-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathptc_dataset.py
199 lines (160 loc) · 6.09 KB
/
ptc_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import os
import shutil
import numpy as np
import networkx as nx
from torch_geometric.data import Data, InMemoryDataset, download_url, extract_zip
class S2VGraph(object):
def __init__(self, g, label, node_tags=None, node_features=None):
'''
g: a networkx graph
label: an integer graph label
node_tags: a list of integer node tags
node_features: a torch float tensor, one-hot representation of the tag that is used as input to neural nets
edge_mat: a torch long tensor, contain edge list, will be used to create torch sparse tensor
neighbors: list of neighbors (without self-loop)
'''
self.label = label
self.g = g
self.node_tags = node_tags
self.neighbors = []
self.node_features = 0
self.edge_mat = 0
self.max_neighbor = 0
def S2V_to_PyG(data):
new_data = Data()
setattr(new_data, 'edge_index', data.edge_mat)
setattr(new_data, 'x', data.node_features)
setattr(new_data, 'num_nodes', data.node_features.shape[0])
setattr(new_data, 'y', torch.tensor(data.label).unsqueeze(0).long())
return new_data
def load_data(dataset, degree_as_tag, folder):
'''
dataset: name of dataset
test_proportion: ratio of test train split
seed: random seed for random splitting of dataset
'''
g_list = []
label_dict = {}
feat_dict = {}
with open('%s/%s.txt' % (folder, dataset), 'r') as f:
n_g = int(f.readline().strip())
for i in range(n_g):
row = f.readline().strip().split()
n, l = [int(w) for w in row]
if not l in label_dict:
mapped = len(label_dict)
label_dict[l] = mapped
g = nx.Graph()
node_tags = []
node_features = []
n_edges = 0
for j in range(n):
g.add_node(j)
row = f.readline().strip().split()
tmp = int(row[1]) + 2
if tmp == len(row):
# no node attributes
row = [int(w) for w in row]
attr = None
else:
row, attr = [int(w) for w in row[:tmp]], np.array([float(w) for w in row[tmp:]])
if not row[0] in feat_dict:
mapped = len(feat_dict)
feat_dict[row[0]] = mapped
node_tags.append(feat_dict[row[0]])
if tmp > len(row):
node_features.append(attr)
n_edges += row[1]
for k in range(2, len(row)):
g.add_edge(j, row[k])
if node_features != []:
node_features = np.stack(node_features)
node_feature_flag = True
else:
node_features = None
node_feature_flag = False
assert len(g) == n
g_list.append(S2VGraph(g, l, node_tags))
# add labels and edge_mat
for g in g_list:
g.neighbors = [[] for i in range(len(g.g))]
for i, j in g.g.edges():
g.neighbors[i].append(j)
g.neighbors[j].append(i)
degree_list = []
for i in range(len(g.g)):
g.neighbors[i] = g.neighbors[i]
degree_list.append(len(g.neighbors[i]))
g.max_neighbor = max(degree_list)
g.label = label_dict[g.label]
edges = [list(pair) for pair in g.g.edges()]
edges.extend([[i, j] for j, i in edges])
deg_list = list(dict(g.g.degree(range(len(g.g)))).values())
g.edge_mat = torch.LongTensor(edges).transpose(0, 1)
if degree_as_tag:
for g in g_list:
g.node_tags = list(dict(g.g.degree).values())
# Extracting unique tag labels
tagset = set([])
for g in g_list:
tagset = tagset.union(set(g.node_tags))
tagset = list(tagset)
tag2index = {tagset[i]: i for i in range(len(tagset))}
for g in g_list:
g.node_features = torch.zeros(len(g.node_tags), len(tagset))
g.node_features[range(len(g.node_tags)), [tag2index[tag] for tag in g.node_tags]] = 1
return [S2V_to_PyG(datum) for datum in g_list]
class PTCDataset(InMemoryDataset):
def __init__(
self,
root,
name,
transform=None,
pre_transform=None,
):
self.name = name
self.url = 'https://github.com/weihua916/powerful-gnns/raw/master/dataset.zip'
super(PTCDataset, self).__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_dir(self):
name = 'raw'
return os.path.join(self.root, self.name, name)
@property
def processed_dir(self):
name = 'processed'
return os.path.join(self.root, self.name, name)
@property
def num_tasks(self):
return 1
@property
def eval_metric(self):
return 'acc'
@property
def task_type(self):
return 'classification'
@property
def raw_file_names(self):
return ['PTC.mat', 'PTC.txt']
@property
def processed_file_names(self):
return ['data.pt']
def download(self):
folder = os.path.join(self.root, self.name)
path = download_url(self.url, folder)
extract_zip(path, folder)
os.unlink(path)
shutil.rmtree(self.raw_dir)
shutil.move(os.path.join(folder, f'dataset/{self.name}'), os.path.join(folder, self.name))
shutil.rmtree(os.path.join(folder, 'dataset'))
os.rename(os.path.join(folder, self.name), self.raw_dir)
def process(self):
data_list = load_data('PTC', degree_as_tag=False, folder=self.raw_dir)
print(sum([data.num_nodes for data in data_list]))
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
data_list = [self.pre_transform(data) for data in data_list]
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])