Skip to content
/ bams Public

Bayesian Active Model Selection

License

Notifications You must be signed in to change notification settings

Dallinger/bams

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

95 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Active model selection

Installation

pip install bams

Usage

import bams
import oracle

learner = bams.learners.ActiveLearner(
    query_strategy=bams.strategies.BALD,
    budget=10,
    base_kernels=["PER", "LIN", "SE", "LG"],
    max_depth=2,
    ndim=3,
)

while learner.budget > 0:
  x = learner.next_query()
  y = learner.query(oracle, x)
  learner.update(x, y)

References

Duvenaud, D., Lloyd, J. R., Grosse, R., Tenenbaum, J. B., & Ghahramani, Z. (2013). Structure discovery in nonparametric regression through compositional kernel search. arXiv preprint arXiv:1302.4922.

Duvenaud, D. (2014). Automatic model construction with Gaussian processes (Doctoral dissertation, University of Cambridge).

Gardner, J., Malkomes, G., Garnett, R., Weinberger, K. Q., Barbour, D., & Cunningham, J. P. (2015). Bayesian active model selection with an application to automated audiometry. In Advances in Neural Information Processing Systems (pp. 2386-2394).

Malkomes, G., Schaff, C., & Garnett, R. (2016). Bayesian optimization for automated model selection. In Advances in Neural Information Processing Systems (pp. 2900-2908).