This repository has been archived by the owner on Mar 3, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathqnli.py
129 lines (102 loc) · 3.81 KB
/
qnli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import numpy as np
import pandas as pd
from keras_xlnet.backend import keras
from keras_bert.layers import Extract
from keras_xlnet import PretrainedList, get_pretrained_paths
from keras_xlnet import Tokenizer, load_trained_model_from_checkpoint, ATTENTION_TYPE_BI
EPOCH = 10
BATCH_SIZE = 16
SEQ_LEN = 100
MODEL_NAME = 'QNLI.h5'
CLASSES = {
'not_entailment': 0,
'entailment': 1,
}
current_path = os.path.dirname(os.path.abspath(__file__))
train_path = os.path.join(current_path, 'train.tsv')
dev_path = os.path.join(current_path, 'dev.tsv')
paths = get_pretrained_paths(PretrainedList.en_cased_base)
tokenizer = Tokenizer(paths.vocab)
# Read data
class DataSequence(keras.utils.Sequence):
def __init__(self, x, y):
self.x = x
self.y = y
def __len__(self):
return (len(self.y) + BATCH_SIZE - 1) // BATCH_SIZE
def __getitem__(self, index):
s = slice(index * BATCH_SIZE, (index + 1) * BATCH_SIZE)
return [item[s] for item in self.x], self.y[s]
def generate_sequence(path):
tokens, segments, classes = [], [], []
df = pd.read_csv(path, sep='\t', error_bad_lines=False)
for _, row in df.iterrows():
text_a, text_b, cls = row['question'], row['sentence'], row['label']
if not isinstance(text_a, str) or not isinstance(text_b, str) or cls not in CLASSES:
continue
encoded_a, encoded_b = tokenizer.encode(text_a)[:20], tokenizer.encode(text_b)[:77]
encoded = encoded_a + [tokenizer.SYM_SEP] + encoded_b + [tokenizer.SYM_SEP]
segment = [0] * (len(encoded_a) + 1) + [1] * (len(encoded_b) + 1) + [2]
encoded = [tokenizer.SYM_PAD] * (SEQ_LEN - 1 - len(encoded)) + encoded + [tokenizer.SYM_CLS]
segment = [-1] * (SEQ_LEN - len(segment)) + segment
tokens.append(encoded)
segments.append(segment)
classes.append(CLASSES[cls])
tokens, segments, classes = np.array(tokens), np.array(segments), np.array(classes)
lengths = np.zeros_like(tokens[:, :1])
return DataSequence([tokens, segments, lengths], classes)
current_path = os.path.dirname(os.path.abspath(__file__))
train_seq = generate_sequence(train_path)
dev_seq = generate_sequence(dev_path)
# Load pretrained model
model = load_trained_model_from_checkpoint(
config_path=paths.config,
checkpoint_path=paths.model,
batch_size=BATCH_SIZE,
memory_len=0,
target_len=SEQ_LEN,
in_train_phase=False,
attention_type=ATTENTION_TYPE_BI,
)
# Build classification model
last = Extract(index=-1, name='Extract')(model.output)
dense = keras.layers.Dense(units=768, activation='tanh', name='Dense')(last)
dropout = keras.layers.Dropout(rate=0.1, name='Dropout')(dense)
output = keras.layers.Dense(units=2, activation='softmax', name='Softmax')(dropout)
model = keras.models.Model(inputs=model.inputs, outputs=output)
model.summary()
# Fit model
if os.path.exists(MODEL_NAME):
model.load_weights(MODEL_NAME)
model.compile(
optimizer=keras.optimizers.Adam(lr=3e-5),
loss='sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'],
)
model.fit_generator(
generator=train_seq,
validation_data=dev_seq,
epochs=EPOCH,
callbacks=[keras.callbacks.EarlyStopping(monitor='val_sparse_categorical_accuracy', patience=5)],
)
model.save_weights(MODEL_NAME)
# Evaluation
# Use dev set because the results of test set is unknown
results = model.predict_generator(dev_seq, verbose=True).argmax(axis=-1)
tp, fp, fn, tn = 0, 0, 0, 0
for i in range(len(results)):
if results[i] == 1:
if dev_seq.y[i] == 1:
tp += 1
else:
fp += 1
else:
if dev_seq.y[i] == 1:
fn += 1
else:
tn += 1
print('Confusion:')
print('[{}, {}]'.format(tp, fp))
print('[{}, {}]'.format(fn, tn))
print('Accuracy: %.2f' % (100.0 * (tp + tn) / len(results)))