|
| 1 | + |
| 2 | +import cv2 |
| 3 | +import numpy as np |
| 4 | +import sys |
| 5 | +import glob |
| 6 | + |
| 7 | +import time |
| 8 | +import torch |
| 9 | + |
| 10 | + |
| 11 | + |
| 12 | +class YoloDetector(): |
| 13 | + |
| 14 | + def __init__(self, model_name): |
| 15 | + |
| 16 | + self.model = self.load_model(model_name) |
| 17 | + self.classes = self.model.names |
| 18 | + #print(self.classes) |
| 19 | + self.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
| 20 | + print("Using Device: ", self.device) |
| 21 | + |
| 22 | + |
| 23 | + def load_model(self, model_name): |
| 24 | + |
| 25 | + if model_name: |
| 26 | + model = torch.hub.load('ultralytics/yolov5', 'custom', path=model_name, force_reload=True) |
| 27 | + else: |
| 28 | + model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) |
| 29 | + return model |
| 30 | + |
| 31 | + def score_frame(self, frame): |
| 32 | + |
| 33 | + self.model.to(self.device) |
| 34 | + downscale_factor = 2 |
| 35 | + width = int(frame.shape[1] / downscale_factor) |
| 36 | + height = int(frame.shape[0] / downscale_factor) |
| 37 | + frame = cv2.resize(frame, (width,height)) |
| 38 | + #frame = frame.to(self.device) |
| 39 | + |
| 40 | + results = self.model(frame) |
| 41 | + |
| 42 | + labels, cord = results.xyxyn[0][:, -1], results.xyxyn[0][:, :-1] |
| 43 | + |
| 44 | + return labels, cord |
| 45 | + |
| 46 | + def class_to_label(self, x): |
| 47 | + |
| 48 | + return self.classes[int(x)] |
| 49 | + |
| 50 | + |
| 51 | + def plot_boxes(self, results, frame, height, width, confidence=0.3): |
| 52 | + |
| 53 | + labels, cord = results |
| 54 | + detections = [] |
| 55 | + |
| 56 | + n = len(labels) |
| 57 | + x_shape, y_shape = width, height |
| 58 | + |
| 59 | + |
| 60 | + |
| 61 | + for i in range(n): |
| 62 | + row = cord[i] |
| 63 | + |
| 64 | + if row[4] >= confidence: |
| 65 | + x1, y1, x2, y2 = int(row[0]*x_shape), int(row[1]*y_shape), int(row[2]*x_shape), int(row[3]*y_shape) |
| 66 | + |
| 67 | + if self.class_to_label(labels[i]) == 'cup': |
| 68 | + |
| 69 | + x_center = x1 + (x2 - x1) |
| 70 | + y_center = y1 + ((y2 - y1) / 2) |
| 71 | + |
| 72 | + tlwh = np.asarray([x1, y1, int(x2-x1), int(y2-y1)], dtype=np.float32) |
| 73 | + confidence = float(row[4].item()) |
| 74 | + feature = 'person' |
| 75 | + |
| 76 | + detections.append(([x1, y1, int(x2-x1), int(y2-y1)], row[4].item(), 'person')) |
| 77 | + |
| 78 | + |
| 79 | + return frame, detections |
| 80 | + |
| 81 | + |
| 82 | +cap = cv2.VideoCapture(0) |
| 83 | + |
| 84 | + |
| 85 | +cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280) |
| 86 | +cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720) |
| 87 | + |
| 88 | + |
| 89 | +detector = YoloDetector(model_name=None) |
| 90 | + |
| 91 | +import os |
| 92 | +os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" |
| 93 | + |
| 94 | + |
| 95 | +from deep_sort_realtime.deepsort_tracker import DeepSort |
| 96 | + |
| 97 | +object_tracker = DeepSort(max_age=5, |
| 98 | + n_init=2, |
| 99 | + nms_max_overlap=1.0, |
| 100 | + max_cosine_distance=0.3, |
| 101 | + nn_budget=None, |
| 102 | + override_track_class=None, |
| 103 | + embedder="mobilenet", |
| 104 | + half=True, |
| 105 | + bgr=True, |
| 106 | + embedder_gpu=True, |
| 107 | + embedder_model_name=None, |
| 108 | + embedder_wts=None, |
| 109 | + polygon=False, |
| 110 | + today=None) |
| 111 | + |
| 112 | + |
| 113 | +while cap.isOpened(): |
| 114 | + |
| 115 | + succes, img = cap.read() |
| 116 | + |
| 117 | + start = time.perf_counter() |
| 118 | + |
| 119 | + results = detector.score_frame(img) |
| 120 | + img, detections = detector.plot_boxes(results, img, height=img.shape[0], width=img.shape[1], confidence=0.5) |
| 121 | + |
| 122 | + |
| 123 | + tracks = object_tracker.update_tracks(detections, frame=img) # bbs expected to be a list of detections, each in tuples of ( [left,top,w,h], confidence, detection_class ) |
| 124 | + |
| 125 | + |
| 126 | + for track in tracks: |
| 127 | + if not track.is_confirmed(): |
| 128 | + continue |
| 129 | + track_id = track.track_id |
| 130 | + ltrb = track.to_ltrb() |
| 131 | + |
| 132 | + bbox = ltrb |
| 133 | + |
| 134 | + cv2.rectangle(img,(int(bbox[0]), int(bbox[1])),(int(bbox[2]), int(bbox[3])),(0,0,255),2) |
| 135 | + cv2.putText(img, "ID: " + str(track_id), (int(bbox[0]), int(bbox[1] - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) |
| 136 | + |
| 137 | + |
| 138 | + |
| 139 | + end = time.perf_counter() |
| 140 | + totalTime = end - start |
| 141 | + fps = 1 / totalTime |
| 142 | + |
| 143 | + |
| 144 | + cv2.putText(img, f'FPS: {int(fps)}', (20,70), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0,255,0), 2) |
| 145 | + cv2.imshow('img',img) |
| 146 | + |
| 147 | + |
| 148 | + if cv2.waitKey(1) & 0xFF == 27: |
| 149 | + break |
| 150 | + |
| 151 | + |
| 152 | +# Release and destroy all windows before termination |
| 153 | +cap.release() |
| 154 | + |
| 155 | +cv2.destroyAllWindows() |
| 156 | + |
0 commit comments