-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathratefree.cpp
675 lines (597 loc) · 20.8 KB
/
ratefree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
/*
* ratefree.cpp
*
* Created on: Nov 3, 2014
* Author: minh
*/
#include "tree/phylotree.h"
#include "ratefree.h"
#include "rateinvar.h"
#include "model/modelfactory.h"
#include "model/modelmixture.h"
#include "utils/timeutil.h" //temporary : for time log-lining
const double MIN_FREE_RATE = 0.001;
const double MAX_FREE_RATE = 1000.0;
const double TOL_FREE_RATE = 0.0001;
// Modified by Thomas on 13 May 2015
//const double MIN_FREE_RATE_PROP = 0.0001;
//const double MAX_FREE_RATE_PROP = 0.9999;
const double MIN_FREE_RATE_PROP = 0.001;
const double MAX_FREE_RATE_PROP = 1000;
RateFree::RateFree(int ncat, double start_alpha, string params, bool sorted_rates, string opt_alg, PhyloTree *tree) : RateGamma(ncat, start_alpha, false, tree) {
fix_params = 0;
prop = NULL;
this->sorted_rates = sorted_rates;
optimizing_params = 0;
this->optimize_alg = opt_alg;
setNCategory(ncat);
if (params.empty()) return;
DoubleVector params_vec;
try {
// detect the seperator
char separator = ',';
if (params.find('/') != std::string::npos)
separator = '/';
convert_double_vec_with_distributions(params.c_str(), params_vec, separator);
int i;
double sum, sum_prop;
if (params_vec.size() == ncategory) {
// only inputing prop
for (i = 0, sum_prop = 0.0; i < ncategory; i++) {
prop[i] = params_vec[i];
rates[i] = 1.0;
sum_prop += prop[i];
}
fix_params = (Params::getInstance().optimize_from_given_params) ? 0 : 1;
} else {
if (params_vec.size() != ncategory*2)
outError("Number of parameters for FreeRate model must be twice number of categories");
for (i = 0, sum = 0.0, sum_prop = 0.0; i < ncategory; i++) {
prop[i] = params_vec[i*2];
rates[i] = params_vec[i*2+1];
sum += prop[i]*rates[i];
sum_prop += prop[i];
}
for (i = 0; i < ncategory; i++)
rates[i] /= sum;
fix_params = (Params::getInstance().optimize_from_given_params) ? 0 : 2;
}
if (fabs(sum_prop-1.0) > 1e-5)
{
outWarning("Normalizing category proportions so that sum of them equals to 1");
normalize_frequencies(prop, ncategory, sum_prop);
// normalize rates
sum = 0;
for (i = 0; i < ncategory; i++)
sum += prop[i]*rates[i];
for (i = 0; i < ncategory; i++)
rates[i] /= sum;
}
} catch (string &str) {
outError(str);
}
}
void RateFree::startCheckpoint() {
checkpoint->startStruct("RateFree" + convertIntToString(ncategory));
}
void RateFree::saveCheckpoint() {
startCheckpoint();
// CKP_SAVE(fix_params);
// CKP_SAVE(sorted_rates);
// CKP_SAVE(optimize_alg);
CKP_ARRAY_SAVE(ncategory, prop);
CKP_ARRAY_SAVE(ncategory, rates);
endCheckpoint();
// RateGamma::saveCheckpoint();
}
void RateFree::restoreCheckpoint() {
// RateGamma::restoreCheckpoint();
startCheckpoint();
// CKP_RESTORE(fix_params);
// CKP_RESTORE(sorted_rates);
// CKP_RESTORE(optimize_alg);
CKP_ARRAY_RESTORE(ncategory, prop);
CKP_ARRAY_RESTORE(ncategory, rates);
endCheckpoint();
// setNCategory(ncategory);
}
void RateFree::setNCategory(int ncat) {
// initialize with gamma rates
RateGamma::setNCategory(ncat);
if (prop) delete [] prop;
prop = new double[ncategory];
for (int i = 0; i < ncategory; i++) {
prop[i] = (1.0-getPInvar())/ncategory;
}
// double sum_prop = (ncategory)*(ncategory+1)/2.0;
// double sum = 0.0;
// int i;
// initialize rates as increasing
// for (i = 0; i < ncategory; i++) {
// prop[i] = (double)(ncategory-i) / sum_prop;
// prop[i] = 1.0 / ncategory;
// rates[i] = (double)(i+1);
// sum += prop[i]*rates[i];
// }
// for (i = 0; i < ncategory; i++)
// rates[i] /= sum;
name = "+R";
name += convertIntToString(ncategory);
full_name = "FreeRate";
full_name += " with " + convertIntToString(ncategory) + " categories";
}
void RateFree::initFromCatMinusOne() {
ncategory--;
restoreCheckpoint();
ncategory++;
int first = 0;
// get the category k with largest proportion
for (int i = 1; i < ncategory-1; i++) {
if (prop[i] > prop[first]) {
first = i;
}
}
int second = (first == 0) ? 1 : 0;
for (int i = 0; i < ncategory-1; i++)
if (prop[i] > prop[second] && i != first)
second = i;
// memmove(rates, input->rates, (k+1)*sizeof(double));
// memmove(prop, input->prop, (k+1)*sizeof(double));
// divide highest category into 2 of the same prop
// 2018-06-12: fix bug negative rates
if (-rates[second] + 3*rates[first] > 0.0) {
rates[ncategory-1] = (-rates[second] + 3*rates[first])/2.0;
rates[first] = (rates[second]+rates[first])/2.0;
} else {
rates[ncategory-1] = (3*rates[first])/2.0;
rates[first] = (rates[first])/2.0;
}
prop[ncategory-1] = prop[first]/2;
prop[first] = prop[first]/2;
// if (k < ncategory-2) {
// memcpy(&rates[k+2], &input->rates[k+1], (ncategory-2-k)*sizeof(double));
// memcpy(&prop[k+2], &input->prop[k+1], (ncategory-2-k)*sizeof(double));
// }
// copy half of k to the last category
// rates[ncategory-1] = rates[k];
// prop[ncategory-1] = prop[k] / 2;
// prop[k] = prop[k] / 2;
// sort the rates in increasing order
if (sorted_rates) {
quicksort(rates, 0, ncategory-1, prop);
}
phylo_tree->clearAllPartialLH();
}
RateFree::~RateFree() {
delete [] prop;
prop = nullptr;
}
string RateFree::getNameParams() {
stringstream str;
str << "+R" << ncategory << "{";
for (int i = 0; i < ncategory; i++) {
if (i > 0) str << ",";
str << prop[i]<< "," << rates[i];
}
str << "}";
return str.str();
}
double RateFree::meanRates() {
double ret = 0.0;
for (int i = 0; i < ncategory; i++)
ret += prop[i] * rates[i];
return ret;
}
/**
* rescale rates s.t. mean rate is equal to 1, useful for FreeRate model
* @return rescaling factor
*/
double RateFree::rescaleRates() {
double norm = meanRates();
for (int i = 0; i < ncategory; i++)
rates[i] /= norm;
return norm;
}
int RateFree::getNDim() {
if (fix_params == 2) return 0;
if (fix_params == 1) // only fix prop
return (ncategory-1);
if (optimizing_params == 0) return (2*ncategory-2);
if (optimizing_params == 1) // rates
return ncategory-1;
if (optimizing_params == 2) // proportions
return ncategory-1;
return 0;
}
double RateFree::targetFunk(double x[]) {
getVariables(x);
if (optimizing_params != 2) {
// only clear partial_lh if optimizing rates
phylo_tree->clearAllPartialLH();
}
return -phylo_tree->computeLikelihood();
}
/**
optimize parameters. Default is to optimize gamma shape
@return the best likelihood
*/
double RateFree::optimizeParameters(double gradient_epsilon) {
int ndim = getNDim();
// return if nothing to be optimized
if (ndim == 0) {
return phylo_tree->computeLikelihood();
}
if (verbose_mode >= VB_MED) {
cout << "Optimizing " << name << " model parameters by " << optimize_alg << " algorithm..." << endl;
}
// TODO: turn off EM algorithm for +ASC model
if ((optimize_alg.find("EM") != string::npos && phylo_tree->getModelFactory()->unobserved_ptns.empty())) {
if (fix_params == 0) {
return optimizeWithEM();
}
}
//if (freq_type == FREQ_ESTIMATE) scaleStateFreq(false);
double *variables = new double[ndim+1];
double *upper_bound = new double[ndim+1];
double *lower_bound = new double[ndim+1];
bool *bound_check = new bool[ndim+1];
double score;
// score = optimizeWeights();
int left = 1, right = 2;
if (fix_params == 1) // fix proportions
right = 1;
if (optimize_alg.find("1-BFGS") != string::npos) {
left = 0;
right = 0;
}
// changed to Wi -> Ri by Thomas on Sept 11, 15
for (optimizing_params = right; optimizing_params >= left; optimizing_params--) {
ndim = getNDim();
// by BFGS algorithm
setVariables(variables);
setBounds(lower_bound, upper_bound, bound_check);
// if (optimizing_params == 2 && optimize_alg.find("-EM") != string::npos)
// score = optimizeWeights();
// else
if (optimize_alg.find("BFGS-B") != string::npos)
score = -L_BFGS_B(ndim, variables+1, lower_bound+1, upper_bound+1, max(gradient_epsilon, TOL_FREE_RATE));
else
score = -minimizeMultiDimen(variables, ndim, lower_bound, upper_bound, bound_check, max(gradient_epsilon, TOL_FREE_RATE));
getVariables(variables);
// sort the rates in increasing order
if (sorted_rates)
quicksort(rates, 0, ncategory-1, prop);
phylo_tree->clearAllPartialLH();
score = phylo_tree->computeLikelihood();
}
optimizing_params = 0;
delete [] bound_check;
delete [] lower_bound;
delete [] upper_bound;
delete [] variables;
return score;
}
void RateFree::setBounds(double *lower_bound, double *upper_bound, bool *bound_check) {
if (getNDim() == 0) return;
int i;
if (optimizing_params == 2) {
// proportions
for (i = 1; i < ncategory; i++) {
lower_bound[i] = MIN_FREE_RATE_PROP;
upper_bound[i] = MAX_FREE_RATE_PROP;
bound_check[i] = false;
}
} else if (optimizing_params == 1){
// rates
for (i = 1; i < ncategory; i++) {
lower_bound[i] = MIN_FREE_RATE;
upper_bound[i] = MAX_FREE_RATE;
bound_check[i] = false;
}
} else {
// both weights and rates
for (i = 1; i < ncategory; i++) {
lower_bound[i] = MIN_FREE_RATE_PROP;
upper_bound[i] = MAX_FREE_RATE_PROP;
bound_check[i] = false;
}
for (i = 1; i < ncategory; i++) {
lower_bound[i+ncategory-1] = MIN_FREE_RATE;
upper_bound[i+ncategory-1] = MAX_FREE_RATE;
bound_check[i+ncategory-1] = false;
}
}
// for (i = ncategory; i <= 2*ncategory-2; i++) {
// lower_bound[i] = MIN_FREE_RATE;
// upper_bound[i] = MAX_FREE_RATE;
// bound_check[i] = false;
// }
}
void RateFree::setVariables(double *variables) {
if (getNDim() == 0) return;
int i;
// Modified by Thomas on 13 May 2015
// --start--
/*
variables[1] = prop[0];
for (i = 2; i < ncategory; i++)
variables[i] = variables[i-1] + prop[i-1];
*/
if (optimizing_params == 2) {
// proportions
for (i = 0; i < ncategory-1; i++)
variables[i+1] = prop[i] / prop[ncategory-1];
} else if (optimizing_params == 1) {
// rates
for (i = 0; i < ncategory-1; i++)
variables[i+1] = rates[i];
} else {
// both rates and weights
for (i = 0; i < ncategory-1; i++) {
variables[i+1] = prop[i] / prop[ncategory-1];
}
for (i = 0; i < ncategory-1; i++) {
variables[i+ncategory] = rates[i] / rates[ncategory-1];
}
}
}
bool RateFree::getVariables(double *variables) {
if (getNDim() == 0) return false;
int i;
bool changed = false;
// Modified by Thomas on 13 May 2015
// --start--
/*
double *y = new double[2*ncategory+1];
double *z = y+ncategory+1;
// site proportions: y[0..c] <-> (0.0, variables[1..c-1], 1.0)
y[0] = 0; y[ncategory] = 1.0;
memcpy(y+1, variables+1, (ncategory-1) * sizeof(double));
std::sort(y+1, y+ncategory);
// category rates: z[0..c-1] <-> (variables[c..2*c-2], 1.0)
memcpy(z, variables+ncategory, (ncategory-1) * sizeof(double));
z[ncategory-1] = 1.0;
//std::sort(z, z+ncategory-1);
double sum = 0.0;
for (i = 0; i < ncategory; i++) {
prop[i] = (y[i+1]-y[i]);
sum += prop[i] * z[i];
}
for (i = 0; i < ncategory; i++) {
rates[i] = z[i] / sum;
}
delete [] y;
*/
double sum = 1.0;
if (optimizing_params == 2) {
// proportions
for (i = 0; i < ncategory-1; i++) {
sum += variables[i+1];
}
for (i = 0; i < ncategory-1; i++) {
changed |= (prop[i] != variables[i+1] / sum);
prop[i] = variables[i+1] / sum;
}
changed |= (prop[ncategory-1] != 1.0 / sum);
prop[ncategory-1] = 1.0 / sum;
// added by Thomas on Sept 10, 15
// update the values of rates, in order to
// maintain the sum of prop[i]*rates[i] = 1
// sum = 0;
// for (i = 0; i < ncategory; i++) {
// sum += prop[i] * rates[i];
// }
// for (i = 0; i < ncategory; i++) {
// rates[i] = rates[i] / sum;
// }
} else if (optimizing_params == 1) {
// rates
for (i = 0; i < ncategory-1; i++) {
changed |= (rates[i] != variables[i+1]);
rates[i] = variables[i+1];
}
// added by Thomas on Sept 10, 15
// need to normalize the values of rates, in order to
// maintain the sum of prop[i]*rates[i] = 1
// sum = 0;
// for (i = 0; i < ncategory; i++) {
// sum += prop[i] * rates[i];
// }
// for (i = 0; i < ncategory; i++) {
// rates[i] = rates[i] / sum;
// }
} else {
// both weights and rates
for (i = 0; i < ncategory-1; i++) {
sum += variables[i+1];
}
for (i = 0; i < ncategory-1; i++) {
changed |= (prop[i] != variables[i+1] / sum);
prop[i] = variables[i+1] / sum;
}
changed |= (prop[ncategory-1] != 1.0 / sum);
prop[ncategory-1] = 1.0 / sum;
// then rates
sum = prop[ncategory-1];
for (i = 0; i < ncategory-1; i++) {
sum += prop[i] * variables[i+ncategory];
}
for (i = 0; i < ncategory-1; i++) {
changed |= (rates[i] != variables[i+ncategory] / sum);
rates[i] = variables[i+ncategory] / sum;
}
changed |= (rates[ncategory-1] != 1.0 / sum);
rates[ncategory-1] = 1.0 / sum;
}
// --end--
return changed;
}
/**
write information
@param out output stream
*/
void RateFree::writeInfo(ostream &out) {
out << "Site proportion and rates: ";
for (int i = 0; i < ncategory; i++)
out << " (" << prop[i] << "," << rates[i] << ")";
out << endl;
}
/**
write parameters, used with modeltest
@param out output stream
*/
void RateFree::writeParameters(ostream &out) {
for (int i = 0; i < ncategory; i++)
out << "\t" << prop[i] << "\t" << rates[i];
}
double RateFree::optimizeWithEM() {
size_t ptn, c;
size_t nptn = phylo_tree->aln->getNPattern();
size_t nmix = ncategory;
const double MIN_PROP = 1e-4;
// double *lk_ptn = aligned_alloc<double>(nptn);
double *new_prop = aligned_alloc<double>(nmix);
PhyloTree *tree = new PhyloTree;
// attach memory to save space
// tree->central_partial_lh = phylo_tree->central_partial_lh;
// tree->central_scale_num = phylo_tree->central_scale_num;
// tree->central_partial_pars = phylo_tree->central_partial_pars;
tree->copyPhyloTree(phylo_tree, true);
tree->optimize_by_newton = phylo_tree->optimize_by_newton;
tree->setParams(phylo_tree->params);
tree->setLikelihoodKernel(phylo_tree->sse);
tree->setNumThreads(phylo_tree->num_threads);
// initialize model
ModelFactory *model_fac = new ModelFactory();
model_fac->joint_optimize = phylo_tree->params->optimize_model_rate_joint;
// model_fac->unobserved_ptns = phylo_tree->getModelFactory()->unobserved_ptns;
RateHeterogeneity *site_rate = new RateHeterogeneity;
tree->setRate(site_rate);
site_rate->setTree(tree);
model_fac->site_rate = site_rate;
tree->model_factory = model_fac;
tree->setParams(phylo_tree->params);
double old_score = 0.0;
// EM algorithm loop described in Wang, Li, Susko, and Roger (2008)
for (int step = 0; step < ncategory; step++) {
// first compute _pattern_lh_cat
double score;
score = phylo_tree->computePatternLhCat(WSL_RATECAT);
if (score > 0.0) {
phylo_tree->printTree(cout, WT_BR_LEN+WT_NEWLINE);
writeInfo(cout);
}
ASSERT(score < 0);
if (step > 0) {
if (score <= old_score-0.1) {
phylo_tree->printTree(cout, WT_BR_LEN+WT_NEWLINE);
writeInfo(cout);
cout << "Partition " << phylo_tree->aln->name << endl;
cout << "score: " << score << " old_score: " << old_score << endl;
}
ASSERT(score > old_score-0.1);
}
old_score = score;
// E-step
// decoupled weights (prop) from _pattern_lh_cat to obtain L_ci and compute pattern likelihood L_i
memset(new_prop, 0, nmix*sizeof(double));
for (ptn = 0; ptn < nptn; ptn++) {
double *this_lk_cat = phylo_tree->_pattern_lh_cat + ptn*nmix;
double lk_ptn = phylo_tree->ptn_invar[ptn];
for (c = 0; c < nmix; c++) {
lk_ptn += this_lk_cat[c];
}
ASSERT(lk_ptn != 0.0);
lk_ptn = phylo_tree->ptn_freq[ptn] / lk_ptn;
// transform _pattern_lh_cat into posterior probabilities of each category
for (c = 0; c < nmix; c++) {
this_lk_cat[c] *= lk_ptn;
new_prop[c] += this_lk_cat[c];
}
}
// M-step, update weights according to (*)
int maxpropid = 0;
double new_pinvar = 0.0;
for (c = 0; c < nmix; c++) {
new_prop[c] = new_prop[c] / phylo_tree->getAlnNSite();
if (new_prop[c] > new_prop[maxpropid])
maxpropid = c;
}
// regularize prop
bool zero_prop = false;
for (c = 0; c < nmix; c++) {
if (new_prop[c] < MIN_PROP) {
new_prop[maxpropid] -= (MIN_PROP - new_prop[c]);
new_prop[c] = MIN_PROP;
zero_prop = true;
}
}
// break if some probabilities too small
if (zero_prop) break;
bool converged = true;
double sum_prop = 0.0;
for (c = 0; c < nmix; c++) {
// new_prop[c] = new_prop[c] / phylo_tree->getAlnNSite();
// check for convergence
sum_prop += new_prop[c];
converged = converged && (fabs(prop[c]-new_prop[c]) < 1e-4);
prop[c] = new_prop[c];
new_pinvar += new_prop[c];
}
new_pinvar = 1.0 - new_pinvar;
if (new_pinvar > 1e-4 && getPInvar() != 0.0) {
converged = converged && (fabs(getPInvar()-new_pinvar) < 1e-4);
if (isFixPInvar())
outError("Fixed given p-invar is not supported");
setPInvar(new_pinvar);
// setOptimizePInvar(false);
phylo_tree->computePtnInvar();
}
ASSERT(fabs(sum_prop+new_pinvar-1.0) < MIN_PROP);
// now optimize rates one by one
double sum = 0.0;
for (c = 0; c < nmix; c++) {
tree->copyPhyloTree(phylo_tree, true);
ModelMarkov *subst_model;
if (phylo_tree->getModel()->isMixture() && phylo_tree->getModelFactory()->fused_mix_rate)
subst_model = (ModelMarkov*)phylo_tree->getModel()->getMixtureClass(c);
else
subst_model = (ModelMarkov*)phylo_tree->getModel();
tree->setModel(subst_model);
subst_model->setTree(tree);
model_fac->model = subst_model;
if (subst_model->isMixture() || subst_model->isSiteSpecificModel() || !subst_model->isReversible())
tree->setLikelihoodKernel(phylo_tree->sse);
// initialize likelihood
tree->initializeAllPartialLh();
// copy posterior probability into ptn_freq
tree->computePtnFreq();
double *this_lk_cat = phylo_tree->_pattern_lh_cat+c;
for (ptn = 0; ptn < nptn; ptn++) {
tree->ptn_freq[ptn] = this_lk_cat[ptn*nmix];
}
double scaling = rates[c];
tree->scaleLength(scaling);
tree->optimizeTreeLengthScaling(MIN_PROP, scaling, 1.0/prop[c], 0.001);
converged = converged && (fabs(rates[c] - scaling) < 1e-4);
rates[c] = scaling;
sum += prop[c] * rates[c];
// reset subst model
tree->setModel(NULL);
subst_model->setTree(phylo_tree);
}
phylo_tree->clearAllPartialLH();
if (converged) break;
}
// sort the rates in increasing order
if (sorted_rates) {
quicksort(rates, 0, ncategory-1, prop);
}
// deattach memory
// tree->central_partial_lh = NULL;
// tree->central_scale_num = NULL;
// tree->central_partial_pars = NULL;
delete tree;
aligned_free(new_prop);
return phylo_tree->computeLikelihood();
}