forked from spla-tam/SplaTAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsplatam.py
1014 lines (915 loc) · 51.6 KB
/
splatam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import os
import shutil
import sys
import time
from importlib.machinery import SourceFileLoader
_BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.insert(0, _BASE_DIR)
print("System Paths:")
for p in sys.path:
print(p)
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
from tqdm import tqdm
import wandb
from datasets.gradslam_datasets import (load_dataset_config, ICLDataset, ReplicaDataset, ReplicaV2Dataset, AzureKinectDataset,
ScannetDataset, Ai2thorDataset, Record3DDataset, RealsenseDataset, TUMDataset,
ScannetPPDataset, NeRFCaptureDataset)
from utils.common_utils import seed_everything, save_params_ckpt, save_params
from utils.eval_helpers import report_loss, report_progress, eval
from utils.keyframe_selection import keyframe_selection_overlap
from utils.recon_helpers import setup_camera
from utils.slam_helpers import (
transformed_params2rendervar, transformed_params2depthplussilhouette,
transform_to_frame, l1_loss_v1, matrix_to_quaternion
)
from utils.slam_external import calc_ssim, build_rotation, prune_gaussians, densify
from diff_gaussian_rasterization import GaussianRasterizer as Renderer
def get_dataset(config_dict, basedir, sequence, **kwargs):
if config_dict["dataset_name"].lower() in ["icl"]:
return ICLDataset(config_dict, basedir, sequence, **kwargs)
elif config_dict["dataset_name"].lower() in ["replica"]:
return ReplicaDataset(config_dict, basedir, sequence, **kwargs)
elif config_dict["dataset_name"].lower() in ["replicav2"]:
return ReplicaV2Dataset(config_dict, basedir, sequence, **kwargs)
elif config_dict["dataset_name"].lower() in ["azure", "azurekinect"]:
return AzureKinectDataset(config_dict, basedir, sequence, **kwargs)
elif config_dict["dataset_name"].lower() in ["scannet"]:
return ScannetDataset(config_dict, basedir, sequence, **kwargs)
elif config_dict["dataset_name"].lower() in ["ai2thor"]:
return Ai2thorDataset(config_dict, basedir, sequence, **kwargs)
elif config_dict["dataset_name"].lower() in ["record3d"]:
return Record3DDataset(config_dict, basedir, sequence, **kwargs)
elif config_dict["dataset_name"].lower() in ["realsense"]:
return RealsenseDataset(config_dict, basedir, sequence, **kwargs)
elif config_dict["dataset_name"].lower() in ["tum"]:
return TUMDataset(config_dict, basedir, sequence, **kwargs)
elif config_dict["dataset_name"].lower() in ["scannetpp"]:
return ScannetPPDataset(basedir, sequence, **kwargs)
elif config_dict["dataset_name"].lower() in ["nerfcapture"]:
return NeRFCaptureDataset(basedir, sequence, **kwargs)
else:
raise ValueError(f"Unknown dataset name {config_dict['dataset_name']}")
def get_pointcloud(color, depth, intrinsics, w2c, transform_pts=True,
mask=None, compute_mean_sq_dist=False, mean_sq_dist_method="projective"):
width, height = color.shape[2], color.shape[1]
CX = intrinsics[0][2]
CY = intrinsics[1][2]
FX = intrinsics[0][0]
FY = intrinsics[1][1]
# Compute indices of pixels
x_grid, y_grid = torch.meshgrid(torch.arange(width).cuda().float(),
torch.arange(height).cuda().float(),
indexing='xy')
xx = (x_grid - CX)/FX
yy = (y_grid - CY)/FY
xx = xx.reshape(-1)
yy = yy.reshape(-1)
depth_z = depth[0].reshape(-1)
# Initialize point cloud
pts_cam = torch.stack((xx * depth_z, yy * depth_z, depth_z), dim=-1)
if transform_pts:
pix_ones = torch.ones(height * width, 1).cuda().float()
pts4 = torch.cat((pts_cam, pix_ones), dim=1)
c2w = torch.inverse(w2c)
pts = (c2w @ pts4.T).T[:, :3]
else:
pts = pts_cam
# Compute mean squared distance for initializing the scale of the Gaussians
if compute_mean_sq_dist:
if mean_sq_dist_method == "projective":
# Projective Geometry (this is fast, farther -> larger radius)
scale_gaussian = depth_z / ((FX + FY)/2)
mean3_sq_dist = scale_gaussian**2
else:
raise ValueError(f"Unknown mean_sq_dist_method {mean_sq_dist_method}")
# Colorize point cloud
cols = torch.permute(color, (1, 2, 0)).reshape(-1, 3) # (C, H, W) -> (H, W, C) -> (H * W, C)
point_cld = torch.cat((pts, cols), -1)
# Select points based on mask
if mask is not None:
point_cld = point_cld[mask]
if compute_mean_sq_dist:
mean3_sq_dist = mean3_sq_dist[mask]
if compute_mean_sq_dist:
return point_cld, mean3_sq_dist
else:
return point_cld
def initialize_params(init_pt_cld, num_frames, mean3_sq_dist, gaussian_distribution):
num_pts = init_pt_cld.shape[0]
means3D = init_pt_cld[:, :3] # [num_gaussians, 3]
unnorm_rots = np.tile([1, 0, 0, 0], (num_pts, 1)) # [num_gaussians, 4]
logit_opacities = torch.zeros((num_pts, 1), dtype=torch.float, device="cuda")
if gaussian_distribution == "isotropic":
log_scales = torch.tile(torch.log(torch.sqrt(mean3_sq_dist))[..., None], (1, 1))
elif gaussian_distribution == "anisotropic":
log_scales = torch.tile(torch.log(torch.sqrt(mean3_sq_dist))[..., None], (1, 3))
else:
raise ValueError(f"Unknown gaussian_distribution {gaussian_distribution}")
params = {
'means3D': means3D,
'rgb_colors': init_pt_cld[:, 3:6],
'unnorm_rotations': unnorm_rots,
'logit_opacities': logit_opacities,
'log_scales': log_scales,
}
# Initialize a single gaussian trajectory to model the camera poses relative to the first frame
cam_rots = np.tile([1, 0, 0, 0], (1, 1))
cam_rots = np.tile(cam_rots[:, :, None], (1, 1, num_frames))
params['cam_unnorm_rots'] = cam_rots
params['cam_trans'] = np.zeros((1, 3, num_frames))
for k, v in params.items():
# Check if value is already a torch tensor
if not isinstance(v, torch.Tensor):
params[k] = torch.nn.Parameter(torch.tensor(v).cuda().float().contiguous().requires_grad_(True))
else:
params[k] = torch.nn.Parameter(v.cuda().float().contiguous().requires_grad_(True))
variables = {'max_2D_radius': torch.zeros(params['means3D'].shape[0]).cuda().float(),
'means2D_gradient_accum': torch.zeros(params['means3D'].shape[0]).cuda().float(),
'denom': torch.zeros(params['means3D'].shape[0]).cuda().float(),
'timestep': torch.zeros(params['means3D'].shape[0]).cuda().float()}
return params, variables
def initialize_optimizer(params, lrs_dict, tracking):
lrs = lrs_dict
param_groups = [{'params': [v], 'name': k, 'lr': lrs[k]} for k, v in params.items()]
if tracking:
return torch.optim.Adam(param_groups)
else:
return torch.optim.Adam(param_groups, lr=0.0, eps=1e-15)
def initialize_first_timestep(dataset, num_frames, scene_radius_depth_ratio,
mean_sq_dist_method, densify_dataset=None, gaussian_distribution=None):
# Get RGB-D Data & Camera Parameters
color, depth, intrinsics, pose = dataset[0]
# Process RGB-D Data
color = color.permute(2, 0, 1) / 255 # (H, W, C) -> (C, H, W)
depth = depth.permute(2, 0, 1) # (H, W, C) -> (C, H, W)
# Process Camera Parameters
intrinsics = intrinsics[:3, :3]
w2c = torch.linalg.inv(pose)
# Setup Camera
cam = setup_camera(color.shape[2], color.shape[1], intrinsics.cpu().numpy(), w2c.detach().cpu().numpy())
if densify_dataset is not None:
# Get Densification RGB-D Data & Camera Parameters
color, depth, densify_intrinsics, _ = densify_dataset[0]
color = color.permute(2, 0, 1) / 255 # (H, W, C) -> (C, H, W)
depth = depth.permute(2, 0, 1) # (H, W, C) -> (C, H, W)
densify_intrinsics = densify_intrinsics[:3, :3]
densify_cam = setup_camera(color.shape[2], color.shape[1], densify_intrinsics.cpu().numpy(), w2c.detach().cpu().numpy())
else:
densify_intrinsics = intrinsics
# Get Initial Point Cloud (PyTorch CUDA Tensor)
mask = (depth > 0) # Mask out invalid depth values
mask = mask.reshape(-1)
init_pt_cld, mean3_sq_dist = get_pointcloud(color, depth, densify_intrinsics, w2c,
mask=mask, compute_mean_sq_dist=True,
mean_sq_dist_method=mean_sq_dist_method)
# Initialize Parameters
params, variables = initialize_params(init_pt_cld, num_frames, mean3_sq_dist, gaussian_distribution)
# Initialize an estimate of scene radius for Gaussian-Splatting Densification
variables['scene_radius'] = torch.max(depth)/scene_radius_depth_ratio
if densify_dataset is not None:
return params, variables, intrinsics, w2c, cam, densify_intrinsics, densify_cam
else:
return params, variables, intrinsics, w2c, cam
def get_loss(params, curr_data, variables, iter_time_idx, loss_weights, use_sil_for_loss,
sil_thres, use_l1, ignore_outlier_depth_loss, tracking=False,
mapping=False, do_ba=False, plot_dir=None, visualize_tracking_loss=False, tracking_iteration=None):
# Initialize Loss Dictionary
losses = {}
if tracking:
# Get current frame Gaussians, where only the camera pose gets gradient
transformed_gaussians = transform_to_frame(params, iter_time_idx,
gaussians_grad=False,
camera_grad=True)
elif mapping:
if do_ba:
# Get current frame Gaussians, where both camera pose and Gaussians get gradient
transformed_gaussians = transform_to_frame(params, iter_time_idx,
gaussians_grad=True,
camera_grad=True)
else:
# Get current frame Gaussians, where only the Gaussians get gradient
transformed_gaussians = transform_to_frame(params, iter_time_idx,
gaussians_grad=True,
camera_grad=False)
else:
# Get current frame Gaussians, where only the Gaussians get gradient
transformed_gaussians = transform_to_frame(params, iter_time_idx,
gaussians_grad=True,
camera_grad=False)
# Initialize Render Variables
rendervar = transformed_params2rendervar(params, transformed_gaussians)
depth_sil_rendervar = transformed_params2depthplussilhouette(params, curr_data['w2c'],
transformed_gaussians)
# RGB Rendering
rendervar['means2D'].retain_grad()
im, radius, _, = Renderer(raster_settings=curr_data['cam'])(**rendervar)
variables['means2D'] = rendervar['means2D'] # Gradient only accum from colour render for densification
# Depth & Silhouette Rendering
depth_sil, _, _, = Renderer(raster_settings=curr_data['cam'])(**depth_sil_rendervar)
depth = depth_sil[0, :, :].unsqueeze(0)
silhouette = depth_sil[1, :, :]
presence_sil_mask = (silhouette > sil_thres)
depth_sq = depth_sil[2, :, :].unsqueeze(0)
uncertainty = depth_sq - depth**2
uncertainty = uncertainty.detach()
# Mask with valid depth values (accounts for outlier depth values)
nan_mask = (~torch.isnan(depth)) & (~torch.isnan(uncertainty))
if ignore_outlier_depth_loss:
depth_error = torch.abs(curr_data['depth'] - depth) * (curr_data['depth'] > 0)
mask = (depth_error < 10*depth_error.median())
mask = mask & (curr_data['depth'] > 0)
else:
mask = (curr_data['depth'] > 0)
mask = mask & nan_mask
# Mask with presence silhouette mask (accounts for empty space)
if tracking and use_sil_for_loss:
mask = mask & presence_sil_mask
# Depth loss
if use_l1:
mask = mask.detach()
if tracking:
losses['depth'] = torch.abs(curr_data['depth'] - depth)[mask].sum()
else:
losses['depth'] = torch.abs(curr_data['depth'] - depth)[mask].mean()
# RGB Loss
if tracking and (use_sil_for_loss or ignore_outlier_depth_loss):
color_mask = torch.tile(mask, (3, 1, 1))
color_mask = color_mask.detach()
losses['im'] = torch.abs(curr_data['im'] - im)[color_mask].sum()
elif tracking:
losses['im'] = torch.abs(curr_data['im'] - im).sum()
else:
losses['im'] = 0.8 * l1_loss_v1(im, curr_data['im']) + 0.2 * (1.0 - calc_ssim(im, curr_data['im']))
# Visualize the Diff Images
if tracking and visualize_tracking_loss:
fig, ax = plt.subplots(2, 4, figsize=(12, 6))
weighted_render_im = im * color_mask
weighted_im = curr_data['im'] * color_mask
weighted_render_depth = depth * mask
weighted_depth = curr_data['depth'] * mask
diff_rgb = torch.abs(weighted_render_im - weighted_im).mean(dim=0).detach().cpu()
diff_depth = torch.abs(weighted_render_depth - weighted_depth).mean(dim=0).detach().cpu()
viz_img = torch.clip(weighted_im.permute(1, 2, 0).detach().cpu(), 0, 1)
ax[0, 0].imshow(viz_img)
ax[0, 0].set_title("Weighted GT RGB")
viz_render_img = torch.clip(weighted_render_im.permute(1, 2, 0).detach().cpu(), 0, 1)
ax[1, 0].imshow(viz_render_img)
ax[1, 0].set_title("Weighted Rendered RGB")
ax[0, 1].imshow(weighted_depth[0].detach().cpu(), cmap="jet", vmin=0, vmax=6)
ax[0, 1].set_title("Weighted GT Depth")
ax[1, 1].imshow(weighted_render_depth[0].detach().cpu(), cmap="jet", vmin=0, vmax=6)
ax[1, 1].set_title("Weighted Rendered Depth")
ax[0, 2].imshow(diff_rgb, cmap="jet", vmin=0, vmax=0.8)
ax[0, 2].set_title(f"Diff RGB, Loss: {torch.round(losses['im'])}")
ax[1, 2].imshow(diff_depth, cmap="jet", vmin=0, vmax=0.8)
ax[1, 2].set_title(f"Diff Depth, Loss: {torch.round(losses['depth'])}")
ax[0, 3].imshow(presence_sil_mask.detach().cpu(), cmap="gray")
ax[0, 3].set_title("Silhouette Mask")
ax[1, 3].imshow(mask[0].detach().cpu(), cmap="gray")
ax[1, 3].set_title("Loss Mask")
# Turn off axis
for i in range(2):
for j in range(4):
ax[i, j].axis('off')
# Set Title
fig.suptitle(f"Tracking Iteration: {tracking_iteration}", fontsize=16)
# Figure Tight Layout
fig.tight_layout()
os.makedirs(plot_dir, exist_ok=True)
plt.savefig(os.path.join(plot_dir, f"tmp.png"), bbox_inches='tight')
plt.close()
plot_img = cv2.imread(os.path.join(plot_dir, f"tmp.png"))
cv2.imshow('Diff Images', plot_img)
cv2.waitKey(1)
## Save Tracking Loss Viz
# save_plot_dir = os.path.join(plot_dir, f"tracking_%04d" % iter_time_idx)
# os.makedirs(save_plot_dir, exist_ok=True)
# plt.savefig(os.path.join(save_plot_dir, f"%04d.png" % tracking_iteration), bbox_inches='tight')
# plt.close()
weighted_losses = {k: v * loss_weights[k] for k, v in losses.items()}
loss = sum(weighted_losses.values())
seen = radius > 0
variables['max_2D_radius'][seen] = torch.max(radius[seen], variables['max_2D_radius'][seen])
variables['seen'] = seen
weighted_losses['loss'] = loss
return loss, variables, weighted_losses
def initialize_new_params(new_pt_cld, mean3_sq_dist, gaussian_distribution):
num_pts = new_pt_cld.shape[0]
means3D = new_pt_cld[:, :3] # [num_gaussians, 3]
unnorm_rots = np.tile([1, 0, 0, 0], (num_pts, 1)) # [num_gaussians, 4]
logit_opacities = torch.zeros((num_pts, 1), dtype=torch.float, device="cuda")
if gaussian_distribution == "isotropic":
log_scales = torch.tile(torch.log(torch.sqrt(mean3_sq_dist))[..., None], (1, 1))
elif gaussian_distribution == "anisotropic":
log_scales = torch.tile(torch.log(torch.sqrt(mean3_sq_dist))[..., None], (1, 3))
else:
raise ValueError(f"Unknown gaussian_distribution {gaussian_distribution}")
params = {
'means3D': means3D,
'rgb_colors': new_pt_cld[:, 3:6],
'unnorm_rotations': unnorm_rots,
'logit_opacities': logit_opacities,
'log_scales': log_scales,
}
for k, v in params.items():
# Check if value is already a torch tensor
if not isinstance(v, torch.Tensor):
params[k] = torch.nn.Parameter(torch.tensor(v).cuda().float().contiguous().requires_grad_(True))
else:
params[k] = torch.nn.Parameter(v.cuda().float().contiguous().requires_grad_(True))
return params
def add_new_gaussians(params, variables, curr_data, sil_thres,
time_idx, mean_sq_dist_method, gaussian_distribution):
# Silhouette Rendering
transformed_gaussians = transform_to_frame(params, time_idx, gaussians_grad=False, camera_grad=False)
depth_sil_rendervar = transformed_params2depthplussilhouette(params, curr_data['w2c'],
transformed_gaussians)
depth_sil, _, _, = Renderer(raster_settings=curr_data['cam'])(**depth_sil_rendervar)
silhouette = depth_sil[1, :, :]
non_presence_sil_mask = (silhouette < sil_thres)
# Check for new foreground objects by using GT depth
gt_depth = curr_data['depth'][0, :, :]
render_depth = depth_sil[0, :, :]
depth_error = torch.abs(gt_depth - render_depth) * (gt_depth > 0)
non_presence_depth_mask = (render_depth > gt_depth) * (depth_error > 50*depth_error.median())
# Determine non-presence mask
non_presence_mask = non_presence_sil_mask | non_presence_depth_mask
# Flatten mask
non_presence_mask = non_presence_mask.reshape(-1)
# Get the new frame Gaussians based on the Silhouette
if torch.sum(non_presence_mask) > 0:
# Get the new pointcloud in the world frame
curr_cam_rot = torch.nn.functional.normalize(params['cam_unnorm_rots'][..., time_idx].detach())
curr_cam_tran = params['cam_trans'][..., time_idx].detach()
curr_w2c = torch.eye(4).cuda().float()
curr_w2c[:3, :3] = build_rotation(curr_cam_rot)
curr_w2c[:3, 3] = curr_cam_tran
valid_depth_mask = (curr_data['depth'][0, :, :] > 0)
non_presence_mask = non_presence_mask & valid_depth_mask.reshape(-1)
new_pt_cld, mean3_sq_dist = get_pointcloud(curr_data['im'], curr_data['depth'], curr_data['intrinsics'],
curr_w2c, mask=non_presence_mask, compute_mean_sq_dist=True,
mean_sq_dist_method=mean_sq_dist_method)
new_params = initialize_new_params(new_pt_cld, mean3_sq_dist, gaussian_distribution)
for k, v in new_params.items():
params[k] = torch.nn.Parameter(torch.cat((params[k], v), dim=0).requires_grad_(True))
num_pts = params['means3D'].shape[0]
variables['means2D_gradient_accum'] = torch.zeros(num_pts, device="cuda").float()
variables['denom'] = torch.zeros(num_pts, device="cuda").float()
variables['max_2D_radius'] = torch.zeros(num_pts, device="cuda").float()
new_timestep = time_idx*torch.ones(new_pt_cld.shape[0],device="cuda").float()
variables['timestep'] = torch.cat((variables['timestep'],new_timestep),dim=0)
return params, variables
def initialize_camera_pose(params, curr_time_idx, forward_prop):
with torch.no_grad():
if curr_time_idx > 1 and forward_prop:
# Initialize the camera pose for the current frame based on a constant velocity model
# Rotation
prev_rot1 = F.normalize(params['cam_unnorm_rots'][..., curr_time_idx-1].detach())
prev_rot2 = F.normalize(params['cam_unnorm_rots'][..., curr_time_idx-2].detach())
new_rot = F.normalize(prev_rot1 + (prev_rot1 - prev_rot2))
params['cam_unnorm_rots'][..., curr_time_idx] = new_rot.detach()
# Translation
prev_tran1 = params['cam_trans'][..., curr_time_idx-1].detach()
prev_tran2 = params['cam_trans'][..., curr_time_idx-2].detach()
new_tran = prev_tran1 + (prev_tran1 - prev_tran2)
params['cam_trans'][..., curr_time_idx] = new_tran.detach()
else:
# Initialize the camera pose for the current frame
params['cam_unnorm_rots'][..., curr_time_idx] = params['cam_unnorm_rots'][..., curr_time_idx-1].detach()
params['cam_trans'][..., curr_time_idx] = params['cam_trans'][..., curr_time_idx-1].detach()
return params
def convert_params_to_store(params):
params_to_store = {}
for k, v in params.items():
if isinstance(v, torch.Tensor):
params_to_store[k] = v.detach().clone()
else:
params_to_store[k] = v
return params_to_store
def rgbd_slam(config: dict):
# Print Config
print("Loaded Config:")
if "use_depth_loss_thres" not in config['tracking']:
config['tracking']['use_depth_loss_thres'] = False
config['tracking']['depth_loss_thres'] = 100000
if "visualize_tracking_loss" not in config['tracking']:
config['tracking']['visualize_tracking_loss'] = False
if "gaussian_distribution" not in config:
config['gaussian_distribution'] = "isotropic"
print(f"{config}")
# Create Output Directories
output_dir = os.path.join(config["workdir"], config["run_name"])
eval_dir = os.path.join(output_dir, "eval")
os.makedirs(eval_dir, exist_ok=True)
# Init WandB
if config['use_wandb']:
wandb_time_step = 0
wandb_tracking_step = 0
wandb_mapping_step = 0
wandb_run = wandb.init(project=config['wandb']['project'],
entity=config['wandb']['entity'],
group=config['wandb']['group'],
name=config['wandb']['name'],
config=config)
# Get Device
device = torch.device(config["primary_device"])
# Load Dataset
print("Loading Dataset ...")
dataset_config = config["data"]
if "gradslam_data_cfg" not in dataset_config:
gradslam_data_cfg = {}
gradslam_data_cfg["dataset_name"] = dataset_config["dataset_name"]
else:
gradslam_data_cfg = load_dataset_config(dataset_config["gradslam_data_cfg"])
if "ignore_bad" not in dataset_config:
dataset_config["ignore_bad"] = False
if "use_train_split" not in dataset_config:
dataset_config["use_train_split"] = True
if "densification_image_height" not in dataset_config:
dataset_config["densification_image_height"] = dataset_config["desired_image_height"]
dataset_config["densification_image_width"] = dataset_config["desired_image_width"]
seperate_densification_res = False
else:
if dataset_config["densification_image_height"] != dataset_config["desired_image_height"] or \
dataset_config["densification_image_width"] != dataset_config["desired_image_width"]:
seperate_densification_res = True
else:
seperate_densification_res = False
if "tracking_image_height" not in dataset_config:
dataset_config["tracking_image_height"] = dataset_config["desired_image_height"]
dataset_config["tracking_image_width"] = dataset_config["desired_image_width"]
seperate_tracking_res = False
else:
if dataset_config["tracking_image_height"] != dataset_config["desired_image_height"] or \
dataset_config["tracking_image_width"] != dataset_config["desired_image_width"]:
seperate_tracking_res = True
else:
seperate_tracking_res = False
# Poses are relative to the first frame
dataset = get_dataset(
config_dict=gradslam_data_cfg,
basedir=dataset_config["basedir"],
sequence=os.path.basename(dataset_config["sequence"]),
start=dataset_config["start"],
end=dataset_config["end"],
stride=dataset_config["stride"],
desired_height=dataset_config["desired_image_height"],
desired_width=dataset_config["desired_image_width"],
device=device,
relative_pose=True,
ignore_bad=dataset_config["ignore_bad"],
use_train_split=dataset_config["use_train_split"],
)
num_frames = dataset_config["num_frames"]
if num_frames == -1:
num_frames = len(dataset)
# Init seperate dataloader for densification if required
if seperate_densification_res:
densify_dataset = get_dataset(
config_dict=gradslam_data_cfg,
basedir=dataset_config["basedir"],
sequence=os.path.basename(dataset_config["sequence"]),
start=dataset_config["start"],
end=dataset_config["end"],
stride=dataset_config["stride"],
desired_height=dataset_config["densification_image_height"],
desired_width=dataset_config["densification_image_width"],
device=device,
relative_pose=True,
ignore_bad=dataset_config["ignore_bad"],
use_train_split=dataset_config["use_train_split"],
)
# Initialize Parameters, Canonical & Densification Camera parameters
params, variables, intrinsics, first_frame_w2c, cam, \
densify_intrinsics, densify_cam = initialize_first_timestep(dataset, num_frames,
config['scene_radius_depth_ratio'],
config['mean_sq_dist_method'],
densify_dataset=densify_dataset,
gaussian_distribution=config['gaussian_distribution'])
else:
# Initialize Parameters & Canoncial Camera parameters
params, variables, intrinsics, first_frame_w2c, cam = initialize_first_timestep(dataset, num_frames,
config['scene_radius_depth_ratio'],
config['mean_sq_dist_method'],
gaussian_distribution=config['gaussian_distribution'])
# Init seperate dataloader for tracking if required
if seperate_tracking_res:
tracking_dataset = get_dataset(
config_dict=gradslam_data_cfg,
basedir=dataset_config["basedir"],
sequence=os.path.basename(dataset_config["sequence"]),
start=dataset_config["start"],
end=dataset_config["end"],
stride=dataset_config["stride"],
desired_height=dataset_config["tracking_image_height"],
desired_width=dataset_config["tracking_image_width"],
device=device,
relative_pose=True,
ignore_bad=dataset_config["ignore_bad"],
use_train_split=dataset_config["use_train_split"],
)
tracking_color, _, tracking_intrinsics, _ = tracking_dataset[0]
tracking_color = tracking_color.permute(2, 0, 1) / 255 # (H, W, C) -> (C, H, W)
tracking_intrinsics = tracking_intrinsics[:3, :3]
tracking_cam = setup_camera(tracking_color.shape[2], tracking_color.shape[1],
tracking_intrinsics.cpu().numpy(), first_frame_w2c.detach().cpu().numpy())
# Initialize list to keep track of Keyframes
keyframe_list = []
keyframe_time_indices = []
# Init Variables to keep track of ground truth poses and runtimes
gt_w2c_all_frames = []
tracking_iter_time_sum = 0
tracking_iter_time_count = 0
mapping_iter_time_sum = 0
mapping_iter_time_count = 0
tracking_frame_time_sum = 0
tracking_frame_time_count = 0
mapping_frame_time_sum = 0
mapping_frame_time_count = 0
# Load Checkpoint
if config['load_checkpoint']:
checkpoint_time_idx = config['checkpoint_time_idx']
print(f"Loading Checkpoint for Frame {checkpoint_time_idx}")
ckpt_path = os.path.join(config['workdir'], config['run_name'], f"params{checkpoint_time_idx}.npz")
params = dict(np.load(ckpt_path, allow_pickle=True))
params = {k: torch.tensor(params[k]).cuda().float().requires_grad_(True) for k in params.keys()}
variables['max_2D_radius'] = torch.zeros(params['means3D'].shape[0]).cuda().float()
variables['means2D_gradient_accum'] = torch.zeros(params['means3D'].shape[0]).cuda().float()
variables['denom'] = torch.zeros(params['means3D'].shape[0]).cuda().float()
variables['timestep'] = torch.zeros(params['means3D'].shape[0]).cuda().float()
# Load the keyframe time idx list
keyframe_time_indices = np.load(os.path.join(config['workdir'], config['run_name'], f"keyframe_time_indices{checkpoint_time_idx}.npy"))
keyframe_time_indices = keyframe_time_indices.tolist()
# Update the ground truth poses list
for time_idx in range(checkpoint_time_idx):
# Load RGBD frames incrementally instead of all frames
color, depth, _, gt_pose = dataset[time_idx]
# Process poses
gt_w2c = torch.linalg.inv(gt_pose)
gt_w2c_all_frames.append(gt_w2c)
# Initialize Keyframe List
if time_idx in keyframe_time_indices:
# Get the estimated rotation & translation
curr_cam_rot = F.normalize(params['cam_unnorm_rots'][..., time_idx].detach())
curr_cam_tran = params['cam_trans'][..., time_idx].detach()
curr_w2c = torch.eye(4).cuda().float()
curr_w2c[:3, :3] = build_rotation(curr_cam_rot)
curr_w2c[:3, 3] = curr_cam_tran
# Initialize Keyframe Info
color = color.permute(2, 0, 1) / 255
depth = depth.permute(2, 0, 1)
curr_keyframe = {'id': time_idx, 'est_w2c': curr_w2c, 'color': color, 'depth': depth}
# Add to keyframe list
keyframe_list.append(curr_keyframe)
else:
checkpoint_time_idx = 0
# Iterate over Scan
for time_idx in tqdm(range(checkpoint_time_idx, num_frames)):
# Load RGBD frames incrementally instead of all frames
color, depth, _, gt_pose = dataset[time_idx]
# Process poses
gt_w2c = torch.linalg.inv(gt_pose)
# Process RGB-D Data
color = color.permute(2, 0, 1) / 255
depth = depth.permute(2, 0, 1)
gt_w2c_all_frames.append(gt_w2c)
curr_gt_w2c = gt_w2c_all_frames
# Optimize only current time step for tracking
iter_time_idx = time_idx
# Initialize Mapping Data for selected frame
curr_data = {'cam': cam, 'im': color, 'depth': depth, 'id': iter_time_idx, 'intrinsics': intrinsics,
'w2c': first_frame_w2c, 'iter_gt_w2c_list': curr_gt_w2c}
# Initialize Data for Tracking
if seperate_tracking_res:
tracking_color, tracking_depth, _, _ = tracking_dataset[time_idx]
tracking_color = tracking_color.permute(2, 0, 1) / 255
tracking_depth = tracking_depth.permute(2, 0, 1)
tracking_curr_data = {'cam': tracking_cam, 'im': tracking_color, 'depth': tracking_depth, 'id': iter_time_idx,
'intrinsics': tracking_intrinsics, 'w2c': first_frame_w2c, 'iter_gt_w2c_list': curr_gt_w2c}
else:
tracking_curr_data = curr_data
# Optimization Iterations
num_iters_mapping = config['mapping']['num_iters']
# Initialize the camera pose for the current frame
if time_idx > 0:
params = initialize_camera_pose(params, time_idx, forward_prop=config['tracking']['forward_prop'])
# Tracking
tracking_start_time = time.time()
if time_idx > 0 and not config['tracking']['use_gt_poses']:
# Reset Optimizer & Learning Rates for tracking
optimizer = initialize_optimizer(params, config['tracking']['lrs'], tracking=True)
# Keep Track of Best Candidate Rotation & Translation
candidate_cam_unnorm_rot = params['cam_unnorm_rots'][..., time_idx].detach().clone()
candidate_cam_tran = params['cam_trans'][..., time_idx].detach().clone()
current_min_loss = float(1e20)
# Tracking Optimization
iter = 0
do_continue_slam = False
num_iters_tracking = config['tracking']['num_iters']
progress_bar = tqdm(range(num_iters_tracking), desc=f"Tracking Time Step: {time_idx}")
while True:
iter_start_time = time.time()
# Loss for current frame
loss, variables, losses = get_loss(params, tracking_curr_data, variables, iter_time_idx, config['tracking']['loss_weights'],
config['tracking']['use_sil_for_loss'], config['tracking']['sil_thres'],
config['tracking']['use_l1'], config['tracking']['ignore_outlier_depth_loss'], tracking=True,
plot_dir=eval_dir, visualize_tracking_loss=config['tracking']['visualize_tracking_loss'],
tracking_iteration=iter)
if config['use_wandb']:
# Report Loss
wandb_tracking_step = report_loss(losses, wandb_run, wandb_tracking_step, tracking=True)
# Backprop
loss.backward()
# Optimizer Update
optimizer.step()
optimizer.zero_grad(set_to_none=True)
with torch.no_grad():
# Save the best candidate rotation & translation
if loss < current_min_loss:
current_min_loss = loss
candidate_cam_unnorm_rot = params['cam_unnorm_rots'][..., time_idx].detach().clone()
candidate_cam_tran = params['cam_trans'][..., time_idx].detach().clone()
# Report Progress
if config['report_iter_progress']:
if config['use_wandb']:
report_progress(params, tracking_curr_data, iter+1, progress_bar, iter_time_idx, sil_thres=config['tracking']['sil_thres'], tracking=True,
wandb_run=wandb_run, wandb_step=wandb_tracking_step, wandb_save_qual=config['wandb']['save_qual'])
else:
report_progress(params, tracking_curr_data, iter+1, progress_bar, iter_time_idx, sil_thres=config['tracking']['sil_thres'], tracking=True)
else:
progress_bar.update(1)
# Update the runtime numbers
iter_end_time = time.time()
tracking_iter_time_sum += iter_end_time - iter_start_time
tracking_iter_time_count += 1
# Check if we should stop tracking
iter += 1
if iter == num_iters_tracking:
if losses['depth'] < config['tracking']['depth_loss_thres'] and config['tracking']['use_depth_loss_thres']:
break
elif config['tracking']['use_depth_loss_thres'] and not do_continue_slam:
do_continue_slam = True
progress_bar = tqdm(range(num_iters_tracking), desc=f"Tracking Time Step: {time_idx}")
num_iters_tracking = 2*num_iters_tracking
if config['use_wandb']:
wandb_run.log({"Tracking/Extra Tracking Iters Frames": time_idx,
"Tracking/step": wandb_time_step})
else:
break
progress_bar.close()
# Copy over the best candidate rotation & translation
with torch.no_grad():
params['cam_unnorm_rots'][..., time_idx] = candidate_cam_unnorm_rot
params['cam_trans'][..., time_idx] = candidate_cam_tran
elif time_idx > 0 and config['tracking']['use_gt_poses']:
with torch.no_grad():
# Get the ground truth pose relative to frame 0
rel_w2c = curr_gt_w2c[-1]
rel_w2c_rot = rel_w2c[:3, :3].unsqueeze(0).detach()
rel_w2c_rot_quat = matrix_to_quaternion(rel_w2c_rot)
rel_w2c_tran = rel_w2c[:3, 3].detach()
# Update the camera parameters
params['cam_unnorm_rots'][..., time_idx] = rel_w2c_rot_quat
params['cam_trans'][..., time_idx] = rel_w2c_tran
# Update the runtime numbers
tracking_end_time = time.time()
tracking_frame_time_sum += tracking_end_time - tracking_start_time
tracking_frame_time_count += 1
if time_idx == 0 or (time_idx+1) % config['report_global_progress_every'] == 0:
try:
# Report Final Tracking Progress
progress_bar = tqdm(range(1), desc=f"Tracking Result Time Step: {time_idx}")
with torch.no_grad():
if config['use_wandb']:
report_progress(params, tracking_curr_data, 1, progress_bar, iter_time_idx, sil_thres=config['tracking']['sil_thres'], tracking=True,
wandb_run=wandb_run, wandb_step=wandb_time_step, wandb_save_qual=config['wandb']['save_qual'], global_logging=True)
else:
report_progress(params, tracking_curr_data, 1, progress_bar, iter_time_idx, sil_thres=config['tracking']['sil_thres'], tracking=True)
progress_bar.close()
except:
ckpt_output_dir = os.path.join(config["workdir"], config["run_name"])
save_params_ckpt(params, ckpt_output_dir, time_idx)
print('Failed to evaluate trajectory.')
# Densification & KeyFrame-based Mapping
if time_idx == 0 or (time_idx+1) % config['map_every'] == 0:
# Densification
if config['mapping']['add_new_gaussians'] and time_idx > 0:
# Setup Data for Densification
if seperate_densification_res:
# Load RGBD frames incrementally instead of all frames
densify_color, densify_depth, _, _ = densify_dataset[time_idx]
densify_color = densify_color.permute(2, 0, 1) / 255
densify_depth = densify_depth.permute(2, 0, 1)
densify_curr_data = {'cam': densify_cam, 'im': densify_color, 'depth': densify_depth, 'id': time_idx,
'intrinsics': densify_intrinsics, 'w2c': first_frame_w2c, 'iter_gt_w2c_list': curr_gt_w2c}
else:
densify_curr_data = curr_data
# Add new Gaussians to the scene based on the Silhouette
params, variables = add_new_gaussians(params, variables, densify_curr_data,
config['mapping']['sil_thres'], time_idx,
config['mean_sq_dist_method'], config['gaussian_distribution'])
post_num_pts = params['means3D'].shape[0]
if config['use_wandb']:
wandb_run.log({"Mapping/Number of Gaussians": post_num_pts,
"Mapping/step": wandb_time_step})
with torch.no_grad():
# Get the current estimated rotation & translation
curr_cam_rot = F.normalize(params['cam_unnorm_rots'][..., time_idx].detach())
curr_cam_tran = params['cam_trans'][..., time_idx].detach()
curr_w2c = torch.eye(4).cuda().float()
curr_w2c[:3, :3] = build_rotation(curr_cam_rot)
curr_w2c[:3, 3] = curr_cam_tran
# Select Keyframes for Mapping
num_keyframes = config['mapping_window_size']-2
selected_keyframes = keyframe_selection_overlap(depth, curr_w2c, intrinsics, keyframe_list[:-1], num_keyframes)
selected_time_idx = [keyframe_list[frame_idx]['id'] for frame_idx in selected_keyframes]
if len(keyframe_list) > 0:
# Add last keyframe to the selected keyframes
selected_time_idx.append(keyframe_list[-1]['id'])
selected_keyframes.append(len(keyframe_list)-1)
# Add current frame to the selected keyframes
selected_time_idx.append(time_idx)
selected_keyframes.append(-1)
# Print the selected keyframes
print(f"\nSelected Keyframes at Frame {time_idx}: {selected_time_idx}")
# Reset Optimizer & Learning Rates for Full Map Optimization
optimizer = initialize_optimizer(params, config['mapping']['lrs'], tracking=False)
# Mapping
mapping_start_time = time.time()
if num_iters_mapping > 0:
progress_bar = tqdm(range(num_iters_mapping), desc=f"Mapping Time Step: {time_idx}")
for iter in range(num_iters_mapping):
iter_start_time = time.time()
# Randomly select a frame until current time step amongst keyframes
rand_idx = np.random.randint(0, len(selected_keyframes))
selected_rand_keyframe_idx = selected_keyframes[rand_idx]
if selected_rand_keyframe_idx == -1:
# Use Current Frame Data
iter_time_idx = time_idx
iter_color = color
iter_depth = depth
else:
# Use Keyframe Data
iter_time_idx = keyframe_list[selected_rand_keyframe_idx]['id']
iter_color = keyframe_list[selected_rand_keyframe_idx]['color']
iter_depth = keyframe_list[selected_rand_keyframe_idx]['depth']
iter_gt_w2c = gt_w2c_all_frames[:iter_time_idx+1]
iter_data = {'cam': cam, 'im': iter_color, 'depth': iter_depth, 'id': iter_time_idx,
'intrinsics': intrinsics, 'w2c': first_frame_w2c, 'iter_gt_w2c_list': iter_gt_w2c}
# Loss for current frame
loss, variables, losses = get_loss(params, iter_data, variables, iter_time_idx, config['mapping']['loss_weights'],
config['mapping']['use_sil_for_loss'], config['mapping']['sil_thres'],
config['mapping']['use_l1'], config['mapping']['ignore_outlier_depth_loss'], mapping=True)
if config['use_wandb']:
# Report Loss
wandb_mapping_step = report_loss(losses, wandb_run, wandb_mapping_step, mapping=True)
# Backprop
loss.backward()
with torch.no_grad():
# Prune Gaussians
if config['mapping']['prune_gaussians']:
params, variables = prune_gaussians(params, variables, optimizer, iter, config['mapping']['pruning_dict'])
if config['use_wandb']:
wandb_run.log({"Mapping/Number of Gaussians - Pruning": params['means3D'].shape[0],
"Mapping/step": wandb_mapping_step})
# Gaussian-Splatting's Gradient-based Densification
if config['mapping']['use_gaussian_splatting_densification']:
params, variables = densify(params, variables, optimizer, iter, config['mapping']['densify_dict'])
if config['use_wandb']:
wandb_run.log({"Mapping/Number of Gaussians - Densification": params['means3D'].shape[0],
"Mapping/step": wandb_mapping_step})
# Optimizer Update
optimizer.step()
optimizer.zero_grad(set_to_none=True)
# Report Progress
if config['report_iter_progress']:
if config['use_wandb']:
report_progress(params, iter_data, iter+1, progress_bar, iter_time_idx, sil_thres=config['mapping']['sil_thres'],
wandb_run=wandb_run, wandb_step=wandb_mapping_step, wandb_save_qual=config['wandb']['save_qual'],
mapping=True, online_time_idx=time_idx)
else:
report_progress(params, iter_data, iter+1, progress_bar, iter_time_idx, sil_thres=config['mapping']['sil_thres'],
mapping=True, online_time_idx=time_idx)
else:
progress_bar.update(1)
# Update the runtime numbers
iter_end_time = time.time()
mapping_iter_time_sum += iter_end_time - iter_start_time
mapping_iter_time_count += 1
if num_iters_mapping > 0:
progress_bar.close()
# Update the runtime numbers
mapping_end_time = time.time()
mapping_frame_time_sum += mapping_end_time - mapping_start_time
mapping_frame_time_count += 1
if time_idx == 0 or (time_idx+1) % config['report_global_progress_every'] == 0:
try:
# Report Mapping Progress
progress_bar = tqdm(range(1), desc=f"Mapping Result Time Step: {time_idx}")
with torch.no_grad():
if config['use_wandb']:
report_progress(params, curr_data, 1, progress_bar, time_idx, sil_thres=config['mapping']['sil_thres'],
wandb_run=wandb_run, wandb_step=wandb_time_step, wandb_save_qual=config['wandb']['save_qual'],
mapping=True, online_time_idx=time_idx, global_logging=True)
else:
report_progress(params, curr_data, 1, progress_bar, time_idx, sil_thres=config['mapping']['sil_thres'],
mapping=True, online_time_idx=time_idx)
progress_bar.close()
except:
ckpt_output_dir = os.path.join(config["workdir"], config["run_name"])
save_params_ckpt(params, ckpt_output_dir, time_idx)
print('Failed to evaluate trajectory.')
# Add frame to keyframe list
if ((time_idx == 0) or ((time_idx+1) % config['keyframe_every'] == 0) or \
(time_idx == num_frames-2)) and (not torch.isinf(curr_gt_w2c[-1]).any()) and (not torch.isnan(curr_gt_w2c[-1]).any()):
with torch.no_grad():
# Get the current estimated rotation & translation
curr_cam_rot = F.normalize(params['cam_unnorm_rots'][..., time_idx].detach())
curr_cam_tran = params['cam_trans'][..., time_idx].detach()
curr_w2c = torch.eye(4).cuda().float()
curr_w2c[:3, :3] = build_rotation(curr_cam_rot)
curr_w2c[:3, 3] = curr_cam_tran
# Initialize Keyframe Info
curr_keyframe = {'id': time_idx, 'est_w2c': curr_w2c, 'color': color, 'depth': depth}
# Add to keyframe list
keyframe_list.append(curr_keyframe)
keyframe_time_indices.append(time_idx)
# Checkpoint every iteration
if time_idx % config["checkpoint_interval"] == 0 and config['save_checkpoints']:
ckpt_output_dir = os.path.join(config["workdir"], config["run_name"])
save_params_ckpt(params, ckpt_output_dir, time_idx)
np.save(os.path.join(ckpt_output_dir, f"keyframe_time_indices{time_idx}.npy"), np.array(keyframe_time_indices))
# Increment WandB Time Step
if config['use_wandb']:
wandb_time_step += 1
torch.cuda.empty_cache()
# Compute Average Runtimes
if tracking_iter_time_count == 0:
tracking_iter_time_count = 1
tracking_frame_time_count = 1
if mapping_iter_time_count == 0:
mapping_iter_time_count = 1
mapping_frame_time_count = 1
tracking_iter_time_avg = tracking_iter_time_sum / tracking_iter_time_count
tracking_frame_time_avg = tracking_frame_time_sum / tracking_frame_time_count
mapping_iter_time_avg = mapping_iter_time_sum / mapping_iter_time_count
mapping_frame_time_avg = mapping_frame_time_sum / mapping_frame_time_count
print(f"\nAverage Tracking/Iteration Time: {tracking_iter_time_avg*1000} ms")
print(f"Average Tracking/Frame Time: {tracking_frame_time_avg} s")
print(f"Average Mapping/Iteration Time: {mapping_iter_time_avg*1000} ms")
print(f"Average Mapping/Frame Time: {mapping_frame_time_avg} s")
if config['use_wandb']:
wandb_run.log({"Final Stats/Average Tracking Iteration Time (ms)": tracking_iter_time_avg*1000,
"Final Stats/Average Tracking Frame Time (s)": tracking_frame_time_avg,
"Final Stats/Average Mapping Iteration Time (ms)": mapping_iter_time_avg*1000,
"Final Stats/Average Mapping Frame Time (s)": mapping_frame_time_avg,
"Final Stats/step": 1})
# Evaluate Final Parameters
with torch.no_grad():
if config['use_wandb']:
eval(dataset, params, num_frames, eval_dir, sil_thres=config['mapping']['sil_thres'],
wandb_run=wandb_run, wandb_save_qual=config['wandb']['eval_save_qual'],
mapping_iters=config['mapping']['num_iters'], add_new_gaussians=config['mapping']['add_new_gaussians'],
eval_every=config['eval_every'])
else:
eval(dataset, params, num_frames, eval_dir, sil_thres=config['mapping']['sil_thres'],
mapping_iters=config['mapping']['num_iters'], add_new_gaussians=config['mapping']['add_new_gaussians'],
eval_every=config['eval_every'])
# Add Camera Parameters to Save them
params['timestep'] = variables['timestep']
params['intrinsics'] = intrinsics.detach().cpu().numpy()
params['w2c'] = first_frame_w2c.detach().cpu().numpy()
params['org_width'] = dataset_config["desired_image_width"]
params['org_height'] = dataset_config["desired_image_height"]
params['gt_w2c_all_frames'] = []
for gt_w2c_tensor in gt_w2c_all_frames:
params['gt_w2c_all_frames'].append(gt_w2c_tensor.detach().cpu().numpy())
params['gt_w2c_all_frames'] = np.stack(params['gt_w2c_all_frames'], axis=0)
params['keyframe_time_indices'] = np.array(keyframe_time_indices)
# Save Parameters
save_params(params, output_dir)
# Close WandB Run
if config['use_wandb']:
wandb.finish()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("experiment", type=str, help="Path to experiment file")
args = parser.parse_args()
experiment = SourceFileLoader(
os.path.basename(args.experiment), args.experiment