-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathmodel.py
264 lines (202 loc) · 10.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
from math import atan, exp
import librosa
import numpy as np
import scipy
from scipy.signal import resample_poly
from omegaconf import OmegaConf as OC
import torch
import torch.nn as nn
import pytorch_lightning as pl
try:
import sys
sys.path.append(".")
from resources.app.python.nuwave2.nuwave2_model import NuWave2 as model
except ModuleNotFoundError:
try:
from python.nuwave2.nuwave2_model import NuWave2 as model
except ModuleNotFoundError:
try:
from nuwave2.nuwave2_model import NuWave2 as model
except ModuleNotFoundError:
from nuwave2_model import NuWave2 as model
class Diffusion(nn.Module):
def __init__(self, hparams):
super().__init__()
self.hparams = hparams
self.model = model(hparams)
self.logsnr_min = hparams.logsnr.logsnr_min
self.logsnr_max = hparams.logsnr.logsnr_max
self.logsnr_b = atan(exp(-self.logsnr_max / 2))
self.logsnr_a = atan(exp(-self.logsnr_min / 2)) - self.logsnr_b
def snr(self, time):
logsnr = - 2 * torch.log(torch.tan(self.logsnr_a * time + self.logsnr_b))
norm_nlogsnr = (self.logsnr_max - logsnr) / (self.logsnr_max - self.logsnr_min)
alpha_sq, sigma_sq = torch.sigmoid(logsnr), torch.sigmoid(-logsnr)
return logsnr, norm_nlogsnr, alpha_sq, sigma_sq
def forward(self, y, y_l, band, t, z=None):
logsnr, norm_nlogsnr, alpha_sq, sigma_sq = self.snr(t)
if z == None:
noise = self.model(y, y_l, band, norm_nlogsnr)
else:
noise = z
return noise, logsnr, (alpha_sq, sigma_sq)
def denoise(self, y, y_l, band, t, h):
noise, logsnr_t, (alpha_sq_t, sigma_sq_t) = self(y, y_l, band, t)
f_t = - self.logsnr_a * torch.tan(self.logsnr_a * t + self.logsnr_b)
g_t_sq = 2 * self.logsnr_a * torch.tan(self.logsnr_a * t + self.logsnr_b)
dzt_det = (f_t * y - 0.5 * g_t_sq * (-noise / torch.sqrt(sigma_sq_t))) * h
denoised = y - dzt_det
return denoised
def denoise_ddim(self, y, y_l, band, logsnr_t, logsnr_s, z=None):
norm_nlogsnr = (self.logsnr_max - logsnr_t) / (self.logsnr_max - self.logsnr_min)
alpha_sq_t, sigma_sq_t = torch.sigmoid(logsnr_t), torch.sigmoid(-logsnr_t)
if z == None:
noise = self.model(y, y_l, band, norm_nlogsnr)
else:
noise = z
alpha_sq_s, sigma_sq_s = torch.sigmoid(logsnr_s), torch.sigmoid(-logsnr_s)
pred = (y - torch.sqrt(sigma_sq_t) * noise) / torch.sqrt(alpha_sq_t)
denoised = torch.sqrt(alpha_sq_s) * pred + torch.sqrt(sigma_sq_s) * noise
return denoised, pred
def diffusion(self, signal, noise, s, t=None):
bsize = s.shape[0]
time = s if t is None else torch.cat([s, t], dim=0)
_, _, alpha_sq, sigma_sq = self.snr(time)
if t is not None:
alpha_sq_s, alpha_sq_t = alpha_sq[:bsize], alpha_sq[bsize:]
sigma_sq_s, sigma_sq_t = sigma_sq[:bsize], sigma_sq[bsize:]
alpha_sq_tbars = alpha_sq_t / alpha_sq_s
sigma_sq_tbars = sigma_sq_t - alpha_sq_tbars * sigma_sq_s
alpha_sq, sigma_sq = alpha_sq_tbars, sigma_sq_tbars
alpha = torch.sqrt(alpha_sq)
sigma = torch.sqrt(sigma_sq)
noised = alpha.unsqueeze(-1) * signal + sigma.unsqueeze(-1) * noise
return alpha, sigma, noised
class NuWave2(pl.LightningModule):
def __init__(self, hparams, train=True):
super().__init__()
self.save_hyperparameters(hparams)
self.model = Diffusion(hparams)
self.loss = nn.L1Loss()
def forward(self, wav, wav_l, band, t):
z = torch.randn(wav.shape, dtype=wav.dtype, device=wav.device)
_, _, diffusion = self.model.diffusion(wav, z, t)
estim, logsnr, _ = self.model(diffusion, wav_l, band, t)
return estim, z, logsnr, wav, diffusion, logsnr
def common_step(self, wav, wav_l, band, t):
noise_estimation, z, logsnr, wav, wav_noisy, logsnr = self(wav, wav_l, band, t)
loss = self.loss(noise_estimation, z)
return loss, wav, wav_noisy, z, noise_estimation, logsnr
def inference(self, wav_l, band, step, noise_schedule=None):
with torch.no_grad():
signal = torch.randn(wav_l.shape, dtype=wav_l.dtype, device=wav_l.device)
signal_list = []
if noise_schedule == None:
h = (self.hparams.logsnr.logsnr_max - self.hparams.logsnr.logsnr_min) / step
for i in range(step):
if noise_schedule == None:
logsnr_t = (self.hparams.logsnr.logsnr_min + i * h) * torch.ones(signal.shape[0], dtype=signal.dtype,
device=signal.device)
logsnr_s = (self.hparams.logsnr.logsnr_min + (i+1) * h) * torch.ones(signal.shape[0], dtype=signal.dtype,
device=signal.device)
signal, recon = self.model.denoise_ddim(signal, wav_l, band, logsnr_t, logsnr_s)
else:
logsnr_t = noise_schedule[i] * torch.ones(signal.shape[0], dtype=signal.dtype, device=signal.device)
if i == step-1:
logsnr_s = self.hparams.logsnr.logsnr_max * torch.ones(signal.shape[0], dtype=signal.dtype, device=signal.device)
else:
logsnr_s = noise_schedule[i+1] * torch.ones(signal.shape[0], dtype=signal.dtype, device=signal.device)
signal, recon = self.model.denoise_ddim(signal, wav_l, band, logsnr_t, logsnr_s)
signal_list.append(signal)
wav_recon = torch.clamp(signal, min=-1, max=1-torch.finfo(torch.float16).eps)
return wav_recon, signal_list
def training_step(self, batch, batch_idx):
wav, wav_l, band = batch
t = ((1 - torch.rand(1, dtype=wav.dtype, device=wav.device))
+ torch.arange(wav.shape[0], dtype=wav.dtype, device=wav.device)/wav.shape[0])%1
loss, *_ = \
self.common_step(wav, wav_l, band, t)
self.log('train/loss', loss, sync_dist=True)
return loss
def validation_step(self, batch, batch_idx):
wav, wav_l, band = batch
t = ((1 - torch.rand(1, dtype=wav.dtype, device=wav.device))
+ torch.arange(wav.shape[0], dtype=wav.dtype, device=wav.device) / wav.shape[0]) % 1
loss, wav, wav_noisy, z, z_recon, logsnr = self.common_step(wav, wav_l, band, t)
self.log('val/loss', loss, sync_dist=True)
if batch_idx == 0:
i = torch.randint(0, wav.shape[0], (1,)).item()
logsnr_t, *_ = self.model.snr(t)
_, wav_recon = self.model.denoise_ddim(wav_noisy[i].unsqueeze(0), wav_l[i].unsqueeze(0),
band[i].unsqueeze(0), logsnr_t[i].unsqueeze(0),
torch.tensor(self.hparams.logsnr.logsnr_min, device=logsnr_t.device).unsqueeze(0),
z_recon[i].unsqueeze(0))
signal = torch.randn(wav.shape[-1], dtype=wav.dtype, device=wav.device).unsqueeze(0)
h = 1/1000
wav_l_i, band_i = wav_l[i].unsqueeze(0), band[i].unsqueeze(0)
for step in range(1000):
timestep = (1.0 - (step + 0.5) * h) * torch.ones(signal.shape[0], dtype=signal.dtype,
device=signal.device)
signal = self.model.denoise(signal, wav_l_i, band_i, timestep, h)
signal = signal.clamp(-10.0, 10.0)
wav_recon_allstep = signal.clamp(-1.0, 1.0)
z_error = z - z_recon
self.trainer.logger.log_spectrogram(wav[i], wav_noisy[i], z_error[i],
wav_recon_allstep[0], wav_recon[0], wav_l[i],
t[i].item(), logsnr[i].item(),
self.global_step)
self.trainer.logger.log_audio(wav[i], wav_noisy[i], wav_recon[0], wav_recon_allstep[0], wav_l[i], self.current_epoch)
return {
'val_loss': loss,
}
def configure_optimizers(self):
opt = torch.optim.Adam(self.parameters(),
lr=self.hparams.train.lr,
eps=self.hparams.train.opt_eps,
betas=(self.hparams.train.beta1,
self.hparams.train.beta2),
weight_decay=self.hparams.train.weight_decay)
return opt
class Nuwave2Model(object):
def __init__(self, logger, PROD, device, models_manager):
super(Nuwave2Model, self).__init__()
self.logger = logger
self.PROD = PROD
self.models_manager = models_manager
self.device = device
self.path = "./resources/app" if PROD else "."
self.ckpt_path = None
self.embeddings = []
self.hparams = OC.load(f'{self.path}/python/nuwave2/hparameter.yaml')
self.steps = 8
self.noise_schedule = eval(self.hparams.dpm.infer_schedule)
self.model = NuWave2(self.hparams)
self.model.eval()
ckpt = torch.load(f'{self.path}/python/nuwave2/nuwave2_02_16_13_epoch=629.ckpt', map_location='cpu')
self.model.load_state_dict(ckpt['state_dict'])
self.sr = 22050
highcut = self.sr // 2
nyq = 0.5 * self.hparams.audio.sampling_rate
self.hi = highcut / nyq
self.isReady = True
def load_state_dict (self, ckpt_path, sd):
self.ckpt_path = ckpt_path
def sr_audio (self, in_path, out_path):
wav, _ = librosa.load(in_path, sr=self.sr, mono=True)
wav /= np.max(np.abs(wav))
# upsample to the original sampling rate
wav_l = resample_poly(wav, self.hparams.audio.sampling_rate, self.sr)
wav_l = wav_l[:len(wav_l) - len(wav_l) % self.hparams.audio.hop_length]
fft_size = self.hparams.audio.filter_length // 2 + 1
band = torch.zeros(fft_size, dtype=torch.int64)
band[:int(self.hi * fft_size)] = 1
wav = torch.from_numpy(wav).unsqueeze(0).to(self.device)
wav_l = torch.from_numpy(wav_l.copy()).float().unsqueeze(0).to(self.device)
band = band.unsqueeze(0).to(self.device)
wav_recon, wav_list = self.model.inference(wav_l, band, self.steps, self.noise_schedule)
wav_recon = torch.clamp(wav_recon, min=-1, max=1 - torch.finfo(torch.float16).eps)
scipy.io.wavfile.write(out_path, self.hparams.audio.sampling_rate, wav_recon[0].detach().cpu().numpy())
def set_device (self, device):
self.device = device
self.model = self.model.to(self.device)