-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathmodel.py
62 lines (45 loc) · 1.98 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import sys
import argparse
from python.waveglow import models
from python.waveglow.denoiser import Denoiser
class WaveGlow(object):
def __init__(self, logger, PROD, device, models_manager):
super(WaveGlow, self).__init__()
import python.waveglow.waveglow as glow
sys.modules['glow'] = glow
self.logger = logger
self.PROD = PROD
self.models_manager = models_manager
self.device = device
self.ckpt_path = None
model_name = "waveglow"
parser = argparse.ArgumentParser(description='PyTorch FastPitch Inference', allow_abbrev=False)
model_parser = models.parse_model_args(model_name, parser, add_help=False)
model_args, model_unk_args = model_parser.parse_known_args()
model_config = models.get_model_config(model_name, model_args)
self.model = models.get_model(model_name, model_config, self.device, self.logger, forward_is_infer=True, jitable=False)
self.model.device = self.device
self.model.eval()
self.model.to(self.device)
self.isReady = True
def forward (self, data, sigma):
return self.model.infer(data, sigma)
def load_state_dict (self, ckpt_path, ckpt):
self.ckpt_path = ckpt_path
if 'state_dict' in ckpt:
sd = ckpt['state_dict']
if any(key.startswith('module.') for key in sd):
sd = {k.replace('module.', ''): v for k,v in sd.items()}
self.model.load_state_dict(sd, strict=True)
else:
self.model = ckpt['model']
self.model = self.model.remove_weightnorm(self.model).to(self.device)
self.model.device = self.device
self.model.eval()
self.denoiser = Denoiser(self.model, self.device).to(self.device)
def set_device (self, device):
self.device = device
self.model = self.model.to(device)
self.model.device = device
self.model.set_device(device)
self.denoiser.set_device(device)