-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecom.c
687 lines (580 loc) · 16.6 KB
/
recom.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
/**
* PLL (version 1.0.0) a software library for phylogenetic inference
* Copyright (C) 2013 Tomas Flouri and Alexandros Stamatakis
*
* Derived from
* RAxML-HPC, a program for sequential and parallel estimation of phylogenetic
* trees by Alexandros Stamatakis
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
* For any other enquiries send an Email to Tomas Flouri
* Tomas.Flouri@h-its.org
*
* When publishing work that uses PLL please cite PLL
*
* @file recom.c
* @brief Functions used for recomputation of vectors (only a fraction of LH vectors stored in RAM)
*/
#include "mem_alloc.h"
#include "systypes.h"
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <limits.h>
#include <errno.h>
#include <time.h>
#include <math.h>
#include "pll.h"
#include "pllInternal.h"
/** @brief Locks node \a nodenum to force it remains availably in memory
*
* @warning If a node is available we dont need to recompute it, but we neet to make sure it is not unpinned while buildding the rest of the traversal descriptor, i.e. unpinnable must be PLL_FALSE at this point, it will automatically be set to PLL_TRUE, after the counter post-order instructions have been executed
Omitting this call the traversal will likely still work as long as num_allocated_nodes >> log n, but wrong inner vectors will be used at the wrong moment of pllNewviewIterative, careful!
*
* @param rvec
* Recomputation info
*
* @param nodenum
* Node id that must remain available in memory
*
* @param mxtips
* Number of tips in the tree
*
*/
void protectNode(recompVectors *rvec, int nodenum, int mxtips)
{
int slot;
slot = rvec->iNode[nodenum - mxtips - 1];
assert(slot != PLL_NODE_UNPINNED);
assert(rvec->iVector[slot] == nodenum);
if(rvec->unpinnable[slot])
rvec->unpinnable[slot] = PLL_FALSE;
}
/** @brief Checks if \a nodenum is currently pinned (available in RAM)
*
* @note shall we document static functions?
*
* @param rvec
* Recomputation info
*
* @param nodenum
* Node id to be checked
*
* @param mxtips
* Number of tips in the tree
*
*/
static pllBoolean isNodePinned(recompVectors *rvec, int nodenum, int mxtips)
{
assert(nodenum > mxtips);
if(rvec->iNode[nodenum - mxtips - 1] == PLL_NODE_UNPINNED)
return PLL_FALSE;
else
return PLL_TRUE;
}
/** @brief Checks if the likelihood entries at node \a p should be updated
*
* A node needs update if one of the following holds:
* 1. It is not oriented (p->x == 0)
* 2. We are applying recomputations and node \a p is not currently available in RAM
*
* @param recompute
* PLL_TRUE if recomputation is currently applied
*
* @param p
* Node to check whether it is associated with the likelihood vector
*
* @param mxtips
* Number of tips in the tree
*
*/
pllBoolean needsRecomp(pllBoolean recompute, recompVectors *rvec, nodeptr p, int mxtips)
{
if((!p->x) || (recompute && !isNodePinned(rvec, p->number, mxtips)))
return PLL_TRUE;
else
return PLL_FALSE;
}
/** @brief Allocates memory for recomputation structure
*
*
* @todo this should not depend on tr (\a vectorRecomFraction should be a parameter)
* PLL_TRUE if recomputation is currently applied
*
*/
void allocRecompVectorsInfo(pllInstance *tr)
{
recompVectors
*v = (recompVectors *) rax_malloc(sizeof(recompVectors));
int
num_inner_nodes = tr->mxtips - 2,
num_vectors,
i;
assert(tr->vectorRecomFraction > PLL_MIN_RECOM_FRACTION);
assert(tr->vectorRecomFraction < PLL_MAX_RECOM_FRACTION);
num_vectors = (int) (1 + tr->vectorRecomFraction * (float)num_inner_nodes);
int theoretical_minimum_of_vectors = 3 + ((int)(log((double)tr->mxtips)/log(2.0)));
//printBothOpen("Try to use %d ancestral vectors, min required %d\n", num_vectors, theoretical_minimum_of_vectors);
assert(num_vectors >= theoretical_minimum_of_vectors);
assert(num_vectors < tr->mxtips);
v->numVectors = num_vectors; /* use minimum bound theoretical */
/* init vectors tracking */
v->iVector = (int *) rax_malloc((size_t)num_vectors * sizeof(int));
v->unpinnable = (pllBoolean *) rax_malloc((size_t)num_vectors * sizeof(pllBoolean));
for(i = 0; i < num_vectors; i++)
{
v->iVector[i] = PLL_SLOT_UNUSED;
v->unpinnable[i] = PLL_FALSE;
}
v->iNode = (int *) rax_malloc((size_t)num_inner_nodes * sizeof(int));
v->stlen = (int *) rax_malloc((size_t)num_inner_nodes * sizeof(int));
for(i = 0; i < num_inner_nodes; i++)
{
v->iNode[i] = PLL_NODE_UNPINNED;
v->stlen[i] = PLL_INNER_NODE_INIT_STLEN;
}
v->allSlotsBusy = PLL_FALSE;
/* init nodes tracking */
v->maxVectorsUsed = 0;
tr->rvec = v;
}
/** @brief Find the slot id with the minimum cost to be recomputed.
*
* The minum cost is defined as the minimum subtree size. In general, the closer a vector is to the tips,
* the less recomputations are required to re-establish its likelihood entries
*
* @todo remove _DEBUG_RECOMPUTATION code
*
* @param v
*
* @param mxtips
* Number of tips in the tree
*
*/
static int findUnpinnableSlotByCost(recompVectors *v, int mxtips)
{
int
i,
slot,
cheapest_slot = -1,
min_cost = mxtips * 2; /* more expensive than the most expensive*/
#ifdef _DEBUG_RECOMPUTATION
double straTime = gettime();
#endif
for(i = 0; i < mxtips - 2; i++)
{
slot = v->iNode[i];
if(slot != PLL_NODE_UNPINNED)
{
assert(slot >= 0 && slot < v->numVectors);
if(v->unpinnable[slot])
{
assert(v->stlen[i] > 0);
if(v->stlen[i] < min_cost)
{
min_cost = v->stlen[i];
cheapest_slot = slot;
/* if the slot costs 2 you can break cause there is nothing cheaper to recompute */
if(min_cost == 2)
break;
}
}
}
}
assert(min_cost < mxtips * 2 && min_cost >= 2);
assert(cheapest_slot >= 0);
return cheapest_slot;
}
static void unpinAtomicSlot(recompVectors *v, int slot, int mxtips)
{
int
nodenum = v->iVector[slot];
v->iVector[slot] = PLL_SLOT_UNUSED;
if(nodenum != PLL_SLOT_UNUSED)
v->iNode[nodenum - mxtips - 1] = PLL_NODE_UNPINNED;
}
/** @brief Finds the cheapest slot and unpins it
*
*/
static int findUnpinnableSlot(recompVectors *v, int mxtips)
{
int
slot_unpinned = findUnpinnableSlotByCost(v, mxtips);
assert(slot_unpinned >= 0);
assert(v->unpinnable[slot_unpinned]);
unpinAtomicSlot(v, slot_unpinned, mxtips);
return slot_unpinned;
}
/** @brief Finds a free slot
*
* If all slots are occupied, it will find the cheapest slot and unpin it
*
*/
static int findFreeSlot(recompVectors *v, int mxtips)
{
int
slotno = -1,
i;
assert(v->allSlotsBusy == PLL_FALSE);
for(i = 0; i < v->numVectors; i++)
{
if(v->iVector[i] == PLL_SLOT_UNUSED)
{
slotno = i;
break;
}
}
if(slotno == -1)
{
v->allSlotsBusy = PLL_TRUE;
slotno = findUnpinnableSlot(v, mxtips);
}
return slotno;
}
/** @brief Pins node \a nodenum to slot \a slot
*
* The slot is initialized as non-unpinnable (ensures that the contents of the vector will not be overwritten)
*
* @param nodenum
* node id
*
* @param slot
* slot id
*
* @param mxtips
* Number of tips in the tree
*
*/
static void pinAtomicNode(recompVectors *v, int nodenum, int slot, int mxtips)
{
v->iVector[slot] = nodenum;
v->iNode[nodenum - mxtips - 1] = slot;
v->unpinnable[slot] = PLL_FALSE;
}
static int pinNode(recompVectors *rvec, int nodenum, int mxtips)
{
int
slot;
assert(!isNodePinned(rvec, nodenum, mxtips));
if(rvec->allSlotsBusy)
slot = findUnpinnableSlot(rvec, mxtips);
else
slot = findFreeSlot(rvec, mxtips);
assert(slot >= 0);
pinAtomicNode(rvec, nodenum, slot, mxtips);
if(slot > rvec->maxVectorsUsed)
rvec->maxVectorsUsed = slot;
assert(slot == rvec->iNode[nodenum - mxtips - 1]);
return slot;
}
/** @brief Marks node \a nodenum as unpinnable
*
* The slot holding the node \a nodenum is added to the pool of slot candidates that can be overwritten.
*
* @param v
* Recomputation info
*
* @param nodenum
* node id
*
* @param mxtips
* Number of tips in the tree
*
*/
void unpinNode(recompVectors *v, int nodenum, int mxtips)
{
if(nodenum <= mxtips)
return;
else
{
int
slot = -1;
assert(nodenum > mxtips);
slot = v->iNode[nodenum-mxtips-1];
assert(slot >= 0 && slot < v->numVectors);
if(slot >= 0 && slot < v->numVectors)
v->unpinnable[slot] = PLL_TRUE;
}
}
/** @brief Get a pinned slot \a slot that holds the likelihood vector for inner node \a nodenum
*
* If node \a node nodenum is not pinned to any slot yet, the minimum cost replacement strategy is used.
*
* @param v
* Recomputation info
*
* @param nodenum
* node id
*
* @param slot
* slot id
*
* @param mxtips
* Number of tips in the tree
*
*/
pllBoolean getxVector(recompVectors *rvec, int nodenum, int *slot, int mxtips)
{
pllBoolean
slotNeedsRecomp = PLL_FALSE;
*slot = rvec->iNode[nodenum - mxtips - 1];
if(*slot == PLL_NODE_UNPINNED)
{
*slot = pinNode(rvec, nodenum, mxtips); /* now we will run the replacement strategy */
slotNeedsRecomp = PLL_TRUE;
}
assert(*slot >= 0 && *slot < rvec->numVectors);
rvec->unpinnable[*slot] = PLL_FALSE;
return slotNeedsRecomp;
}
#ifdef _DEBUG_RECOMPUTATION
static int subtreeSize(nodeptr p, int maxTips)
{
if(isTip(p->number, maxTips))
return 1;
else
return (subtreeSize(p->next->back, maxTips) + subtreeSize(p->next->next->back, maxTips));
}
#endif
/** @brief Annotes unoriented tree nodes \a tr with their subtree size
*
* This function recursively updates the subtree size of each inner node.
* @note The subtree size of node \a p->number is the number of nodes included in the subtree where node record \a p is the virtual root.
*
* @param p
* Pointer to node
*
* @param maxTips
* Number of tips in the tree
*
* @param rvec
* Recomputation info
*
* @param count
* Number of visited nodes
*/
void computeTraversalInfoStlen(nodeptr p, int maxTips, recompVectors *rvec, int *count)
{
if(isTip(p->number, maxTips))
return;
else
{
nodeptr
q = p->next->back,
r = p->next->next->back;
*count += 1;
/* set xnode info at this point */
if(isTip(r->number, maxTips) && isTip(q->number, maxTips))
{
rvec->stlen[p->number - maxTips - 1] = 2;
#ifdef _DEBUG_RECOMPUTATION
assert(rvec->stlen[p->number - maxTips - 1] == subtreeSize(p, maxTips));
#endif
}
else
{
if(isTip(r->number, maxTips) || isTip(q->number, maxTips))
{
nodeptr
tmp;
if(isTip(r->number, maxTips))
{
tmp = r;
r = q;
q = tmp;
}
if(!r->x)
computeTraversalInfoStlen(r, maxTips, rvec, count);
rvec->stlen[p->number - maxTips - 1] = rvec->stlen[r->number - maxTips - 1] + 1;
#ifdef _DEBUG_RECOMPUTATION
assert(rvec->stlen[p->number - maxTips - 1] == subtreeSize(p, maxTips));
#endif
}
else
{
if(!r->x)
computeTraversalInfoStlen(r, maxTips, rvec, count);
if(!q->x)
computeTraversalInfoStlen(q, maxTips, rvec, count);
rvec->stlen[p->number - maxTips - 1] = rvec->stlen[q->number - maxTips - 1] + rvec->stlen[r->number - maxTips - 1];
#ifdef _DEBUG_RECOMPUTATION
assert(rvec->stlen[p->number - maxTips - 1] == subtreeSize(p, maxTips));
#endif
}
}
}
}
/* pre-compute the node stlens (this needs to be known prior to running the strategy) */
/** @brief Annotes all tree nodes \a tr with their subtree size
*
* Similar to \a computeTraversalInfoStlen, but does a full traversal ignoring orientation.
* The minum cost is defined as the minimum subtree size. In general, the closer a vector is to the tips,
* the less recomputations are required to re-establish its likelihood entries
*
* @param p
* Pointer to node
*
* @param maxTips
* Number of tips in the tree
*
* @param rvec
* Recomputation info
*/
void computeFullTraversalInfoStlen(nodeptr p, int maxTips, recompVectors *rvec)
{
if(isTip(p->number, maxTips))
return;
else
{
nodeptr
q = p->next->back,
r = p->next->next->back;
if(isTip(r->number, maxTips) && isTip(q->number, maxTips))
{
rvec->stlen[p->number - maxTips - 1] = 2;
#ifdef _DEBUG_RECOMPUTATION
assert(rvec->stlen[p->number - maxTips - 1] == subtreeSize(p, maxTips));
#endif
}
else
{
if(isTip(r->number, maxTips) || isTip(q->number, maxTips))
{
nodeptr
tmp;
if(isTip(r->number, maxTips))
{
tmp = r;
r = q;
q = tmp;
}
computeFullTraversalInfoStlen(r, maxTips, rvec);
rvec->stlen[p->number - maxTips - 1] = rvec->stlen[r->number - maxTips - 1] + 1;
#ifdef _DEBUG_RECOMPUTATION
assert(rvec->stlen[p->number - maxTips - 1] == subtreeSize(p, maxTips));
#endif
}
else
{
computeFullTraversalInfoStlen(r, maxTips, rvec);
computeFullTraversalInfoStlen(q, maxTips, rvec);
rvec->stlen[p->number - maxTips - 1] = rvec->stlen[q->number - maxTips - 1] + rvec->stlen[r->number - maxTips - 1];
#ifdef _DEBUG_RECOMPUTATION
assert(rvec->stlen[p->number - maxTips - 1] == subtreeSize(p, maxTips));
#endif
}
}
}
}
#ifdef _DEBUG_RECOMPUTATION
void allocTraversalCounter(pllInstance *tr)
{
traversalCounter
*tc;
int
k;
tc = (traversalCounter *)rax_malloc(sizeof(traversalCounter));
tc->travlenFreq = (unsigned int *)rax_malloc(tr->mxtips * sizeof(int));
for(k = 0; k < tr->mxtips; k++)
tc->travlenFreq[k] = 0;
tc->tt = 0;
tc->ti = 0;
tc->ii = 0;
tc->numTraversals = 0;
tr->travCounter = tc;
}
/* recomp */
/* code to track traversal descriptor stats */
void countTraversal(pllInstance *tr)
{
traversalInfo
*ti = tr->td[0].ti;
int i;
traversalCounter *tc = tr->travCounter;
tc->numTraversals += 1;
/*
printBothOpen("trav #%d(%d):",tc->numTraversals, tr->td[0].count);
*/
for(i = 1; i < tr->td[0].count; i++)
{
traversalInfo *tInfo = &ti[i];
/*
printBothOpen(" %d q%d r%d |", tInfo->pNumber, tInfo->qNumber, tInfo->rNumber);
printBothOpen("%d", tInfo->pNumber);
*/
switch(tInfo->tipCase)
{
case PLL_TIP_TIP:
tc->tt++;
/* printBothOpen("T"); */
break;
case PLL_TIP_INNER:
tc->ti++;
/* printBothOpen("M"); */
break;
case PLL_INNER_INNER:
tc->ii++;
/* printBothOpen("I"); */
break;
default:
assert(0);
}
/* printBothOpen(" "); */
}
/* printBothOpen(" so far T %d, M %d, I %d \n", tc->tt, tc->ti,tc->ii); */
tc->travlenFreq[tr->td[0].count] += 1;
}
/*
void printTraversalInfo(pllInstance *tr)
{
int
k,
total_steps = 0;
printBothOpen("Traversals : %d \n", tr->travCounter->numTraversals);
printBothOpen("Traversals tt: %d \n", tr->travCounter->tt);
printBothOpen("Traversals ti: %d \n", tr->travCounter->ti);
printBothOpen("Traversals ii: %d \n", tr->travCounter->ii);
printBothOpen("all: %d \n", tr->travCounter->tt + tr->travCounter->ii + tr->travCounter->ti);
printBothOpen("Traversals len freq : \n");
for(k = 0; k < tr->mxtips; k++)
{
total_steps += tr->travCounter->travlenFreq[k] * (k - 1);
if(tr->travCounter->travlenFreq[k] > 0)
printBothOpen("len %d : %d\n", k, tr->travCounter->travlenFreq[k]);
}
printBothOpen("all steps: %d \n", total_steps);
}
*/
/*end code to track traversal descriptor stats */
/* E recomp */
/*
void printVector(double *vector, int len, char *name)
{
int i;
printBothOpen("LHVECTOR %s :", name);
for(i=0; i < len; i++)
{
printBothOpen("%.2f ", vector[i]);
if(i>10)
{
printBothOpen("...");
break;
}
}
printBothOpen("\n");
}
*/
#endif