wTD08a/h3DPjXwjWAAAAAJBOZbJYlDlT6gZrJaTu5tIDBsUDAAAAAFLUiBEj1KlTp0TTIiIiVKZMGf3nP//RqlWr1KpVK3l6esrLy0tdu3bVwYMH7VTt0yNYAwAAAABSVPv27XXgwAGdPXvWOm39+vUqWLCgIiMj9cEHH6hPnz7asGGDli5dqpiYGI0ZM8aOFT8dgjUAAAAAIEVVq1ZNbm5uCg4Otk5bv3692rRpozx58mjy5Mlq06aNChcuLC8vL3Xs2FGhoaF2rPjpcI01AAAAACBFWSwWtW3bVuvXr9fAgQN1+PBhnThxQl988YWKFSumsLAwzZkzRydPntSZM2d07NgxJSSkn4u5OWMNAAAAAEhx7dq105kzZ3Tw4EGtX79elStXVrFixbR+/Xq1bt1a4eHhqly5st5//32NGDHC3uU+Fc5YAwAAAABSXOHCheXj46NNmzZpw4YNGjBggCRp/vz56tixowICAqzL/vLLL5LuP1bMksqPE3sWBGsAAAAAQKpo166dPvjgAyUkJKh58+aSpEKFCmnfvn36+++/5eLiopCQEAUGBkqSYmNjlSVLFnuWnCwMBQcAAACAdCrBMBSfkLqvBMN45nqbNm0qSWrUqJFy5MghSRo7dqzy5cun7t27q1OnTvr111/1ySefSFK6eeQWZ6wBAAAAIJ2xWCzK5ZJDH/8abpft53LJ8UxDtLNly6Z9+/Ylmubm5qYlS5YkWbZFixbW9yEhIU9fZCoiWAMAAABAOpMpUyaNHjtOhomzx2ZYLBZlysQA6AcI1gAAAACQDhFs044MFaxHjBihNWvWPHaZY8eOpVI1AAAAAIDnQYYK1qNHj9bQoUOtn319fTVq1KhEY/MBAAAAALClDBWsXVxc5OLikmSaq6urnSoCAAAAAGR0z9Wg/KCgIDVu3FiTJk1SlSpV9NZbb0mSwsLC1L9/f/n4+KhKlSp6++23FRERYV2vR48eGjFiRKK2/nfaokWL1KhRI1WoUEF+fn6aM2dOohsJ/Prrr2rfvr08PT3VuHFjTZ8+XbGxsdb5Hh4emjlzpho0aCBfX1+dPn06hb4FAAAAAOmNvW5SlhGlxHeZoc5YJ8fZs2d16dIlrV27Vnfv3lVERIReffVV1apVS1999ZViYmL00UcfqXv37lq/fr312WqPExISonnz5mnatGl66aWX9Oeff+q9995TkSJF1KZNG23btk3vvPOORo4cqVq1auns2bOaOHGiTp06pRkzZljbWbFihRYsWKD4+HgVL148Bb8FAABS37//I8N/EAEgeRwdHSVJ0dHRypYtm52ryRiio6Ml/f93awvPXbCWpLfeektubm6SpKlTp8rZ2VmffvqpnJycJEkzZ85Uw4YNtW7dOnXr1u2J7Z09e1ZOTk4qXLiwXnzxRb344ovKnz+/XnzxRUnS3Llz9corr6hz586SpKJFiyogIEC9evXSuXPnVKRIEUlSmzZtVLFixZTYZQAA7O5ZnncKAM+7zJkzK3fu3Lp06ZIkydnZmePpU4qPj1dMTIwMw1BMTIwuXbqk3LlzK3PmzDbbxnMZrP99Njg0NFQVKlSwhmpJcnV11UsvvaTQ0NBktde6dWt9//33atq0qUqVKqVatWqpadOm1mB9+PBhHThwQKtXr7au8+CX+rCwMGuwLlasmNldAwAgXeA/hQCQfAULFpQka7jG00lISNC9e/fk4OCgTJkyKXfu3Nbv1Faey2CdNWtW6/tHDUVLSEh47NCAe/fuWd/nyZNH69at0/79+7Vz507t2LFDy5Yt06BBgzRw4EAlJCSoT58+ateuXZJ2/n1jtX/XBQAAAADS/R8jCxUqpPz58ysuLs7e5aQ7d+7c0cmTJ1W0aFHlzJnTpmeqH3gug/W/eXh4KDg4WLGxsdaz1leuXNGZM2fUtWtXSffH3kdFRVnXSUhIUHh4uPUMc3BwsCIjI9WtWzfrzc/GjBmjn376SQMHDlTp0qV16tSpRGekd+3apWXLlmnChAlydnZOxT0GAAAAkB5lzpw5RUJhRpeQkCBJypIlS4p9f8/VXcEfpkuXLrp9+7aGDx+uo0eP6sCBAxo8eLBeeOEFtWzZUpLk5eWlnTt3atu2bTpz5owmTpyoW7duWduIiYnRxx9/rLVr1+rcuXPas2eP/vjjD3l7e0uS+vbtq02bNmn27Nk6deqUfv/9d40cOVKRkZE8CgwAAAAA0rnn/ox1kSJFFBgYqKlTp+rVV1+Vk5OTateuralTpypnzpySJH9/f509e1aDBw+Wk5OTOnbsqJYtW1qHkXfq1Ek3btzQF198oX/++Ue5cuVS06ZNNWzYMElSs2bNNG3aNM2bN09z585V7ty55efnZ50PAAAAAEi/MnSwPnbsWKLP7du3V/v27ZMsV65cOS1ZsuSR7eTIkUOffvrpY7fVt29f9e3b95HzmzdvrubNmye7VgAAAABA+vDcDwUHAAAAAMAMgjUAAAAAACYQrAEAAAAAMIFgDQAAAACACQRrAAAAAABMIFgDAAAAAGACwRoAAAAAABMI1gAAAAAAmECwBgAAAADABII1AAAAAAAmEKwBAAAAADCBYA0AAAAAgAkEawAAAAAATCBYAwAAAABggoO9CwAAAM8HJycnFS1aVNHR0XJ0dLR3OQAA2AzBGgAApAqLxaLevXvryJEjslgs9i4HAACbYSg4AABINRaLhVANAMhwCNYAAAAAAJhAsAYAAAAAwASCNQAAAAAAJhCsAQAAAAAwgWANAAAAAIAJBGsAAJBqDMOQYRj2LgMAAJviOdYAACBVGIahhQsX6s6dOypbtqy9ywEAwGYI1gAAIFXExsYqPDxckhQXF2fnagAAsB2GggMAAAAAYALBGgAAAAAAEwjWAAAAAACYQLAGAAAAAMAEgjUAAAAAACYQrAEAAAAAMIFgDQAAAACACQRrAAAAAABMIFgDAAAAAGACwRoAAAAAABMI1gAAAAAAmECwBgAAAADABII1AAAAAAAmEKwBAAAAADCBYA0AAAAAgAnpPlj7+fnJw8PD+ipTpowqV66s7t27648//khWG0FBQfLw8EjU5qxZs1KqZAAAAABABpLug7Uk+fv7a8eOHdqxY4e2bdumb7/9Vjly5FCfPn10/vx5e5cHAAAAAMjAMkSwdnZ2lqurq1xdXZU/f365u7srICBAd+/e1ZYtW+xdHgAAAAAgA8sQwfphHBwcJElOTk4PHdr9NMO99+/fr549e6pKlSry8fHRyJEjdf36dUnSrFmz5Ovrq4SEBOvyd+7ckbe3t1atWiVJCgsLU9++feXt7S1fX18NHTpUly9fti7fo0cPjR07Vp06dVLVqlUVHBxsat8BAAAAAKknQwbrixcv6oMPPpCzs7Pq1atnqq0DBw6oR48eKl26tL777jvNmDFDf/31l3r37q34+Hi1bdtWV65c0a5du6zr/PzzzzIMQ82bN9fFixfVtWtXFStWTKtXr9bcuXMVFRWlV199VdHR0dZ1Vq1apZ49e2rFihWqU6eOqZoBAEiLDMN46HsAANI7B3sXYAvz5s3T4sWLJUn37t1TbGysSpYsqenTp+vFF1801fbixYvl4eGhsWPHSpJKliypzz//XG3atNGOHTtUr149VatWTcHBwapZs6Ykaf369WrUqJFy5MihhQsXqmDBghozZoy1zenTp6tGjRrauHGj2rdvL0kqW7asWrVqZapWAADSMovFYu8SAABIERkiWHfu3Fk9evSQJGXKlEm5c+eWi4uLTdoODQ1V7dq1E00rU6aMXFxcdOzYMdWrV08dOnTQxIkTNWHCBN2+fVs7d+7UggULJEmHDx/W8ePH5e3tnaiNmJgYhYWFWT8XK1bMJvUCAJAeELIBABlJhgjWuXLleupgeu/evWQt96ihaoZhyNHRUZLUpEkTBQQE6Ndff9WVK1fk6uqqGjVqSJISEhJUo0YNjR8/Pkkb/w7/WbNmfar6AQAAAABpQ4a8xvp/OTo6Kioqyvo5KipKV69eTda6Hh4e2rt3b6JpR48eVVRUlEqWLCnp/l3Jmzdvrs2bN+vHH39UmzZtlCnT/a+2dOnSCgsLU6FChVSsWDEVK1ZMuXLl0pQpUxQaGmqjPQQAAAAA2MtzEay9vLz0008/ad++fTpx4oRGjRqlzJkzJ2vd119/XceOHdPEiRMVFhamXbt2adiwYSpXrpz1mmpJat++vX799Vf9+eef1uumJalr166KjIzUsGHDdPToUR09elRDhgzRwYMH5e7ubvN9BQAAAACkrgwxFPxJ3n33Xd24cUOvv/66XFxc5O/vr1u3biVr3UqVKmnhwoWaPn262rZtqxw5cqhRo0YaOnSodSi4JFWtWlWurq7KmzdvomHpbm5uCgwM1GeffaYuXbooc+bMqly5spYtW6Y8efLYfF8BAAAAAKkr3QfrkJCQJy5ToEABzZs3L9E0f39/6/v27dsnOsv8v23WrFkz0dnpR9m8efNDp5crV06LFi165Hpff/31E9sGAAAAAKRNz8VQcAAAAAAAUgrBGgAAAAAAEwjWAAAAAACYQLAGAAAAAMAEgjUAAAAAACYQrAEAAAAAMIFgDQAAAACACQRrAAAAAABMIFgDAAAAAGACwRoAAAAAABMI1gAAAAAAmECwBgAAAADABII1AAAAAAAmEKwBAAAAADDBwd4FAACA54OTk5OKFi2q6OhoOTo62rscAABshmANAABShcViUe/evXXkyBFZLBZ7lwMAgM0wFBwAAKQai8VCqAYAZDgEawAAAAAATCBYAwAAAABgAsEaAAAAAAATCNYAAAAAAJhAsAYAAAAAwASCNQAASDWGYcgwDHuXAQCATfEcawAAkCoMw9DChQt1584dlS1b1t7lAABgMwRrAACQKmJjYxUeHi5JiouLs3M1AADYDkPBAQAAAAAwgWANAAAAAIAJBGsAAAAAAEwgWAMAAAAAYALBGgAAAAAAEwjWAAAAAACYQLAGAAAAAMAEgjUAAAAAACYQrAEAAAAAMIFgDQAAAACACQRrAAAAAABMIFgDAAAAAGACwRoAAAAAABMI1gAAAAAAmOBg7wLszc/PTxEREdbPjo6Oypcvn+rVq6fBgwcrT548dqwOAAAAAJDWPffBWpL8/f3l7+8vSbp7965CQ0M1depUde/eXStXrpSLi4udKwQAAAAApFUMBZfk7OwsV1dXubq6ys3NTQ0bNtTixYv1zz//aOHChfYuDwAAAACQhhGsH+HFF19U48aN9eOPP0qSPDw8NHPmTDVo0EC+vr46ffq0YmNjNXXqVNWpU0fe3t565ZVXtGPHDmsb8fHxmjp1qurVq6cKFSqoWbNm+uabb6zzr169qrfffls+Pj7y9PRU586dtXv37lTfVwAAAADAs2Mo+GO4u7tr3bp1un37tiRpxYoVWrBggeLj41W8eHENHTpUYWFh+vTTT1WgQAH9+uuv6t+/v2bPnq369etrxYoV2rhxo6ZNm2adP2HCBJUuXVpVq1bVhAkTFBsbq8DAQDk5OWnu3Ll66623tG3bNjk7O9t57wEAAAAAyUGwfoycOXNKkqKioiRJbdq0UcWKFSVJZ86c0Q8//KC1a9eqbNmykqTXX39dR48e1aJFi1S/fn2dPXtWzs7OKlKkiPLnz6/u3burRIkSeumllyRJZ8+elbu7u9zc3JQ1a1aNHj1arVq1UubMme2wtwAApCzDMB76HgCA9I5g/RiRkZGSpBw5ckiSihUrZp13+PBhSVLXrl0TrRMXF2cN5N26ddPPP/+sevXqqWzZsqpdu7ZatmypvHnzSpIGDhyo4cOHa9OmTapSpYp8fX318ssvK0uWLCm+bwAApDaLxWLvEgAASBEE68f4+++/Vbx4cWXPnl2SlDVrVuu8B7+0L1++3Dr/gUyZ7l+6Xrx4cW3evFm7d+/Wzp079dtvv2nBggX68MMP1a5dOzVu3Fjbt2/X9u3b9Z///EdLlizR7Nmz9d1336l06dKptJcAAKQ+QjYAICPh5mWPcOHCBf3yyy9q1arVQ+c/CL6XL19WsWLFrK+goCAFBQVJkpYtW6bNmzerdu3aeu+997R+/XrVrFlTP/30k2JjY/Xhhx8qPDxcLVq00KRJk/Tzzz8rU6ZM+u2331JrNwEAAAAAJhGsJUVHR+vy5cu6fPmywsPD9fPPP6tPnz4qUqSIXn/99YeuU7p0aTVo0EDjx49XSEiIwsPDtWDBAs2bN09FixaVJF27dk0ffPCBfvnlF0VERGj79u06cuSIvL295eTkpIMHD2rs2LH6888/de7cOQUFBSk6Olre3t6pufsAAAAAABMYCi5p8eLFWrx4sSTJ0dFRhQoVUosWLeTv759kmPe/TZs2TdOmTdO4ceN08+ZNFS1aVJMnT1a7du0k3b+GOi4uTpMmTdLly5fl6uqqLl266I033rCu/+GHH+rNN99UZGSkSpQooU8//VRVq1ZN+Z0GAAAAANjEcx+sQ0JCkrXcsWPHkkzLli2bRo0apVGjRj10HQcHBw0fPlzDhw9/6PwCBQpo+vTpya4VAAAAAJD2MBQcAAAAAAATCNYAAAAAAJhAsAYAAAAAwASCNQAAAAAAJhCsAQAAAAAwgWANAAAAAIAJBGsAAAAAAEwgWAMAAAAAYALBGgAAAAAAEwjWAAAAAACYQLAGAAAAAMAEgjUAAAAAACYQrAEAAAAAMIFgDQAAAACACQ72LgAAADwfnJycVLRoUUVHR8vR0dHe5QAAYDMEawAAkCosFot69+6tI0eOyGKx2LscAABshqHgAAAg1VgsFkI1ACDDIVgDAAAAAGACwRoAAAAAABMI1gAAAAAAmECwBgAAAADABII1AAAAAAAmEKwBAAAAADCBYA0AAFKNYRgyDMPeZQAAYFMO9i4AAAA8HwzD0MKFC3Xnzh2VLVvW3uUAAGAzBGsAAJAqYmNjFR4eLkmKi4uzczUAANgOQ8EBAAAAADCBYA0AAAAAgAkEawAAAAAATCBYAwAAAABgAsEaAAAAAAATCNYAAAAAAJhAsAYAAAAAwASCNQAAAAAAJhCsAQAAAAAwgWANAAAAAIAJBGsAAAAAAEwgWAMAAAAAYALBGgAAAAAAEwjWAAAAAACYQLBOhnv37umrr75S+/bt5e3trRo1asjf31///e9/bbqd8+fP68cff7RpmwAAAACAlEWwfoKYmBj17NlTS5cuVY8ePbRmzRotXbpUJUuW1Ouvv67169fbbFvvv/++tm/fbrP2AAAAAAApz8HeBaR1M2bM0LFjx/TDDz+oUKFC1umjR49WVFSUJk2aJD8/P2XPnt2OVQIAAAAA7IUz1o8RFxen77//Xu3bt08Uqh945513tGDBAmXNmlU3btxQQECA6tWrJ09PT3Xu3Fm7du2yLpuQkKB58+apadOmqlChgipXrqw+ffro7NmzkqQePXpo9+7dWrNmjfz8/FJtHwEAAAAA5hCsHyM8PFw3btxQ5cqVHzq/QIEC8vT0lCT5+/trz549mjp1qoKCguTu7q7evXvrwIEDkqRly5Zp0aJFGjFihDZt2qQ5c+bo9OnT+uijjyRJs2bNkre3t5o3b67Vq1enzg4CAJCKDMN46HsAANI7gvVj3Lx5U5KUK1euxy63Y8cO/f333/rss89UvXp1lSpVSgEBASpdurQWLVokSSpatKg+/vhjNWjQQIULF1bNmjXVrFkzhYaGSpJy584tR0dHZc2aVXny5EnZHQMAwA4sFou9SwAAIEVwjfVjPAi4N27ceOxyoaGhcnFxkbu7u3WaxWJR1apVtWPHDkmSn5+f/vrrL82YMUOnTp3SqVOndOLECRUoUCDF6gcAIK0iZAMAMhLOWD+Gm5ub8uXLp3379j10flhYmPz9/RUTE/PQ+YZhyMHh/m8X8+fPV8+ePXX9+nXVrFlTAQEB8vf3T7HaAQAAAACpg2D9GJkyZVLHjh0VFBSkf/75J8n8hQsX6uDBg6pQoYIiIyOtw7ql+6F67969KlWqlCRp7ty5GjBggCZMmKBXX31VXl5eOn36NNeYAQAAAEA6R7B+gv79+6t48eLq2rWr1q5dq7Nnz+rAgQMaOXKk1q5dq4kTJ6pOnToqW7ashg4dqt27dyssLEwffPCBQkND1atXL0lSoUKFtHPnTp04cUInT57UtGnTtHnzZsXGxlq3lT17dkVEROjChQv22l0AAAAAwFMiWD9BtmzZFBgYqA4dOmjBggVq06aN3njjDV26dElff/21mjVrpsyZM2vx4sUqV66cBg4cqA4dOuj48eNaunSpvLy8JEmffPKJ7t69qw4dOqh79+4KDQ1VQECArl69qvPnz0uSOnfurNDQULVu3Vrx8fF23GsAAAAAQHJx87JkcHZ21sCBAzVw4MBHLpMnTx59/PHHj5xfvnx5rVy5Msn0zp07W9/Xr18/0bOvAQAAAABpH2esAQAAAAAw4ZnPWIeHhys2NlYlS5ZUZGSkpk+froiICDVr1kxt27a1YYkAAAAAAKRdz3TGeuvWrWrevLlWr14tSRo3bpy+/fZbXbx4USNHjtSqVatsWiQAAAAAAGnVMwXrL7/8Ur6+vhowYIBu3bqlLVu2qF+/flqzZo369eunZcuW2bpOAAAAAADSpGcK1kePHlWvXr2UI0cObdu2TfHx8WratKkkqXbt2jpz5oxNiwQAAAAAIK16pmCdJUsW3bt3T5K0Y8cO5c2bV2XKlJEkXblyRTlz5rRdhQAAAAAApGHPdPOyypUra/Hixbp165Y2bdqkdu3aSZIOHTqk2bNnq3LlyjYtEgAAAACAtOqZzliPGjVKFy5c0NChQ1W4cGG9+eabkqQ33nhDMTExGjZsmE2LBAAAAAAgrXqmM9Zubm766aefdPXqVeXLl886fc6cOSpXrpycnJxsViAAAAAAAGnZM52xliSLxSJnZ2fr502bNmn//v36559/bFIYAAAAAADpwTMF65MnT6px48aaP3++JGn69Ol655139PHHH6t169bau3evTYsEAAAAACCteqZg/emnn8rBwUENGzZUbGysVqxYoebNm2vPnj2qU6eOpk+fbuMyAQAAAABIm54pWO/Zs0dDhw5VxYoVtXv3bkVGRurVV19Vjhw51LlzZx06dMjWdQIAAAAAkCY9U7COi4uzPqt627ZtypYtm6pUqSJJio+Pl4PDM90TDQAAAACAdOeZgrW7u7s2b96sy5cva+PGjfL19ZWDg4Pi4uK0fPlyubu727pOAACQzjk5Oalo0aLKly+fHB0d7V0OAAA280ynlt9++20NGDBAy5cvl5OTk/r27StJatq0qa5cuaK5c+fatEgAAJD+WSwW9e7dW0eOHJHFYrF3OQAA2MwzBevatWtr/fr1OnjwoCpVqqTChQtLknr16qUaNWrIw8PDpkUCAICMwWKxEKoBABnOM18M7ebmJjc3t0TTevXqJUmKiopSjhw5zFUGAAAAAEA68EzBOjY2Vl999ZV2796t2NhYGYYhSTIMQ9HR0Tpx4oT++usvmxYKAAAAAEBa9EzB+pNPPlFgYKDc3d117do1ZcmSRXny5FFoaKji4uI0cOBAW9cJAAAAAECa9Ex3Bd+8ebNef/11BQcHq3v37qpQoYJWrVqlzZs3q3DhwkpISLB1nQAAAAAApEnPFKyvXbumunXrSrr/6K2DBw9KkgoUKKB+/frpp59+sl2FAAAAAACkYc8UrF1cXBQbGytJKlasmP755x9FRUVJkooXL65//vnHdhUCAIAMwzAM671ZAADIKJ4pWFetWlVff/217ty5o2LFiilbtmz6+eefJUn79+/njuAAACAJwzC0cOFC/fzzz4RrAECG8kzBeuDAgfrzzz/Vr18/OTg4qGvXrho7dqzat2+vGTNmqGnTprauEwAApHOxsbEKDw/XlStXFBcXZ+9yAACwmWe6K7iHh4c2bNig0NBQSdLQoUOVI0cO7du3T35+furXr59NiwQAAAAAIK16pmAtSa6urnJ1dZUkWSwW9e/f32ZFAQAAAACQXiQ7WM+ePTvZjVosFg0YMOCZCgIAAAAAID0hWAMAAAAAYEKyg/XRo0et7+/cuaNs2bIlmn/48GGVK1fOdpUBAAAAAJAOPNVdwY8dO6YOHTpo6dKliabfunVLHTt2VJs2bXTq1Clb1gcAAAAAQJqW7GB97tw59ezZU1euXNFLL72UaJ6jo6Pee+893bhxQ127dtXFixdtXigAAAAAAGlRsoP1/PnzlTt3bq1Zs0bNmjVLNC9btmx67bXXtHr1amXJkkXz5s2zeaEAAAAAAKRFyQ7Wv//+u/r06aM8efI8chlXV1f5+/tr586dNikOAAAAAIC0LtnB+tKlSypevPgTl3N3d9eFCxfM1AQAAAAAQLqR7GCdJ08eXbp06YnLXb9+Xbly5TJVFAAAAAAA6UWyg3W1atUUFBT0xOXWrl3LY7cAAAAAAM+NZAfrHj16aNeuXfroo48UExOTZH5sbKw++eQTbdu2Td26dbNpkQAAAAAApFUOyV2wYsWKGjlypKZMmaJ169apZs2aKlKkiOLj43X+/Hnt2rVL169f1+DBg1WnTp2UrBkAAAAAgDQj2cFakrp166YyZcpo0aJF+uWXX6xnrrNnzy5fX1/5+/urUqVKKVKoWcHBwQoMDFRoaKgsFotKlCihTp06qXPnzim6XT8/P7Vr106DBg1KkeUBAAAAAPb1VMFakqpUqaIqVapIkq5duyYHBwflzJnT5oXZ0urVqzV58mSNHj1aVapUkWEY2rlzpyZNmqQrV65o4MCB9i4RAAAAAJBOPXWw/rfHPdM6LVmxYoU6dOigjh07WqeVKFFCFy9e1LJlywjWAAAAAIBnluybl6VnmTJl0v79+3Xz5s1E0/v166eVK1dKks6fP68hQ4aoZs2aKl++vOrWraupU6cqISFBkhQUFKTGjRtb/6xQoYLat2+vvXv3WtuLjIzU+++/r6pVq6pGjRpasmRJklpWrVqlVq1aydPTU15eXuratasOHjyYgnsPAAAAAEhJz0Ww7tOnjw4fPqy6deuqX79+mj9/vg4cOCAXFxe99NJLkqQ333xTkZGRWrJkiTZu3Ch/f38tXLhQISEh1nb++ecfffvtt5o6darWrFmjbNmyacSIETIMQ5L0zjvv6MCBA5o7d66WLFmi3377TREREdb1t2zZog8++EB9+vTRhg0btHTpUsXExGjMmDGp+4UAAAAAAGzG1FDw9KJZs2YqWLCgli1bpp07d2rr1q2SpOLFi2vKlCkqX7682rRpo+bNm6tQoUKSpNdee00LFizQsWPH1KhRI0lSXFycAgICVLZsWUnS66+/rgEDBujy5cuKiorSjh07tHTpUlWtWlWS9Nlnn6lBgwbWOnLnzq3JkyerdevWkqTChQurY8eO+uCDD1LtuwAAwF4e/BD9v+8BAEjvnotgLUleXl7y8vJSQkKCjh49qq1btyowMFB9+/bVli1b1L17d23cuFEHDhzQmTNndOzYMV25csU6FPyBkiVLWt+7uLhIuh+4Q0NDJd1/LNkD+fLlk5ubm/VztWrVFBYWpjlz5ujkyZPW7fzvNgAAyIgsFou9SwAAIEVk+KHgFy5cUEBAgC5cuCDp/vXW5cqV05tvvqmlS5fq9u3b2rZtmzp37qy5c+cqZ86cateunVasWKGCBQsmac/JySnJNMMwrP9Z+N+Q7ODw/79drF+/Xq1bt1Z4eLgqV66s999/XyNGjLDl7gIAkC4QsgEAGUmGP2Pt5OSkVatWqVChQurXr1+ieQ8eExYREaG///5bO3fuVL58+SRJN27c0NWrV5M9VO3B8PB9+/apfv36kqRbt27p7Nmz1mXmz5+vjh07KiAgwDrtl19+kZQ4nAMAAAAA0o8MH6zz5MmjPn36aMaMGbp9+7aaNWumHDly6MSJE/riiy/k4+OjunXratasWQoODlbTpk31zz//6PPPP1dcXJxiY2OTtZ2iRYuqWbNm+uCDD+Tk5KR8+fLp888/T7R+oUKFtG/fPv39999ycXFRSEiIAgMDJUmxsbHKkiVLinwHAAAAAICUk+GDtXT/bt3FixfXd999p+XLl+vu3bt68cUX1bx5c73xxhtydnbWyJEjtXTpUk2fPl0FChRQixYtVKhQoad6FNbHH3+sjz/+WEOGDFFCQoJeffVVXbt2zTp/7NixGjdunLp37y4nJyeVKVNGn3zyiYYMGaKDBw9ab3oGAAAAAEg/LAa35cwwHvwI8O8bqD1KdHS0jhw5orJly8rZ2TmlS0M6Rl9BctBPkBwxMTEaPXq0JGnMmDHKnTu3fQtCmsUxBclFX0FyPE0/eZpM9W8Z/uZlAAAAAACkJII1AAAAAAAmEKwBAAAAADCBYA0AAAAAgAkEawAAAAAATCBYAwAAAABgAsEaAAAAAAATCNYAAAAAAJhAsAYAAAAAwASCNQAAAAAAJhCsAQAAAAAwgWANAAAAAIAJBGsAAAAAAEwgWAMAAAAAYALBGgAAAAAAExzsXQAAAHg+ODk5qWjRooqOjpajo6O9ywEAwGYI1gAAIFVYLBb17t1bR44ckcVisXc5AADYDEPBAQBAqrFYLIRqAECGQ7AGAAAAAMAEgjUAAAAAACYQrAEAAAAAMIFgDQAAAACACQRrAAAAAABMIFgDAIBUYxiGDMOwdxkAANgUz7EGAACpwjAMLVy4UHfu3FHZsmXtXQ4AADZDsAYAAKkiNjZW4eHhkqS4uDg7VwMAgO0wFBwAAAAAABMI1gAAAAAAmECwBgAAAADABII1AAAAAAAmEKwBAAAAADCBYA0AAAAAgAkEawAAAAAATCBYAwAAAABgAsEaAAAAAAATCNYAAAAAAJhAsAYAAAAAwASCNQAAAAAAJhCsAQAAAAAwgWANAAAAAIAJBOtkCg4O1iuvvCIvLy95e3urQ4cO+vbbb63z/fz8NGvWrEeuHxQUJA8Pj8du4/r161q1apXNagYAAAAApDwHexeQHqxevVqTJ0/W6NGjVaVKFRmGoZ07d2rSpEm6cuWKBg4c+MQ2WrRooTp16jx2mU8++UTnzp1Tp06dbFU6AAAAACCFEayTYcWKFerQoYM6duxonVaiRAldvHhRy5YtS1awzpo1q7JmzfrYZQzDMF0rAAAAACB1MRQ8GTJlyqT9+/fr5s2biab369dPK1eutH6+fPmyBg4cKC8vL/n4+OjDDz9UfHy8pKRDwT08PDRz5kw1aNBAvr6+Gjp0qNasWaPdu3c/ccg4AAAAACDt4Ix1MvTp00dDhgxR3bp15ePjo6pVq6pGjRqqWLGicubMaV1u9erVev/99/X+++9r165dGj16tEqXLp3oTPe/rVixQgsWLFB8fLxKliyp+Ph4Xbhw4bHXagMAAAAA0haCdTI0a9ZMBQsW1LJly7Rz505t3bpVklS8eHFNmTJFVapUkSQ1adJEvXr1kiS5ublp2bJlOnTo0CODdZs2bVSxYkXr56xZs8rR0VGurq4pvEcAAKS+f1/yxOVPAICMhGCdTF5eXvLy8lJCQoKOHj2qrVu3KjAwUH379tWWLVsk3Q/a/5YrVy7FxMQ8ss1ixYqlZMkAAKQpFovF3iUAAJAiuMb6CS5cuKCAgABduHBB0v3rrcuVK6c333xTS5cu1e3bt/XHH39IkjJnzpxk/cf9Iv+km5kBAJBREbIBABkJwfoJnJyctGrVKgUHByeZ9+D66nz58tlkW/wnAwAAAADSH4aCP0GePHnUp08fzZgxQ7dv31azZs2UI0cOnThxQl988YX1Zma24OzsrEuXLik8PFxubm42aRMAAAAAkLII1snwzjvvqHjx4vruu++0fPly3b17Vy+++KKaN2+uN954w2bbadu2rbZs2aKXX35ZmzdvVoECBWzWNgAAAAAgZRCsk6lt27Zq27btI+eHhIQkmfb1119b37dv317t27e3fj527FiS5StWrKht27aZKxQAAAAAkKq4xhoAAAAAABMI1gAAAAAAmECwBgAAAADABII1AAAAAAAmEKwBAAAAADCBYA0AAAAAgAkEawAAAAAATCBYAwAAAABgAsEaAAAAAAATCNYAAAAAAJhAsAYAAAAAwASCNQAAAAAAJhCsAQAAAAAwgWANAAAAAIAJDvYuAAAAPB+cnJxUtGhRRUdHy9HR0d7lAABgMwRrAACQKiwWi3r37q0jR47IYrHYuxwAAGyGoeAAACDVWCwWQjUAIMMhWAMAAAAAYALBGgAAAAAAEwjWAAAAAACYQLAGAAAAAMAEgjUAAAAAACYQrAEAAAAAMIFgDQAAUo1hGDIMw95lAABgUw72LgAAADwfDMPQwoULdefOHZUtW9be5QAAYDMEawAAkCpiY2MVHh4uSYqLi7NzNQAA2A5DwQEAAAAAMIFgDQAAAACACQRrAAAAAABMIFgDAAAAAGACwRoAAAAAABMI1gAAAAAAmECwBgAAAADABII1AAAAAAAmEKwBAAAAADCBYA0AAAAAgAkEawAAAAAATCBYAwAAAABgAsEaAAAAAAATCNYAAAAAAJiQIYJ1cHCwXnnlFXl5ecnb21sdOnTQt99+m6o1BAUFycPDI1W3CQAAAACwPwd7F2DW6tWrNXnyZI0ePVpVqlSRYRjauXOnJk2apCtXrmjgwIH2LhEAAAAAkIGl+2C9YsUKdejQQR07drROK1GihC5evKhly5YRrAEAAAAAKSrdDwXPlCmT9u/fr5s3byaa3q9fP61cuVKS5Ofnp0WLFmnQoEHy9vaWj4+PJk2apHv37lmX37dvn7p16yZPT0/Vr19fAQEBioqKss4/f/68hgwZopo1a6p8+fKqW7eupk6dqoSEhIfWtXHjRlWoUME6JN0wDC1YsEANGzZUpUqV1KZNGwUHB1uX37Vrl8qVK6f58+fLx8dH7du3f2TbAAAAAIC0I90H6z59+ujw4cOqW7eu+vXrp/nz5+vAgQNycXHRSy+9ZF1uxowZqlatmoKDg/Xee+8pMDBQP/zwgyTp6NGjev3111WnTh0FBwfr008/1d9//y1/f38ZhiFJevPNNxUZGaklS5Zo48aN8vf318KFCxUSEpKkpp9//lnDhw/X+PHj1blzZ0nStGnT9M0332js2LFav369evbsqQkTJmj58uXW9eLj47V161atXLlSkydPVqZM6f6vBwAAqwf/pv7vewAA0rt0PxS8WbNmKliwoJYtW6adO3dq69atkqTixYtrypQpqlKliiTJ19dXPXv2lCS5ubnp66+/1r59+9S2bVstWrRItWvXVv/+/a3rfvbZZ2rUqJF2795tPcPcvHlzFSpUSJL02muvacGCBTp27JgaNWpkree3337Tu+++q4CAALVv316SFB0draVLl+rzzz9X/fr1JUlFixZVRESEFi1apG7dulnX9/f3V/HixVP0OwMAwB4sFou9SwAAIEWk+2AtSV5eXvLy8lJCQoKOHj2qrVu3KjAwUH379tWWLVskSSVLlky0jouLi+Li4iRJhw8f1pkzZ+Tt7Z2k7bCwMPn4+Kh79+7auHGjDhw4oDNnzujYsWO6cuVKkuHagwcPVmxsrIoUKWKdduLECcXExGjo0KGJzkLfu3dPsbGxunv3rnUaoRoA8DwgZAMAMpJ0HawvXLigefPm6Y033lDBggWVKVMmlStXTuXKlVOjRo308ssv648//pAkOTk5JVn/wTC0hIQEtWrVynrG+t/y5Mmj6Ohode/eXXfv3lWzZs3Url07eXp6JjrT/MCkSZO0ZcsWjR49WsHBwcqWLZt1O9OnT1eJEiWSrPPv2rJkyfJsXwYAAAAAwC7S9UW8Tk5OWrVqVaKbgD2QM2dOSVK+fPme2E7p0qV14sQJFStWzPq6d++ePvzwQ/3zzz/asWOH/v77by1btkxvv/22WrRooRw5cujq1atJrhFr1aqVxo4dqxs3bujzzz+XdP8u5Q4ODjp//nyibWzdulWLFi3iWmoAAAAASMfSdaLLkyeP+vTpoxkzZmjatGk6cuSIwsPD9euvv2rgwIHy8fFR1apVn9iOv7+/Dh8+rICAAIWFhWn//v0aOnSoTp8+reLFi6tgwYKSpODgYEVERGjPnj166623FBcXp9jY2CTtubq6avjw4QoMDNTevXvl4uKizp07a8aMGVq3bp3Cw8O1evVqTZ06Vfnz57f59wIAAAAASD3peii4JL3zzjsqXry4vvvuOy1fvlx3797Viy++qObNm+uNN95IVhteXl5auHChZsyYoXbt2snZ2Vk1a9bU+++/LycnJ3l6emrkyJFaunSppk+frgIFCqhFixYqVKiQDh48+NA2O3XqpODgYI0aNUrr1q3TyJEj9cILL2jGjBm6dOmSChUqpLffflt9+vSx5dcBAAAAAEhlFoPnXWQYD0J+xYoVn7hsdHS0jhw5orJly8rZ2TmlS0M6Rl9BctBPkBwxMTEaPXq0JGnMmDHKnTu3fQtCmsUxBclFX0FyPE0/eZpM9W/peig4AAAAAAD2RrAGAAAAAMAEgjUAAAAAACYQrAEAAAAAMIFgDQAAAACACQRrAAAAAABMIFgDAAAAAGACwRoAAAAAABMI1gAAAAAAmECwBgAAAADABII1AAAAAAAmEKwBAAAAADCBYA0AAAAAgAkEawAAAAAATHCwdwEAAOD54OTkpKJFiyo6OlqOjo72LgcAAJshWAMAgFRhsVjUu3dvHTlyRBaLxd7lAABgMwwFBwAAqcZisRCqAQAZDsEaAAAAAAATCNYAAAAAAJhAsAYAAAAAwASCNQAAAAAAJhCsAQAAAAAwgWANAABSjWEYMgzD3mUAAGBTPMcaAACkCsMwtHDhQt25c0dly5a1dzkAANgMwRoAAKSK2NhYhYeHS5Li4uLsXA0AALbDUHAAAAAAAEwgWAMAAAAAYALBGgAAAAAAEwjWAAAAAACYQLAGAAAAAMAEgjUAAAAAACYQrAEAAAAAMIFgDQAAAACACQRrAAAAAABMIFgDAAAAAGACwRoAAAAAABMI1gAAAAAAmECwBgAAAADABII1AAAAAAAmONi7gPTIz89PERER1s+Ojo4qXLiwOnXqpD59+tixMgAAAABAaiNYPyN/f3/5+/tLku7evasDBw5ozJgxypYtm7p162bn6gAAAAAAqYVg/YycnZ3l6upq/ezm5qZdu3bp+++/J1gDAAAAwHOEa6xtKGvWrNb3N2/e1JgxY1SnTh2VL19eNWvW1JgxY3Tnzh3rMocOHVK3bt1UqVIlNWzYUMHBwSpXrpx27dplj/IBAAAAAM+AM9Y2cuDAAf3www8aNGiQJGnEiBG6ePGiZs+erbx582rfvn0aNWqUSpUqpddee00XL15Ur1691LBhQwUEBCgiIkITJkxQfHy8nfcEAAAAAPA0CNbPaN68eVq8eLEkKS4uTnFxcapUqZJatWolSapdu7aqVasmDw8PSVKRIkUUGBio0NBQSdLKlSvl4uKiyZMny9HRUaVKldKYMWP01ltv2WeHAABIYYZhPPQ9AADpHcH6GXXu3Fk9evSQJN27d09nzpzRtGnT1K1bN61atUpdu3ZVSEiI1qxZo9OnT+vEiRM6d+6cSpQoIUk6fPiwKlSoIEdHR2ub1apVs8u+AACQGiwWi71LAAAgRRCsn1GuXLlUrFgx6+eSJUsqV65c6tq1q/7zn/9o+fLlOn78uF5++WW1aNFC5cuX19ixY63LZ86cWQkJCfYoHQAAuyNkAwAyEoK1DT0Y1nbo0CFt27ZN3333nSpVqiTp/nDxs2fPys3NTZJUpkwZff/994qLi7Oetd6/f799CgcAAAAAPDPuCv6MoqOjdfnyZV2+fFmXLl3Snj17NGXKFOXPn1+dOnWSg4ODNmzYoPDwcB08eFDvvPOOLl++rNjYWElS165ddevWLY0dO1ZhYWH6z3/+o4kTJ0riV3wAAAAASE8I1s9o8eLF8vX1la+vr+rVq6dBgwapcOHC+uqrr1SgQAF99NFHCgkJUYsWLTR48GAVKFBAr732mg4dOiRJyps3rxYuXKgTJ06oTZs2GjdunLp06SJJia67BgAAAACkbQwFfwYhISFPXKZVq1bWO4T/28iRIyVJJ06ckGEYWr16tXXevn37JEkFCxa0UaUAAAAAgJTGGWs7uXDhgnr27Km1a9cqIiJC+/fv14cffqjq1aurUKFC9i4PAAAAAJBMnLG2E19fX40ePVrz5s3T2LFj5eLiIj8/Pw0bNszepQEAAAAAngLB2o66du2qrl272rsMAAAAAIAJDAUHAAAAAMAEgjUAAAAAACYQrAEAAAAAMIFgDQAAAACACQRrAAAAAABMIFgDAAAAAGACwRoAAAAAABMI1gAAAAAAmECwBgAAAADABII1AAAAAAAmEKwBAAAAADDBwd4FAACA54OTk5OKFi2q6OhoOTo62rscAABshmANAABShcViUe/evXXkyBFZLBZ7lwMAgM0wFBwAAKQai8VCqAYAZDgEawAAAAAATCBYAwAAAABgAsEaAAAAAAATCNYAAAAAAJhAsAYAAAAAwASCNQAAAAAAJhCsAQBAqjEMQ4Zh2LsMAABsysHeBQAAgOeDYRhauHCh7ty5o7Jly9q7HAAAbIZgDQAAUkVsbKzCw8MlSXFxcXauBgAA22EoOAAAAAAAJhCsAQAAAAAwgWANAAAAAIAJBGsAAAAAAEwgWAMAAAAAYALBGgAAAAAAEwjWAAAAAACYQLAGAAAAAMAEgjUAAAAAACYQrAEAAAAAMIFgDQAAAACACQRrAAAAAABMIFgDAAAAAGACwRoAAAAAABPSVLCOiopSpUqVVKtWLcXFxT3VukFBQfLw8Hjk/B49emjEiBHPXNusWbPk5+f3zOsn1/nz5/Xjjz+m+HYAAAAAALaRpoL1jz/+qLx58yoyMlJbtmyxdzl28f7772v79u32LgMAAAAAkExpKlh///33qlOnjmrUqKFvv/3W3uUAAAAAAPBEaSZYh4WF6a+//lLt2rXVpEkT7dq1S6dOnbLO9/Pz06JFizRo0CB5e3vLx8dHkyZN0r179x7a3saNG1WhQoVHBvSwsDD17dtX3t7e8vX11dChQ3X58uUn1jlnzhz5+PiocuXKGjZsmG7cuGGdd+PGDQUEBKhevXry9PRU586dtWvXrkTr//bbb3rllVes2/3www919+5dSfeHq+/evVtr1qxJlWHnAAAAAADz0kywXr16tZydnVW3bl01btxYjo6OSULxjBkzVK1aNQUHB+u9995TYGCgfvjhhyRt/fzzzxo+fLjGjx+vzp07J5l/8eJFde3aVcWKFdPq1as1d+5cRUVF6dVXX1V0dPQja4yIiNB///tfLVmyRHPnztXBgwc1cuRISVJ8fLz8/f21Z88eTZ06VUFBQXJ3d1fv3r114MABSdKWLVv05ptvqn79+goKClJAQIB++uknvfvuu5LuX8ft7e2t5s2ba/Xq1c/8XQIAkBYZhvHQ9wAApHdpIljfu3dPwcHB8vPzU9asWZU7d275+vpq7dq1iomJsS7n6+urnj17ys3NTR06dFCZMmW0b9++RG399ttvevfddxUQEKBOnTo9dHvffPONChYsqDFjxqhkyZKqUKGCpk+frqtXr2rjxo2PrDNLliyaNm2aypUrp+rVq2vcuHEKCQnRmTNntGPHDv3999/67LPPVL16dZUqVUoBAQEqXbq0Fi1aJEmaP3++GjdurLfeeksvvfSSGjZsqPHjx+uXX37RiRMnlDt3bjk6Oipr1qzKkyePDb5ZAADSDovFYu8SAABIEWkiWG/dulVXrlxRy5YtrdNatmypGzduaMOGDdZpJUuWTLSei4tLkruHDx48WLGxsSpSpMgjt3f48GEdP35c3t7e1letWrUUExOjsLCwR65XrFgx5cuXz/q5UqVKkqTjx48rNDRULi4ucnd3t863WCyqWrWqQkNDJUmhoaGqXLlyojarV69unQcAwPOCkA0AyEgc7F2AdP9RWZI0cODAJPO+/fZbtW3bVpLk5OSUZP7/DiWbNGmStmzZotGjRys4OFjZsmVLsk5CQoJq1Kih8ePHJ5nn4uLyyDozZ86c6HN8fLwkydHR8ZFD2gzDkIODw0NrfVCLJOsyAAAAAID0xe5nrK9evaqtW7eqffv2Wrt2baJXhw4dtH///qc6m9uqVSuNHTtWN27c0Oeff/7QZUqXLq2wsDAVKlRIxYoVU7FixZQrVy5NmTLlsds6ffq0oqKirJ/37t0ri8WiUqVKycPDQ5GRkYnWNwxDe/fuValSpSRJHh4eSYau79mzR1LSs/EAAAAAgPTB7sE6ODhY9+7dU9++feXu7p7o1b9/f2XKlOmpH73l6uqq4cOHKzAwUHv37k0yv2vXroqMjNSwYcN09OhRHT16VEOGDNHBgwcTDeX+XzExMXrnnXd0+PBh7dy5UxMnTlTbtm1VuHBh+fr6qmzZsho6dKh2796tsLAwffDBBwoNDVWvXr0kSX369NHmzZv1xRdf6NSpU/r11181ceJENWjQwBqss2fProiICF24cOGp9hkAAAAAYB92D9ZBQUGqVauWSpQokWRe0aJF1ahRIwUHBz/2bt0P06lTJ1WpUkWjRo2yPs7qATc3NwUGBur27dvq0qWLunfvLkdHRy1btuyxNw2rUKGCypYtq549e+qdd95R3bp1rcPJM2fOrMWLF6tcuXIaOHCgOnTooOPHj2vp0qXy8vKSJDVt2lSff/65NmzYoFatWmn8+PFq2bKlpk+fbt1G586dFRoaqtatW1uHmgMAAAAA0i6LwfMuMoyDBw9KkipWrPjEZaOjo3XkyBGVLVtWzs7OKV0a0jH6CpKDfoLkiImJ0ejRoyVJY8aMUe7cue1bENIsjilILvoKkuNp+snTZKp/s/sZawAAAAAA0jOCNQAAAAAAJhCsAQAAAAAwgWANAAAAAIAJBGsAAAAAAEwgWAMAAAAAYALBGgAAAAAAEwjWAAAAAACYQLAGAAAAAMAEgjUAAAAAACYQrAEAAAAAMIFgDQAAAACACQRrAAAAAABMIFgDAAAAAGCCg70LAAAAzwcnJycVLVpU0dHRcnR0tHc5AADYDMEaAACkCovFot69e+vIkSOyWCz2LgcAAJthKDgAAEg1FouFUA0AyHAI1gAAAAAAmGAxDMOwdxGwjX379skwDDk5OT1xWcMwFBcXJ0dHR84c4LHoK0gO+gmSi76C5KCfILnoK0iOp+knsbGxslgsqly58lNtg2usM5CnOZhYLJZkBXCAvoLkoJ8guegrSA76CZKLvoLkeJp+8qyXLHHGGgAAAAAAE7jGGgAAAAAAEwjWAAAAAACYQLAGAAAAAMAEgjUAAAAAACYQrAEAAAAAMIFgDQAAAACACQRrAAAAAABMIFgDAAAAAGACwRoAAAAAABMI1gAAAAAAmECwBgAAAADABIJ1BnHjxg2NGzdOdevWVeXKldWlSxft2bPHOv/UqVPq16+fvL29Vbt2bX3wwQe6c+fOY9ts0qSJPDw8Er1GjBiR0ruCFPS4fuLn55fk7/vB648//nhkmxs2bFCLFi3k6emptm3b6vfff0+t3UEKSom+wjEl43nSvz3/+c9/1KFDB3l5ealRo0ZatGjRE9tcvny5GjZsKE9PT3Xt2lWHDx9OyV1AKrF1X4mPj5enp2eSY8qsWbNSeleQgp7UT9atW6dWrVrJy8tLnTp10s6dOx/bXkJCgmbOnKk6derIy8tLffv2VXh4eErvBlKBrfvKxYsXH/r/mqCgoOQXZSBDeP31142XX37Z+OOPP4yTJ08aAQEBhqenpxEWFmZcu3bNqFWrlvHmm28ax48fN3bu3Gn4+voa48ePf2R7t2/fNsqUKWP8+uuvxqVLl6yvW7dupd5OweYe10+uXr2a6O/63LlzRpMmTYyePXsacXFxD23v999/N8qXL2989dVXxokTJ4yPPvrIqFChgnHixIlU3jPYmq37CseUjOlx/SQsLMyoUKGCMWvWLOPs2bPGjz/+aHh6ehqBgYGPbC8oKMjw9PQ01q1bZxw/ftwYPny4Ub16dePq1aupuFdICbbuKydOnDDc3d2NI0eOJDqmREVFpeJewdYe10/Wr19veHh4GF988YVx8uRJIzAw0KhYsaLx3//+95HtzZo1y/Dx8TF+/fVX48iRI4a/v7/RpEkTIyYmJhX3CinB1n3lt99+MypWrGhcvHgx0THlzp07ya6JYJ0BnD592nB3dzf27NljnZaQkGA0atTImD59ujFz5kyjbt26xt27d63zv/vuO6Ndu3ZGQkLCQ9v866+/DHd3d+PGjRspXj9Sx5P6yf/66KOPjBo1ajz2P7T+/v7G4MGDE0179dVXjbFjx9qsbqS+lOgrHFMynif1kyVLlhjVq1dPtM6AAQOMN95445FtNmnSxPjkk0+sn+Pi4ox69eoZc+fOtf0OINWkRF/58ccfjcqVK6dYzUh9T+onrVu3Nt55551E64wePdro3r37Q9uLiYkxvL29jeXLl1un3bx50/D09DTWr1+fMjuBVGHrvmIYhjF//nyjVatWpupiKHgG8MILL2j+/PmqWLGidZrFYpHFYtGtW7e0Y8cONW7cWFmyZLHO79Spk4KCgmSxWB7a5rFjx5QvXz7lypUrxetH6nhSP/m3EydOaNmyZRoxYoTy5Mnz0PYSEhK0b98+1axZM9F0Hx+fxw4HRtpn674icUzJiJ7UT/LmzasbN27ohx9+kGEYOnbsmPbu3atKlSo9tL2rV6/q9OnTiY4pDg4Oqlq1KseUdM7WfUW6f0wpWbJkapSPVPKkfnLmzBlVrVo10Tply5bV/v37de/evSTtHT16VLdv3050TMmZM6fKlSvHMSWds3VfkWxzTCFYZwA5c+ZUvXr15OTkZJ22adMmnTlzRnXq1NGpU6eUP39+ffjhh6pfv74aN26sTz75RDExMY9s89ixY3J2dtbbb78tX19ftWrVSkuXLlVCQkJq7BJSwJP6yb/NnDlT7u7uatOmzSPbu3XrlqKjo1WwYMFE0/Pnz68LFy7YtnikKlv3FYljSkb0pH7SvHlzderUScOHD1f58uXVunVr1a5dW/37939oew+OG4UKFUo0nWNK+mfrviJJoaGhunfvnnr37q3atWurffv2WrduXWrsDlLIk/pJ/vz5df78+UTrREREKC4uLsmPvhLHlIzM1n1Fun9MuXbtmrp166ZatWqpS5cu2rZt21PVRbDOgPbt26eRI0eqSZMmql+/vqKiorRgwQLFxMRo9uzZGj58uNavX68xY8Y8so3jx4/r1q1batq0qRYtWqQuXbpoxowZ3BQkA/nffvJAeHi4tmzZojfffPOx69+9e1eSEh3UJClLliyP/dEG6Y/ZviJxTHke/G8/uXr1qiIiIvT2229r9erVmjx5srZu3frIv/MHN9TkmJLxme0r0v1jyo0bN9SjRw8tWrRITZs21ciRI7V69epU3BOkpP/tJ61bt9aKFSu0fft2xcfH67///a++//57SVJcXFyS9TmmPD/M9pV79+7p5MmTunnzpgYNGqT58+fLy8tL/fr1e7qb8poaSI40Z8uWLUalSpWM119/3XpNdcWKFY1OnTolWu6nn34y3N3djStXrjy0nZiYmCQ3FZo3b57h5eVlxMfHp0zxSDUP6ycPzJ4926hdu/YT/56vXbtmuLu7G7/99lui6YGBgVz3loHYoq8YBseUjO5h/aR3797GyJEjEy333XffGeXKlXvo9fgHDx403N3dk9z88OOPPzZ93RvSDlv0FcMwjDt37iS5Udm4ceOMZs2apUzhSFUP6ycxMTHGBx98YJQvX94oU6aM8fLLLxsLFiww3N3djdu3bydpY+PGjYa7u3uSm0+9/fbbRv/+/VNlP5DybNFXDMMwoqKikvSV3r17G7179052LZyxzkACAwM1aNAgNWjQQHPnzrVeU12wYEGVLl060bIPPkdERDy0LScnJ7m4uCSa5u7urujoaN28eTMFqkdqeVQ/eeDnn39Wy5YtlSnT4w8PuXPnlrOzsy5dupRo+qVLl1SgQAGb143UZ6u+InFMycge1U/27t2b6Po3SfLy8tK9e/d07ty5JO08GK7JMSXjslVfkaSsWbMqe/bsiaa5u7szxDcDeFQ/cXJy0tixY7Vv3z5t3bpV69evV7Zs2ZQvXz45OzsnaYdjSsZnq74iSdmzZ1fWrFkTTStdurQuXryY7HoI1hnEihUrNHHiRHXr1k2ff/55omEv1apV04EDB2QYhnVaaGioMmfOrCJFiiRpyzAMNWrUSLNnz040/eDBg3J1ddULL7yQcjuCFPW4fiJJUVFROnLkiGrVqvXEtiwWiypXrqzdu3cnmr5r164kN4xA+mPLvsIxJeN6XD8pUKCAjh07lmj5Y8eOyWKxqFixYknayps3r1566SXt2rXLOu3evXvas2ePqlWrlnI7gVRhy75y69YtVa9ePcnzZQ8ePJjkRALSl8f1k2nTpunLL7+Uk5OT8ufPL0navHmzateu/dC2ypQpoxw5ciQ6pty6dUuHDx/mmJIB2LKvHD9+XJUrV07UVyTp0KFDKlWqVPKLesaz7khDTp48aZQvX94YMGBAoueuPXhGbFhYmFGpUiVj7NixxsmTJ41t27YZdevWNUaMGGFt49atW4mGW3300UeGl5eX8eOPPxpnzpwxvv32W8PT09NYuXKlPXYRNvCkfmIYhvHHH38Y7u7uxoULFx7axv/2k+3btxtly5Y1Fi9ebJw4ccL4+OOPDU9PT55jnc6lRF/hmJLxPKmffPvtt0a5cuWMr776yjh79qyxZcsWo3bt2kZAQIC1jevXrxvXr1+3fl65cqXh6elpBAUFWZ9j7ePjw3Os07mU6CuDBg0yfH19jd9++804deqUMW/ePKNs2bLGtm3b7LCHsIUn9ZNVq1YZXl5eRkhIiHH27Flj0qRJhpeXlxEWFmZt4+rVq4kuO/r888+N6tWrGz///HOi51jHxsbaYxdhI7buK/Hx8UaHDh2MFi1aGH/88Ydx4sQJY8qUKUaFChWMY8eOJbsui2H86zQm0qW5c+dq2rRpD53Xrl07ffTRRzpw4IA++eQTHThwQC4uLmrdurWGDBli/XVnxIgR2r17t0JCQiTdP0swb948rVmzRhcuXFCRIkXk7++vV155JdX2C7aVnH7y008/aciQITpw4ECSYb9S0n4iSWvXrtUXX3yhCxcuqFSpUho+fHiSR3AhfUmJvsIxJeNJTj9Zu3atlixZojNnzqhAgQJq06aN+vbtK0dHR0lSjx49JElff/21dd1FixZp2bJlunHjhipUqKAxY8aobNmyKb9DSDEp0VeioqI0a9Ysbdq0SVevXlXJkiU1cOBANWrUKHV2CjaXnH4yb948ffPNN7p586YqVKig4cOHy9PT07qcn5+fqlevro8++kiSFB8fr88//1xBQUG6e/euqlWrpnHjxj10xCbSj5ToK1euXNFnn32m7du369atWypXrpyGDRv2VKMwCdYAAAAAAJjANdYAAAAAAJhAsAYAAAAAwASCNQAAAAAAJhCsAQAAAAAwgWANAAAAAIAJBGsAAAAAAEwgWAMAAAAAYALBGgAAAAAAEwjWAACkMbNmzZKHh4e9y0gVPXr0UI8ePVJte5s2bVLXrl1t2uaMGTM0YcIEm7YJAEhfHOxdAAAAeH6NHz8+1bZ19epVBQQEaMGCBTZtt1+/fmratKmaNm2qmjVr2rRtAED6wBlrAABgN6VKlVKpUqVSZVtffvmlPD09Vb58eZu2my1bNvXq1UsffvihTdsFAKQfBGsAANK4oKAgVaxYUXv27FGHDh1UsWJFNW3aVCEhITp58qR69eqlSpUqqXHjxvrxxx8TrfvHH3+od+/eqlatmipUqCA/Pz/NmjVLCQkJ1mUuXbqkIUOGqHr16qpWrZrGjRunadOmyc/PL1Fbq1atUsuWLVWhQgXVr19fs2bNUnx8/GNr37lzp1555RV5e3urWrVqevPNNxUWFmad/++h4EFBQfLw8Hjoa8SIEdZ19uzZo+7du6tSpUqqXr263n//fV27du2xdVy7dk2rV6/Wyy+/bJ22a9cueXh4aMeOHerWrZs8PT3VpEkTrVixwrrMsmXL5OHhoaCgIOu0//73vypTpozmzJljnfbyyy/r+PHj+u233x5bBwAgYyJYAwCQDty7d09Dhw5V586d9eWXXypbtmwaNmyY+vfvr/r162vu3LnKnz+/3n//fV24cEGSdPToUb322mvKnTu3pk2bpi+//FJVq1bV7NmztWHDBklSbGysevXqpX379mnUqFH68MMPdfToUS1evDjR9ufNm6exY8eqZs2amjt3rrp166YFCxZo7Nixj6w5PDxcb731lipUqKAvv/xSkydP1qlTp9SvX79Ewf6B+vXra+XKlYlezZo1k4ODg9q1ayfp/g8Fr732mrJmzarp06dr1KhR2r17t3r27Km7d+8+spbNmzfr3r17atCgQZJ5Q4YMUbly5TRnzhzVqlVLAQEB1nDdo0cPVatWTR9//LGuXbumqKgojRo1Sl5eXurfv7+1jQIFCsjLy0vr169/ZA0AgIyLa6wBAEgHEhIS1L9/f3Xq1EmSdOvWLQ0ZMkS9evXS66+/LklycXFRhw4ddOjQIRUsWFBHjx5VrVq1NHXqVGXKdP+39Nq1ayskJES7du1Sy5YtFRwcrJMnT+r7779XhQoVJEk1atRQo0aNrNuOjIzUF198oVdffVVjxoyRJPn6+ip37twaM2aMXn/9dZUuXTpJzQcOHNDdu3f1xhtvqECBApKkggUL6pdfflF0dLRy5MiRaPk8efIoT5481s9btmzRpk2bNGrUKPn4+EiSPvvsM7300kuaN2+eMmfOLEmqVKmSWrZsqe+//17dunV76Pf33//+VyVLllT27NmTzGvcuLFGjx4tSapTp44uXbqkL774Ql26dJHFYtGHH36o1q1ba+rUqcqcObNu3Lihr776yrr9BypWrKgffvjhodsHAGRsnLEGACCd8Pb2tr7PmzevpPuh8oHcuXNLuh+6Jalt27ZasGCB4uLidPToUW3atEkzZ85UfHy84uLiJN0PnG5ubtZQLUk5cuRIdGZ3//79unv3rvz8/HTv3j3r68FQ8Z07dz603kqVKilLlizq2LGjJk+erO3bt6tMmTIaMmRIklD9v44ePar33ntPbdu2Vc+ePSVJd+7c0V9//aV69erJMAxrHW5ubipZsuQj65Dunz0vUqTIQ+c9OBv+QJMmTXT58mWdOnVKkuTm5qZhw4ZpzZo1WrVqlcaMGSM3N7ck7RQuXFhXr17VnTt3HrtvAICMhzPWAACkEw8Lo9myZXvk8nfv3tXEiRO1bt063bt3T0WKFJG3t7ccHBxkGIYk6fr169aQ/m//nnbjxg1J9+9+/TCXLl166PQiRYooMDBQ8+fP1+rVq7Vs2TLlzJlTXbt21TvvvCOLxfLQ9a5evao333xTJUqUUEBAgHX6rVu3lJCQoAULFjz0zt5ZsmR5+BchKSoq6pHf1YOz6Q882PebN29ap7Vo0UIfffSRpPtn/R/G2dlZ0v0z/I/7ewEAZDwEawAAMqjJkydr06ZNmj59umrVqmUNfv9+JFSBAgV0+vTpJOtevXrV+j5nzpySpE8//VTFixdPsmy+fPkeWYOnp6dmz56t2NhY7d27VytXrtTcuXNVpkwZNW/ePMnysbGxGjBggGJiYjRnzpxEYTl79uyyWCx67bXX1LJlyyTrPi7MvvDCC4qMjHzovOvXr6to0aLWzw/2/d8/LkyaNEnZs2eXk5OTxo0bp3nz5iVp5+bNm7JYLNaRAwCA5wdDwQEAyKD27t0rHx8fNWrUyBqqDx06pGvXrllvHla9enWdO3dOR44csa539+5dbd++3fq5UqVKcnR01MWLF1WxYkXry8HBQZ9//rnOnTv30O0vXbpUDRo0UGxsrJycnFSzZk1NnDhRknT+/PmHrjN+/HgdOnRIM2fOVMGCBRPNy5Ejh8qVK6eTJ08mqqN06dKaNWuWdu3a9cjv4sUXX9Q///zz0Hk///xzos8bN25U4cKFrWF78+bN+uGHHzRy5EiNGzdOv/32m77//vsk7Vy4cEH58uWTk5PTI+sAAGRMnLEGACCD8vT01IYNG/TNN9+oZMmSOnr0qL788ktZLBbrdcAvv/yy5s+frwEDBmjw4MHKmTOnlixZoqtXr+rFF1+UdP9sb58+fTRjxgxFRUXJx8dHFy9e1IwZM2SxWFSmTJmHbr9GjRr69NNPNWDAAHXv3l2ZM2fWt99+Kycnp4fenXvp0qUKCgqSv7+/smXLpj///NM6z8nJSeXKldO7776rfv36aejQoWrdurXi4+O1ePFi/fXXX3rrrbce+V3Url1bGzZsUGRkpFxcXBLNW7JkibJkySIvLy9t3rxZv/76qz777DNJ9x/TNWHCBPn6+qpNmzaSpEaNGunDDz9U7dq1E4X/ffv2qU6dOsn4mwEAZDQEawAAMqgRI0YoLi5O06dPV2xsrIoUKaI333xTJ06cUEhIiOLj4+Xg4KBFixZp8uTJmjBhghwcHNS6dWvlzp3bevMuSXrnnXfk6uqqFStWaOHChcqVK5dq1qypd999N0lQfaBMmTKaO3eu5syZo3fffVfx8fGqUKGCFi9erBIlSiRZ/pdffpEkLV68OMnjvgoXLqyQkBD5+vpq0aJFmj17tt5++205OjqqfPnyWrJkiby8vB75XTRo0EAODg7avn27WrRokWjeqFGjtGbNGs2bN08lSpTQzJkz1bRpU0lSQECA7ty5k+ha73HjxqlFixYaPXq0Fi1aJOn+deZHjx7V4MGDH/M3AgDIqCzGg7uXAACA587x48d18uRJNWnSJNHNxDp27KiCBQtq9uzZdqzOtiZOnKjjx49r2bJlkqRdu3apZ8+eWrZsmfVxXs9qzpw52rJli9asWfPIm7IBADIuzlgDAPAci46O1uDBg9W1a1c1btxY8fHx+umnn3To0CENGzbM3uXZVP/+/dWyZUsdOHBAnp6eNmv39u3b+uabbzRlyhRCNQA8p7h5GQAAz7FKlSpp+vTpOnjwoAYMGKBBgwbpzJkzWrhwoWrUqGHv8mzK1dVVEyZM0JQpU2za7vz58+Xn56e6devatF0AQPrBUHAAAAAAAEzgjDUAAAAAACYQrAEAAAAAMIFgDQAAAACACQRrAAAAAABMIFgDAAAAAGACwRoAAAAAABMI1gAAAAAAmECwBgAAAADABII1AAAAAAAm/B/YZvwakkMzVwAAAABJRU5ErkJggg==\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "manager.run()\n" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-07-17T14:01:19.818132800Z", + "start_time": "2023-07-17T14:00:24.304133700Z" + } + } + }, + { + "cell_type": "code", + "execution_count": 5, + "outputs": [], + "source": [], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-07-17T14:01:19.818132800Z", + "start_time": "2023-07-17T14:01:19.800132500Z" + } + } + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/src/data_gradients/assets/html/basic_info_fe_classification.html b/src/data_gradients/assets/html/basic_info_fe_classification.html new file mode 100644 index 00000000..54420ee4 --- /dev/null +++ b/src/data_gradients/assets/html/basic_info_fe_classification.html @@ -0,0 +1,37 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

 

+
+ Train + + Validation +
Images{{train.num_samples}}{{val.num_samples}}
Classes{{train.classes_count}}{{val.classes_count}}
Classes in use{{train.classes_in_use}}{{val.classes_in_use}}
Median image resolution{{train.med_image_resolution}}{{val.med_image_resolution}}
diff --git a/src/data_gradients/batch_processors/classification.py b/src/data_gradients/batch_processors/classification.py new file mode 100644 index 00000000..92b0f594 --- /dev/null +++ b/src/data_gradients/batch_processors/classification.py @@ -0,0 +1,25 @@ +from typing import List + +from data_gradients.batch_processors.base import BatchProcessor +from data_gradients.batch_processors.formatters.classification import ClassificationBatchFormatter +from data_gradients.batch_processors.output_mapper.dataset_output_mapper import DatasetOutputMapper +from data_gradients.batch_processors.preprocessors.classification import ClassificationBatchPreprocessor +from data_gradients.config.data.data_config import ClassificationDataConfig + + +class ClassificationBatchProcessor(BatchProcessor): + def __init__( + self, + *, + data_config: ClassificationDataConfig, + class_names: List[str], + class_names_to_use: List[str], + n_image_channels: int = 3, + ): + dataset_adapter = DatasetOutputMapper(data_config=data_config) + formatter = ClassificationBatchFormatter( + data_config=data_config, class_names=class_names, class_names_to_use=class_names_to_use, n_image_channels=n_image_channels + ) + preprocessor = ClassificationBatchPreprocessor(class_names=class_names, n_image_channels=n_image_channels) + + super().__init__(dataset_output_mapper=dataset_adapter, batch_formatter=formatter, batch_preprocessor=preprocessor) diff --git a/src/data_gradients/batch_processors/formatters/classification.py b/src/data_gradients/batch_processors/formatters/classification.py new file mode 100644 index 00000000..9e0ffde1 --- /dev/null +++ b/src/data_gradients/batch_processors/formatters/classification.py @@ -0,0 +1,83 @@ +import warnings +from typing import Tuple, List + +import torch +from torch import Tensor + +from data_gradients.batch_processors.formatters.base import BatchFormatter +from data_gradients.batch_processors.formatters.utils import DatasetFormatError, check_images_shape +from data_gradients.batch_processors.formatters.utils import ensure_channel_first +from data_gradients.config.data.data_config import ClassificationDataConfig + + +class UnsupportedClassificationBatchFormatError(DatasetFormatError): + def __init__(self, str): + super().__init__(str) + + +class ClassificationBatchFormatter(BatchFormatter): + """Classification formatter class""" + + def __init__( + self, + data_config: ClassificationDataConfig, + class_names: List[str], + class_names_to_use: List[str], + n_image_channels: int, + ): + """ + :param class_names: List of all class names in the dataset. The index should represent the class_id. + :param class_names_to_use: List of class names that we should use for analysis. + :param n_image_channels: Number of image channels (3 for RGB, 1 for Gray Scale, ...) + """ + self.data_config = data_config + + class_names_to_use = set(class_names_to_use) + self.class_ids_to_use = [class_id for class_id, class_name in enumerate(class_names) if class_name in class_names_to_use] + + self.n_image_channels = n_image_channels + + def format(self, images: Tensor, labels: Tensor) -> Tuple[Tensor, Tensor]: + """Validate batch images and labels format, and ensure that they are in the relevant format for detection. + + :param images: Batch of images, in (BS, ...) format + :param labels: Batch of labels, in (BS) format + :return: + - images: Batch of images already formatted into (BS, C, H, W) + - labels: Batch of targets (BS) + """ + + images = ensure_channel_first(images, n_image_channels=self.n_image_channels) + images = check_images_shape(images, n_image_channels=self.n_image_channels) + labels = self.ensure_labels_shape(images=images, labels=labels) + + if 0 <= images.min() and images.max() <= 1: + images *= 255 + images = images.to(torch.uint8) + elif images.min() < 0: # images were normalized with some unknown mean and std + images -= images.min() + images /= images.max() + images *= 255 + images = images.to(torch.uint8) + + warnings.warn( + "Images were normalized with some unknown mean and std. " + "For visualization needs and color distribution plots Data Gradients will try to scale them to [0, 255] range. " + "This normalization will use min-max scaling per batch with may make the images look brighter/darker than they should be. " + ) + + return images, labels + + @staticmethod + def ensure_labels_shape(labels: Tensor, images: Tensor) -> Tensor: + """Make sure that the labels have the correct shape, i.e. (BS).""" + if torch.is_floating_point(labels): + raise UnsupportedClassificationBatchFormatError("Labels should be integers") + + if labels.ndim != 1: + raise UnsupportedClassificationBatchFormatError("Labels should be 1D tensor") + + if len(labels) != len(images): + raise UnsupportedClassificationBatchFormatError("Labels and images should have the same length") + + return labels diff --git a/src/data_gradients/batch_processors/preprocessors/classification.py b/src/data_gradients/batch_processors/preprocessors/classification.py new file mode 100644 index 00000000..8169b654 --- /dev/null +++ b/src/data_gradients/batch_processors/preprocessors/classification.py @@ -0,0 +1,46 @@ +from typing import Iterable, List +from torch import Tensor +import numpy as np +import time + +from data_gradients.utils.data_classes import DetectionSample +from data_gradients.batch_processors.preprocessors.base import BatchPreprocessor +from data_gradients.utils.data_classes.data_samples import ImageChannelFormat, ClassificationSample + + +class ClassificationBatchPreprocessor(BatchPreprocessor): + def __init__(self, class_names: List[str], n_image_channels:int): + """ + :param class_names: List of all class names in the dataset. The index should represent the class_id. + """ + if n_image_channels not in [1, 3]: + raise ValueError(f"n_image_channels should be either 1 or 3, but got {n_image_channels}") + self.class_names = class_names + self.n_image_channels = n_image_channels + + def preprocess(self, images: Tensor, labels: Tensor, split: str) -> Iterable[DetectionSample]: + """Group batch images and labels into a single ready-to-analyze batch object, including all relevant preprocessing. + + :param images: Batch of images already formatted into (BS, C, H, W) + :param labels: Batch of targets (BS) + :param split: Name of the split (train, val, test) + :return: Iterable of ready to analyse detection samples. + """ + images = np.uint8(np.transpose(images.cpu().numpy(), (0, 2, 3, 1))) + + # TODO: image_format is hard-coded here, but it should be refactored afterwards + image_format = {1: ImageChannelFormat.GRAYSCALE, 3: ImageChannelFormat.RGB}[self.n_image_channels] + + for image, target in zip(images, labels): + class_id = int(target) + + sample = ClassificationSample( + image=image, + class_id=class_id, + class_names=self.class_names, + split=split, + image_format=image_format, + sample_id=None, + ) + sample.sample_id = str(id(sample)) + yield sample diff --git a/src/data_gradients/config/classification.yaml b/src/data_gradients/config/classification.yaml new file mode 100644 index 00000000..7c1a04f8 --- /dev/null +++ b/src/data_gradients/config/classification.yaml @@ -0,0 +1,12 @@ +report_sections: + - name: Image Features + features: + - ClassificationSummaryStats + - ImagesResolution + - ImageColorDistribution + - ImagesAverageBrightness + - name: Classification Features + features: + - ClassificationClassFrequency + - ClassificationClassDistributionVsArea + # - ClassificationClassDistributionVsAreaPlot diff --git a/src/data_gradients/config/data/data_config.py b/src/data_gradients/config/data/data_config.py index 25213dee..2b22037b 100644 --- a/src/data_gradients/config/data/data_config.py +++ b/src/data_gradients/config/data/data_config.py @@ -128,6 +128,11 @@ def get_labels_extractor(self, question: Optional[Question] = None, hint: str = return TensorExtractorResolver.to_callable(tensor_extractor=self.labels_extractor) +@dataclass +class ClassificationDataConfig(DataConfig): + pass + + @dataclass class SegmentationDataConfig(DataConfig): pass diff --git a/src/data_gradients/config/data/questions.py b/src/data_gradients/config/data/questions.py index 3b1d91c3..bb6079e0 100644 --- a/src/data_gradients/config/data/questions.py +++ b/src/data_gradients/config/data/questions.py @@ -1,4 +1,5 @@ from dataclasses import dataclass +from time import sleep from typing import Dict, Any, Optional, List from data_gradients.utils.utils import text_to_blue, text_to_yellow @@ -28,18 +29,37 @@ def ask_question(question: Optional[Question], hint: str = "") -> Any: return question.options[answer] -def ask_user(main_question: str, options: List[str], optional_description: str = "") -> str: +def is_notebook() -> bool: + try: + from IPython import get_ipython + + shell = get_ipython().__class__.__name__ + if shell == "ZMQInteractiveShell": + return True # Jupyter notebook or qtconsole + elif shell == "TerminalInteractiveShell": + return False # Terminal running IPython + else: + return False # Other type (?) + except ImportError: + return False + except NameError: + return False # Probably standard Python interpreter + + +def ask_user_via_stdin(main_question: str, options: List[str], optional_description: str = "") -> str: """Prompt the user to choose an option from a list of options. :param main_question: The main question or instruction for the user. :param options: List of options to chose from. :param optional_description: Optional description to display to the user. :return: The chosen option (key from the options_described dictionary). """ + numbers_to_chose_from = range(len(options)) options_formatted = "\n".join([f"[{text_to_blue(number)}] | {option_description}" for number, option_description in zip(numbers_to_chose_from, options)]) user_answer = None + while user_answer not in numbers_to_chose_from: print("\n------------------------------------------------------------------------") print(f"{main_question}") @@ -62,4 +82,61 @@ def ask_user(main_question: str, options: List[str], optional_description: str = selected_option = options[user_answer] print(f"Great! You chose: {text_to_yellow(selected_option)}\n") + +def ask_user_via_jupyter(main_question: str, options: List[str], optional_description: str = "") -> str: + numbers_to_chose_from = range(len(options)) + + options_formatted = "\n".join([f"[{text_to_blue(number)}] | {option_description}" for number, option_description in zip(numbers_to_chose_from, options)]) + + user_answer = None + + print("\n------------------------------------------------------------------------") + print(f"{main_question}") + print("------------------------------------------------------------------------") + if optional_description: + print(optional_description) + print("\nOptions:") + print(options_formatted) + print("") + + import ipywidgets as widgets + from IPython.display import display + from data_gradients.utils.jupyter_utils import ui_events + + for i, option in enumerate(options): + button = widgets.Button(description=option) + button.value = i + output = widgets.Output() + + display(button, output) + + def on_button_clicked(b): + with output: + nonlocal user_answer + user_answer = b.value + print("You selected option: " + b.value) + + button.on_click(on_button_clicked) + + with ui_events() as poll: + while user_answer is None: + poll(10) + + selected_option = options[user_answer] + print(f"Great! You chose: {text_to_yellow(selected_option)}\n") return selected_option + + +def ask_user(main_question: str, options: List[str], optional_description: str = "") -> str: + """Prompt the user to choose an option from a list of options. + Depending on the environment, the user will be prompted via stdin or via a Jupyter widget. + :param main_question: The main question or instruction for the user. + :param options: List of options to chose from. + :param optional_description: Optional description to display to the user. + :return: The chosen option (key from the options_described dictionary). + """ + + if is_notebook(): + return ask_user_via_jupyter(main_question, options, optional_description) + else: + return ask_user_via_stdin(main_question, options, optional_description) diff --git a/src/data_gradients/feature_extractors/__init__.py b/src/data_gradients/feature_extractors/__init__.py index 98fd3735..38e77aed 100644 --- a/src/data_gradients/feature_extractors/__init__.py +++ b/src/data_gradients/feature_extractors/__init__.py @@ -21,6 +21,12 @@ DetectionSampleVisualization, DetectionBoundingBoxIoU, ) +from .classification import ( + ClassificationClassFrequency, + ClassificationSummaryStats, + ClassificationClassDistributionVsArea, + ClassificationClassDistributionVsAreaPlot, +) __all__ = [ "ImageDuplicates", @@ -46,4 +52,8 @@ "DetectionClassesPerImageCount", "DetectionSampleVisualization", "DetectionBoundingBoxIoU", + "ClassificationClassFrequency", + "ClassificationSummaryStats", + "ClassificationClassDistributionVsArea", + "ClassificationClassDistributionVsAreaPlot" ] diff --git a/src/data_gradients/feature_extractors/classification/__init__.py b/src/data_gradients/feature_extractors/classification/__init__.py new file mode 100644 index 00000000..df5374fe --- /dev/null +++ b/src/data_gradients/feature_extractors/classification/__init__.py @@ -0,0 +1,11 @@ +from .class_frequency import ClassificationClassFrequency +from .summary import ClassificationSummaryStats +from .class_distribution_vs_area import ClassificationClassDistributionVsArea +from .class_distribution_vs_area_scatter import ClassificationClassDistributionVsAreaPlot + +__all__ = [ + "ClassificationClassFrequency", + "ClassificationSummaryStats", + "ClassificationClassDistributionVsArea", + "ClassificationClassDistributionVsAreaPlot" +] diff --git a/src/data_gradients/feature_extractors/classification/class_distribution_vs_area.py b/src/data_gradients/feature_extractors/classification/class_distribution_vs_area.py new file mode 100644 index 00000000..ac7e8d46 --- /dev/null +++ b/src/data_gradients/feature_extractors/classification/class_distribution_vs_area.py @@ -0,0 +1,82 @@ +import collections +from functools import partial + +import numpy as np +import pandas as pd + +from data_gradients.common.registry.registry import register_feature_extractor +from data_gradients.feature_extractors.abstract_feature_extractor import Feature +from data_gradients.utils.data_classes.data_samples import ClassificationSample +from data_gradients.visualize.plot_options import ViolinPlotOptions +from data_gradients.visualize.seaborn_renderer import BarPlotOptions +from data_gradients.feature_extractors.abstract_feature_extractor import AbstractFeatureExtractor + + +@register_feature_extractor() +class ClassificationClassDistributionVsArea(AbstractFeatureExtractor): + """Feature Extractor to show image area vs image class violin plot.""" + + def __init__(self): + self.data = [] + + def update(self, sample: ClassificationSample): + class_name = sample.class_names[sample.class_id] + self.data.append( + { + "split": sample.split, + "class_id": sample.class_id, + "class_name": class_name, + "image_size": int(np.sum(sample.image.shape[:2]) // 2), + } + ) + + def aggregate(self) -> Feature: + df = pd.DataFrame(self.data) + + all_class_names = df["class_name"].unique() + + num_splits = len(df["split"].unique()) + # Height of the plot is proportional to the number of classes + n_unique = len(all_class_names) + figsize_x = 10 + figsize_y = min(max(6, int(n_unique * 0.3)), 175) + + plot_options = ViolinPlotOptions( + x_label_key="image_size", + x_label_name="Image size (px)", + y_label_key="class_name", + y_label_name="Class", + order_key="class_id", + title=self.title, + figsize=(figsize_x, figsize_y), + # x_lim=(0, df_class_count["n_appearance"].max() * 1.2), + x_ticks_rotation=None, + labels_key="split" if num_splits > 1 else None, + # orient="h", + tight_layout=True, + ) + + df_summary = df[["split", "class_name", "image_size"]].groupby(["split", "class_name", "image_size"]).size().reset_index(name="counts") + + json = df_summary.to_dict(orient="records") + + feature = Feature( + data=df, + plot_options=plot_options, + json=json, + ) + return feature + + @property + def title(self) -> str: + return "Image size distribution per class" + + @property + def description(self) -> str: + return ( + "Distribution of image size (mean value of image width & height) with respect to assigned image label and (when possible) a split.\n" + "This may highlight issues when classes in train/val has different image resolution which may negatively affect the accuracy of the model.\n" + "If you see a large difference in image size between classes and splits - you may need to adjust data collection process or training regime:\n" + " - When splitting data into train/val/test - make sure that the image size distribution is similar between splits.\n" + " - If size distribution overlap between splits to too big - you can address this (to some extent) by using more agressize values for zoom-in/zoo-out augmentation at training time.\n" + ) diff --git a/src/data_gradients/feature_extractors/classification/class_distribution_vs_area_scatter.py b/src/data_gradients/feature_extractors/classification/class_distribution_vs_area_scatter.py new file mode 100644 index 00000000..5ff0cc29 --- /dev/null +++ b/src/data_gradients/feature_extractors/classification/class_distribution_vs_area_scatter.py @@ -0,0 +1,77 @@ +import pandas as pd + +from data_gradients.common.registry.registry import register_feature_extractor +from data_gradients.feature_extractors.abstract_feature_extractor import AbstractFeatureExtractor +from data_gradients.feature_extractors.abstract_feature_extractor import Feature +from data_gradients.utils.data_classes.data_samples import ClassificationSample +from data_gradients.visualize.plot_options import ScatterPlotOptions + + +@register_feature_extractor() +class ClassificationClassDistributionVsAreaPlot(AbstractFeatureExtractor): + """Feature Extractor to show scatter plot of width & height distribution + with breakdown along image class and split.""" + + def __init__(self): + self.data = [] + + def update(self, sample: ClassificationSample): + class_name = sample.class_names[sample.class_id] + self.data.append( + { + "split": sample.split, + "class_id": sample.class_id, + "class_name": class_name, + "image_rows": sample.image.shape[0], + "image_cols": sample.image.shape[1], + } + ) + + def aggregate(self) -> Feature: + df = pd.DataFrame(self.data) + + all_class_names = df["class_name"].unique() + + plot_options = ScatterPlotOptions( + x_label_key="image_cols", + x_label_name="Image width (px)", + y_label_key="image_rows", + y_label_name="Image height (px)", + title=self.title, + figsize=(10, 10), + x_ticks_rotation=None, + labels_key="class_name", + style_key="split", + # orient="h", + tight_layout=True, + ) + + df_summary = ( + df[["split", "class_name", "image_rows", "image_cols"]] + .groupby(["split", "class_name", "image_rows", "image_cols"]) + .size() + .reset_index(name="counts") + ) + + json = df_summary.to_dict(orient="records") + + feature = Feature( + data=df, + plot_options=plot_options, + json=json, + ) + return feature + + @property + def title(self) -> str: + return "Image size distribution per class" + + @property + def description(self) -> str: + return ( + "Distribution of image size (mean value of image width & height) with respect to assigned image label and (when possible) a split.\n" + "This may highlight issues when classes in train/val has different image resolution which may negatively affect the accuracy of the model.\n" + "If you see a large difference in image size between classes and splits - you may need to adjust data collection process or training regime:\n" + " - When splitting data into train/val/test - make sure that the image size distribution is similar between splits.\n" + " - If size distribution overlap between splits to too big - you can address this (to some extent) by using more agressize values for zoom-in/zoo-out augmentation at training time.\n" + ) diff --git a/src/data_gradients/feature_extractors/classification/class_frequency.py b/src/data_gradients/feature_extractors/classification/class_frequency.py new file mode 100644 index 00000000..d27cceaa --- /dev/null +++ b/src/data_gradients/feature_extractors/classification/class_frequency.py @@ -0,0 +1,98 @@ +import collections +from typing import Optional + +import pandas as pd + +from data_gradients.common.registry.registry import register_feature_extractor +from data_gradients.feature_extractors.abstract_feature_extractor import Feature +from data_gradients.feature_extractors.utils import MostImportantValuesSelector +from data_gradients.utils.data_classes.data_samples import ClassificationSample +from data_gradients.visualize.seaborn_renderer import BarPlotOptions +from data_gradients.feature_extractors.abstract_feature_extractor import AbstractFeatureExtractor + + +@register_feature_extractor() +class ClassificationClassFrequency(AbstractFeatureExtractor): + """Feature Extractor to count the number of labels of each class.""" + + def __init__(self, topk: Optional[int] = None, prioritization_mode: str = "train_val_diff"): + """ + :param topk: How many rows (per split) to show. + :param prioritization_mode: Strategy to use to chose which class will be prioritized. Only the topk will be shown + - 'train_val_diff': Returns the top k rows with the biggest train_val_diff between 'train' and 'val' split values. + - 'outliers': Returns the top k rows with the most extreme average values. + - 'max': Returns the top k rows with the highest average values. + - 'min': Returns the top k rows with the lowest average values. + - 'min_max': Returns the (top k)/2 rows with the biggest average values, and the (top k)/2 with the smallest average values. + """ + if topk: + self.value_extractor = MostImportantValuesSelector(topk=topk, prioritization_mode=prioritization_mode) + else: + self.value_extractor = None + + self.data = [] + + def update(self, sample: ClassificationSample): + class_name = sample.class_names[sample.class_id] + self.data.append( + { + "split": sample.split, + "class_id": sample.class_id, + "class_name": class_name, + } + ) + + def aggregate(self) -> Feature: + df = pd.DataFrame(self.data) + + # Include ("class_name", "split", "n_appearance") + df_class_count = df.groupby(["class_name", "class_id", "split"]).size().reset_index(name="n_appearance") + + split_sums = df_class_count.groupby("split")["n_appearance"].sum() + df_class_count["frequency"] = 100 * (df_class_count["n_appearance"] / df_class_count["split"].map(split_sums)) + + all_class_names = df_class_count["class_name"].unique() + + if self.value_extractor: + df_class_count = self.value_extractor.select(df=df_class_count, id_col="class_id", split_col="split", value_col="frequency") + + # Height of the plot is proportional to the number of classes + n_unique = len(all_class_names) + figsize_x = 10 + figsize_y = min(max(6, int(n_unique * 0.3)), 175) + + plot_options = BarPlotOptions( + x_label_key="frequency", + x_label_name="Frequency (%)", + y_label_key="class_name", + y_label_name="Class", + order_key="class_id", + title=self.title, + figsize=(figsize_x, figsize_y), + x_ticks_rotation=None, + labels_key="split", + orient="h", + tight_layout=True, + ) + + json = df_class_count.to_json(orient="records") + + feature = Feature( + data=df_class_count, + plot_options=plot_options, + json=json, + ) + return feature + + @property + def title(self) -> str: + return "Class Frequency" + + @property + def description(self) -> str: + return ( + "This bar plot represents the frequency of appearance of each class. " + "This may highlight class distribution gap between training and validation splits. " + "For instance, if one of the class only appears in the validation set, you know in advance that your model won't be able to " + "learn to predict that class." + ) diff --git a/src/data_gradients/feature_extractors/classification/summary.py b/src/data_gradients/feature_extractors/classification/summary.py new file mode 100644 index 00000000..2120053b --- /dev/null +++ b/src/data_gradients/feature_extractors/classification/summary.py @@ -0,0 +1,79 @@ +import collections +import dataclasses +from typing import List + +import numpy as np +from jinja2 import Template + +from data_gradients.assets import assets +from data_gradients.common.registry.registry import register_feature_extractor +from data_gradients.feature_extractors import AbstractFeatureExtractor +from data_gradients.feature_extractors.abstract_feature_extractor import Feature +from data_gradients.utils.data_classes.data_samples import ClassificationSample + + +@dataclasses.dataclass +class ClassificationBasicStatistics: + + num_samples: int = 0 + classes_count: int = 0 + classes_in_use: int = 0 + classes: List[int] = dataclasses.field(default_factory=list) + images_resolutions: List[int] = dataclasses.field(default_factory=list) + med_image_resolution: int = 0 + + +@register_feature_extractor() +class ClassificationSummaryStats(AbstractFeatureExtractor): + """Extracts general summary statistics from images.""" + + def __init__(self): + super().__init__() + self.stats = {"train": ClassificationBasicStatistics(), "val": ClassificationBasicStatistics()} + + self.template = Template(source=assets.html.basic_info_fe_classification) + + def update(self, sample: ClassificationSample): + + basic_stats = self.stats[sample.split] + + height, width = sample.image.shape[:2] + basic_stats.images_resolutions.append([height, width]) + basic_stats.num_samples += 1 + basic_stats.classes_count = len(sample.class_names) + basic_stats.classes.append(sample.class_id) + + def aggregate(self) -> Feature: + for basic_stats in self.stats.values(): + if basic_stats.num_samples > 0: + basic_stats.classes_in_use = len(set(basic_stats.classes)) + + images_resolutions = np.array(basic_stats.images_resolutions) + areas = images_resolutions[:, 0] * images_resolutions[:, 1] + index_of_med = np.argsort(areas)[len(areas) // 2] + basic_stats.med_image_resolution = self.format_resolution(images_resolutions[index_of_med]) + basic_stats.num_samples = int(basic_stats.num_samples) + + # To support JSON - delete arrays + basic_stats.classes = None + + json_res = {k: dataclasses.asdict(v) for k, v in self.stats.items()} + + feature = Feature( + data=None, + plot_options=None, + json=json_res, + ) + return feature + + @property + def title(self) -> str: + return "General Statistics" + + @property + def description(self) -> str: + return self.template.render(**self.stats) + + @staticmethod + def format_resolution(array: np.ndarray) -> str: + return "x".join([str(int(x)) for x in array]) diff --git a/src/data_gradients/feature_extractors/common/image_color_distribution.py b/src/data_gradients/feature_extractors/common/image_color_distribution.py index 62dd385c..d0ae5347 100644 --- a/src/data_gradients/feature_extractors/common/image_color_distribution.py +++ b/src/data_gradients/feature_extractors/common/image_color_distribution.py @@ -57,6 +57,8 @@ def aggregate(self) -> Feature: for split, pixel_frequency_per_channel in self.pixel_frequency_per_channel_per_split.items() for color, pixel_frequency in zip(self.colors, pixel_frequency_per_channel) for pixel_value, n in zip(range(256), pixel_frequency) + # This check ensures that we don't plot empty histograms (E.g split is missing) + if np.sum(self.pixel_frequency_per_channel_per_split[split]) > 0 ] df = pd.DataFrame(data) diff --git a/src/data_gradients/managers/abstract_manager.py b/src/data_gradients/managers/abstract_manager.py index b339e386..dce182f5 100644 --- a/src/data_gradients/managers/abstract_manager.py +++ b/src/data_gradients/managers/abstract_manager.py @@ -5,6 +5,9 @@ from typing import Iterable, List, Dict, Optional from itertools import zip_longest from logging import getLogger + +import torch +from torch.utils.data import DataLoader from tqdm import tqdm from data_gradients.feature_extractors import AbstractFeatureExtractor @@ -64,6 +67,26 @@ def __init__( if batches_early_stop: logger.info(f"Running with `batches_early_stop={batches_early_stop}`: Only the first {batches_early_stop} batches will be analyzed.") self.batches_early_stop = batches_early_stop + + # Check if train_data and val_data are DataLoader objects. + # If not, try to convert them to DataLoader objects. + # Generally this should work fine, with only caveat that detection datasets may require custom collate_fn. + # However since we are using bs=1 this should not be a problem, but just in case we try to get a singe batch + # from the dataset and see if it works. + if not isinstance(train_data, DataLoader): + try: + next(iter(DataLoader(train_data))) + train_data = DataLoader(train_data) + except: + pass + + if val_data is not None and not isinstance(val_data, DataLoader): + try: + next(iter(DataLoader(val_data))) + val_data = DataLoader(val_data) + except: + pass + self.train_size = len(train_data) if hasattr(train_data, "__len__") else None self.val_size = len(val_data) if hasattr(val_data, "__len__") else None diff --git a/src/data_gradients/managers/classification_manager.py b/src/data_gradients/managers/classification_manager.py new file mode 100644 index 00000000..61e48e28 --- /dev/null +++ b/src/data_gradients/managers/classification_manager.py @@ -0,0 +1,108 @@ +from typing import Optional, Iterable, Callable, List + +import torch + +from data_gradients.batch_processors.classification import ClassificationBatchProcessor +from data_gradients.config.data.data_config import ClassificationDataConfig +from data_gradients.config.data.typing import SupportedDataType, FeatureExtractorsType +from data_gradients.config.utils import get_grouped_feature_extractors +from data_gradients.managers.abstract_manager import AnalysisManagerAbstract + + +class ClassificationAnalysisManager(AnalysisManagerAbstract): + """Implementation of analysys manager for image classification task. + Definition of task name, task-related preprocessor and parsing related configuration file + """ + + def __init__( + self, + *, + report_title: str, + train_data: Iterable, + val_data: Optional[Iterable] = None, + report_subtitle: Optional[str] = None, + config_path: Optional[str] = None, + feature_extractors: Optional[FeatureExtractorsType] = None, + log_dir: Optional[str] = None, + use_cache: bool = False, + class_names: Optional[List[str]] = None, + class_names_to_use: Optional[List[str]] = None, + n_classes: Optional[int] = None, + images_extractor: Optional[Callable[[SupportedDataType], torch.Tensor]] = None, + labels_extractor: Optional[Callable[[SupportedDataType], torch.Tensor]] = None, + n_image_channels: int = 3, + batches_early_stop: Optional[int] = None, + remove_plots_after_report: Optional[bool] = True, + ): + """ + Constructor of detection manager which controls the analyzer + :param report_title: Title of the report. Will be used to save the report + :param report_subtitle: Subtitle of the report + :param class_names: List of all class names in the dataset. The index should represent the class_id. + :param class_names_to_use: List of class names that we should use for analysis. + :param n_classes: Number of classes. Mutually exclusive with `class_names`. + :param train_data: Iterable object contains images and labels of the training dataset + :param val_data: Iterable object contains images and labels of the validation dataset + :param config_path: Full path the hydra configuration file. If None, the default configuration will be used. Mutually exclusive + with feature_extractors + :param feature_extractors: One or more feature extractors to use. If None, the default configuration will be used. Mutually exclusive + with config_path + :param log_dir: Directory where to save the logs. By default uses the current working directory + :param batches_early_stop: Maximum number of batches to run in training (early stop) + :param use_cache: Whether to use cache or not for the configuration of the data. + :param images_extractor: Function extracting the image(s) out of the data output. + :param labels_extractor: Function extracting the label(s) out of the data output. + :param is_label_first: Whether the labels are in the first dimension or not. + > (class_id, x, y, w, h) for instance, as opposed to (x, y, w, h, class_id) + :param bbox_format: Format of the bounding boxes. 'xyxy', 'xywh' or 'cxcywh' + :param n_image_channels: Number of channels for each image in the dataset + :param remove_plots_after_report: Delete the plots from the report directory after the report is generated. By default, True + """ + if feature_extractors is not None and config_path is not None: + raise RuntimeError("`feature_extractors` and `config_path` cannot be specified at the same time") + + data_config = ClassificationDataConfig( + use_cache=use_cache, + images_extractor=images_extractor, + labels_extractor=labels_extractor, + ) + + # Check values of `n_classes` and `class_names` to define `class_names`. + if n_classes and class_names: + raise RuntimeError("`class_names` and `n_classes` cannot be specified at the same time") + elif n_classes is None and class_names is None: + raise RuntimeError("Either `class_names` or `n_classes` must be specified") + class_names = class_names if class_names else list(map(str, range(n_classes))) + + # Define `class_names_to_use` + if class_names_to_use: + invalid_class_names_to_use = set(class_names_to_use) - set(class_names) + if invalid_class_names_to_use != set(): + raise RuntimeError(f"You defined `class_names_to_use` with classes that are not listed in `class_names`: {invalid_class_names_to_use}") + class_names_to_use = class_names_to_use or class_names + + grouped_feature_extractors = get_grouped_feature_extractors( + default_config_name="classification", + config_path=config_path, + feature_extractors=feature_extractors, + ) + + batch_processor = ClassificationBatchProcessor( + data_config=data_config, + n_image_channels=n_image_channels, + class_names=class_names, + class_names_to_use=class_names_to_use, + ) + + super().__init__( + data_config=data_config, + report_title=report_title, + report_subtitle=report_subtitle, + train_data=train_data, + val_data=val_data, + batch_processor=batch_processor, + grouped_feature_extractors=grouped_feature_extractors, + log_dir=log_dir, + batches_early_stop=batches_early_stop, + remove_plots_after_report=remove_plots_after_report, + ) diff --git a/src/data_gradients/utils/data_classes/data_samples.py b/src/data_gradients/utils/data_classes/data_samples.py index 9360bb01..11e32d6f 100644 --- a/src/data_gradients/utils/data_classes/data_samples.py +++ b/src/data_gradients/utils/data_classes/data_samples.py @@ -77,3 +77,23 @@ class DetectionSample(ImageSample): def __repr__(self): return f"DetectionSample(sample_id={self.sample_id}, image={self.image.shape}, bboxes_xyxy={self.bboxes_xyxy.shape}, class_ids={self.class_ids.shape})" + + +@dataclasses.dataclass +class ClassificationSample(ImageSample): + """ + This is a dataclass that represents a single classification sample of the dataset where input to the model is + a single image and the target is an image label. + + :attr sample_id: The unique identifier of the sample. Could be the image path or the image name. + :attr split: The name of the dataset split. Could be "train", "val", "test", etc. + :attr image: np.ndarray of shape [H,W,C] - The image as a numpy array with channels last. + :attr class_label: Class label (int) + :attr class_names: List of all class names in the dataset. The index should represent the class_id. + """ + + class_id: int + class_names: List[str] + + def __repr__(self): + return f"DetectionSample(sample_id={self.sample_id}, image={self.image.shape}, label={self.class_id})" diff --git a/src/data_gradients/utils/jupyter_utils/__init__.py b/src/data_gradients/utils/jupyter_utils/__init__.py new file mode 100644 index 00000000..957c01e5 --- /dev/null +++ b/src/data_gradients/utils/jupyter_utils/__init__.py @@ -0,0 +1,11 @@ +""" Block notebook cells from running while interacting with widgets +https://github.com/Kirill888/jupyter-ui-poll/blob/develop/jupyter_ui_poll/__init__.py +""" + +from ._poll import ui_events, with_ui_events, run_ui_poll_loop + +__all__ = ( + "ui_events", + "with_ui_events", + "run_ui_poll_loop", +) diff --git a/src/data_gradients/utils/jupyter_utils/_async_thread.py b/src/data_gradients/utils/jupyter_utils/_async_thread.py new file mode 100644 index 00000000..11b3bca1 --- /dev/null +++ b/src/data_gradients/utils/jupyter_utils/_async_thread.py @@ -0,0 +1,58 @@ +""" +Tools for working with async tasks +https://github.com/Kirill888/jupyter-ui-poll/blob/develop/jupyter_ui_poll/_async_thread.py +""" +import asyncio +import threading + + +class AsyncThread: + @staticmethod + def _worker(loop): + asyncio.set_event_loop(loop) + loop.run_forever() + loop.close() + + def __init__(self): + self._loop = asyncio.new_event_loop() + self._thread = threading.Thread(target=AsyncThread._worker, args=(self._loop,)) + self._thread.start() + + def terminate(self): + def _stop(loop): + loop.stop() + + if self._loop is None: + return + + self.call_soon(_stop, self._loop) + self._thread.join() + self._loop, self._thread = None, None + + def __del__(self): + self.terminate() + + def submit(self, func, *args, **kwargs): + """ + Run async func with args/kwargs in separate thread, returns Future object. + """ + return asyncio.run_coroutine_threadsafe(func(*args, **kwargs), self._loop) + + def wrap(self, func): + def sync_func(*args, **kwargs): + return self.submit(func, *args, **kwargs).result() + + return sync_func + + def call_soon(self, func, *args): + """ + Call normal (non-async) function with arguments in the processing thread + it's just a wrapper over `loop.call_soon_threadsafe()` + + Returns a handle with `.cancel`, not a full on Future + """ + return self._loop.call_soon_threadsafe(func, *args) + + @property + def loop(self): + return self._loop diff --git a/src/data_gradients/utils/jupyter_utils/_poll.py b/src/data_gradients/utils/jupyter_utils/_poll.py new file mode 100644 index 00000000..d7e911ac --- /dev/null +++ b/src/data_gradients/utils/jupyter_utils/_poll.py @@ -0,0 +1,314 @@ +import asyncio +import sys +import time +from collections import abc +from functools import singledispatch +from inspect import isawaitable, iscoroutinefunction +from typing import ( + Any, + AsyncIterable, + AsyncIterator, + Callable, + Generic, + Iterable, + Iterator, + List, + Optional, + Tuple, + TypeVar, +) + +from IPython import get_ipython + +from ._async_thread import AsyncThread + +T = TypeVar("T") + +ZMQ_POLLOUT = 2 # zmq.POLLOUT without zmq dependency + + +class KernelWrapper: + _current: Optional["KernelWrapper"] = None + + def __init__(self, shell, loop) -> None: + kernel = shell.kernel + + self._shell = shell + self._kernel = kernel + self._loop = loop + self._original_parent = ( + kernel._parent_ident, + kernel.get_parent() if hasattr(kernel, "get_parent") else kernel._parent_header, # ipykernel 6+ # ipykernel < 6 + ) + self._events: List[Tuple[Any, Any, Any]] = [] + self._backup_execute_request = kernel.shell_handlers["execute_request"] + self._aproc = None + + if iscoroutinefunction(self._backup_execute_request): # ipykernel 6+ + kernel.shell_handlers["execute_request"] = self._execute_request_async + else: + # ipykernel < 6 + kernel.shell_handlers["execute_request"] = self._execute_request + + shell.events.register("post_execute", self._post_execute_hook) + + def restore(self): + if self._backup_execute_request is not None: + self._kernel.shell_handlers["execute_request"] = self._backup_execute_request + self._backup_execute_request = None + + def _reset_output(self): + self._kernel.set_parent(*self._original_parent) + + def _execute_request(self, stream, ident, parent): + # store away execute request for later and reset io back to the original cell + self._events.append((stream, ident, parent)) + self._reset_output() + + async def _execute_request_async(self, stream, ident, parent): + self._execute_request(stream, ident, parent) + + async def replay(self): + kernel = self._kernel + self.restore() + + sys.stdout.flush() + sys.stderr.flush() + shell_stream = getattr(kernel, "shell_stream", None) # ipykernel 6 vs 5 differences + + for stream, ident, parent in self._events: + kernel.set_parent(ident, parent) + if kernel._aborting: + kernel._send_abort_reply(stream, parent, ident) + else: + rr = kernel.execute_request(stream, ident, parent) + if isawaitable(rr): + await rr + + # replicate shell_dispatch behaviour + sys.stdout.flush() + sys.stderr.flush() + if shell_stream is not None: # 6+ + kernel._publish_status("idle", "shell") + shell_stream.flush(ZMQ_POLLOUT) + else: + kernel._publish_status("idle") + + async def do_one_iteration(self): + try: + rr = self._kernel.do_one_iteration() + if isawaitable(rr): + await rr + except Exception: # pylint: disable=broad-except + # it's probably a bug in ipykernel, + # .do_one_iteration() should not throw + return + finally: + # reset stdio back to original cell + self._reset_output() + + def _post_execute_hook(self, *args, **kw): + self._shell.events.unregister("post_execute", self._post_execute_hook) + self.restore() + KernelWrapper._current = None + asyncio.ensure_future(self.replay(), loop=self._loop) + + async def _poll_async(self, n=1): + for _ in range(n): + await self.do_one_iteration() + + async def __aenter__(self): + return self._poll_async + + async def __aexit__(self, exc_type, exc_val, exc_tb): + pass + + def __enter__(self): + if self._aproc is not None: + raise ValueError("Nesting not supported") + self._aproc = AsyncThread() + return self._aproc.wrap(self._poll_async) + + def __exit__(self, exc_type, exc_val, exc_tb): + self._aproc.terminate() + self._aproc = None + + @staticmethod + def get() -> "KernelWrapper": + if KernelWrapper._current is None: + KernelWrapper._current = KernelWrapper(get_ipython(), asyncio.get_event_loop()) + return KernelWrapper._current + + +class IteratorWrapperAsync(abc.AsyncIterable, Generic[T]): + def __init__( + self, + its: AsyncIterable[T], + n: int = 1, + ): + self._its = its + self._n = n + + def __aiter__(self) -> AsyncIterator[T]: + async def _loop(kernel: KernelWrapper, its: AsyncIterable[T], n: int) -> AsyncIterator[T]: + async with kernel as poll: + async for x in its: + await poll(n) + yield x + + return _loop(KernelWrapper.get(), self._its, self._n) + + +class IteratorWrapper(abc.Iterable, Generic[T]): + def __init__( + self, + its: Iterable[T], + n: int = 1, + ): + self._its = its + self._n = n + + def __iter__(self) -> Iterator[T]: + def _loop(kernel: KernelWrapper, its: Iterable[T], n: int) -> Iterator[T]: + with kernel as poll: + try: + for x in its: + poll(n) + yield x + except GeneratorExit: + pass + except Exception as e: + raise e + + return _loop(KernelWrapper.get(), self._its, self._n) + + def __aiter__(self) -> AsyncIterator[T]: + async def _loop(kernel: KernelWrapper, its: Iterable[T], n: int) -> AsyncIterator[T]: + async with kernel as poll: + for x in its: + await poll(n) + yield x + + return _loop(KernelWrapper.get(), self._its, self._n) + + +def ui_events(): + """ + Gives you a function you can call to process UI events while running a long + task inside a Jupyter cell. + + .. code-block:: python + + with ui_events() as ui_poll: + while some_condition: + ui_poll(10) # Process upto 10 UI events if any happened + do_some_more_compute() + + Async mode is also supported: + + .. code-block:: python + + async with ui_events() as ui_poll: + while some_condition: + await ui_poll(10) # Process upto 10 UI events if any happened + do_some_more_compute() + + + #. Call ``kernel.do_one_iteration()`` taking care of IO redirects + #. Intercept ``execute_request`` IPython kernel events and delay their execution + #. Schedule replay of any blocked ``execute_request`` events when + cell execution is finished. + """ + return KernelWrapper.get() + + +@singledispatch +def with_ui_events(its, n: int = 1): + """ + Deal with kernel ui events while processing a long sequence + + Iterable returned from this can be used in both async and sync contexts. + + .. code-block:: python + + for x in with_ui_events(some_data_stream, n=10): + do_things_with(x) + + async for x in with_ui_events(some_data_stream, n=10): + await do_things_with(x) + + + This is basically equivalent to: + + .. code-block:: python + + with ui_events() as poll: + for x in some_data_stream: + poll(10) + do_things_with(x) + + + :param its: + Iterator to pass through, this should be either + :class:`~collections.abc.Iterable` or :class:`~collections.abc.AsyncIterable` + + :param n: + Number of events to process in between items + + :returns: + :class:`~collections.abc.AsyncIterable` when input is + :class:`~collections.abc.AsyncIterable` + + :returns: + Object that implements both :class:`~collections.abc.Iterable` and + :class:`~collections.abc.AsyncIterable` interfaces when input is normal + :class:`~collections.abc.Iterable` + """ + raise TypeError("Expect Iterable[T]|AsyncIterable[T]") + + +@with_ui_events.register(abc.Iterable) +def with_ui_events_sync(its: Iterable[T], n: int = 1) -> IteratorWrapper[T]: + return IteratorWrapper(its, n=n) + + +@with_ui_events.register(abc.AsyncIterable) +def with_ui_events_async(its: AsyncIterable[T], n: int = 1) -> AsyncIterable[T]: + return IteratorWrapperAsync(its, n=n) + + +def run_ui_poll_loop(f: Callable[[], Optional[T]], sleep: float = 0.02, n: int = 1) -> T: + """ + Repeatedly call ``f()`` until it returns something other than ``None`` + while also responding to widget events. + + This blocks execution of cells below in the notebook while still preserving + interactivity of jupyter widgets. + + :param f: + Function to periodically call (``f()`` should not block for long) + + :param sleep: + Amount of time to sleep in between polling (in seconds, 1/50 is the default) + + :param n: + Number of events to process per iteration + + :returns: + First non-``None`` value returned from ``f()`` + """ + + def as_iterator(f: Callable[[], Optional[T]], sleep: float) -> Iterator[Optional[T]]: + x = None + while x is None: + if sleep is not None: + time.sleep(sleep) + + x = f() + yield x + + for x in with_ui_events(as_iterator(f, sleep), n): + if x is not None: + return x + + raise RuntimeError("hm...") # for mypy sake diff --git a/src/data_gradients/visualize/plot_options.py b/src/data_gradients/visualize/plot_options.py index a4958118..676439fc 100644 --- a/src/data_gradients/visualize/plot_options.py +++ b/src/data_gradients/visualize/plot_options.py @@ -266,6 +266,7 @@ class ScatterPlotOptions(CommonPlotOptions): x_ticks_rotation: Optional[int] = 45 y_ticks_rotation: Optional[int] = None + style_key: Optional[str] = None sharey: Union[bool, str] = False diff --git a/src/data_gradients/visualize/seaborn_renderer.py b/src/data_gradients/visualize/seaborn_renderer.py index aa5485ee..4ed896e0 100644 --- a/src/data_gradients/visualize/seaborn_renderer.py +++ b/src/data_gradients/visualize/seaborn_renderer.py @@ -78,6 +78,7 @@ def _render_scatterplot(self, df, options: ScatterPlotOptions) -> plt.Figure: x=options.x_label_key, y=options.y_label_key, ax=ax_i, + style=options.style_key, ) if options.labels_key is not None: diff --git a/tests/unit_tests/end_to_end_tests.py b/tests/unit_tests/end_to_end_tests.py new file mode 100644 index 00000000..ebfe7b64 --- /dev/null +++ b/tests/unit_tests/end_to_end_tests.py @@ -0,0 +1,50 @@ +import random +import unittest + +import torch +from torch.utils.data import DataLoader + +from data_gradients.managers.classification_manager import ClassificationAnalysisManager + + +class EndToEndTest(unittest.TestCase): + """ """ + + def test_classification_task(self): + class_names = ["class_1", "class_2", "class_3", "class_4"] + + train_samples = [] + for i in range(100): + dummy_image = torch.randn((3, random.randint(100, 500), random.randint(100, 500)), dtype=torch.float32) + train_samples += [(dummy_image, 0)] + + for i in range(100): + dummy_image = torch.randn((3, random.randint(300, 600), random.randint(200, 300)), dtype=torch.float32) + train_samples += [(dummy_image, 1)] + + for i in range(100): + dummy_image = torch.randn((3, random.randint(100, 200), random.randint(700, 800)), dtype=torch.float32) + train_samples += [(dummy_image, 2)] + + valid_samples = [] + for i in range(100): + dummy_image = torch.randn((3, random.randint(200, 250), random.randint(200, 250)), dtype=torch.float32) + valid_samples += [(dummy_image, 3)] + + for i in range(100): + dummy_image = torch.randn((220, 230, 3), dtype=torch.float32) + valid_samples += [(dummy_image, 0)] + + manager = ClassificationAnalysisManager( + train_data=DataLoader(train_samples), + val_data=DataLoader(valid_samples), + report_title="End to End Classification Test", + class_names=class_names, + batches_early_stop=None, + n_image_channels=3, + ) + manager.run() + + +if __name__ == "__main__": + unittest.main() diff --git a/tests/unit_tests/feature_extractors/classification/test_class_distribution_vs_area.py b/tests/unit_tests/feature_extractors/classification/test_class_distribution_vs_area.py new file mode 100644 index 00000000..63538409 --- /dev/null +++ b/tests/unit_tests/feature_extractors/classification/test_class_distribution_vs_area.py @@ -0,0 +1,91 @@ +import random +import unittest +import uuid + +import numpy as np + +from data_gradients.feature_extractors import ClassificationClassDistributionVsArea +from data_gradients.utils.data_classes.data_samples import ImageChannelFormat, ClassificationSample +from data_gradients.visualize.seaborn_renderer import SeabornRenderer + + +class ClassificationClassDistributionTest(unittest.TestCase): + def setUp(self) -> None: + self.class_distribution = ClassificationClassDistributionVsArea() + class_names = ["class_1", "class_2", "class_3", "class_4"] + + for i in range(100): + dummy_image = np.zeros((random.randint(100, 500), random.randint(100, 500), 3), dtype=np.uint8) + self.class_distribution.update( + ClassificationSample( + sample_id=str(uuid.uuid4()), + split="train", + image=dummy_image, + image_format=ImageChannelFormat.RGB, + class_id=0, + class_names=class_names, + ) + ) + + for i in range(100): + dummy_image = np.zeros((random.randint(300, 600), random.randint(200, 300), 3), dtype=np.uint8) + self.class_distribution.update( + ClassificationSample( + sample_id=str(uuid.uuid4()), + split="train", + image=dummy_image, + image_format=ImageChannelFormat.RGB, + class_id=1, + class_names=class_names, + ) + ) + + for i in range(100): + dummy_image = np.zeros((random.randint(100, 200), random.randint(700, 800), 3), dtype=np.uint8) + self.class_distribution.update( + ClassificationSample( + sample_id=str(uuid.uuid4()), + split="train", + image=dummy_image, + image_format=ImageChannelFormat.RGB, + class_id=2, + class_names=class_names, + ) + ) + + for i in range(100): + dummy_image = np.zeros((random.randint(200, 250), random.randint(200, 250), 3), dtype=np.uint8) + self.class_distribution.update( + ClassificationSample( + sample_id=str(uuid.uuid4()), + split="valid", + image=dummy_image, + image_format=ImageChannelFormat.RGB, + class_id=3, + class_names=class_names, + ) + ) + + for i in range(100): + dummy_image = np.zeros((220, 230, 3), dtype=np.uint8) + self.class_distribution.update( + ClassificationSample( + sample_id=str(uuid.uuid4()), + split="valid", + image=dummy_image, + image_format=ImageChannelFormat.RGB, + class_id=0, + class_names=class_names, + ) + ) + + def test_plot(self): + feature = self.class_distribution.aggregate() + sns = SeabornRenderer() + f = sns.render(feature.data, feature.plot_options) + f.savefig(fname=self.class_distribution.__class__.__name__ + ".png") + f.show() + + +if __name__ == "__main__": + unittest.main() diff --git a/tests/unit_tests/feature_extractors/classification/test_class_distribution_vs_area_plot.py b/tests/unit_tests/feature_extractors/classification/test_class_distribution_vs_area_plot.py new file mode 100644 index 00000000..6a7f12f1 --- /dev/null +++ b/tests/unit_tests/feature_extractors/classification/test_class_distribution_vs_area_plot.py @@ -0,0 +1,93 @@ +import random +import unittest +import uuid + +import numpy as np + +from data_gradients.feature_extractors import ClassificationClassDistributionVsArea +from data_gradients.feature_extractors.classification.class_distribution_vs_area_scatter import \ + ClassificationClassDistributionVsAreaPlot +from data_gradients.utils.data_classes.data_samples import ImageChannelFormat, ClassificationSample +from data_gradients.visualize.seaborn_renderer import SeabornRenderer + + +class ClassificationClassDistributionVsAreaPlotTest(unittest.TestCase): + def setUp(self) -> None: + self.class_distribution = ClassificationClassDistributionVsAreaPlot() + class_names = ["class_1", "class_2", "class_3", "class_4"] + + for i in range(100): + dummy_image = np.zeros((random.randint(100, 500), random.randint(100, 500), 3), dtype=np.uint8) + self.class_distribution.update( + ClassificationSample( + sample_id=str(uuid.uuid4()), + split="train", + image=dummy_image, + image_format=ImageChannelFormat.RGB, + class_id=0, + class_names=class_names, + ) + ) + + for i in range(100): + dummy_image = np.zeros((random.randint(300, 600), random.randint(200, 300), 3), dtype=np.uint8) + self.class_distribution.update( + ClassificationSample( + sample_id=str(uuid.uuid4()), + split="train", + image=dummy_image, + image_format=ImageChannelFormat.RGB, + class_id=1, + class_names=class_names, + ) + ) + + for i in range(100): + dummy_image = np.zeros((random.randint(100, 200), random.randint(700, 800), 3), dtype=np.uint8) + self.class_distribution.update( + ClassificationSample( + sample_id=str(uuid.uuid4()), + split="train", + image=dummy_image, + image_format=ImageChannelFormat.RGB, + class_id=2, + class_names=class_names, + ) + ) + + for i in range(100): + dummy_image = np.zeros((random.randint(200, 250), random.randint(200, 250), 3), dtype=np.uint8) + self.class_distribution.update( + ClassificationSample( + sample_id=str(uuid.uuid4()), + split="valid", + image=dummy_image, + image_format=ImageChannelFormat.RGB, + class_id=3, + class_names=class_names, + ) + ) + + for i in range(100): + dummy_image = np.zeros((220, 230, 3), dtype=np.uint8) + self.class_distribution.update( + ClassificationSample( + sample_id=str(uuid.uuid4()), + split="valid", + image=dummy_image, + image_format=ImageChannelFormat.RGB, + class_id=0, + class_names=class_names, + ) + ) + + def test_plot(self): + feature = self.class_distribution.aggregate() + sns = SeabornRenderer() + f = sns.render(feature.data, feature.plot_options) + f.savefig(fname=self.class_distribution.__class__.__name__ + ".png") + f.show() + + +if __name__ == "__main__": + unittest.main() diff --git a/tests/unit_tests/feature_extractors/classification/test_class_frequency.py b/tests/unit_tests/feature_extractors/classification/test_class_frequency.py new file mode 100644 index 00000000..a1c54d94 --- /dev/null +++ b/tests/unit_tests/feature_extractors/classification/test_class_frequency.py @@ -0,0 +1,78 @@ +import unittest + +import numpy as np + +from data_gradients.feature_extractors.classification.class_frequency import ClassificationClassFrequency +from data_gradients.utils.data_classes.data_samples import ImageChannelFormat, ClassificationSample +from data_gradients.visualize.seaborn_renderer import SeabornRenderer + + +class ClassificationClassFrequencyTest(unittest.TestCase): + def setUp(self) -> None: + self.class_distribution = ClassificationClassFrequency() + + dummy_image = np.zeros((100, 100, 3), dtype=np.uint8) + class_names = ["class_1", "class_2", "class_3", "class_4"] + self.class_distribution.update( + ClassificationSample( + sample_id="sample_1", + split="train", + image=dummy_image, + image_format=ImageChannelFormat.RGB, + class_id=0, + class_names=class_names, + ) + ) + + self.class_distribution.update( + ClassificationSample( + sample_id="sample_2", + split="train", + image=dummy_image, + image_format=ImageChannelFormat.RGB, + class_id=1, + class_names=class_names, + ) + ) + self.class_distribution.update( + ClassificationSample( + sample_id="sample_3", + split="train", + image=dummy_image, + image_format=ImageChannelFormat.RGB, + class_id=2, + class_names=class_names, + ) + ) + + self.class_distribution.update( + ClassificationSample( + sample_id="sample_4", + split="valid", + image=dummy_image, + image_format=ImageChannelFormat.RGB, + class_id=3, + class_names=class_names, + ) + ) + self.class_distribution.update( + ClassificationSample( + sample_id="sample_5", + split="valid", + image=dummy_image, + image_format=ImageChannelFormat.RGB, + class_id=0, + class_names=class_names, + ) + ) + + def test_plot(self): + feature = self.class_distribution.aggregate() + sns = SeabornRenderer() + f = sns.render(feature.data, feature.plot_options) + f.savefig(fname=self.class_distribution.__class__.__name__ + ".png") + f.show() + + +if __name__ == "__main__": + unittest.main()